4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
12 #include "hw/arm/arm.h"
13 #include "hw/arm/linux-boot-if.h"
14 #include "sysemu/kvm.h"
15 #include "sysemu/sysemu.h"
16 #include "hw/boards.h"
17 #include "hw/loader.h"
19 #include "sysemu/device_tree.h"
20 #include "qemu/config-file.h"
21 #include "exec/address-spaces.h"
23 /* Kernel boot protocol is specified in the kernel docs
24 * Documentation/arm/Booting and Documentation/arm64/booting.txt
25 * They have different preferred image load offsets from system RAM base.
27 #define KERNEL_ARGS_ADDR 0x100
28 #define KERNEL_LOAD_ADDR 0x00010000
29 #define KERNEL64_LOAD_ADDR 0x00080000
32 FIXUP_NONE
= 0, /* do nothing */
33 FIXUP_TERMINATOR
, /* end of insns */
34 FIXUP_BOARDID
, /* overwrite with board ID number */
35 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
36 FIXUP_ARGPTR
, /* overwrite with pointer to kernel args */
37 FIXUP_ENTRYPOINT
, /* overwrite with kernel entry point */
38 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
39 FIXUP_BOOTREG
, /* overwrite with boot register address */
40 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
44 typedef struct ARMInsnFixup
{
49 static const ARMInsnFixup bootloader_aarch64
[] = {
50 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
51 { 0xaa1f03e1 }, /* mov x1, xzr */
52 { 0xaa1f03e2 }, /* mov x2, xzr */
53 { 0xaa1f03e3 }, /* mov x3, xzr */
54 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
55 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
56 { 0, FIXUP_ARGPTR
}, /* arg: .word @DTB Lower 32-bits */
57 { 0 }, /* .word @DTB Higher 32-bits */
58 { 0, FIXUP_ENTRYPOINT
}, /* entry: .word @Kernel Entry Lower 32-bits */
59 { 0 }, /* .word @Kernel Entry Higher 32-bits */
60 { 0, FIXUP_TERMINATOR
}
63 /* A very small bootloader: call the board-setup code (if needed),
64 * set r0-r2, then jump to the kernel.
65 * If we're not calling boot setup code then we don't copy across
66 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
69 static const ARMInsnFixup bootloader
[] = {
70 { 0xe28fe008 }, /* add lr, pc, #8 */
71 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
72 { 0, FIXUP_BOARD_SETUP
},
73 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
74 { 0xe3a00000 }, /* mov r0, #0 */
75 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
76 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
77 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
80 { 0, FIXUP_ENTRYPOINT
},
81 { 0, FIXUP_TERMINATOR
}
84 /* Handling for secondary CPU boot in a multicore system.
85 * Unlike the uniprocessor/primary CPU boot, this is platform
86 * dependent. The default code here is based on the secondary
87 * CPU boot protocol used on realview/vexpress boards, with
88 * some parameterisation to increase its flexibility.
89 * QEMU platform models for which this code is not appropriate
90 * should override write_secondary_boot and secondary_cpu_reset_hook
93 * This code enables the interrupt controllers for the secondary
94 * CPUs and then puts all the secondary CPUs into a loop waiting
95 * for an interprocessor interrupt and polling a configurable
96 * location for the kernel secondary CPU entry point.
98 #define DSB_INSN 0xf57ff04f
99 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
101 static const ARMInsnFixup smpboot
[] = {
102 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
103 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
104 { 0xe3a01001 }, /* mov r1, #1 */
105 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
106 { 0xe3a010ff }, /* mov r1, #0xff */
107 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
108 { 0, FIXUP_DSB
}, /* dsb */
109 { 0xe320f003 }, /* wfi */
110 { 0xe5901000 }, /* ldr r1, [r0] */
111 { 0xe1110001 }, /* tst r1, r1 */
112 { 0x0afffffb }, /* beq <wfi> */
113 { 0xe12fff11 }, /* bx r1 */
114 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
115 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
116 { 0, FIXUP_TERMINATOR
}
119 static void write_bootloader(const char *name
, hwaddr addr
,
120 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
)
122 /* Fix up the specified bootloader fragment and write it into
123 * guest memory using rom_add_blob_fixed(). fixupcontext is
124 * an array giving the values to write in for the fixup types
125 * which write a value into the code array.
131 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
135 code
= g_new0(uint32_t, len
);
137 for (i
= 0; i
< len
; i
++) {
138 uint32_t insn
= insns
[i
].insn
;
139 FixupType fixup
= insns
[i
].fixup
;
145 case FIXUP_BOARD_SETUP
:
147 case FIXUP_ENTRYPOINT
:
148 case FIXUP_GIC_CPU_IF
:
151 insn
= fixupcontext
[fixup
];
156 code
[i
] = tswap32(insn
);
159 rom_add_blob_fixed(name
, code
, len
* sizeof(uint32_t), addr
);
164 static void default_write_secondary(ARMCPU
*cpu
,
165 const struct arm_boot_info
*info
)
167 uint32_t fixupcontext
[FIXUP_MAX
];
169 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
170 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
171 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
172 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
174 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
177 write_bootloader("smpboot", info
->smp_loader_start
,
178 smpboot
, fixupcontext
);
181 static void default_reset_secondary(ARMCPU
*cpu
,
182 const struct arm_boot_info
*info
)
184 CPUState
*cs
= CPU(cpu
);
186 address_space_stl_notdirty(&address_space_memory
, info
->smp_bootreg_addr
,
187 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
188 cpu_set_pc(cs
, info
->smp_loader_start
);
191 static inline bool have_dtb(const struct arm_boot_info
*info
)
193 return info
->dtb_filename
|| info
->get_dtb
;
196 #define WRITE_WORD(p, value) do { \
197 address_space_stl_notdirty(&address_space_memory, p, value, \
198 MEMTXATTRS_UNSPECIFIED, NULL); \
202 static void set_kernel_args(const struct arm_boot_info
*info
)
204 int initrd_size
= info
->initrd_size
;
205 hwaddr base
= info
->loader_start
;
208 p
= base
+ KERNEL_ARGS_ADDR
;
211 WRITE_WORD(p
, 0x54410001);
213 WRITE_WORD(p
, 0x1000);
216 /* TODO: handle multiple chips on one ATAG list */
218 WRITE_WORD(p
, 0x54410002);
219 WRITE_WORD(p
, info
->ram_size
);
220 WRITE_WORD(p
, info
->loader_start
);
224 WRITE_WORD(p
, 0x54420005);
225 WRITE_WORD(p
, info
->initrd_start
);
226 WRITE_WORD(p
, initrd_size
);
228 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
232 cmdline_size
= strlen(info
->kernel_cmdline
);
233 cpu_physical_memory_write(p
+ 8, info
->kernel_cmdline
,
235 cmdline_size
= (cmdline_size
>> 2) + 1;
236 WRITE_WORD(p
, cmdline_size
+ 2);
237 WRITE_WORD(p
, 0x54410009);
238 p
+= cmdline_size
* 4;
240 if (info
->atag_board
) {
243 uint8_t atag_board_buf
[0x1000];
245 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
246 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
247 WRITE_WORD(p
, 0x414f4d50);
248 cpu_physical_memory_write(p
, atag_board_buf
, atag_board_len
);
256 static void set_kernel_args_old(const struct arm_boot_info
*info
)
260 int initrd_size
= info
->initrd_size
;
261 hwaddr base
= info
->loader_start
;
263 /* see linux/include/asm-arm/setup.h */
264 p
= base
+ KERNEL_ARGS_ADDR
;
268 WRITE_WORD(p
, info
->ram_size
/ 4096);
271 #define FLAG_READONLY 1
272 #define FLAG_RDLOAD 4
273 #define FLAG_RDPROMPT 8
275 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
277 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
286 /* memc_control_reg */
288 /* unsigned char sounddefault */
289 /* unsigned char adfsdrives */
290 /* unsigned char bytes_per_char_h */
291 /* unsigned char bytes_per_char_v */
293 /* pages_in_bank[4] */
302 WRITE_WORD(p
, info
->initrd_start
);
307 WRITE_WORD(p
, initrd_size
);
312 /* system_serial_low */
314 /* system_serial_high */
318 /* zero unused fields */
319 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
322 s
= info
->kernel_cmdline
;
324 cpu_physical_memory_write(p
, s
, strlen(s
) + 1);
331 * load_dtb() - load a device tree binary image into memory
332 * @addr: the address to load the image at
333 * @binfo: struct describing the boot environment
334 * @addr_limit: upper limit of the available memory area at @addr
336 * Load a device tree supplied by the machine or by the user with the
337 * '-dtb' command line option, and put it at offset @addr in target
340 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
341 * than @addr), the device tree is only loaded if its size does not exceed
344 * Returns: the size of the device tree image on success,
345 * 0 if the image size exceeds the limit,
348 * Note: Must not be called unless have_dtb(binfo) is true.
350 static int load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
355 uint32_t acells
, scells
;
357 if (binfo
->dtb_filename
) {
359 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
361 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
365 fdt
= load_device_tree(filename
, &size
);
367 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
373 fdt
= binfo
->get_dtb(binfo
, &size
);
375 fprintf(stderr
, "Board was unable to create a dtb blob\n");
380 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
381 /* Installing the device tree blob at addr would exceed addr_limit.
382 * Whether this constitutes failure is up to the caller to decide,
383 * so just return 0 as size, i.e., no error.
389 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells");
390 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells");
391 if (acells
== 0 || scells
== 0) {
392 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
396 if (scells
< 2 && binfo
->ram_size
>= (1ULL << 32)) {
397 /* This is user error so deserves a friendlier error message
398 * than the failure of setprop_sized_cells would provide
400 fprintf(stderr
, "qemu: dtb file not compatible with "
405 rc
= qemu_fdt_setprop_sized_cells(fdt
, "/memory", "reg",
406 acells
, binfo
->loader_start
,
407 scells
, binfo
->ram_size
);
409 fprintf(stderr
, "couldn't set /memory/reg\n");
413 if (binfo
->kernel_cmdline
&& *binfo
->kernel_cmdline
) {
414 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
415 binfo
->kernel_cmdline
);
417 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
422 if (binfo
->initrd_size
) {
423 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
424 binfo
->initrd_start
);
426 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
430 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
431 binfo
->initrd_start
+ binfo
->initrd_size
);
433 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
438 if (binfo
->modify_dtb
) {
439 binfo
->modify_dtb(binfo
, fdt
);
442 qemu_fdt_dumpdtb(fdt
, size
);
444 /* Put the DTB into the memory map as a ROM image: this will ensure
445 * the DTB is copied again upon reset, even if addr points into RAM.
447 rom_add_blob_fixed("dtb", fdt
, size
, addr
);
458 static void do_cpu_reset(void *opaque
)
460 ARMCPU
*cpu
= opaque
;
461 CPUState
*cs
= CPU(cpu
);
462 CPUARMState
*env
= &cpu
->env
;
463 const struct arm_boot_info
*info
= env
->boot_info
;
467 if (!info
->is_linux
) {
468 /* Jump to the entry point. */
469 uint64_t entry
= info
->entry
;
472 env
->thumb
= info
->entry
& 1;
475 cpu_set_pc(cs
, entry
);
477 /* If we are booting Linux then we need to check whether we are
478 * booting into secure or non-secure state and adjust the state
479 * accordingly. Out of reset, ARM is defined to be in secure state
480 * (SCR.NS = 0), we change that here if non-secure boot has been
483 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
484 /* AArch64 is defined to come out of reset into EL3 if enabled.
485 * If we are booting Linux then we need to adjust our EL as
486 * Linux expects us to be in EL2 or EL1. AArch32 resets into
487 * SVC, which Linux expects, so no privilege/exception level to
491 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
492 env
->pstate
= PSTATE_MODE_EL2h
;
494 env
->pstate
= PSTATE_MODE_EL1h
;
498 /* Set to non-secure if not a secure boot */
499 if (!info
->secure_boot
&&
500 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
501 /* Linux expects non-secure state */
502 env
->cp15
.scr_el3
|= SCR_NS
;
506 if (cs
== first_cpu
) {
507 cpu_set_pc(cs
, info
->loader_start
);
509 if (!have_dtb(info
)) {
511 set_kernel_args_old(info
);
513 set_kernel_args(info
);
517 info
->secondary_cpu_reset_hook(cpu
, info
);
524 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
526 * @fw_cfg: The firmware config instance to store the data in.
527 * @size_key: The firmware config key to store the size of the loaded
528 * data under, with fw_cfg_add_i32().
529 * @data_key: The firmware config key to store the loaded data under,
530 * with fw_cfg_add_bytes().
531 * @image_name: The name of the image file to load. If it is NULL, the
532 * function returns without doing anything.
533 * @try_decompress: Whether the image should be decompressed (gunzipped) before
534 * adding it to fw_cfg. If decompression fails, the image is
537 * In case of failure, the function prints an error message to stderr and the
538 * process exits with status 1.
540 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
541 uint16_t data_key
, const char *image_name
,
547 if (image_name
== NULL
) {
551 if (try_decompress
) {
552 size
= load_image_gzipped_buffer(image_name
,
553 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
556 if (size
== (size_t)-1) {
560 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
561 fprintf(stderr
, "failed to load \"%s\"\n", image_name
);
565 data
= (uint8_t *)contents
;
568 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
569 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
572 static int do_arm_linux_init(Object
*obj
, void *opaque
)
574 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
575 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
576 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
577 struct arm_boot_info
*info
= opaque
;
579 if (albifc
->arm_linux_init
) {
580 albifc
->arm_linux_init(albif
, info
->secure_boot
);
586 static void arm_load_kernel_notify(Notifier
*notifier
, void *data
)
592 uint64_t elf_entry
, elf_low_addr
, elf_high_addr
;
594 hwaddr entry
, kernel_load_offset
;
596 static const ARMInsnFixup
*primary_loader
;
597 ArmLoadKernelNotifier
*n
= DO_UPCAST(ArmLoadKernelNotifier
,
599 ARMCPU
*cpu
= n
->cpu
;
600 struct arm_boot_info
*info
=
601 container_of(n
, struct arm_boot_info
, load_kernel_notifier
);
603 /* The board code is not supposed to set secure_board_setup unless
604 * running its code in secure mode is actually possible, and KVM
605 * doesn't support secure.
607 assert(!(info
->secure_board_setup
&& kvm_enabled()));
609 /* Load the kernel. */
610 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
612 if (have_dtb(info
)) {
613 /* If we have a device tree blob, but no kernel to supply it to (or
614 * the kernel is supposed to be loaded by the bootloader), copy the
615 * DTB to the base of RAM for the bootloader to pick up.
617 if (load_dtb(info
->loader_start
, info
, 0) < 0) {
622 if (info
->kernel_filename
) {
624 bool try_decompressing_kernel
;
626 fw_cfg
= fw_cfg_find();
627 try_decompressing_kernel
= arm_feature(&cpu
->env
,
628 ARM_FEATURE_AARCH64
);
630 /* Expose the kernel, the command line, and the initrd in fw_cfg.
631 * We don't process them here at all, it's all left to the
634 load_image_to_fw_cfg(fw_cfg
,
635 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
636 info
->kernel_filename
,
637 try_decompressing_kernel
);
638 load_image_to_fw_cfg(fw_cfg
,
639 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
640 info
->initrd_filename
, false);
642 if (info
->kernel_cmdline
) {
643 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
644 strlen(info
->kernel_cmdline
) + 1);
645 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
646 info
->kernel_cmdline
);
650 /* We will start from address 0 (typically a boot ROM image) in the
651 * same way as hardware.
656 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
657 primary_loader
= bootloader_aarch64
;
658 kernel_load_offset
= KERNEL64_LOAD_ADDR
;
659 elf_machine
= EM_AARCH64
;
661 primary_loader
= bootloader
;
662 if (!info
->write_board_setup
) {
663 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
665 kernel_load_offset
= KERNEL_LOAD_ADDR
;
666 elf_machine
= EM_ARM
;
669 info
->dtb_filename
= qemu_opt_get(qemu_get_machine_opts(), "dtb");
671 if (!info
->secondary_cpu_reset_hook
) {
672 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
674 if (!info
->write_secondary_boot
) {
675 info
->write_secondary_boot
= default_write_secondary
;
678 if (info
->nb_cpus
== 0)
681 #ifdef TARGET_WORDS_BIGENDIAN
687 /* We want to put the initrd far enough into RAM that when the
688 * kernel is uncompressed it will not clobber the initrd. However
689 * on boards without much RAM we must ensure that we still leave
690 * enough room for a decent sized initrd, and on boards with large
691 * amounts of RAM we must avoid the initrd being so far up in RAM
692 * that it is outside lowmem and inaccessible to the kernel.
693 * So for boards with less than 256MB of RAM we put the initrd
694 * halfway into RAM, and for boards with 256MB of RAM or more we put
695 * the initrd at 128MB.
697 info
->initrd_start
= info
->loader_start
+
698 MIN(info
->ram_size
/ 2, 128 * 1024 * 1024);
700 /* Assume that raw images are linux kernels, and ELF images are not. */
701 kernel_size
= load_elf(info
->kernel_filename
, NULL
, NULL
, &elf_entry
,
702 &elf_low_addr
, &elf_high_addr
, big_endian
,
704 if (kernel_size
> 0 && have_dtb(info
)) {
705 /* If there is still some room left at the base of RAM, try and put
706 * the DTB there like we do for images loaded with -bios or -pflash.
708 if (elf_low_addr
> info
->loader_start
709 || elf_high_addr
< info
->loader_start
) {
710 /* Pass elf_low_addr as address limit to load_dtb if it may be
711 * pointing into RAM, otherwise pass '0' (no limit)
713 if (elf_low_addr
< info
->loader_start
) {
716 if (load_dtb(info
->loader_start
, info
, elf_low_addr
) < 0) {
722 if (kernel_size
< 0) {
723 kernel_size
= load_uimage(info
->kernel_filename
, &entry
, NULL
,
724 &is_linux
, NULL
, NULL
);
726 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
727 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
728 entry
= info
->loader_start
+ kernel_load_offset
;
729 kernel_size
= load_image_gzipped(info
->kernel_filename
, entry
,
730 info
->ram_size
- kernel_load_offset
);
733 if (kernel_size
< 0) {
734 entry
= info
->loader_start
+ kernel_load_offset
;
735 kernel_size
= load_image_targphys(info
->kernel_filename
, entry
,
736 info
->ram_size
- kernel_load_offset
);
739 if (kernel_size
< 0) {
740 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
741 info
->kernel_filename
);
746 uint32_t fixupcontext
[FIXUP_MAX
];
748 if (info
->initrd_filename
) {
749 initrd_size
= load_ramdisk(info
->initrd_filename
,
753 if (initrd_size
< 0) {
754 initrd_size
= load_image_targphys(info
->initrd_filename
,
759 if (initrd_size
< 0) {
760 fprintf(stderr
, "qemu: could not load initrd '%s'\n",
761 info
->initrd_filename
);
767 info
->initrd_size
= initrd_size
;
769 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
770 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
772 /* for device tree boot, we pass the DTB directly in r2. Otherwise
773 * we point to the kernel args.
775 if (have_dtb(info
)) {
779 if (elf_machine
== EM_AARCH64
) {
781 * Some AArch64 kernels on early bootup map the fdt region as
783 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
785 * Let's play safe and prealign it to 2MB to give us some space.
787 align
= 2 * 1024 * 1024;
790 * Some 32bit kernels will trash anything in the 4K page the
791 * initrd ends in, so make sure the DTB isn't caught up in that.
796 /* Place the DTB after the initrd in memory with alignment. */
797 dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
, align
);
798 if (load_dtb(dtb_start
, info
, 0) < 0) {
801 fixupcontext
[FIXUP_ARGPTR
] = dtb_start
;
803 fixupcontext
[FIXUP_ARGPTR
] = info
->loader_start
+ KERNEL_ARGS_ADDR
;
804 if (info
->ram_size
>= (1ULL << 32)) {
805 fprintf(stderr
, "qemu: RAM size must be less than 4GB to boot"
806 " Linux kernel using ATAGS (try passing a device tree"
811 fixupcontext
[FIXUP_ENTRYPOINT
] = entry
;
813 write_bootloader("bootloader", info
->loader_start
,
814 primary_loader
, fixupcontext
);
816 if (info
->nb_cpus
> 1) {
817 info
->write_secondary_boot(cpu
, info
);
819 if (info
->write_board_setup
) {
820 info
->write_board_setup(cpu
, info
);
823 /* Notify devices which need to fake up firmware initialization
824 * that we're doing a direct kernel boot.
826 object_child_foreach_recursive(object_get_root(),
827 do_arm_linux_init
, info
);
829 info
->is_linux
= is_linux
;
831 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
832 ARM_CPU(cs
)->env
.boot_info
= info
;
836 void arm_load_kernel(ARMCPU
*cpu
, struct arm_boot_info
*info
)
840 info
->load_kernel_notifier
.cpu
= cpu
;
841 info
->load_kernel_notifier
.notifier
.notify
= arm_load_kernel_notify
;
842 qemu_add_machine_init_done_notifier(&info
->load_kernel_notifier
.notifier
);
844 /* CPU objects (unlike devices) are not automatically reset on system
845 * reset, so we must always register a handler to do so. If we're
846 * actually loading a kernel, the handler is also responsible for
847 * arranging that we start it correctly.
849 for (cs
= CPU(cpu
); cs
; cs
= CPU_NEXT(cs
)) {
850 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
854 static const TypeInfo arm_linux_boot_if_info
= {
855 .name
= TYPE_ARM_LINUX_BOOT_IF
,
856 .parent
= TYPE_INTERFACE
,
857 .class_size
= sizeof(ARMLinuxBootIfClass
),
860 static void arm_linux_boot_register_types(void)
862 type_register_static(&arm_linux_boot_if_info
);
865 type_init(arm_linux_boot_register_types
)