scsi: revert change to scsi_req_cancel_async and add assertions
[qemu/ar7.git] / hw / arm / boot.c
blob75f69bfe016bb2a995aa8bcb6908d8b3f915e37a
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "config.h"
11 #include "hw/hw.h"
12 #include "hw/arm/arm.h"
13 #include "hw/arm/linux-boot-if.h"
14 #include "sysemu/kvm.h"
15 #include "sysemu/sysemu.h"
16 #include "hw/boards.h"
17 #include "hw/loader.h"
18 #include "elf.h"
19 #include "sysemu/device_tree.h"
20 #include "qemu/config-file.h"
21 #include "exec/address-spaces.h"
23 /* Kernel boot protocol is specified in the kernel docs
24 * Documentation/arm/Booting and Documentation/arm64/booting.txt
25 * They have different preferred image load offsets from system RAM base.
27 #define KERNEL_ARGS_ADDR 0x100
28 #define KERNEL_LOAD_ADDR 0x00010000
29 #define KERNEL64_LOAD_ADDR 0x00080000
31 typedef enum {
32 FIXUP_NONE = 0, /* do nothing */
33 FIXUP_TERMINATOR, /* end of insns */
34 FIXUP_BOARDID, /* overwrite with board ID number */
35 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
36 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
37 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
38 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
39 FIXUP_BOOTREG, /* overwrite with boot register address */
40 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
41 FIXUP_MAX,
42 } FixupType;
44 typedef struct ARMInsnFixup {
45 uint32_t insn;
46 FixupType fixup;
47 } ARMInsnFixup;
49 static const ARMInsnFixup bootloader_aarch64[] = {
50 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
51 { 0xaa1f03e1 }, /* mov x1, xzr */
52 { 0xaa1f03e2 }, /* mov x2, xzr */
53 { 0xaa1f03e3 }, /* mov x3, xzr */
54 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
55 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
56 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
57 { 0 }, /* .word @DTB Higher 32-bits */
58 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
59 { 0 }, /* .word @Kernel Entry Higher 32-bits */
60 { 0, FIXUP_TERMINATOR }
63 /* A very small bootloader: call the board-setup code (if needed),
64 * set r0-r2, then jump to the kernel.
65 * If we're not calling boot setup code then we don't copy across
66 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
69 static const ARMInsnFixup bootloader[] = {
70 { 0xe28fe008 }, /* add lr, pc, #8 */
71 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
72 { 0, FIXUP_BOARD_SETUP },
73 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
74 { 0xe3a00000 }, /* mov r0, #0 */
75 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
76 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
77 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
78 { 0, FIXUP_BOARDID },
79 { 0, FIXUP_ARGPTR },
80 { 0, FIXUP_ENTRYPOINT },
81 { 0, FIXUP_TERMINATOR }
84 /* Handling for secondary CPU boot in a multicore system.
85 * Unlike the uniprocessor/primary CPU boot, this is platform
86 * dependent. The default code here is based on the secondary
87 * CPU boot protocol used on realview/vexpress boards, with
88 * some parameterisation to increase its flexibility.
89 * QEMU platform models for which this code is not appropriate
90 * should override write_secondary_boot and secondary_cpu_reset_hook
91 * instead.
93 * This code enables the interrupt controllers for the secondary
94 * CPUs and then puts all the secondary CPUs into a loop waiting
95 * for an interprocessor interrupt and polling a configurable
96 * location for the kernel secondary CPU entry point.
98 #define DSB_INSN 0xf57ff04f
99 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
101 static const ARMInsnFixup smpboot[] = {
102 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
103 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
104 { 0xe3a01001 }, /* mov r1, #1 */
105 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
106 { 0xe3a010ff }, /* mov r1, #0xff */
107 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
108 { 0, FIXUP_DSB }, /* dsb */
109 { 0xe320f003 }, /* wfi */
110 { 0xe5901000 }, /* ldr r1, [r0] */
111 { 0xe1110001 }, /* tst r1, r1 */
112 { 0x0afffffb }, /* beq <wfi> */
113 { 0xe12fff11 }, /* bx r1 */
114 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
115 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
116 { 0, FIXUP_TERMINATOR }
119 static void write_bootloader(const char *name, hwaddr addr,
120 const ARMInsnFixup *insns, uint32_t *fixupcontext)
122 /* Fix up the specified bootloader fragment and write it into
123 * guest memory using rom_add_blob_fixed(). fixupcontext is
124 * an array giving the values to write in for the fixup types
125 * which write a value into the code array.
127 int i, len;
128 uint32_t *code;
130 len = 0;
131 while (insns[len].fixup != FIXUP_TERMINATOR) {
132 len++;
135 code = g_new0(uint32_t, len);
137 for (i = 0; i < len; i++) {
138 uint32_t insn = insns[i].insn;
139 FixupType fixup = insns[i].fixup;
141 switch (fixup) {
142 case FIXUP_NONE:
143 break;
144 case FIXUP_BOARDID:
145 case FIXUP_BOARD_SETUP:
146 case FIXUP_ARGPTR:
147 case FIXUP_ENTRYPOINT:
148 case FIXUP_GIC_CPU_IF:
149 case FIXUP_BOOTREG:
150 case FIXUP_DSB:
151 insn = fixupcontext[fixup];
152 break;
153 default:
154 abort();
156 code[i] = tswap32(insn);
159 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
161 g_free(code);
164 static void default_write_secondary(ARMCPU *cpu,
165 const struct arm_boot_info *info)
167 uint32_t fixupcontext[FIXUP_MAX];
169 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
170 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
171 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
172 fixupcontext[FIXUP_DSB] = DSB_INSN;
173 } else {
174 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
177 write_bootloader("smpboot", info->smp_loader_start,
178 smpboot, fixupcontext);
181 static void default_reset_secondary(ARMCPU *cpu,
182 const struct arm_boot_info *info)
184 CPUState *cs = CPU(cpu);
186 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
187 0, MEMTXATTRS_UNSPECIFIED, NULL);
188 cpu_set_pc(cs, info->smp_loader_start);
191 static inline bool have_dtb(const struct arm_boot_info *info)
193 return info->dtb_filename || info->get_dtb;
196 #define WRITE_WORD(p, value) do { \
197 address_space_stl_notdirty(&address_space_memory, p, value, \
198 MEMTXATTRS_UNSPECIFIED, NULL); \
199 p += 4; \
200 } while (0)
202 static void set_kernel_args(const struct arm_boot_info *info)
204 int initrd_size = info->initrd_size;
205 hwaddr base = info->loader_start;
206 hwaddr p;
208 p = base + KERNEL_ARGS_ADDR;
209 /* ATAG_CORE */
210 WRITE_WORD(p, 5);
211 WRITE_WORD(p, 0x54410001);
212 WRITE_WORD(p, 1);
213 WRITE_WORD(p, 0x1000);
214 WRITE_WORD(p, 0);
215 /* ATAG_MEM */
216 /* TODO: handle multiple chips on one ATAG list */
217 WRITE_WORD(p, 4);
218 WRITE_WORD(p, 0x54410002);
219 WRITE_WORD(p, info->ram_size);
220 WRITE_WORD(p, info->loader_start);
221 if (initrd_size) {
222 /* ATAG_INITRD2 */
223 WRITE_WORD(p, 4);
224 WRITE_WORD(p, 0x54420005);
225 WRITE_WORD(p, info->initrd_start);
226 WRITE_WORD(p, initrd_size);
228 if (info->kernel_cmdline && *info->kernel_cmdline) {
229 /* ATAG_CMDLINE */
230 int cmdline_size;
232 cmdline_size = strlen(info->kernel_cmdline);
233 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
234 cmdline_size + 1);
235 cmdline_size = (cmdline_size >> 2) + 1;
236 WRITE_WORD(p, cmdline_size + 2);
237 WRITE_WORD(p, 0x54410009);
238 p += cmdline_size * 4;
240 if (info->atag_board) {
241 /* ATAG_BOARD */
242 int atag_board_len;
243 uint8_t atag_board_buf[0x1000];
245 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
246 WRITE_WORD(p, (atag_board_len + 8) >> 2);
247 WRITE_WORD(p, 0x414f4d50);
248 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
249 p += atag_board_len;
251 /* ATAG_END */
252 WRITE_WORD(p, 0);
253 WRITE_WORD(p, 0);
256 static void set_kernel_args_old(const struct arm_boot_info *info)
258 hwaddr p;
259 const char *s;
260 int initrd_size = info->initrd_size;
261 hwaddr base = info->loader_start;
263 /* see linux/include/asm-arm/setup.h */
264 p = base + KERNEL_ARGS_ADDR;
265 /* page_size */
266 WRITE_WORD(p, 4096);
267 /* nr_pages */
268 WRITE_WORD(p, info->ram_size / 4096);
269 /* ramdisk_size */
270 WRITE_WORD(p, 0);
271 #define FLAG_READONLY 1
272 #define FLAG_RDLOAD 4
273 #define FLAG_RDPROMPT 8
274 /* flags */
275 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
276 /* rootdev */
277 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
278 /* video_num_cols */
279 WRITE_WORD(p, 0);
280 /* video_num_rows */
281 WRITE_WORD(p, 0);
282 /* video_x */
283 WRITE_WORD(p, 0);
284 /* video_y */
285 WRITE_WORD(p, 0);
286 /* memc_control_reg */
287 WRITE_WORD(p, 0);
288 /* unsigned char sounddefault */
289 /* unsigned char adfsdrives */
290 /* unsigned char bytes_per_char_h */
291 /* unsigned char bytes_per_char_v */
292 WRITE_WORD(p, 0);
293 /* pages_in_bank[4] */
294 WRITE_WORD(p, 0);
295 WRITE_WORD(p, 0);
296 WRITE_WORD(p, 0);
297 WRITE_WORD(p, 0);
298 /* pages_in_vram */
299 WRITE_WORD(p, 0);
300 /* initrd_start */
301 if (initrd_size) {
302 WRITE_WORD(p, info->initrd_start);
303 } else {
304 WRITE_WORD(p, 0);
306 /* initrd_size */
307 WRITE_WORD(p, initrd_size);
308 /* rd_start */
309 WRITE_WORD(p, 0);
310 /* system_rev */
311 WRITE_WORD(p, 0);
312 /* system_serial_low */
313 WRITE_WORD(p, 0);
314 /* system_serial_high */
315 WRITE_WORD(p, 0);
316 /* mem_fclk_21285 */
317 WRITE_WORD(p, 0);
318 /* zero unused fields */
319 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
320 WRITE_WORD(p, 0);
322 s = info->kernel_cmdline;
323 if (s) {
324 cpu_physical_memory_write(p, s, strlen(s) + 1);
325 } else {
326 WRITE_WORD(p, 0);
331 * load_dtb() - load a device tree binary image into memory
332 * @addr: the address to load the image at
333 * @binfo: struct describing the boot environment
334 * @addr_limit: upper limit of the available memory area at @addr
336 * Load a device tree supplied by the machine or by the user with the
337 * '-dtb' command line option, and put it at offset @addr in target
338 * memory.
340 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
341 * than @addr), the device tree is only loaded if its size does not exceed
342 * the limit.
344 * Returns: the size of the device tree image on success,
345 * 0 if the image size exceeds the limit,
346 * -1 on errors.
348 * Note: Must not be called unless have_dtb(binfo) is true.
350 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
351 hwaddr addr_limit)
353 void *fdt = NULL;
354 int size, rc;
355 uint32_t acells, scells;
357 if (binfo->dtb_filename) {
358 char *filename;
359 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
360 if (!filename) {
361 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
362 goto fail;
365 fdt = load_device_tree(filename, &size);
366 if (!fdt) {
367 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
368 g_free(filename);
369 goto fail;
371 g_free(filename);
372 } else {
373 fdt = binfo->get_dtb(binfo, &size);
374 if (!fdt) {
375 fprintf(stderr, "Board was unable to create a dtb blob\n");
376 goto fail;
380 if (addr_limit > addr && size > (addr_limit - addr)) {
381 /* Installing the device tree blob at addr would exceed addr_limit.
382 * Whether this constitutes failure is up to the caller to decide,
383 * so just return 0 as size, i.e., no error.
385 g_free(fdt);
386 return 0;
389 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
390 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
391 if (acells == 0 || scells == 0) {
392 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
393 goto fail;
396 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
397 /* This is user error so deserves a friendlier error message
398 * than the failure of setprop_sized_cells would provide
400 fprintf(stderr, "qemu: dtb file not compatible with "
401 "RAM size > 4GB\n");
402 goto fail;
405 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
406 acells, binfo->loader_start,
407 scells, binfo->ram_size);
408 if (rc < 0) {
409 fprintf(stderr, "couldn't set /memory/reg\n");
410 goto fail;
413 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
414 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
415 binfo->kernel_cmdline);
416 if (rc < 0) {
417 fprintf(stderr, "couldn't set /chosen/bootargs\n");
418 goto fail;
422 if (binfo->initrd_size) {
423 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
424 binfo->initrd_start);
425 if (rc < 0) {
426 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
427 goto fail;
430 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
431 binfo->initrd_start + binfo->initrd_size);
432 if (rc < 0) {
433 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
434 goto fail;
438 if (binfo->modify_dtb) {
439 binfo->modify_dtb(binfo, fdt);
442 qemu_fdt_dumpdtb(fdt, size);
444 /* Put the DTB into the memory map as a ROM image: this will ensure
445 * the DTB is copied again upon reset, even if addr points into RAM.
447 rom_add_blob_fixed("dtb", fdt, size, addr);
449 g_free(fdt);
451 return size;
453 fail:
454 g_free(fdt);
455 return -1;
458 static void do_cpu_reset(void *opaque)
460 ARMCPU *cpu = opaque;
461 CPUState *cs = CPU(cpu);
462 CPUARMState *env = &cpu->env;
463 const struct arm_boot_info *info = env->boot_info;
465 cpu_reset(cs);
466 if (info) {
467 if (!info->is_linux) {
468 /* Jump to the entry point. */
469 uint64_t entry = info->entry;
471 if (!env->aarch64) {
472 env->thumb = info->entry & 1;
473 entry &= 0xfffffffe;
475 cpu_set_pc(cs, entry);
476 } else {
477 /* If we are booting Linux then we need to check whether we are
478 * booting into secure or non-secure state and adjust the state
479 * accordingly. Out of reset, ARM is defined to be in secure state
480 * (SCR.NS = 0), we change that here if non-secure boot has been
481 * requested.
483 if (arm_feature(env, ARM_FEATURE_EL3)) {
484 /* AArch64 is defined to come out of reset into EL3 if enabled.
485 * If we are booting Linux then we need to adjust our EL as
486 * Linux expects us to be in EL2 or EL1. AArch32 resets into
487 * SVC, which Linux expects, so no privilege/exception level to
488 * adjust.
490 if (env->aarch64) {
491 if (arm_feature(env, ARM_FEATURE_EL2)) {
492 env->pstate = PSTATE_MODE_EL2h;
493 } else {
494 env->pstate = PSTATE_MODE_EL1h;
498 /* Set to non-secure if not a secure boot */
499 if (!info->secure_boot &&
500 (cs != first_cpu || !info->secure_board_setup)) {
501 /* Linux expects non-secure state */
502 env->cp15.scr_el3 |= SCR_NS;
506 if (cs == first_cpu) {
507 cpu_set_pc(cs, info->loader_start);
509 if (!have_dtb(info)) {
510 if (old_param) {
511 set_kernel_args_old(info);
512 } else {
513 set_kernel_args(info);
516 } else {
517 info->secondary_cpu_reset_hook(cpu, info);
524 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
525 * by key.
526 * @fw_cfg: The firmware config instance to store the data in.
527 * @size_key: The firmware config key to store the size of the loaded
528 * data under, with fw_cfg_add_i32().
529 * @data_key: The firmware config key to store the loaded data under,
530 * with fw_cfg_add_bytes().
531 * @image_name: The name of the image file to load. If it is NULL, the
532 * function returns without doing anything.
533 * @try_decompress: Whether the image should be decompressed (gunzipped) before
534 * adding it to fw_cfg. If decompression fails, the image is
535 * loaded as-is.
537 * In case of failure, the function prints an error message to stderr and the
538 * process exits with status 1.
540 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
541 uint16_t data_key, const char *image_name,
542 bool try_decompress)
544 size_t size = -1;
545 uint8_t *data;
547 if (image_name == NULL) {
548 return;
551 if (try_decompress) {
552 size = load_image_gzipped_buffer(image_name,
553 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
556 if (size == (size_t)-1) {
557 gchar *contents;
558 gsize length;
560 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
561 fprintf(stderr, "failed to load \"%s\"\n", image_name);
562 exit(1);
564 size = length;
565 data = (uint8_t *)contents;
568 fw_cfg_add_i32(fw_cfg, size_key, size);
569 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
572 static int do_arm_linux_init(Object *obj, void *opaque)
574 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
575 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
576 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
577 struct arm_boot_info *info = opaque;
579 if (albifc->arm_linux_init) {
580 albifc->arm_linux_init(albif, info->secure_boot);
583 return 0;
586 static void arm_load_kernel_notify(Notifier *notifier, void *data)
588 CPUState *cs;
589 int kernel_size;
590 int initrd_size;
591 int is_linux = 0;
592 uint64_t elf_entry, elf_low_addr, elf_high_addr;
593 int elf_machine;
594 hwaddr entry, kernel_load_offset;
595 int big_endian;
596 static const ARMInsnFixup *primary_loader;
597 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
598 notifier, notifier);
599 ARMCPU *cpu = n->cpu;
600 struct arm_boot_info *info =
601 container_of(n, struct arm_boot_info, load_kernel_notifier);
603 /* The board code is not supposed to set secure_board_setup unless
604 * running its code in secure mode is actually possible, and KVM
605 * doesn't support secure.
607 assert(!(info->secure_board_setup && kvm_enabled()));
609 /* Load the kernel. */
610 if (!info->kernel_filename || info->firmware_loaded) {
612 if (have_dtb(info)) {
613 /* If we have a device tree blob, but no kernel to supply it to (or
614 * the kernel is supposed to be loaded by the bootloader), copy the
615 * DTB to the base of RAM for the bootloader to pick up.
617 if (load_dtb(info->loader_start, info, 0) < 0) {
618 exit(1);
622 if (info->kernel_filename) {
623 FWCfgState *fw_cfg;
624 bool try_decompressing_kernel;
626 fw_cfg = fw_cfg_find();
627 try_decompressing_kernel = arm_feature(&cpu->env,
628 ARM_FEATURE_AARCH64);
630 /* Expose the kernel, the command line, and the initrd in fw_cfg.
631 * We don't process them here at all, it's all left to the
632 * firmware.
634 load_image_to_fw_cfg(fw_cfg,
635 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
636 info->kernel_filename,
637 try_decompressing_kernel);
638 load_image_to_fw_cfg(fw_cfg,
639 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
640 info->initrd_filename, false);
642 if (info->kernel_cmdline) {
643 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
644 strlen(info->kernel_cmdline) + 1);
645 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
646 info->kernel_cmdline);
650 /* We will start from address 0 (typically a boot ROM image) in the
651 * same way as hardware.
653 return;
656 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
657 primary_loader = bootloader_aarch64;
658 kernel_load_offset = KERNEL64_LOAD_ADDR;
659 elf_machine = EM_AARCH64;
660 } else {
661 primary_loader = bootloader;
662 if (!info->write_board_setup) {
663 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
665 kernel_load_offset = KERNEL_LOAD_ADDR;
666 elf_machine = EM_ARM;
669 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
671 if (!info->secondary_cpu_reset_hook) {
672 info->secondary_cpu_reset_hook = default_reset_secondary;
674 if (!info->write_secondary_boot) {
675 info->write_secondary_boot = default_write_secondary;
678 if (info->nb_cpus == 0)
679 info->nb_cpus = 1;
681 #ifdef TARGET_WORDS_BIGENDIAN
682 big_endian = 1;
683 #else
684 big_endian = 0;
685 #endif
687 /* We want to put the initrd far enough into RAM that when the
688 * kernel is uncompressed it will not clobber the initrd. However
689 * on boards without much RAM we must ensure that we still leave
690 * enough room for a decent sized initrd, and on boards with large
691 * amounts of RAM we must avoid the initrd being so far up in RAM
692 * that it is outside lowmem and inaccessible to the kernel.
693 * So for boards with less than 256MB of RAM we put the initrd
694 * halfway into RAM, and for boards with 256MB of RAM or more we put
695 * the initrd at 128MB.
697 info->initrd_start = info->loader_start +
698 MIN(info->ram_size / 2, 128 * 1024 * 1024);
700 /* Assume that raw images are linux kernels, and ELF images are not. */
701 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
702 &elf_low_addr, &elf_high_addr, big_endian,
703 elf_machine, 1);
704 if (kernel_size > 0 && have_dtb(info)) {
705 /* If there is still some room left at the base of RAM, try and put
706 * the DTB there like we do for images loaded with -bios or -pflash.
708 if (elf_low_addr > info->loader_start
709 || elf_high_addr < info->loader_start) {
710 /* Pass elf_low_addr as address limit to load_dtb if it may be
711 * pointing into RAM, otherwise pass '0' (no limit)
713 if (elf_low_addr < info->loader_start) {
714 elf_low_addr = 0;
716 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
717 exit(1);
721 entry = elf_entry;
722 if (kernel_size < 0) {
723 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
724 &is_linux, NULL, NULL);
726 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
727 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
728 entry = info->loader_start + kernel_load_offset;
729 kernel_size = load_image_gzipped(info->kernel_filename, entry,
730 info->ram_size - kernel_load_offset);
731 is_linux = 1;
733 if (kernel_size < 0) {
734 entry = info->loader_start + kernel_load_offset;
735 kernel_size = load_image_targphys(info->kernel_filename, entry,
736 info->ram_size - kernel_load_offset);
737 is_linux = 1;
739 if (kernel_size < 0) {
740 fprintf(stderr, "qemu: could not load kernel '%s'\n",
741 info->kernel_filename);
742 exit(1);
744 info->entry = entry;
745 if (is_linux) {
746 uint32_t fixupcontext[FIXUP_MAX];
748 if (info->initrd_filename) {
749 initrd_size = load_ramdisk(info->initrd_filename,
750 info->initrd_start,
751 info->ram_size -
752 info->initrd_start);
753 if (initrd_size < 0) {
754 initrd_size = load_image_targphys(info->initrd_filename,
755 info->initrd_start,
756 info->ram_size -
757 info->initrd_start);
759 if (initrd_size < 0) {
760 fprintf(stderr, "qemu: could not load initrd '%s'\n",
761 info->initrd_filename);
762 exit(1);
764 } else {
765 initrd_size = 0;
767 info->initrd_size = initrd_size;
769 fixupcontext[FIXUP_BOARDID] = info->board_id;
770 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
772 /* for device tree boot, we pass the DTB directly in r2. Otherwise
773 * we point to the kernel args.
775 if (have_dtb(info)) {
776 hwaddr align;
777 hwaddr dtb_start;
779 if (elf_machine == EM_AARCH64) {
781 * Some AArch64 kernels on early bootup map the fdt region as
783 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
785 * Let's play safe and prealign it to 2MB to give us some space.
787 align = 2 * 1024 * 1024;
788 } else {
790 * Some 32bit kernels will trash anything in the 4K page the
791 * initrd ends in, so make sure the DTB isn't caught up in that.
793 align = 4096;
796 /* Place the DTB after the initrd in memory with alignment. */
797 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
798 if (load_dtb(dtb_start, info, 0) < 0) {
799 exit(1);
801 fixupcontext[FIXUP_ARGPTR] = dtb_start;
802 } else {
803 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
804 if (info->ram_size >= (1ULL << 32)) {
805 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
806 " Linux kernel using ATAGS (try passing a device tree"
807 " using -dtb)\n");
808 exit(1);
811 fixupcontext[FIXUP_ENTRYPOINT] = entry;
813 write_bootloader("bootloader", info->loader_start,
814 primary_loader, fixupcontext);
816 if (info->nb_cpus > 1) {
817 info->write_secondary_boot(cpu, info);
819 if (info->write_board_setup) {
820 info->write_board_setup(cpu, info);
823 /* Notify devices which need to fake up firmware initialization
824 * that we're doing a direct kernel boot.
826 object_child_foreach_recursive(object_get_root(),
827 do_arm_linux_init, info);
829 info->is_linux = is_linux;
831 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
832 ARM_CPU(cs)->env.boot_info = info;
836 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
838 CPUState *cs;
840 info->load_kernel_notifier.cpu = cpu;
841 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
842 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
844 /* CPU objects (unlike devices) are not automatically reset on system
845 * reset, so we must always register a handler to do so. If we're
846 * actually loading a kernel, the handler is also responsible for
847 * arranging that we start it correctly.
849 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
850 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
854 static const TypeInfo arm_linux_boot_if_info = {
855 .name = TYPE_ARM_LINUX_BOOT_IF,
856 .parent = TYPE_INTERFACE,
857 .class_size = sizeof(ARMLinuxBootIfClass),
860 static void arm_linux_boot_register_types(void)
862 type_register_static(&arm_linux_boot_if_info);
865 type_init(arm_linux_boot_register_types)