2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
35 #include "qemu-timer.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
47 #include <machine/profile.h>
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
65 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_UNASSIGNED
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
80 #define SMC_BITMAP_USE_THRESHOLD 10
82 static TranslationBlock
*tbs
;
83 static int code_gen_max_blocks
;
84 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
89 #if defined(__arm__) || defined(__sparc__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 static uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 static int in_migration
;
115 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
117 static MemoryRegion
*system_memory
;
118 static MemoryRegion
*system_io
;
120 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
121 static MemoryRegion io_mem_subpage_ram
;
125 CPUArchState
*first_cpu
;
126 /* current CPU in the current thread. It is only valid inside
128 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
158 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_SIZE (1 << L2_BITS)
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #define V_L1_BITS V_L1_BITS_REM
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179 uintptr_t qemu_real_host_page_size
;
180 uintptr_t qemu_host_page_size
;
181 uintptr_t qemu_host_page_mask
;
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map
[V_L1_SIZE
];
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry
;
190 static MemoryRegionSection
*phys_sections
;
191 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
192 static uint16_t phys_section_unassigned
;
193 static uint16_t phys_section_notdirty
;
194 static uint16_t phys_section_rom
;
195 static uint16_t phys_section_watch
;
197 struct PhysPageEntry
{
198 uint16_t is_leaf
: 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
205 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map
= { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
213 static void io_mem_init(void);
214 static void memory_map_init(void);
216 static MemoryRegion io_mem_watch
;
220 static int tb_flush_count
;
221 static int tb_phys_invalidate_count
;
224 static void map_exec(void *addr
, long size
)
227 VirtualProtect(addr
, size
,
228 PAGE_EXECUTE_READWRITE
, &old_protect
);
232 static void map_exec(void *addr
, long size
)
234 unsigned long start
, end
, page_size
;
236 page_size
= getpagesize();
237 start
= (unsigned long)addr
;
238 start
&= ~(page_size
- 1);
240 end
= (unsigned long)addr
+ size
;
241 end
+= page_size
- 1;
242 end
&= ~(page_size
- 1);
244 mprotect((void *)start
, end
- start
,
245 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
249 static void page_init(void)
251 /* NOTE: we can always suppose that qemu_host_page_size >=
255 SYSTEM_INFO system_info
;
257 GetSystemInfo(&system_info
);
258 qemu_real_host_page_size
= system_info
.dwPageSize
;
261 qemu_real_host_page_size
= getpagesize();
263 if (qemu_host_page_size
== 0)
264 qemu_host_page_size
= qemu_real_host_page_size
;
265 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
266 qemu_host_page_size
= TARGET_PAGE_SIZE
;
267 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry
*freep
;
275 freep
= kinfo_getvmmap(getpid(), &cnt
);
278 for (i
= 0; i
< cnt
; i
++) {
279 unsigned long startaddr
, endaddr
;
281 startaddr
= freep
[i
].kve_start
;
282 endaddr
= freep
[i
].kve_end
;
283 if (h2g_valid(startaddr
)) {
284 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
286 if (h2g_valid(endaddr
)) {
287 endaddr
= h2g(endaddr
);
288 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
292 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
303 last_brk
= (unsigned long)sbrk(0);
305 f
= fopen("/compat/linux/proc/self/maps", "r");
310 unsigned long startaddr
, endaddr
;
313 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
315 if (n
== 2 && h2g_valid(startaddr
)) {
316 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
318 if (h2g_valid(endaddr
)) {
319 endaddr
= h2g(endaddr
);
323 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
335 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
353 /* Level 1. Always allocated. */
354 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
357 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
364 ALLOC(p
, sizeof(void *) * L2_SIZE
);
368 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
376 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
382 return pd
+ (index
& (L2_SIZE
- 1));
385 static inline PageDesc
*page_find(tb_page_addr_t index
)
387 return page_find_alloc(index
, 0);
390 #if !defined(CONFIG_USER_ONLY)
392 static void phys_map_node_reserve(unsigned nodes
)
394 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
395 typedef PhysPageEntry Node
[L2_SIZE
];
396 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
397 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
398 phys_map_nodes_nb
+ nodes
);
399 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
400 phys_map_nodes_nb_alloc
);
404 static uint16_t phys_map_node_alloc(void)
409 ret
= phys_map_nodes_nb
++;
410 assert(ret
!= PHYS_MAP_NODE_NIL
);
411 assert(ret
!= phys_map_nodes_nb_alloc
);
412 for (i
= 0; i
< L2_SIZE
; ++i
) {
413 phys_map_nodes
[ret
][i
].is_leaf
= 0;
414 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
419 static void phys_map_nodes_reset(void)
421 phys_map_nodes_nb
= 0;
425 static void phys_page_set_level(PhysPageEntry
*lp
, target_phys_addr_t
*index
,
426 target_phys_addr_t
*nb
, uint16_t leaf
,
431 target_phys_addr_t step
= (target_phys_addr_t
)1 << (level
* L2_BITS
);
433 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
434 lp
->ptr
= phys_map_node_alloc();
435 p
= phys_map_nodes
[lp
->ptr
];
437 for (i
= 0; i
< L2_SIZE
; i
++) {
439 p
[i
].ptr
= phys_section_unassigned
;
443 p
= phys_map_nodes
[lp
->ptr
];
445 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
447 while (*nb
&& lp
< &p
[L2_SIZE
]) {
448 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
454 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
460 static void phys_page_set(target_phys_addr_t index
, target_phys_addr_t nb
,
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS
);
466 phys_page_set_level(&phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
469 MemoryRegionSection
*phys_page_find(target_phys_addr_t index
)
471 PhysPageEntry lp
= phys_map
;
474 uint16_t s_index
= phys_section_unassigned
;
476 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
477 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
480 p
= phys_map_nodes
[lp
.ptr
];
481 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
486 return &phys_sections
[s_index
];
489 bool memory_region_is_unassigned(MemoryRegion
*mr
)
491 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
492 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
493 && mr
!= &io_mem_watch
;
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
510 __attribute__((aligned (CODE_GEN_ALIGN
)));
513 static void code_gen_alloc(unsigned long tb_size
)
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer
= static_code_gen_buffer
;
517 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
518 map_exec(code_gen_buffer
, code_gen_buffer_size
);
520 code_gen_buffer_size
= tb_size
;
521 if (code_gen_buffer_size
== 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
525 /* XXX: needs adjustments */
526 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
529 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
530 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
538 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
539 #if defined(__x86_64__)
541 /* Cannot map more than that */
542 if (code_gen_buffer_size
> (800 * 1024 * 1024))
543 code_gen_buffer_size
= (800 * 1024 * 1024);
544 #elif defined(__sparc__) && HOST_LONG_BITS == 64
545 // Map the buffer below 2G, so we can use direct calls and branches
546 start
= (void *) 0x40000000UL
;
547 if (code_gen_buffer_size
> (512 * 1024 * 1024))
548 code_gen_buffer_size
= (512 * 1024 * 1024);
549 #elif defined(__arm__)
550 /* Keep the buffer no bigger than 16MB to branch between blocks */
551 if (code_gen_buffer_size
> 16 * 1024 * 1024)
552 code_gen_buffer_size
= 16 * 1024 * 1024;
553 #elif defined(__s390x__)
554 /* Map the buffer so that we can use direct calls and branches. */
555 /* We have a +- 4GB range on the branches; leave some slop. */
556 if (code_gen_buffer_size
> (3ul * 1024 * 1024 * 1024)) {
557 code_gen_buffer_size
= 3ul * 1024 * 1024 * 1024;
559 start
= (void *)0x90000000UL
;
561 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
562 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
564 if (code_gen_buffer
== MAP_FAILED
) {
565 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
569 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
570 || defined(__DragonFly__) || defined(__OpenBSD__) \
571 || defined(__NetBSD__)
575 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
576 #if defined(__x86_64__)
577 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
578 * 0x40000000 is free */
580 addr
= (void *)0x40000000;
581 /* Cannot map more than that */
582 if (code_gen_buffer_size
> (800 * 1024 * 1024))
583 code_gen_buffer_size
= (800 * 1024 * 1024);
584 #elif defined(__sparc__) && HOST_LONG_BITS == 64
585 // Map the buffer below 2G, so we can use direct calls and branches
586 addr
= (void *) 0x40000000UL
;
587 if (code_gen_buffer_size
> (512 * 1024 * 1024)) {
588 code_gen_buffer_size
= (512 * 1024 * 1024);
591 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
592 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
594 if (code_gen_buffer
== MAP_FAILED
) {
595 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
600 code_gen_buffer
= g_malloc(code_gen_buffer_size
);
601 map_exec(code_gen_buffer
, code_gen_buffer_size
);
603 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
604 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
605 code_gen_buffer_max_size
= code_gen_buffer_size
-
606 (TCG_MAX_OP_SIZE
* OPC_BUF_SIZE
);
607 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
608 tbs
= g_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
611 /* Must be called before using the QEMU cpus. 'tb_size' is the size
612 (in bytes) allocated to the translation buffer. Zero means default
614 void tcg_exec_init(unsigned long tb_size
)
617 code_gen_alloc(tb_size
);
618 code_gen_ptr
= code_gen_buffer
;
619 tcg_register_jit(code_gen_buffer
, code_gen_buffer_size
);
621 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
622 /* There's no guest base to take into account, so go ahead and
623 initialize the prologue now. */
624 tcg_prologue_init(&tcg_ctx
);
628 bool tcg_enabled(void)
630 return code_gen_buffer
!= NULL
;
633 void cpu_exec_init_all(void)
635 #if !defined(CONFIG_USER_ONLY)
641 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
643 static int cpu_common_post_load(void *opaque
, int version_id
)
645 CPUArchState
*env
= opaque
;
647 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
648 version_id is increased. */
649 env
->interrupt_request
&= ~0x01;
655 static const VMStateDescription vmstate_cpu_common
= {
656 .name
= "cpu_common",
658 .minimum_version_id
= 1,
659 .minimum_version_id_old
= 1,
660 .post_load
= cpu_common_post_load
,
661 .fields
= (VMStateField
[]) {
662 VMSTATE_UINT32(halted
, CPUArchState
),
663 VMSTATE_UINT32(interrupt_request
, CPUArchState
),
664 VMSTATE_END_OF_LIST()
669 CPUArchState
*qemu_get_cpu(int cpu
)
671 CPUArchState
*env
= first_cpu
;
674 if (env
->cpu_index
== cpu
)
682 void cpu_exec_init(CPUArchState
*env
)
687 #if defined(CONFIG_USER_ONLY)
690 env
->next_cpu
= NULL
;
693 while (*penv
!= NULL
) {
694 penv
= &(*penv
)->next_cpu
;
697 env
->cpu_index
= cpu_index
;
699 QTAILQ_INIT(&env
->breakpoints
);
700 QTAILQ_INIT(&env
->watchpoints
);
701 #ifndef CONFIG_USER_ONLY
702 env
->thread_id
= qemu_get_thread_id();
705 #if defined(CONFIG_USER_ONLY)
708 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
709 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
710 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
711 cpu_save
, cpu_load
, env
);
715 /* Allocate a new translation block. Flush the translation buffer if
716 too many translation blocks or too much generated code. */
717 static TranslationBlock
*tb_alloc(target_ulong pc
)
719 TranslationBlock
*tb
;
721 if (nb_tbs
>= code_gen_max_blocks
||
722 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
730 void tb_free(TranslationBlock
*tb
)
732 /* In practice this is mostly used for single use temporary TB
733 Ignore the hard cases and just back up if this TB happens to
734 be the last one generated. */
735 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
736 code_gen_ptr
= tb
->tc_ptr
;
741 static inline void invalidate_page_bitmap(PageDesc
*p
)
743 if (p
->code_bitmap
) {
744 g_free(p
->code_bitmap
);
745 p
->code_bitmap
= NULL
;
747 p
->code_write_count
= 0;
750 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
752 static void page_flush_tb_1 (int level
, void **lp
)
761 for (i
= 0; i
< L2_SIZE
; ++i
) {
762 pd
[i
].first_tb
= NULL
;
763 invalidate_page_bitmap(pd
+ i
);
767 for (i
= 0; i
< L2_SIZE
; ++i
) {
768 page_flush_tb_1 (level
- 1, pp
+ i
);
773 static void page_flush_tb(void)
776 for (i
= 0; i
< V_L1_SIZE
; i
++) {
777 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
781 /* flush all the translation blocks */
782 /* XXX: tb_flush is currently not thread safe */
783 void tb_flush(CPUArchState
*env1
)
786 #if defined(DEBUG_FLUSH)
787 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
788 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
790 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
792 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
793 cpu_abort(env1
, "Internal error: code buffer overflow\n");
797 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
798 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
801 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
804 code_gen_ptr
= code_gen_buffer
;
805 /* XXX: flush processor icache at this point if cache flush is
810 #ifdef DEBUG_TB_CHECK
812 static void tb_invalidate_check(target_ulong address
)
814 TranslationBlock
*tb
;
816 address
&= TARGET_PAGE_MASK
;
817 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
818 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
819 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
820 address
>= tb
->pc
+ tb
->size
)) {
821 printf("ERROR invalidate: address=" TARGET_FMT_lx
822 " PC=%08lx size=%04x\n",
823 address
, (long)tb
->pc
, tb
->size
);
829 /* verify that all the pages have correct rights for code */
830 static void tb_page_check(void)
832 TranslationBlock
*tb
;
833 int i
, flags1
, flags2
;
835 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
836 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
837 flags1
= page_get_flags(tb
->pc
);
838 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
839 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
840 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
841 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
849 /* invalidate one TB */
850 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
853 TranslationBlock
*tb1
;
857 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
860 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
864 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
866 TranslationBlock
*tb1
;
871 n1
= (uintptr_t)tb1
& 3;
872 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
874 *ptb
= tb1
->page_next
[n1
];
877 ptb
= &tb1
->page_next
[n1
];
881 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
883 TranslationBlock
*tb1
, **ptb
;
886 ptb
= &tb
->jmp_next
[n
];
889 /* find tb(n) in circular list */
892 n1
= (uintptr_t)tb1
& 3;
893 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
894 if (n1
== n
&& tb1
== tb
)
897 ptb
= &tb1
->jmp_first
;
899 ptb
= &tb1
->jmp_next
[n1
];
902 /* now we can suppress tb(n) from the list */
903 *ptb
= tb
->jmp_next
[n
];
905 tb
->jmp_next
[n
] = NULL
;
909 /* reset the jump entry 'n' of a TB so that it is not chained to
911 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
913 tb_set_jmp_target(tb
, n
, (uintptr_t)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
916 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
921 tb_page_addr_t phys_pc
;
922 TranslationBlock
*tb1
, *tb2
;
924 /* remove the TB from the hash list */
925 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
926 h
= tb_phys_hash_func(phys_pc
);
927 tb_remove(&tb_phys_hash
[h
], tb
,
928 offsetof(TranslationBlock
, phys_hash_next
));
930 /* remove the TB from the page list */
931 if (tb
->page_addr
[0] != page_addr
) {
932 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
933 tb_page_remove(&p
->first_tb
, tb
);
934 invalidate_page_bitmap(p
);
936 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
937 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
938 tb_page_remove(&p
->first_tb
, tb
);
939 invalidate_page_bitmap(p
);
942 tb_invalidated_flag
= 1;
944 /* remove the TB from the hash list */
945 h
= tb_jmp_cache_hash_func(tb
->pc
);
946 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
947 if (env
->tb_jmp_cache
[h
] == tb
)
948 env
->tb_jmp_cache
[h
] = NULL
;
951 /* suppress this TB from the two jump lists */
952 tb_jmp_remove(tb
, 0);
953 tb_jmp_remove(tb
, 1);
955 /* suppress any remaining jumps to this TB */
958 n1
= (uintptr_t)tb1
& 3;
961 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
962 tb2
= tb1
->jmp_next
[n1
];
963 tb_reset_jump(tb1
, n1
);
964 tb1
->jmp_next
[n1
] = NULL
;
967 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2); /* fail safe */
969 tb_phys_invalidate_count
++;
972 static inline void set_bits(uint8_t *tab
, int start
, int len
)
978 mask
= 0xff << (start
& 7);
979 if ((start
& ~7) == (end
& ~7)) {
981 mask
&= ~(0xff << (end
& 7));
986 start
= (start
+ 8) & ~7;
988 while (start
< end1
) {
993 mask
= ~(0xff << (end
& 7));
999 static void build_page_bitmap(PageDesc
*p
)
1001 int n
, tb_start
, tb_end
;
1002 TranslationBlock
*tb
;
1004 p
->code_bitmap
= g_malloc0(TARGET_PAGE_SIZE
/ 8);
1007 while (tb
!= NULL
) {
1008 n
= (uintptr_t)tb
& 3;
1009 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1015 tb_end
= tb_start
+ tb
->size
;
1016 if (tb_end
> TARGET_PAGE_SIZE
)
1017 tb_end
= TARGET_PAGE_SIZE
;
1020 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1022 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1023 tb
= tb
->page_next
[n
];
1027 TranslationBlock
*tb_gen_code(CPUArchState
*env
,
1028 target_ulong pc
, target_ulong cs_base
,
1029 int flags
, int cflags
)
1031 TranslationBlock
*tb
;
1033 tb_page_addr_t phys_pc
, phys_page2
;
1034 target_ulong virt_page2
;
1037 phys_pc
= get_page_addr_code(env
, pc
);
1040 /* flush must be done */
1042 /* cannot fail at this point */
1044 /* Don't forget to invalidate previous TB info. */
1045 tb_invalidated_flag
= 1;
1047 tc_ptr
= code_gen_ptr
;
1048 tb
->tc_ptr
= tc_ptr
;
1049 tb
->cs_base
= cs_base
;
1051 tb
->cflags
= cflags
;
1052 cpu_gen_code(env
, tb
, &code_gen_size
);
1053 code_gen_ptr
= (void *)(((uintptr_t)code_gen_ptr
+ code_gen_size
+
1054 CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
1056 /* check next page if needed */
1057 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1059 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1060 phys_page2
= get_page_addr_code(env
, virt_page2
);
1062 tb_link_page(tb
, phys_pc
, phys_page2
);
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1073 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
,
1074 int is_cpu_write_access
)
1076 while (start
< end
) {
1077 tb_invalidate_phys_page_range(start
, end
, is_cpu_write_access
);
1078 start
&= TARGET_PAGE_MASK
;
1079 start
+= TARGET_PAGE_SIZE
;
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1090 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1091 int is_cpu_write_access
)
1093 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1094 CPUArchState
*env
= cpu_single_env
;
1095 tb_page_addr_t tb_start
, tb_end
;
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found
= is_cpu_write_access
;
1100 TranslationBlock
*current_tb
= NULL
;
1101 int current_tb_modified
= 0;
1102 target_ulong current_pc
= 0;
1103 target_ulong current_cs_base
= 0;
1104 int current_flags
= 0;
1105 #endif /* TARGET_HAS_PRECISE_SMC */
1107 p
= page_find(start
>> TARGET_PAGE_BITS
);
1110 if (!p
->code_bitmap
&&
1111 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1112 is_cpu_write_access
) {
1113 /* build code bitmap */
1114 build_page_bitmap(p
);
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1120 while (tb
!= NULL
) {
1121 n
= (uintptr_t)tb
& 3;
1122 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1123 tb_next
= tb
->page_next
[n
];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1129 tb_end
= tb_start
+ tb
->size
;
1131 tb_start
= tb
->page_addr
[1];
1132 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1134 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found
) {
1137 current_tb_not_found
= 0;
1139 if (env
->mem_io_pc
) {
1140 /* now we have a real cpu fault */
1141 current_tb
= tb_find_pc(env
->mem_io_pc
);
1144 if (current_tb
== tb
&&
1145 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
1152 current_tb_modified
= 1;
1153 cpu_restore_state(current_tb
, env
, env
->mem_io_pc
);
1154 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1157 #endif /* TARGET_HAS_PRECISE_SMC */
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1162 saved_tb
= env
->current_tb
;
1163 env
->current_tb
= NULL
;
1165 tb_phys_invalidate(tb
, -1);
1167 env
->current_tb
= saved_tb
;
1168 if (env
->interrupt_request
&& env
->current_tb
)
1169 cpu_interrupt(env
, env
->interrupt_request
);
1174 #if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1177 invalidate_page_bitmap(p
);
1178 if (is_cpu_write_access
) {
1179 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified
) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1188 env
->current_tb
= NULL
;
1189 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1190 cpu_resume_from_signal(env
, NULL
);
1195 /* len must be <= 8 and start must be a multiple of len */
1196 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env
->mem_io_vaddr
, len
,
1204 cpu_single_env
->eip
,
1205 cpu_single_env
->eip
+
1206 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1209 p
= page_find(start
>> TARGET_PAGE_BITS
);
1212 if (p
->code_bitmap
) {
1213 offset
= start
& ~TARGET_PAGE_MASK
;
1214 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1215 if (b
& ((1 << len
) - 1))
1219 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1223 #if !defined(CONFIG_SOFTMMU)
1224 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1225 uintptr_t pc
, void *puc
)
1227 TranslationBlock
*tb
;
1230 #ifdef TARGET_HAS_PRECISE_SMC
1231 TranslationBlock
*current_tb
= NULL
;
1232 CPUArchState
*env
= cpu_single_env
;
1233 int current_tb_modified
= 0;
1234 target_ulong current_pc
= 0;
1235 target_ulong current_cs_base
= 0;
1236 int current_flags
= 0;
1239 addr
&= TARGET_PAGE_MASK
;
1240 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb
&& pc
!= 0) {
1246 current_tb
= tb_find_pc(pc
);
1249 while (tb
!= NULL
) {
1250 n
= (uintptr_t)tb
& 3;
1251 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1252 #ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb
== tb
&&
1254 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1261 current_tb_modified
= 1;
1262 cpu_restore_state(current_tb
, env
, pc
);
1263 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 tb_phys_invalidate(tb
, addr
);
1268 tb
= tb
->page_next
[n
];
1271 #ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified
) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1276 env
->current_tb
= NULL
;
1277 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1278 cpu_resume_from_signal(env
, puc
);
1284 /* add the tb in the target page and protect it if necessary */
1285 static inline void tb_alloc_page(TranslationBlock
*tb
,
1286 unsigned int n
, tb_page_addr_t page_addr
)
1289 #ifndef CONFIG_USER_ONLY
1290 bool page_already_protected
;
1293 tb
->page_addr
[n
] = page_addr
;
1294 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1295 tb
->page_next
[n
] = p
->first_tb
;
1296 #ifndef CONFIG_USER_ONLY
1297 page_already_protected
= p
->first_tb
!= NULL
;
1299 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1300 invalidate_page_bitmap(p
);
1302 #if defined(TARGET_HAS_SMC) || 1
1304 #if defined(CONFIG_USER_ONLY)
1305 if (p
->flags
& PAGE_WRITE
) {
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
1312 page_addr
&= qemu_host_page_mask
;
1314 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1315 addr
+= TARGET_PAGE_SIZE
) {
1317 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1321 p2
->flags
&= ~PAGE_WRITE
;
1323 mprotect(g2h(page_addr
), qemu_host_page_size
,
1324 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1325 #ifdef DEBUG_TB_INVALIDATE
1326 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
1334 if (!page_already_protected
) {
1335 tlb_protect_code(page_addr
);
1339 #endif /* TARGET_HAS_SMC */
1342 /* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
1344 void tb_link_page(TranslationBlock
*tb
,
1345 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1348 TranslationBlock
**ptb
;
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1353 /* add in the physical hash table */
1354 h
= tb_phys_hash_func(phys_pc
);
1355 ptb
= &tb_phys_hash
[h
];
1356 tb
->phys_hash_next
= *ptb
;
1359 /* add in the page list */
1360 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1361 if (phys_page2
!= -1)
1362 tb_alloc_page(tb
, 1, phys_page2
);
1364 tb
->page_addr
[1] = -1;
1366 tb
->jmp_first
= (TranslationBlock
*)((uintptr_t)tb
| 2);
1367 tb
->jmp_next
[0] = NULL
;
1368 tb
->jmp_next
[1] = NULL
;
1370 /* init original jump addresses */
1371 if (tb
->tb_next_offset
[0] != 0xffff)
1372 tb_reset_jump(tb
, 0);
1373 if (tb
->tb_next_offset
[1] != 0xffff)
1374 tb_reset_jump(tb
, 1);
1376 #ifdef DEBUG_TB_CHECK
1382 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
1384 TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1386 int m_min
, m_max
, m
;
1388 TranslationBlock
*tb
;
1392 if (tc_ptr
< (uintptr_t)code_gen_buffer
||
1393 tc_ptr
>= (uintptr_t)code_gen_ptr
) {
1396 /* binary search (cf Knuth) */
1399 while (m_min
<= m_max
) {
1400 m
= (m_min
+ m_max
) >> 1;
1402 v
= (uintptr_t)tb
->tc_ptr
;
1405 else if (tc_ptr
< v
) {
1414 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1416 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1418 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1421 tb1
= tb
->jmp_next
[n
];
1423 /* find head of list */
1425 n1
= (uintptr_t)tb1
& 3;
1426 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1429 tb1
= tb1
->jmp_next
[n1
];
1431 /* we are now sure now that tb jumps to tb1 */
1434 /* remove tb from the jmp_first list */
1435 ptb
= &tb_next
->jmp_first
;
1438 n1
= (uintptr_t)tb1
& 3;
1439 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
1440 if (n1
== n
&& tb1
== tb
)
1442 ptb
= &tb1
->jmp_next
[n1
];
1444 *ptb
= tb
->jmp_next
[n
];
1445 tb
->jmp_next
[n
] = NULL
;
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb
, n
);
1450 /* suppress jumps in the tb on which we could have jumped */
1451 tb_reset_jump_recursive(tb_next
);
1455 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1457 tb_reset_jump_recursive2(tb
, 0);
1458 tb_reset_jump_recursive2(tb
, 1);
1461 #if defined(TARGET_HAS_ICE)
1462 #if defined(CONFIG_USER_ONLY)
1463 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1465 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1468 void tb_invalidate_phys_addr(target_phys_addr_t addr
)
1470 ram_addr_t ram_addr
;
1471 MemoryRegionSection
*section
;
1473 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1474 if (!(memory_region_is_ram(section
->mr
)
1475 || (section
->mr
->rom_device
&& section
->mr
->readable
))) {
1478 ram_addr
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1479 + memory_region_section_addr(section
, addr
);
1480 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1483 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
1486 (pc
& ~TARGET_PAGE_MASK
));
1489 #endif /* TARGET_HAS_ICE */
1491 #if defined(CONFIG_USER_ONLY)
1492 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1497 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1498 int flags
, CPUWatchpoint
**watchpoint
)
1503 /* Add a watchpoint. */
1504 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1505 int flags
, CPUWatchpoint
**watchpoint
)
1507 target_ulong len_mask
= ~(len
- 1);
1510 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1511 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
1512 len
== 0 || len
> TARGET_PAGE_SIZE
) {
1513 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1514 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1517 wp
= g_malloc(sizeof(*wp
));
1520 wp
->len_mask
= len_mask
;
1523 /* keep all GDB-injected watchpoints in front */
1525 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1527 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1529 tlb_flush_page(env
, addr
);
1536 /* Remove a specific watchpoint. */
1537 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
1540 target_ulong len_mask
= ~(len
- 1);
1543 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1544 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1545 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1546 cpu_watchpoint_remove_by_ref(env
, wp
);
1553 /* Remove a specific watchpoint by reference. */
1554 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
1556 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1558 tlb_flush_page(env
, watchpoint
->vaddr
);
1563 /* Remove all matching watchpoints. */
1564 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
1566 CPUWatchpoint
*wp
, *next
;
1568 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1569 if (wp
->flags
& mask
)
1570 cpu_watchpoint_remove_by_ref(env
, wp
);
1575 /* Add a breakpoint. */
1576 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
1577 CPUBreakpoint
**breakpoint
)
1579 #if defined(TARGET_HAS_ICE)
1582 bp
= g_malloc(sizeof(*bp
));
1587 /* keep all GDB-injected breakpoints in front */
1589 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1591 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1593 breakpoint_invalidate(env
, pc
);
1603 /* Remove a specific breakpoint. */
1604 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
1606 #if defined(TARGET_HAS_ICE)
1609 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1610 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1611 cpu_breakpoint_remove_by_ref(env
, bp
);
1621 /* Remove a specific breakpoint by reference. */
1622 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
1624 #if defined(TARGET_HAS_ICE)
1625 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1627 breakpoint_invalidate(env
, breakpoint
->pc
);
1633 /* Remove all matching breakpoints. */
1634 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
1636 #if defined(TARGET_HAS_ICE)
1637 CPUBreakpoint
*bp
, *next
;
1639 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1640 if (bp
->flags
& mask
)
1641 cpu_breakpoint_remove_by_ref(env
, bp
);
1646 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1647 CPU loop after each instruction */
1648 void cpu_single_step(CPUArchState
*env
, int enabled
)
1650 #if defined(TARGET_HAS_ICE)
1651 if (env
->singlestep_enabled
!= enabled
) {
1652 env
->singlestep_enabled
= enabled
;
1654 kvm_update_guest_debug(env
, 0);
1656 /* must flush all the translated code to avoid inconsistencies */
1657 /* XXX: only flush what is necessary */
1664 static void cpu_unlink_tb(CPUArchState
*env
)
1666 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1667 problem and hope the cpu will stop of its own accord. For userspace
1668 emulation this often isn't actually as bad as it sounds. Often
1669 signals are used primarily to interrupt blocking syscalls. */
1670 TranslationBlock
*tb
;
1671 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1673 spin_lock(&interrupt_lock
);
1674 tb
= env
->current_tb
;
1675 /* if the cpu is currently executing code, we must unlink it and
1676 all the potentially executing TB */
1678 env
->current_tb
= NULL
;
1679 tb_reset_jump_recursive(tb
);
1681 spin_unlock(&interrupt_lock
);
1684 #ifndef CONFIG_USER_ONLY
1685 /* mask must never be zero, except for A20 change call */
1686 static void tcg_handle_interrupt(CPUArchState
*env
, int mask
)
1690 old_mask
= env
->interrupt_request
;
1691 env
->interrupt_request
|= mask
;
1694 * If called from iothread context, wake the target cpu in
1697 if (!qemu_cpu_is_self(env
)) {
1703 env
->icount_decr
.u16
.high
= 0xffff;
1705 && (mask
& ~old_mask
) != 0) {
1706 cpu_abort(env
, "Raised interrupt while not in I/O function");
1713 CPUInterruptHandler cpu_interrupt_handler
= tcg_handle_interrupt
;
1715 #else /* CONFIG_USER_ONLY */
1717 void cpu_interrupt(CPUArchState
*env
, int mask
)
1719 env
->interrupt_request
|= mask
;
1722 #endif /* CONFIG_USER_ONLY */
1724 void cpu_reset_interrupt(CPUArchState
*env
, int mask
)
1726 env
->interrupt_request
&= ~mask
;
1729 void cpu_exit(CPUArchState
*env
)
1731 env
->exit_request
= 1;
1735 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
1742 fprintf(stderr
, "qemu: fatal: ");
1743 vfprintf(stderr
, fmt
, ap
);
1744 fprintf(stderr
, "\n");
1746 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1748 cpu_dump_state(env
, stderr
, fprintf
, 0);
1750 if (qemu_log_enabled()) {
1751 qemu_log("qemu: fatal: ");
1752 qemu_log_vprintf(fmt
, ap2
);
1755 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1757 log_cpu_state(env
, 0);
1764 #if defined(CONFIG_USER_ONLY)
1766 struct sigaction act
;
1767 sigfillset(&act
.sa_mask
);
1768 act
.sa_handler
= SIG_DFL
;
1769 sigaction(SIGABRT
, &act
, NULL
);
1775 CPUArchState
*cpu_copy(CPUArchState
*env
)
1777 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
1778 CPUArchState
*next_cpu
= new_env
->next_cpu
;
1779 int cpu_index
= new_env
->cpu_index
;
1780 #if defined(TARGET_HAS_ICE)
1785 memcpy(new_env
, env
, sizeof(CPUArchState
));
1787 /* Preserve chaining and index. */
1788 new_env
->next_cpu
= next_cpu
;
1789 new_env
->cpu_index
= cpu_index
;
1791 /* Clone all break/watchpoints.
1792 Note: Once we support ptrace with hw-debug register access, make sure
1793 BP_CPU break/watchpoints are handled correctly on clone. */
1794 QTAILQ_INIT(&env
->breakpoints
);
1795 QTAILQ_INIT(&env
->watchpoints
);
1796 #if defined(TARGET_HAS_ICE)
1797 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1798 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1800 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1801 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1809 #if !defined(CONFIG_USER_ONLY)
1810 void tb_flush_jmp_cache(CPUArchState
*env
, target_ulong addr
)
1814 /* Discard jump cache entries for any tb which might potentially
1815 overlap the flushed page. */
1816 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1817 memset (&env
->tb_jmp_cache
[i
], 0,
1818 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1820 i
= tb_jmp_cache_hash_page(addr
);
1821 memset (&env
->tb_jmp_cache
[i
], 0,
1822 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1825 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
1832 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
1833 /* Check that we don't span multiple blocks - this breaks the
1834 address comparisons below. */
1835 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
1836 != (end
- 1) - start
) {
1839 cpu_tlb_reset_dirty_all(start1
, length
);
1843 /* Note: start and end must be within the same ram block. */
1844 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1849 start
&= TARGET_PAGE_MASK
;
1850 end
= TARGET_PAGE_ALIGN(end
);
1852 length
= end
- start
;
1855 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
1857 if (tcg_enabled()) {
1858 tlb_reset_dirty_range_all(start
, end
, length
);
1862 int cpu_physical_memory_set_dirty_tracking(int enable
)
1865 in_migration
= enable
;
1869 target_phys_addr_t
memory_region_section_get_iotlb(CPUArchState
*env
,
1870 MemoryRegionSection
*section
,
1872 target_phys_addr_t paddr
,
1874 target_ulong
*address
)
1876 target_phys_addr_t iotlb
;
1879 if (memory_region_is_ram(section
->mr
)) {
1881 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1882 + memory_region_section_addr(section
, paddr
);
1883 if (!section
->readonly
) {
1884 iotlb
|= phys_section_notdirty
;
1886 iotlb
|= phys_section_rom
;
1889 /* IO handlers are currently passed a physical address.
1890 It would be nice to pass an offset from the base address
1891 of that region. This would avoid having to special case RAM,
1892 and avoid full address decoding in every device.
1893 We can't use the high bits of pd for this because
1894 IO_MEM_ROMD uses these as a ram address. */
1895 iotlb
= section
- phys_sections
;
1896 iotlb
+= memory_region_section_addr(section
, paddr
);
1899 /* Make accesses to pages with watchpoints go via the
1900 watchpoint trap routines. */
1901 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1902 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
1903 /* Avoid trapping reads of pages with a write breakpoint. */
1904 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1905 iotlb
= phys_section_watch
+ paddr
;
1906 *address
|= TLB_MMIO
;
1917 * Walks guest process memory "regions" one by one
1918 * and calls callback function 'fn' for each region.
1921 struct walk_memory_regions_data
1923 walk_memory_regions_fn fn
;
1929 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1930 abi_ulong end
, int new_prot
)
1932 if (data
->start
!= -1ul) {
1933 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1939 data
->start
= (new_prot
? end
: -1ul);
1940 data
->prot
= new_prot
;
1945 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1946 abi_ulong base
, int level
, void **lp
)
1952 return walk_memory_regions_end(data
, base
, 0);
1957 for (i
= 0; i
< L2_SIZE
; ++i
) {
1958 int prot
= pd
[i
].flags
;
1960 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1961 if (prot
!= data
->prot
) {
1962 rc
= walk_memory_regions_end(data
, pa
, prot
);
1970 for (i
= 0; i
< L2_SIZE
; ++i
) {
1971 pa
= base
| ((abi_ulong
)i
<<
1972 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
1973 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1983 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1985 struct walk_memory_regions_data data
;
1993 for (i
= 0; i
< V_L1_SIZE
; i
++) {
1994 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
1995 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2001 return walk_memory_regions_end(&data
, 0, 0);
2004 static int dump_region(void *priv
, abi_ulong start
,
2005 abi_ulong end
, unsigned long prot
)
2007 FILE *f
= (FILE *)priv
;
2009 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2010 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2011 start
, end
, end
- start
,
2012 ((prot
& PAGE_READ
) ? 'r' : '-'),
2013 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2014 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2019 /* dump memory mappings */
2020 void page_dump(FILE *f
)
2022 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2023 "start", "end", "size", "prot");
2024 walk_memory_regions(f
, dump_region
);
2027 int page_get_flags(target_ulong address
)
2031 p
= page_find(address
>> TARGET_PAGE_BITS
);
2037 /* Modify the flags of a page and invalidate the code if necessary.
2038 The flag PAGE_WRITE_ORG is positioned automatically depending
2039 on PAGE_WRITE. The mmap_lock should already be held. */
2040 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2042 target_ulong addr
, len
;
2044 /* This function should never be called with addresses outside the
2045 guest address space. If this assert fires, it probably indicates
2046 a missing call to h2g_valid. */
2047 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2048 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2050 assert(start
< end
);
2052 start
= start
& TARGET_PAGE_MASK
;
2053 end
= TARGET_PAGE_ALIGN(end
);
2055 if (flags
& PAGE_WRITE
) {
2056 flags
|= PAGE_WRITE_ORG
;
2059 for (addr
= start
, len
= end
- start
;
2061 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2062 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2064 /* If the write protection bit is set, then we invalidate
2066 if (!(p
->flags
& PAGE_WRITE
) &&
2067 (flags
& PAGE_WRITE
) &&
2069 tb_invalidate_phys_page(addr
, 0, NULL
);
2075 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2081 /* This function should never be called with addresses outside the
2082 guest address space. If this assert fires, it probably indicates
2083 a missing call to h2g_valid. */
2084 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2085 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2091 if (start
+ len
- 1 < start
) {
2092 /* We've wrapped around. */
2096 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2097 start
= start
& TARGET_PAGE_MASK
;
2099 for (addr
= start
, len
= end
- start
;
2101 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2102 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2105 if( !(p
->flags
& PAGE_VALID
) )
2108 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2110 if (flags
& PAGE_WRITE
) {
2111 if (!(p
->flags
& PAGE_WRITE_ORG
))
2113 /* unprotect the page if it was put read-only because it
2114 contains translated code */
2115 if (!(p
->flags
& PAGE_WRITE
)) {
2116 if (!page_unprotect(addr
, 0, NULL
))
2125 /* called from signal handler: invalidate the code and unprotect the
2126 page. Return TRUE if the fault was successfully handled. */
2127 int page_unprotect(target_ulong address
, uintptr_t pc
, void *puc
)
2131 target_ulong host_start
, host_end
, addr
;
2133 /* Technically this isn't safe inside a signal handler. However we
2134 know this only ever happens in a synchronous SEGV handler, so in
2135 practice it seems to be ok. */
2138 p
= page_find(address
>> TARGET_PAGE_BITS
);
2144 /* if the page was really writable, then we change its
2145 protection back to writable */
2146 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2147 host_start
= address
& qemu_host_page_mask
;
2148 host_end
= host_start
+ qemu_host_page_size
;
2151 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2152 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2153 p
->flags
|= PAGE_WRITE
;
2156 /* and since the content will be modified, we must invalidate
2157 the corresponding translated code. */
2158 tb_invalidate_phys_page(addr
, pc
, puc
);
2159 #ifdef DEBUG_TB_CHECK
2160 tb_invalidate_check(addr
);
2163 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2172 #endif /* defined(CONFIG_USER_ONLY) */
2174 #if !defined(CONFIG_USER_ONLY)
2176 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2177 typedef struct subpage_t
{
2179 target_phys_addr_t base
;
2180 uint16_t sub_section
[TARGET_PAGE_SIZE
];
2183 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2185 static subpage_t
*subpage_init(target_phys_addr_t base
);
2186 static void destroy_page_desc(uint16_t section_index
)
2188 MemoryRegionSection
*section
= &phys_sections
[section_index
];
2189 MemoryRegion
*mr
= section
->mr
;
2192 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
2193 memory_region_destroy(&subpage
->iomem
);
2198 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
2203 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
2207 p
= phys_map_nodes
[lp
->ptr
];
2208 for (i
= 0; i
< L2_SIZE
; ++i
) {
2209 if (!p
[i
].is_leaf
) {
2210 destroy_l2_mapping(&p
[i
], level
- 1);
2212 destroy_page_desc(p
[i
].ptr
);
2216 lp
->ptr
= PHYS_MAP_NODE_NIL
;
2219 static void destroy_all_mappings(void)
2221 destroy_l2_mapping(&phys_map
, P_L2_LEVELS
- 1);
2222 phys_map_nodes_reset();
2225 static uint16_t phys_section_add(MemoryRegionSection
*section
)
2227 if (phys_sections_nb
== phys_sections_nb_alloc
) {
2228 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
2229 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
2230 phys_sections_nb_alloc
);
2232 phys_sections
[phys_sections_nb
] = *section
;
2233 return phys_sections_nb
++;
2236 static void phys_sections_clear(void)
2238 phys_sections_nb
= 0;
2241 static void register_subpage(MemoryRegionSection
*section
)
2244 target_phys_addr_t base
= section
->offset_within_address_space
2246 MemoryRegionSection
*existing
= phys_page_find(base
>> TARGET_PAGE_BITS
);
2247 MemoryRegionSection subsection
= {
2248 .offset_within_address_space
= base
,
2249 .size
= TARGET_PAGE_SIZE
,
2251 target_phys_addr_t start
, end
;
2253 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
2255 if (!(existing
->mr
->subpage
)) {
2256 subpage
= subpage_init(base
);
2257 subsection
.mr
= &subpage
->iomem
;
2258 phys_page_set(base
>> TARGET_PAGE_BITS
, 1,
2259 phys_section_add(&subsection
));
2261 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
2263 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
2264 end
= start
+ section
->size
- 1;
2265 subpage_register(subpage
, start
, end
, phys_section_add(section
));
2269 static void register_multipage(MemoryRegionSection
*section
)
2271 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
2272 ram_addr_t size
= section
->size
;
2273 target_phys_addr_t addr
;
2274 uint16_t section_index
= phys_section_add(section
);
2279 phys_page_set(addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
2283 void cpu_register_physical_memory_log(MemoryRegionSection
*section
,
2286 MemoryRegionSection now
= *section
, remain
= *section
;
2288 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
2289 || (now
.size
< TARGET_PAGE_SIZE
)) {
2290 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
2291 - now
.offset_within_address_space
,
2293 register_subpage(&now
);
2294 remain
.size
-= now
.size
;
2295 remain
.offset_within_address_space
+= now
.size
;
2296 remain
.offset_within_region
+= now
.size
;
2298 while (remain
.size
>= TARGET_PAGE_SIZE
) {
2300 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
2301 now
.size
= TARGET_PAGE_SIZE
;
2302 register_subpage(&now
);
2304 now
.size
&= TARGET_PAGE_MASK
;
2305 register_multipage(&now
);
2307 remain
.size
-= now
.size
;
2308 remain
.offset_within_address_space
+= now
.size
;
2309 remain
.offset_within_region
+= now
.size
;
2313 register_subpage(&now
);
2318 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2321 kvm_coalesce_mmio_region(addr
, size
);
2324 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2327 kvm_uncoalesce_mmio_region(addr
, size
);
2330 void qemu_flush_coalesced_mmio_buffer(void)
2333 kvm_flush_coalesced_mmio_buffer();
2336 #if defined(__linux__) && !defined(TARGET_S390X)
2338 #include <sys/vfs.h>
2340 #define HUGETLBFS_MAGIC 0x958458f6
2342 static long gethugepagesize(const char *path
)
2348 ret
= statfs(path
, &fs
);
2349 } while (ret
!= 0 && errno
== EINTR
);
2356 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2357 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2362 static void *file_ram_alloc(RAMBlock
*block
,
2372 unsigned long hpagesize
;
2374 hpagesize
= gethugepagesize(path
);
2379 if (memory
< hpagesize
) {
2383 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2384 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2388 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2392 fd
= mkstemp(filename
);
2394 perror("unable to create backing store for hugepages");
2401 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2404 * ftruncate is not supported by hugetlbfs in older
2405 * hosts, so don't bother bailing out on errors.
2406 * If anything goes wrong with it under other filesystems,
2409 if (ftruncate(fd
, memory
))
2410 perror("ftruncate");
2413 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2414 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2415 * to sidestep this quirk.
2417 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2418 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2420 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2422 if (area
== MAP_FAILED
) {
2423 perror("file_ram_alloc: can't mmap RAM pages");
2432 static ram_addr_t
find_ram_offset(ram_addr_t size
)
2434 RAMBlock
*block
, *next_block
;
2435 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
2437 if (QLIST_EMPTY(&ram_list
.blocks
))
2440 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2441 ram_addr_t end
, next
= RAM_ADDR_MAX
;
2443 end
= block
->offset
+ block
->length
;
2445 QLIST_FOREACH(next_block
, &ram_list
.blocks
, next
) {
2446 if (next_block
->offset
>= end
) {
2447 next
= MIN(next
, next_block
->offset
);
2450 if (next
- end
>= size
&& next
- end
< mingap
) {
2452 mingap
= next
- end
;
2456 if (offset
== RAM_ADDR_MAX
) {
2457 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2465 static ram_addr_t
last_ram_offset(void)
2468 ram_addr_t last
= 0;
2470 QLIST_FOREACH(block
, &ram_list
.blocks
, next
)
2471 last
= MAX(last
, block
->offset
+ block
->length
);
2476 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
2479 QemuOpts
*machine_opts
;
2481 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2482 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
2484 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
2485 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
2487 perror("qemu_madvise");
2488 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
2489 "but dump_guest_core=off specified\n");
2494 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
2496 RAMBlock
*new_block
, *block
;
2499 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2500 if (block
->offset
== addr
) {
2506 assert(!new_block
->idstr
[0]);
2509 char *id
= qdev_get_dev_path(dev
);
2511 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2515 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2517 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2518 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
2519 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2526 static int memory_try_enable_merging(void *addr
, size_t len
)
2530 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
2531 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
2532 /* disabled by the user */
2536 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2539 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2542 RAMBlock
*new_block
;
2544 size
= TARGET_PAGE_ALIGN(size
);
2545 new_block
= g_malloc0(sizeof(*new_block
));
2548 new_block
->offset
= find_ram_offset(size
);
2550 new_block
->host
= host
;
2551 new_block
->flags
|= RAM_PREALLOC_MASK
;
2554 #if defined (__linux__) && !defined(TARGET_S390X)
2555 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
2556 if (!new_block
->host
) {
2557 new_block
->host
= qemu_vmalloc(size
);
2558 memory_try_enable_merging(new_block
->host
, size
);
2561 fprintf(stderr
, "-mem-path option unsupported\n");
2565 if (xen_enabled()) {
2566 xen_ram_alloc(new_block
->offset
, size
, mr
);
2567 } else if (kvm_enabled()) {
2568 /* some s390/kvm configurations have special constraints */
2569 new_block
->host
= kvm_vmalloc(size
);
2571 new_block
->host
= qemu_vmalloc(size
);
2573 memory_try_enable_merging(new_block
->host
, size
);
2576 new_block
->length
= size
;
2578 QLIST_INSERT_HEAD(&ram_list
.blocks
, new_block
, next
);
2580 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
2581 last_ram_offset() >> TARGET_PAGE_BITS
);
2582 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
2583 0, size
>> TARGET_PAGE_BITS
);
2584 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
2586 qemu_ram_setup_dump(new_block
->host
, size
);
2589 kvm_setup_guest_memory(new_block
->host
, size
);
2591 return new_block
->offset
;
2594 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
2596 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
2599 void qemu_ram_free_from_ptr(ram_addr_t addr
)
2603 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2604 if (addr
== block
->offset
) {
2605 QLIST_REMOVE(block
, next
);
2612 void qemu_ram_free(ram_addr_t addr
)
2616 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2617 if (addr
== block
->offset
) {
2618 QLIST_REMOVE(block
, next
);
2619 if (block
->flags
& RAM_PREALLOC_MASK
) {
2621 } else if (mem_path
) {
2622 #if defined (__linux__) && !defined(TARGET_S390X)
2624 munmap(block
->host
, block
->length
);
2627 qemu_vfree(block
->host
);
2633 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2634 munmap(block
->host
, block
->length
);
2636 if (xen_enabled()) {
2637 xen_invalidate_map_cache_entry(block
->host
);
2639 qemu_vfree(block
->host
);
2651 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2658 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2659 offset
= addr
- block
->offset
;
2660 if (offset
< block
->length
) {
2661 vaddr
= block
->host
+ offset
;
2662 if (block
->flags
& RAM_PREALLOC_MASK
) {
2666 munmap(vaddr
, length
);
2668 #if defined(__linux__) && !defined(TARGET_S390X)
2671 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
2674 flags
|= MAP_PRIVATE
;
2676 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2677 flags
, block
->fd
, offset
);
2679 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2680 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2687 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2688 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
2689 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2692 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2693 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2697 if (area
!= vaddr
) {
2698 fprintf(stderr
, "Could not remap addr: "
2699 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2703 memory_try_enable_merging(vaddr
, length
);
2704 qemu_ram_setup_dump(vaddr
, length
);
2710 #endif /* !_WIN32 */
2712 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2713 With the exception of the softmmu code in this file, this should
2714 only be used for local memory (e.g. video ram) that the device owns,
2715 and knows it isn't going to access beyond the end of the block.
2717 It should not be used for general purpose DMA.
2718 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2720 void *qemu_get_ram_ptr(ram_addr_t addr
)
2724 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2725 if (addr
- block
->offset
< block
->length
) {
2726 /* Move this entry to to start of the list. */
2727 if (block
!= QLIST_FIRST(&ram_list
.blocks
)) {
2728 QLIST_REMOVE(block
, next
);
2729 QLIST_INSERT_HEAD(&ram_list
.blocks
, block
, next
);
2731 if (xen_enabled()) {
2732 /* We need to check if the requested address is in the RAM
2733 * because we don't want to map the entire memory in QEMU.
2734 * In that case just map until the end of the page.
2736 if (block
->offset
== 0) {
2737 return xen_map_cache(addr
, 0, 0);
2738 } else if (block
->host
== NULL
) {
2740 xen_map_cache(block
->offset
, block
->length
, 1);
2743 return block
->host
+ (addr
- block
->offset
);
2747 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2753 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2754 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2756 void *qemu_safe_ram_ptr(ram_addr_t addr
)
2760 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2761 if (addr
- block
->offset
< block
->length
) {
2762 if (xen_enabled()) {
2763 /* We need to check if the requested address is in the RAM
2764 * because we don't want to map the entire memory in QEMU.
2765 * In that case just map until the end of the page.
2767 if (block
->offset
== 0) {
2768 return xen_map_cache(addr
, 0, 0);
2769 } else if (block
->host
== NULL
) {
2771 xen_map_cache(block
->offset
, block
->length
, 1);
2774 return block
->host
+ (addr
- block
->offset
);
2778 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2784 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2785 * but takes a size argument */
2786 void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
2791 if (xen_enabled()) {
2792 return xen_map_cache(addr
, *size
, 1);
2796 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2797 if (addr
- block
->offset
< block
->length
) {
2798 if (addr
- block
->offset
+ *size
> block
->length
)
2799 *size
= block
->length
- addr
+ block
->offset
;
2800 return block
->host
+ (addr
- block
->offset
);
2804 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2809 void qemu_put_ram_ptr(void *addr
)
2811 trace_qemu_put_ram_ptr(addr
);
2814 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2817 uint8_t *host
= ptr
;
2819 if (xen_enabled()) {
2820 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2824 QLIST_FOREACH(block
, &ram_list
.blocks
, next
) {
2825 /* This case append when the block is not mapped. */
2826 if (block
->host
== NULL
) {
2829 if (host
- block
->host
< block
->length
) {
2830 *ram_addr
= block
->offset
+ (host
- block
->host
);
2838 /* Some of the softmmu routines need to translate from a host pointer
2839 (typically a TLB entry) back to a ram offset. */
2840 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
2842 ram_addr_t ram_addr
;
2844 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
2845 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2851 static uint64_t unassigned_mem_read(void *opaque
, target_phys_addr_t addr
,
2854 #ifdef DEBUG_UNASSIGNED
2855 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2857 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2858 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
2863 static void unassigned_mem_write(void *opaque
, target_phys_addr_t addr
,
2864 uint64_t val
, unsigned size
)
2866 #ifdef DEBUG_UNASSIGNED
2867 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
2869 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2870 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
2874 static const MemoryRegionOps unassigned_mem_ops
= {
2875 .read
= unassigned_mem_read
,
2876 .write
= unassigned_mem_write
,
2877 .endianness
= DEVICE_NATIVE_ENDIAN
,
2880 static uint64_t error_mem_read(void *opaque
, target_phys_addr_t addr
,
2886 static void error_mem_write(void *opaque
, target_phys_addr_t addr
,
2887 uint64_t value
, unsigned size
)
2892 static const MemoryRegionOps error_mem_ops
= {
2893 .read
= error_mem_read
,
2894 .write
= error_mem_write
,
2895 .endianness
= DEVICE_NATIVE_ENDIAN
,
2898 static const MemoryRegionOps rom_mem_ops
= {
2899 .read
= error_mem_read
,
2900 .write
= unassigned_mem_write
,
2901 .endianness
= DEVICE_NATIVE_ENDIAN
,
2904 static void notdirty_mem_write(void *opaque
, target_phys_addr_t ram_addr
,
2905 uint64_t val
, unsigned size
)
2908 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2909 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2910 #if !defined(CONFIG_USER_ONLY)
2911 tb_invalidate_phys_page_fast(ram_addr
, size
);
2912 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
2917 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2920 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
2923 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
2928 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2929 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
2930 /* we remove the notdirty callback only if the code has been
2932 if (dirty_flags
== 0xff)
2933 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2936 static const MemoryRegionOps notdirty_mem_ops
= {
2937 .read
= error_mem_read
,
2938 .write
= notdirty_mem_write
,
2939 .endianness
= DEVICE_NATIVE_ENDIAN
,
2942 /* Generate a debug exception if a watchpoint has been hit. */
2943 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2945 CPUArchState
*env
= cpu_single_env
;
2946 target_ulong pc
, cs_base
;
2947 TranslationBlock
*tb
;
2952 if (env
->watchpoint_hit
) {
2953 /* We re-entered the check after replacing the TB. Now raise
2954 * the debug interrupt so that is will trigger after the
2955 * current instruction. */
2956 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2959 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2960 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2961 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2962 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2963 wp
->flags
|= BP_WATCHPOINT_HIT
;
2964 if (!env
->watchpoint_hit
) {
2965 env
->watchpoint_hit
= wp
;
2966 tb
= tb_find_pc(env
->mem_io_pc
);
2968 cpu_abort(env
, "check_watchpoint: could not find TB for "
2969 "pc=%p", (void *)env
->mem_io_pc
);
2971 cpu_restore_state(tb
, env
, env
->mem_io_pc
);
2972 tb_phys_invalidate(tb
, -1);
2973 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2974 env
->exception_index
= EXCP_DEBUG
;
2977 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2978 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2979 cpu_resume_from_signal(env
, NULL
);
2983 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2988 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2989 so these check for a hit then pass through to the normal out-of-line
2991 static uint64_t watch_mem_read(void *opaque
, target_phys_addr_t addr
,
2994 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
2996 case 1: return ldub_phys(addr
);
2997 case 2: return lduw_phys(addr
);
2998 case 4: return ldl_phys(addr
);
3003 static void watch_mem_write(void *opaque
, target_phys_addr_t addr
,
3004 uint64_t val
, unsigned size
)
3006 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
3009 stb_phys(addr
, val
);
3012 stw_phys(addr
, val
);
3015 stl_phys(addr
, val
);
3021 static const MemoryRegionOps watch_mem_ops
= {
3022 .read
= watch_mem_read
,
3023 .write
= watch_mem_write
,
3024 .endianness
= DEVICE_NATIVE_ENDIAN
,
3027 static uint64_t subpage_read(void *opaque
, target_phys_addr_t addr
,
3030 subpage_t
*mmio
= opaque
;
3031 unsigned int idx
= SUBPAGE_IDX(addr
);
3032 MemoryRegionSection
*section
;
3033 #if defined(DEBUG_SUBPAGE)
3034 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3035 mmio
, len
, addr
, idx
);
3038 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3040 addr
-= section
->offset_within_address_space
;
3041 addr
+= section
->offset_within_region
;
3042 return io_mem_read(section
->mr
, addr
, len
);
3045 static void subpage_write(void *opaque
, target_phys_addr_t addr
,
3046 uint64_t value
, unsigned len
)
3048 subpage_t
*mmio
= opaque
;
3049 unsigned int idx
= SUBPAGE_IDX(addr
);
3050 MemoryRegionSection
*section
;
3051 #if defined(DEBUG_SUBPAGE)
3052 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3053 " idx %d value %"PRIx64
"\n",
3054 __func__
, mmio
, len
, addr
, idx
, value
);
3057 section
= &phys_sections
[mmio
->sub_section
[idx
]];
3059 addr
-= section
->offset_within_address_space
;
3060 addr
+= section
->offset_within_region
;
3061 io_mem_write(section
->mr
, addr
, value
, len
);
3064 static const MemoryRegionOps subpage_ops
= {
3065 .read
= subpage_read
,
3066 .write
= subpage_write
,
3067 .endianness
= DEVICE_NATIVE_ENDIAN
,
3070 static uint64_t subpage_ram_read(void *opaque
, target_phys_addr_t addr
,
3073 ram_addr_t raddr
= addr
;
3074 void *ptr
= qemu_get_ram_ptr(raddr
);
3076 case 1: return ldub_p(ptr
);
3077 case 2: return lduw_p(ptr
);
3078 case 4: return ldl_p(ptr
);
3083 static void subpage_ram_write(void *opaque
, target_phys_addr_t addr
,
3084 uint64_t value
, unsigned size
)
3086 ram_addr_t raddr
= addr
;
3087 void *ptr
= qemu_get_ram_ptr(raddr
);
3089 case 1: return stb_p(ptr
, value
);
3090 case 2: return stw_p(ptr
, value
);
3091 case 4: return stl_p(ptr
, value
);
3096 static const MemoryRegionOps subpage_ram_ops
= {
3097 .read
= subpage_ram_read
,
3098 .write
= subpage_ram_write
,
3099 .endianness
= DEVICE_NATIVE_ENDIAN
,
3102 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3107 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3109 idx
= SUBPAGE_IDX(start
);
3110 eidx
= SUBPAGE_IDX(end
);
3111 #if defined(DEBUG_SUBPAGE)
3112 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3113 mmio
, start
, end
, idx
, eidx
, memory
);
3115 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
3116 MemoryRegionSection new_section
= phys_sections
[section
];
3117 new_section
.mr
= &io_mem_subpage_ram
;
3118 section
= phys_section_add(&new_section
);
3120 for (; idx
<= eidx
; idx
++) {
3121 mmio
->sub_section
[idx
] = section
;
3127 static subpage_t
*subpage_init(target_phys_addr_t base
)
3131 mmio
= g_malloc0(sizeof(subpage_t
));
3134 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
3135 "subpage", TARGET_PAGE_SIZE
);
3136 mmio
->iomem
.subpage
= true;
3137 #if defined(DEBUG_SUBPAGE)
3138 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3139 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3141 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
3146 static uint16_t dummy_section(MemoryRegion
*mr
)
3148 MemoryRegionSection section
= {
3150 .offset_within_address_space
= 0,
3151 .offset_within_region
= 0,
3155 return phys_section_add(§ion
);
3158 MemoryRegion
*iotlb_to_region(target_phys_addr_t index
)
3160 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
3163 static void io_mem_init(void)
3165 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
3166 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
3167 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
3168 "unassigned", UINT64_MAX
);
3169 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
3170 "notdirty", UINT64_MAX
);
3171 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
3172 "subpage-ram", UINT64_MAX
);
3173 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
3174 "watch", UINT64_MAX
);
3177 static void core_begin(MemoryListener
*listener
)
3179 destroy_all_mappings();
3180 phys_sections_clear();
3181 phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
3182 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
3183 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
3184 phys_section_rom
= dummy_section(&io_mem_rom
);
3185 phys_section_watch
= dummy_section(&io_mem_watch
);
3188 static void core_commit(MemoryListener
*listener
)
3192 /* since each CPU stores ram addresses in its TLB cache, we must
3193 reset the modified entries */
3195 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
3200 static void core_region_add(MemoryListener
*listener
,
3201 MemoryRegionSection
*section
)
3203 cpu_register_physical_memory_log(section
, section
->readonly
);
3206 static void core_region_del(MemoryListener
*listener
,
3207 MemoryRegionSection
*section
)
3211 static void core_region_nop(MemoryListener
*listener
,
3212 MemoryRegionSection
*section
)
3214 cpu_register_physical_memory_log(section
, section
->readonly
);
3217 static void core_log_start(MemoryListener
*listener
,
3218 MemoryRegionSection
*section
)
3222 static void core_log_stop(MemoryListener
*listener
,
3223 MemoryRegionSection
*section
)
3227 static void core_log_sync(MemoryListener
*listener
,
3228 MemoryRegionSection
*section
)
3232 static void core_log_global_start(MemoryListener
*listener
)
3234 cpu_physical_memory_set_dirty_tracking(1);
3237 static void core_log_global_stop(MemoryListener
*listener
)
3239 cpu_physical_memory_set_dirty_tracking(0);
3242 static void core_eventfd_add(MemoryListener
*listener
,
3243 MemoryRegionSection
*section
,
3244 bool match_data
, uint64_t data
, EventNotifier
*e
)
3248 static void core_eventfd_del(MemoryListener
*listener
,
3249 MemoryRegionSection
*section
,
3250 bool match_data
, uint64_t data
, EventNotifier
*e
)
3254 static void io_begin(MemoryListener
*listener
)
3258 static void io_commit(MemoryListener
*listener
)
3262 static void io_region_add(MemoryListener
*listener
,
3263 MemoryRegionSection
*section
)
3265 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
3267 mrio
->mr
= section
->mr
;
3268 mrio
->offset
= section
->offset_within_region
;
3269 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
3270 section
->offset_within_address_space
, section
->size
);
3271 ioport_register(&mrio
->iorange
);
3274 static void io_region_del(MemoryListener
*listener
,
3275 MemoryRegionSection
*section
)
3277 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
3280 static void io_region_nop(MemoryListener
*listener
,
3281 MemoryRegionSection
*section
)
3285 static void io_log_start(MemoryListener
*listener
,
3286 MemoryRegionSection
*section
)
3290 static void io_log_stop(MemoryListener
*listener
,
3291 MemoryRegionSection
*section
)
3295 static void io_log_sync(MemoryListener
*listener
,
3296 MemoryRegionSection
*section
)
3300 static void io_log_global_start(MemoryListener
*listener
)
3304 static void io_log_global_stop(MemoryListener
*listener
)
3308 static void io_eventfd_add(MemoryListener
*listener
,
3309 MemoryRegionSection
*section
,
3310 bool match_data
, uint64_t data
, EventNotifier
*e
)
3314 static void io_eventfd_del(MemoryListener
*listener
,
3315 MemoryRegionSection
*section
,
3316 bool match_data
, uint64_t data
, EventNotifier
*e
)
3320 static MemoryListener core_memory_listener
= {
3321 .begin
= core_begin
,
3322 .commit
= core_commit
,
3323 .region_add
= core_region_add
,
3324 .region_del
= core_region_del
,
3325 .region_nop
= core_region_nop
,
3326 .log_start
= core_log_start
,
3327 .log_stop
= core_log_stop
,
3328 .log_sync
= core_log_sync
,
3329 .log_global_start
= core_log_global_start
,
3330 .log_global_stop
= core_log_global_stop
,
3331 .eventfd_add
= core_eventfd_add
,
3332 .eventfd_del
= core_eventfd_del
,
3336 static MemoryListener io_memory_listener
= {
3338 .commit
= io_commit
,
3339 .region_add
= io_region_add
,
3340 .region_del
= io_region_del
,
3341 .region_nop
= io_region_nop
,
3342 .log_start
= io_log_start
,
3343 .log_stop
= io_log_stop
,
3344 .log_sync
= io_log_sync
,
3345 .log_global_start
= io_log_global_start
,
3346 .log_global_stop
= io_log_global_stop
,
3347 .eventfd_add
= io_eventfd_add
,
3348 .eventfd_del
= io_eventfd_del
,
3352 static void memory_map_init(void)
3354 system_memory
= g_malloc(sizeof(*system_memory
));
3355 memory_region_init(system_memory
, "system", INT64_MAX
);
3356 set_system_memory_map(system_memory
);
3358 system_io
= g_malloc(sizeof(*system_io
));
3359 memory_region_init(system_io
, "io", 65536);
3360 set_system_io_map(system_io
);
3362 memory_listener_register(&core_memory_listener
, system_memory
);
3363 memory_listener_register(&io_memory_listener
, system_io
);
3366 MemoryRegion
*get_system_memory(void)
3368 return system_memory
;
3371 MemoryRegion
*get_system_io(void)
3376 #endif /* !defined(CONFIG_USER_ONLY) */
3378 /* physical memory access (slow version, mainly for debug) */
3379 #if defined(CONFIG_USER_ONLY)
3380 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
3381 uint8_t *buf
, int len
, int is_write
)
3388 page
= addr
& TARGET_PAGE_MASK
;
3389 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3392 flags
= page_get_flags(page
);
3393 if (!(flags
& PAGE_VALID
))
3396 if (!(flags
& PAGE_WRITE
))
3398 /* XXX: this code should not depend on lock_user */
3399 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3402 unlock_user(p
, addr
, l
);
3404 if (!(flags
& PAGE_READ
))
3406 /* XXX: this code should not depend on lock_user */
3407 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3410 unlock_user(p
, addr
, 0);
3420 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3421 int len
, int is_write
)
3426 target_phys_addr_t page
;
3427 MemoryRegionSection
*section
;
3430 page
= addr
& TARGET_PAGE_MASK
;
3431 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3434 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3437 if (!memory_region_is_ram(section
->mr
)) {
3438 target_phys_addr_t addr1
;
3439 addr1
= memory_region_section_addr(section
, addr
);
3440 /* XXX: could force cpu_single_env to NULL to avoid
3442 if (l
>= 4 && ((addr1
& 3) == 0)) {
3443 /* 32 bit write access */
3445 io_mem_write(section
->mr
, addr1
, val
, 4);
3447 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3448 /* 16 bit write access */
3450 io_mem_write(section
->mr
, addr1
, val
, 2);
3453 /* 8 bit write access */
3455 io_mem_write(section
->mr
, addr1
, val
, 1);
3458 } else if (!section
->readonly
) {
3460 addr1
= memory_region_get_ram_addr(section
->mr
)
3461 + memory_region_section_addr(section
, addr
);
3463 ptr
= qemu_get_ram_ptr(addr1
);
3464 memcpy(ptr
, buf
, l
);
3465 if (!cpu_physical_memory_is_dirty(addr1
)) {
3466 /* invalidate code */
3467 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3469 cpu_physical_memory_set_dirty_flags(
3470 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3472 qemu_put_ram_ptr(ptr
);
3475 if (!(memory_region_is_ram(section
->mr
) ||
3476 memory_region_is_romd(section
->mr
))) {
3477 target_phys_addr_t addr1
;
3479 addr1
= memory_region_section_addr(section
, addr
);
3480 if (l
>= 4 && ((addr1
& 3) == 0)) {
3481 /* 32 bit read access */
3482 val
= io_mem_read(section
->mr
, addr1
, 4);
3485 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3486 /* 16 bit read access */
3487 val
= io_mem_read(section
->mr
, addr1
, 2);
3491 /* 8 bit read access */
3492 val
= io_mem_read(section
->mr
, addr1
, 1);
3498 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
3499 + memory_region_section_addr(section
,
3501 memcpy(buf
, ptr
, l
);
3502 qemu_put_ram_ptr(ptr
);
3511 /* used for ROM loading : can write in RAM and ROM */
3512 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3513 const uint8_t *buf
, int len
)
3517 target_phys_addr_t page
;
3518 MemoryRegionSection
*section
;
3521 page
= addr
& TARGET_PAGE_MASK
;
3522 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3525 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3527 if (!(memory_region_is_ram(section
->mr
) ||
3528 memory_region_is_romd(section
->mr
))) {
3531 unsigned long addr1
;
3532 addr1
= memory_region_get_ram_addr(section
->mr
)
3533 + memory_region_section_addr(section
, addr
);
3535 ptr
= qemu_get_ram_ptr(addr1
);
3536 memcpy(ptr
, buf
, l
);
3537 if (!cpu_physical_memory_is_dirty(addr1
)) {
3538 /* invalidate code */
3539 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3541 cpu_physical_memory_set_dirty_flags(
3542 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3544 qemu_put_ram_ptr(ptr
);
3554 target_phys_addr_t addr
;
3555 target_phys_addr_t len
;
3558 static BounceBuffer bounce
;
3560 typedef struct MapClient
{
3562 void (*callback
)(void *opaque
);
3563 QLIST_ENTRY(MapClient
) link
;
3566 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3567 = QLIST_HEAD_INITIALIZER(map_client_list
);
3569 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3571 MapClient
*client
= g_malloc(sizeof(*client
));
3573 client
->opaque
= opaque
;
3574 client
->callback
= callback
;
3575 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3579 void cpu_unregister_map_client(void *_client
)
3581 MapClient
*client
= (MapClient
*)_client
;
3583 QLIST_REMOVE(client
, link
);
3587 static void cpu_notify_map_clients(void)
3591 while (!QLIST_EMPTY(&map_client_list
)) {
3592 client
= QLIST_FIRST(&map_client_list
);
3593 client
->callback(client
->opaque
);
3594 cpu_unregister_map_client(client
);
3598 /* Map a physical memory region into a host virtual address.
3599 * May map a subset of the requested range, given by and returned in *plen.
3600 * May return NULL if resources needed to perform the mapping are exhausted.
3601 * Use only for reads OR writes - not for read-modify-write operations.
3602 * Use cpu_register_map_client() to know when retrying the map operation is
3603 * likely to succeed.
3605 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3606 target_phys_addr_t
*plen
,
3609 target_phys_addr_t len
= *plen
;
3610 target_phys_addr_t todo
= 0;
3612 target_phys_addr_t page
;
3613 MemoryRegionSection
*section
;
3614 ram_addr_t raddr
= RAM_ADDR_MAX
;
3619 page
= addr
& TARGET_PAGE_MASK
;
3620 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3623 section
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3625 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
3626 if (todo
|| bounce
.buffer
) {
3629 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3633 cpu_physical_memory_read(addr
, bounce
.buffer
, l
);
3637 return bounce
.buffer
;
3640 raddr
= memory_region_get_ram_addr(section
->mr
)
3641 + memory_region_section_addr(section
, addr
);
3649 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
3654 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3655 * Will also mark the memory as dirty if is_write == 1. access_len gives
3656 * the amount of memory that was actually read or written by the caller.
3658 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3659 int is_write
, target_phys_addr_t access_len
)
3661 if (buffer
!= bounce
.buffer
) {
3663 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
3664 while (access_len
) {
3666 l
= TARGET_PAGE_SIZE
;
3669 if (!cpu_physical_memory_is_dirty(addr1
)) {
3670 /* invalidate code */
3671 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3673 cpu_physical_memory_set_dirty_flags(
3674 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3680 if (xen_enabled()) {
3681 xen_invalidate_map_cache_entry(buffer
);
3686 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3688 qemu_vfree(bounce
.buffer
);
3689 bounce
.buffer
= NULL
;
3690 cpu_notify_map_clients();
3693 /* warning: addr must be aligned */
3694 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr
,
3695 enum device_endian endian
)
3699 MemoryRegionSection
*section
;
3701 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3703 if (!(memory_region_is_ram(section
->mr
) ||
3704 memory_region_is_romd(section
->mr
))) {
3706 addr
= memory_region_section_addr(section
, addr
);
3707 val
= io_mem_read(section
->mr
, addr
, 4);
3708 #if defined(TARGET_WORDS_BIGENDIAN)
3709 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3713 if (endian
== DEVICE_BIG_ENDIAN
) {
3719 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3721 + memory_region_section_addr(section
, addr
));
3723 case DEVICE_LITTLE_ENDIAN
:
3724 val
= ldl_le_p(ptr
);
3726 case DEVICE_BIG_ENDIAN
:
3727 val
= ldl_be_p(ptr
);
3737 uint32_t ldl_phys(target_phys_addr_t addr
)
3739 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3742 uint32_t ldl_le_phys(target_phys_addr_t addr
)
3744 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3747 uint32_t ldl_be_phys(target_phys_addr_t addr
)
3749 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3752 /* warning: addr must be aligned */
3753 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr
,
3754 enum device_endian endian
)
3758 MemoryRegionSection
*section
;
3760 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3762 if (!(memory_region_is_ram(section
->mr
) ||
3763 memory_region_is_romd(section
->mr
))) {
3765 addr
= memory_region_section_addr(section
, addr
);
3767 /* XXX This is broken when device endian != cpu endian.
3768 Fix and add "endian" variable check */
3769 #ifdef TARGET_WORDS_BIGENDIAN
3770 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
3771 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
3773 val
= io_mem_read(section
->mr
, addr
, 4);
3774 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
3778 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3780 + memory_region_section_addr(section
, addr
));
3782 case DEVICE_LITTLE_ENDIAN
:
3783 val
= ldq_le_p(ptr
);
3785 case DEVICE_BIG_ENDIAN
:
3786 val
= ldq_be_p(ptr
);
3796 uint64_t ldq_phys(target_phys_addr_t addr
)
3798 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3801 uint64_t ldq_le_phys(target_phys_addr_t addr
)
3803 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3806 uint64_t ldq_be_phys(target_phys_addr_t addr
)
3808 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3812 uint32_t ldub_phys(target_phys_addr_t addr
)
3815 cpu_physical_memory_read(addr
, &val
, 1);
3819 /* warning: addr must be aligned */
3820 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr
,
3821 enum device_endian endian
)
3825 MemoryRegionSection
*section
;
3827 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3829 if (!(memory_region_is_ram(section
->mr
) ||
3830 memory_region_is_romd(section
->mr
))) {
3832 addr
= memory_region_section_addr(section
, addr
);
3833 val
= io_mem_read(section
->mr
, addr
, 2);
3834 #if defined(TARGET_WORDS_BIGENDIAN)
3835 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3839 if (endian
== DEVICE_BIG_ENDIAN
) {
3845 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3847 + memory_region_section_addr(section
, addr
));
3849 case DEVICE_LITTLE_ENDIAN
:
3850 val
= lduw_le_p(ptr
);
3852 case DEVICE_BIG_ENDIAN
:
3853 val
= lduw_be_p(ptr
);
3863 uint32_t lduw_phys(target_phys_addr_t addr
)
3865 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
3868 uint32_t lduw_le_phys(target_phys_addr_t addr
)
3870 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
3873 uint32_t lduw_be_phys(target_phys_addr_t addr
)
3875 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
3878 /* warning: addr must be aligned. The ram page is not masked as dirty
3879 and the code inside is not invalidated. It is useful if the dirty
3880 bits are used to track modified PTEs */
3881 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3884 MemoryRegionSection
*section
;
3886 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3888 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3889 addr
= memory_region_section_addr(section
, addr
);
3890 if (memory_region_is_ram(section
->mr
)) {
3891 section
= &phys_sections
[phys_section_rom
];
3893 io_mem_write(section
->mr
, addr
, val
, 4);
3895 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
3897 + memory_region_section_addr(section
, addr
);
3898 ptr
= qemu_get_ram_ptr(addr1
);
3901 if (unlikely(in_migration
)) {
3902 if (!cpu_physical_memory_is_dirty(addr1
)) {
3903 /* invalidate code */
3904 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3906 cpu_physical_memory_set_dirty_flags(
3907 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
3913 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3916 MemoryRegionSection
*section
;
3918 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3920 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3921 addr
= memory_region_section_addr(section
, addr
);
3922 if (memory_region_is_ram(section
->mr
)) {
3923 section
= &phys_sections
[phys_section_rom
];
3925 #ifdef TARGET_WORDS_BIGENDIAN
3926 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
3927 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
3929 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
3930 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
3933 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
3935 + memory_region_section_addr(section
, addr
));
3940 /* warning: addr must be aligned */
3941 static inline void stl_phys_internal(target_phys_addr_t addr
, uint32_t val
,
3942 enum device_endian endian
)
3945 MemoryRegionSection
*section
;
3947 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3949 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
3950 addr
= memory_region_section_addr(section
, addr
);
3951 if (memory_region_is_ram(section
->mr
)) {
3952 section
= &phys_sections
[phys_section_rom
];
3954 #if defined(TARGET_WORDS_BIGENDIAN)
3955 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3959 if (endian
== DEVICE_BIG_ENDIAN
) {
3963 io_mem_write(section
->mr
, addr
, val
, 4);
3965 unsigned long addr1
;
3966 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
3967 + memory_region_section_addr(section
, addr
);
3969 ptr
= qemu_get_ram_ptr(addr1
);
3971 case DEVICE_LITTLE_ENDIAN
:
3974 case DEVICE_BIG_ENDIAN
:
3981 if (!cpu_physical_memory_is_dirty(addr1
)) {
3982 /* invalidate code */
3983 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3985 cpu_physical_memory_set_dirty_flags(addr1
,
3986 (0xff & ~CODE_DIRTY_FLAG
));
3991 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3993 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
3996 void stl_le_phys(target_phys_addr_t addr
, uint32_t val
)
3998 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4001 void stl_be_phys(target_phys_addr_t addr
, uint32_t val
)
4003 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4007 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
4010 cpu_physical_memory_write(addr
, &v
, 1);
4013 /* warning: addr must be aligned */
4014 static inline void stw_phys_internal(target_phys_addr_t addr
, uint32_t val
,
4015 enum device_endian endian
)
4018 MemoryRegionSection
*section
;
4020 section
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
4022 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
4023 addr
= memory_region_section_addr(section
, addr
);
4024 if (memory_region_is_ram(section
->mr
)) {
4025 section
= &phys_sections
[phys_section_rom
];
4027 #if defined(TARGET_WORDS_BIGENDIAN)
4028 if (endian
== DEVICE_LITTLE_ENDIAN
) {
4032 if (endian
== DEVICE_BIG_ENDIAN
) {
4036 io_mem_write(section
->mr
, addr
, val
, 2);
4038 unsigned long addr1
;
4039 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
4040 + memory_region_section_addr(section
, addr
);
4042 ptr
= qemu_get_ram_ptr(addr1
);
4044 case DEVICE_LITTLE_ENDIAN
:
4047 case DEVICE_BIG_ENDIAN
:
4054 if (!cpu_physical_memory_is_dirty(addr1
)) {
4055 /* invalidate code */
4056 tb_invalidate_phys_page_range(addr1
, addr1
+ 2, 0);
4058 cpu_physical_memory_set_dirty_flags(addr1
,
4059 (0xff & ~CODE_DIRTY_FLAG
));
4064 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
4066 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
4069 void stw_le_phys(target_phys_addr_t addr
, uint32_t val
)
4071 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
4074 void stw_be_phys(target_phys_addr_t addr
, uint32_t val
)
4076 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
4080 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
4083 cpu_physical_memory_write(addr
, &val
, 8);
4086 void stq_le_phys(target_phys_addr_t addr
, uint64_t val
)
4088 val
= cpu_to_le64(val
);
4089 cpu_physical_memory_write(addr
, &val
, 8);
4092 void stq_be_phys(target_phys_addr_t addr
, uint64_t val
)
4094 val
= cpu_to_be64(val
);
4095 cpu_physical_memory_write(addr
, &val
, 8);
4098 /* virtual memory access for debug (includes writing to ROM) */
4099 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
4100 uint8_t *buf
, int len
, int is_write
)
4103 target_phys_addr_t phys_addr
;
4107 page
= addr
& TARGET_PAGE_MASK
;
4108 phys_addr
= cpu_get_phys_page_debug(env
, page
);
4109 /* if no physical page mapped, return an error */
4110 if (phys_addr
== -1)
4112 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
4115 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
4117 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
4119 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
4128 /* in deterministic execution mode, instructions doing device I/Os
4129 must be at the end of the TB */
4130 void cpu_io_recompile(CPUArchState
*env
, uintptr_t retaddr
)
4132 TranslationBlock
*tb
;
4134 target_ulong pc
, cs_base
;
4137 tb
= tb_find_pc(retaddr
);
4139 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
4142 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
4143 cpu_restore_state(tb
, env
, retaddr
);
4144 /* Calculate how many instructions had been executed before the fault
4146 n
= n
- env
->icount_decr
.u16
.low
;
4147 /* Generate a new TB ending on the I/O insn. */
4149 /* On MIPS and SH, delay slot instructions can only be restarted if
4150 they were already the first instruction in the TB. If this is not
4151 the first instruction in a TB then re-execute the preceding
4153 #if defined(TARGET_MIPS)
4154 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
4155 env
->active_tc
.PC
-= 4;
4156 env
->icount_decr
.u16
.low
++;
4157 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
4159 #elif defined(TARGET_SH4)
4160 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
4163 env
->icount_decr
.u16
.low
++;
4164 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
4167 /* This should never happen. */
4168 if (n
> CF_COUNT_MASK
)
4169 cpu_abort(env
, "TB too big during recompile");
4171 cflags
= n
| CF_LAST_IO
;
4173 cs_base
= tb
->cs_base
;
4175 tb_phys_invalidate(tb
, -1);
4176 /* FIXME: In theory this could raise an exception. In practice
4177 we have already translated the block once so it's probably ok. */
4178 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4179 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4180 the first in the TB) then we end up generating a whole new TB and
4181 repeating the fault, which is horribly inefficient.
4182 Better would be to execute just this insn uncached, or generate a
4184 cpu_resume_from_signal(env
, NULL
);
4187 #if !defined(CONFIG_USER_ONLY)
4189 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
4191 int i
, target_code_size
, max_target_code_size
;
4192 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4193 TranslationBlock
*tb
;
4195 target_code_size
= 0;
4196 max_target_code_size
= 0;
4198 direct_jmp_count
= 0;
4199 direct_jmp2_count
= 0;
4200 for(i
= 0; i
< nb_tbs
; i
++) {
4202 target_code_size
+= tb
->size
;
4203 if (tb
->size
> max_target_code_size
)
4204 max_target_code_size
= tb
->size
;
4205 if (tb
->page_addr
[1] != -1)
4207 if (tb
->tb_next_offset
[0] != 0xffff) {
4209 if (tb
->tb_next_offset
[1] != 0xffff) {
4210 direct_jmp2_count
++;
4214 /* XXX: avoid using doubles ? */
4215 cpu_fprintf(f
, "Translation buffer state:\n");
4216 cpu_fprintf(f
, "gen code size %td/%ld\n",
4217 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4218 cpu_fprintf(f
, "TB count %d/%d\n",
4219 nb_tbs
, code_gen_max_blocks
);
4220 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4221 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4222 max_target_code_size
);
4223 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4224 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4225 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4226 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4228 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4229 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4231 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4233 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4234 cpu_fprintf(f
, "\nStatistics:\n");
4235 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4236 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4237 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4238 tcg_dump_info(f
, cpu_fprintf
);
4242 * A helper function for the _utterly broken_ virtio device model to find out if
4243 * it's running on a big endian machine. Don't do this at home kids!
4245 bool virtio_is_big_endian(void);
4246 bool virtio_is_big_endian(void)
4248 #if defined(TARGET_WORDS_BIGENDIAN)
4257 #ifndef CONFIG_USER_ONLY
4258 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr
)
4260 MemoryRegionSection
*section
;
4262 section
= phys_page_find(phys_addr
>> TARGET_PAGE_BITS
);
4264 return !(memory_region_is_ram(section
->mr
) ||
4265 memory_region_is_romd(section
->mr
));