target/arm: Clear CONTROL.SFPA in BXNS and BLXNS
[qemu/ar7.git] / target / arm / helper.c
blob088852ceb9617cf82585ea2e2a34a85be27fada0
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "qemu/qemu-print.h"
14 #include "exec/exec-all.h"
15 #include "exec/cpu_ldst.h"
16 #include "arm_ldst.h"
17 #include <zlib.h> /* For crc32 */
18 #include "exec/semihost.h"
19 #include "sysemu/cpus.h"
20 #include "sysemu/kvm.h"
21 #include "fpu/softfloat.h"
22 #include "qemu/range.h"
23 #include "qapi/qapi-commands-target.h"
25 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
27 #ifndef CONFIG_USER_ONLY
28 /* Cacheability and shareability attributes for a memory access */
29 typedef struct ARMCacheAttrs {
30 unsigned int attrs:8; /* as in the MAIR register encoding */
31 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
32 } ARMCacheAttrs;
34 static bool get_phys_addr(CPUARMState *env, target_ulong address,
35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
36 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
37 target_ulong *page_size,
38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
40 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
41 MMUAccessType access_type, ARMMMUIdx mmu_idx,
42 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
43 target_ulong *page_size_ptr,
44 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 /* Security attributes for an address, as returned by v8m_security_lookup. */
47 typedef struct V8M_SAttributes {
48 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
49 bool ns;
50 bool nsc;
51 uint8_t sregion;
52 bool srvalid;
53 uint8_t iregion;
54 bool irvalid;
55 } V8M_SAttributes;
57 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
58 MMUAccessType access_type, ARMMMUIdx mmu_idx,
59 V8M_SAttributes *sattrs);
60 #endif
62 static void switch_mode(CPUARMState *env, int mode);
64 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
66 int nregs;
68 /* VFP data registers are always little-endian. */
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
72 return 8;
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 /* Aliases for Q regs. */
76 nregs += 16;
77 if (reg < nregs) {
78 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
79 stq_le_p(buf, q[0]);
80 stq_le_p(buf + 8, q[1]);
81 return 16;
84 switch (reg - nregs) {
85 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
86 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
87 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
89 return 0;
92 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
94 int nregs;
96 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
97 if (reg < nregs) {
98 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
99 return 8;
101 if (arm_feature(env, ARM_FEATURE_NEON)) {
102 nregs += 16;
103 if (reg < nregs) {
104 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
105 q[0] = ldq_le_p(buf);
106 q[1] = ldq_le_p(buf + 8);
107 return 16;
110 switch (reg - nregs) {
111 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
112 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
113 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
115 return 0;
118 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
120 switch (reg) {
121 case 0 ... 31:
122 /* 128 bit FP register */
124 uint64_t *q = aa64_vfp_qreg(env, reg);
125 stq_le_p(buf, q[0]);
126 stq_le_p(buf + 8, q[1]);
127 return 16;
129 case 32:
130 /* FPSR */
131 stl_p(buf, vfp_get_fpsr(env));
132 return 4;
133 case 33:
134 /* FPCR */
135 stl_p(buf, vfp_get_fpcr(env));
136 return 4;
137 default:
138 return 0;
142 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
144 switch (reg) {
145 case 0 ... 31:
146 /* 128 bit FP register */
148 uint64_t *q = aa64_vfp_qreg(env, reg);
149 q[0] = ldq_le_p(buf);
150 q[1] = ldq_le_p(buf + 8);
151 return 16;
153 case 32:
154 /* FPSR */
155 vfp_set_fpsr(env, ldl_p(buf));
156 return 4;
157 case 33:
158 /* FPCR */
159 vfp_set_fpcr(env, ldl_p(buf));
160 return 4;
161 default:
162 return 0;
166 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
168 assert(ri->fieldoffset);
169 if (cpreg_field_is_64bit(ri)) {
170 return CPREG_FIELD64(env, ri);
171 } else {
172 return CPREG_FIELD32(env, ri);
176 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
177 uint64_t value)
179 assert(ri->fieldoffset);
180 if (cpreg_field_is_64bit(ri)) {
181 CPREG_FIELD64(env, ri) = value;
182 } else {
183 CPREG_FIELD32(env, ri) = value;
187 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
189 return (char *)env + ri->fieldoffset;
192 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
194 /* Raw read of a coprocessor register (as needed for migration, etc). */
195 if (ri->type & ARM_CP_CONST) {
196 return ri->resetvalue;
197 } else if (ri->raw_readfn) {
198 return ri->raw_readfn(env, ri);
199 } else if (ri->readfn) {
200 return ri->readfn(env, ri);
201 } else {
202 return raw_read(env, ri);
206 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
207 uint64_t v)
209 /* Raw write of a coprocessor register (as needed for migration, etc).
210 * Note that constant registers are treated as write-ignored; the
211 * caller should check for success by whether a readback gives the
212 * value written.
214 if (ri->type & ARM_CP_CONST) {
215 return;
216 } else if (ri->raw_writefn) {
217 ri->raw_writefn(env, ri, v);
218 } else if (ri->writefn) {
219 ri->writefn(env, ri, v);
220 } else {
221 raw_write(env, ri, v);
225 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
227 ARMCPU *cpu = arm_env_get_cpu(env);
228 const ARMCPRegInfo *ri;
229 uint32_t key;
231 key = cpu->dyn_xml.cpregs_keys[reg];
232 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
233 if (ri) {
234 if (cpreg_field_is_64bit(ri)) {
235 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
236 } else {
237 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
240 return 0;
243 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
245 return 0;
248 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
250 /* Return true if the regdef would cause an assertion if you called
251 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
252 * program bug for it not to have the NO_RAW flag).
253 * NB that returning false here doesn't necessarily mean that calling
254 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
255 * read/write access functions which are safe for raw use" from "has
256 * read/write access functions which have side effects but has forgotten
257 * to provide raw access functions".
258 * The tests here line up with the conditions in read/write_raw_cp_reg()
259 * and assertions in raw_read()/raw_write().
261 if ((ri->type & ARM_CP_CONST) ||
262 ri->fieldoffset ||
263 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
264 return false;
266 return true;
269 bool write_cpustate_to_list(ARMCPU *cpu)
271 /* Write the coprocessor state from cpu->env to the (index,value) list. */
272 int i;
273 bool ok = true;
275 for (i = 0; i < cpu->cpreg_array_len; i++) {
276 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
277 const ARMCPRegInfo *ri;
279 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
280 if (!ri) {
281 ok = false;
282 continue;
284 if (ri->type & ARM_CP_NO_RAW) {
285 continue;
287 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
289 return ok;
292 bool write_list_to_cpustate(ARMCPU *cpu)
294 int i;
295 bool ok = true;
297 for (i = 0; i < cpu->cpreg_array_len; i++) {
298 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
299 uint64_t v = cpu->cpreg_values[i];
300 const ARMCPRegInfo *ri;
302 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
303 if (!ri) {
304 ok = false;
305 continue;
307 if (ri->type & ARM_CP_NO_RAW) {
308 continue;
310 /* Write value and confirm it reads back as written
311 * (to catch read-only registers and partially read-only
312 * registers where the incoming migration value doesn't match)
314 write_raw_cp_reg(&cpu->env, ri, v);
315 if (read_raw_cp_reg(&cpu->env, ri) != v) {
316 ok = false;
319 return ok;
322 static void add_cpreg_to_list(gpointer key, gpointer opaque)
324 ARMCPU *cpu = opaque;
325 uint64_t regidx;
326 const ARMCPRegInfo *ri;
328 regidx = *(uint32_t *)key;
329 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
331 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
332 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
333 /* The value array need not be initialized at this point */
334 cpu->cpreg_array_len++;
338 static void count_cpreg(gpointer key, gpointer opaque)
340 ARMCPU *cpu = opaque;
341 uint64_t regidx;
342 const ARMCPRegInfo *ri;
344 regidx = *(uint32_t *)key;
345 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
347 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
348 cpu->cpreg_array_len++;
352 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
354 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
355 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
357 if (aidx > bidx) {
358 return 1;
360 if (aidx < bidx) {
361 return -1;
363 return 0;
366 void init_cpreg_list(ARMCPU *cpu)
368 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
369 * Note that we require cpreg_tuples[] to be sorted by key ID.
371 GList *keys;
372 int arraylen;
374 keys = g_hash_table_get_keys(cpu->cp_regs);
375 keys = g_list_sort(keys, cpreg_key_compare);
377 cpu->cpreg_array_len = 0;
379 g_list_foreach(keys, count_cpreg, cpu);
381 arraylen = cpu->cpreg_array_len;
382 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
383 cpu->cpreg_values = g_new(uint64_t, arraylen);
384 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
385 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
386 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
387 cpu->cpreg_array_len = 0;
389 g_list_foreach(keys, add_cpreg_to_list, cpu);
391 assert(cpu->cpreg_array_len == arraylen);
393 g_list_free(keys);
397 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
398 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
400 * access_el3_aa32ns: Used to check AArch32 register views.
401 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
403 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
404 const ARMCPRegInfo *ri,
405 bool isread)
407 bool secure = arm_is_secure_below_el3(env);
409 assert(!arm_el_is_aa64(env, 3));
410 if (secure) {
411 return CP_ACCESS_TRAP_UNCATEGORIZED;
413 return CP_ACCESS_OK;
416 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
417 const ARMCPRegInfo *ri,
418 bool isread)
420 if (!arm_el_is_aa64(env, 3)) {
421 return access_el3_aa32ns(env, ri, isread);
423 return CP_ACCESS_OK;
426 /* Some secure-only AArch32 registers trap to EL3 if used from
427 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
428 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
429 * We assume that the .access field is set to PL1_RW.
431 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
432 const ARMCPRegInfo *ri,
433 bool isread)
435 if (arm_current_el(env) == 3) {
436 return CP_ACCESS_OK;
438 if (arm_is_secure_below_el3(env)) {
439 return CP_ACCESS_TRAP_EL3;
441 /* This will be EL1 NS and EL2 NS, which just UNDEF */
442 return CP_ACCESS_TRAP_UNCATEGORIZED;
445 /* Check for traps to "powerdown debug" registers, which are controlled
446 * by MDCR.TDOSA
448 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
449 bool isread)
451 int el = arm_current_el(env);
452 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
453 (env->cp15.mdcr_el2 & MDCR_TDE) ||
454 (arm_hcr_el2_eff(env) & HCR_TGE);
456 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
457 return CP_ACCESS_TRAP_EL2;
459 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
460 return CP_ACCESS_TRAP_EL3;
462 return CP_ACCESS_OK;
465 /* Check for traps to "debug ROM" registers, which are controlled
466 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
468 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
469 bool isread)
471 int el = arm_current_el(env);
472 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
473 (env->cp15.mdcr_el2 & MDCR_TDE) ||
474 (arm_hcr_el2_eff(env) & HCR_TGE);
476 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
477 return CP_ACCESS_TRAP_EL2;
479 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
480 return CP_ACCESS_TRAP_EL3;
482 return CP_ACCESS_OK;
485 /* Check for traps to general debug registers, which are controlled
486 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
488 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
489 bool isread)
491 int el = arm_current_el(env);
492 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
493 (env->cp15.mdcr_el2 & MDCR_TDE) ||
494 (arm_hcr_el2_eff(env) & HCR_TGE);
496 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
497 return CP_ACCESS_TRAP_EL2;
499 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
500 return CP_ACCESS_TRAP_EL3;
502 return CP_ACCESS_OK;
505 /* Check for traps to performance monitor registers, which are controlled
506 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
508 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
509 bool isread)
511 int el = arm_current_el(env);
513 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
514 && !arm_is_secure_below_el3(env)) {
515 return CP_ACCESS_TRAP_EL2;
517 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
518 return CP_ACCESS_TRAP_EL3;
520 return CP_ACCESS_OK;
523 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
525 ARMCPU *cpu = arm_env_get_cpu(env);
527 raw_write(env, ri, value);
528 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
531 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 ARMCPU *cpu = arm_env_get_cpu(env);
535 if (raw_read(env, ri) != value) {
536 /* Unlike real hardware the qemu TLB uses virtual addresses,
537 * not modified virtual addresses, so this causes a TLB flush.
539 tlb_flush(CPU(cpu));
540 raw_write(env, ri, value);
544 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 ARMCPU *cpu = arm_env_get_cpu(env);
549 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
550 && !extended_addresses_enabled(env)) {
551 /* For VMSA (when not using the LPAE long descriptor page table
552 * format) this register includes the ASID, so do a TLB flush.
553 * For PMSA it is purely a process ID and no action is needed.
555 tlb_flush(CPU(cpu));
557 raw_write(env, ri, value);
560 /* IS variants of TLB operations must affect all cores */
561 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
564 CPUState *cs = ENV_GET_CPU(env);
566 tlb_flush_all_cpus_synced(cs);
569 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
570 uint64_t value)
572 CPUState *cs = ENV_GET_CPU(env);
574 tlb_flush_all_cpus_synced(cs);
577 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578 uint64_t value)
580 CPUState *cs = ENV_GET_CPU(env);
582 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
585 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
588 CPUState *cs = ENV_GET_CPU(env);
590 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
594 * Non-IS variants of TLB operations are upgraded to
595 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
596 * force broadcast of these operations.
598 static bool tlb_force_broadcast(CPUARMState *env)
600 return (env->cp15.hcr_el2 & HCR_FB) &&
601 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
604 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
605 uint64_t value)
607 /* Invalidate all (TLBIALL) */
608 ARMCPU *cpu = arm_env_get_cpu(env);
610 if (tlb_force_broadcast(env)) {
611 tlbiall_is_write(env, NULL, value);
612 return;
615 tlb_flush(CPU(cpu));
618 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
619 uint64_t value)
621 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
622 ARMCPU *cpu = arm_env_get_cpu(env);
624 if (tlb_force_broadcast(env)) {
625 tlbimva_is_write(env, NULL, value);
626 return;
629 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
632 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
633 uint64_t value)
635 /* Invalidate by ASID (TLBIASID) */
636 ARMCPU *cpu = arm_env_get_cpu(env);
638 if (tlb_force_broadcast(env)) {
639 tlbiasid_is_write(env, NULL, value);
640 return;
643 tlb_flush(CPU(cpu));
646 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value)
649 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
650 ARMCPU *cpu = arm_env_get_cpu(env);
652 if (tlb_force_broadcast(env)) {
653 tlbimvaa_is_write(env, NULL, value);
654 return;
657 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
660 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
661 uint64_t value)
663 CPUState *cs = ENV_GET_CPU(env);
665 tlb_flush_by_mmuidx(cs,
666 ARMMMUIdxBit_S12NSE1 |
667 ARMMMUIdxBit_S12NSE0 |
668 ARMMMUIdxBit_S2NS);
671 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
672 uint64_t value)
674 CPUState *cs = ENV_GET_CPU(env);
676 tlb_flush_by_mmuidx_all_cpus_synced(cs,
677 ARMMMUIdxBit_S12NSE1 |
678 ARMMMUIdxBit_S12NSE0 |
679 ARMMMUIdxBit_S2NS);
682 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
683 uint64_t value)
685 /* Invalidate by IPA. This has to invalidate any structures that
686 * contain only stage 2 translation information, but does not need
687 * to apply to structures that contain combined stage 1 and stage 2
688 * translation information.
689 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
691 CPUState *cs = ENV_GET_CPU(env);
692 uint64_t pageaddr;
694 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
695 return;
698 pageaddr = sextract64(value << 12, 0, 40);
700 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
703 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
704 uint64_t value)
706 CPUState *cs = ENV_GET_CPU(env);
707 uint64_t pageaddr;
709 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
710 return;
713 pageaddr = sextract64(value << 12, 0, 40);
715 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
716 ARMMMUIdxBit_S2NS);
719 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
720 uint64_t value)
722 CPUState *cs = ENV_GET_CPU(env);
724 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
727 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
728 uint64_t value)
730 CPUState *cs = ENV_GET_CPU(env);
732 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
735 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
736 uint64_t value)
738 CPUState *cs = ENV_GET_CPU(env);
739 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
741 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
744 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
747 CPUState *cs = ENV_GET_CPU(env);
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
750 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
751 ARMMMUIdxBit_S1E2);
754 static const ARMCPRegInfo cp_reginfo[] = {
755 /* Define the secure and non-secure FCSE identifier CP registers
756 * separately because there is no secure bank in V8 (no _EL3). This allows
757 * the secure register to be properly reset and migrated. There is also no
758 * v8 EL1 version of the register so the non-secure instance stands alone.
760 { .name = "FCSEIDR",
761 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
762 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
763 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
764 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
765 { .name = "FCSEIDR_S",
766 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
767 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
768 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
769 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
770 /* Define the secure and non-secure context identifier CP registers
771 * separately because there is no secure bank in V8 (no _EL3). This allows
772 * the secure register to be properly reset and migrated. In the
773 * non-secure case, the 32-bit register will have reset and migration
774 * disabled during registration as it is handled by the 64-bit instance.
776 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
777 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
778 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
779 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
780 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
781 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
782 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
783 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
784 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
785 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
786 REGINFO_SENTINEL
789 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
790 /* NB: Some of these registers exist in v8 but with more precise
791 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
793 /* MMU Domain access control / MPU write buffer control */
794 { .name = "DACR",
795 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
796 .access = PL1_RW, .resetvalue = 0,
797 .writefn = dacr_write, .raw_writefn = raw_write,
798 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
799 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
800 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
801 * For v6 and v5, these mappings are overly broad.
803 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
804 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
805 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
806 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
807 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
808 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
809 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
810 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
811 /* Cache maintenance ops; some of this space may be overridden later. */
812 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
813 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
814 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
815 REGINFO_SENTINEL
818 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
819 /* Not all pre-v6 cores implemented this WFI, so this is slightly
820 * over-broad.
822 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
823 .access = PL1_W, .type = ARM_CP_WFI },
824 REGINFO_SENTINEL
827 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
828 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
829 * is UNPREDICTABLE; we choose to NOP as most implementations do).
831 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
834 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
835 * OMAPCP will override this space.
837 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
838 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
839 .resetvalue = 0 },
840 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
841 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
842 .resetvalue = 0 },
843 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
844 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
845 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
846 .resetvalue = 0 },
847 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
848 * implementing it as RAZ means the "debug architecture version" bits
849 * will read as a reserved value, which should cause Linux to not try
850 * to use the debug hardware.
852 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
853 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
854 /* MMU TLB control. Note that the wildcarding means we cover not just
855 * the unified TLB ops but also the dside/iside/inner-shareable variants.
857 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
858 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
859 .type = ARM_CP_NO_RAW },
860 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
861 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
862 .type = ARM_CP_NO_RAW },
863 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
864 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
865 .type = ARM_CP_NO_RAW },
866 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
868 .type = ARM_CP_NO_RAW },
869 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
870 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
871 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
872 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
873 REGINFO_SENTINEL
876 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
877 uint64_t value)
879 uint32_t mask = 0;
881 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
882 if (!arm_feature(env, ARM_FEATURE_V8)) {
883 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
884 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
885 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
887 if (arm_feature(env, ARM_FEATURE_VFP)) {
888 /* VFP coprocessor: cp10 & cp11 [23:20] */
889 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
891 if (!arm_feature(env, ARM_FEATURE_NEON)) {
892 /* ASEDIS [31] bit is RAO/WI */
893 value |= (1 << 31);
896 /* VFPv3 and upwards with NEON implement 32 double precision
897 * registers (D0-D31).
899 if (!arm_feature(env, ARM_FEATURE_NEON) ||
900 !arm_feature(env, ARM_FEATURE_VFP3)) {
901 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
902 value |= (1 << 30);
905 value &= mask;
907 env->cp15.cpacr_el1 = value;
910 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
912 /* Call cpacr_write() so that we reset with the correct RAO bits set
913 * for our CPU features.
915 cpacr_write(env, ri, 0);
918 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
919 bool isread)
921 if (arm_feature(env, ARM_FEATURE_V8)) {
922 /* Check if CPACR accesses are to be trapped to EL2 */
923 if (arm_current_el(env) == 1 &&
924 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
925 return CP_ACCESS_TRAP_EL2;
926 /* Check if CPACR accesses are to be trapped to EL3 */
927 } else if (arm_current_el(env) < 3 &&
928 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
929 return CP_ACCESS_TRAP_EL3;
933 return CP_ACCESS_OK;
936 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
937 bool isread)
939 /* Check if CPTR accesses are set to trap to EL3 */
940 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
941 return CP_ACCESS_TRAP_EL3;
944 return CP_ACCESS_OK;
947 static const ARMCPRegInfo v6_cp_reginfo[] = {
948 /* prefetch by MVA in v6, NOP in v7 */
949 { .name = "MVA_prefetch",
950 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
951 .access = PL1_W, .type = ARM_CP_NOP },
952 /* We need to break the TB after ISB to execute self-modifying code
953 * correctly and also to take any pending interrupts immediately.
954 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
956 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
957 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
958 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
959 .access = PL0_W, .type = ARM_CP_NOP },
960 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
961 .access = PL0_W, .type = ARM_CP_NOP },
962 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
963 .access = PL1_RW,
964 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
965 offsetof(CPUARMState, cp15.ifar_ns) },
966 .resetvalue = 0, },
967 /* Watchpoint Fault Address Register : should actually only be present
968 * for 1136, 1176, 11MPCore.
970 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
971 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
972 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
973 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
974 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
975 .resetfn = cpacr_reset, .writefn = cpacr_write },
976 REGINFO_SENTINEL
979 /* Definitions for the PMU registers */
980 #define PMCRN_MASK 0xf800
981 #define PMCRN_SHIFT 11
982 #define PMCRLC 0x40
983 #define PMCRDP 0x10
984 #define PMCRD 0x8
985 #define PMCRC 0x4
986 #define PMCRP 0x2
987 #define PMCRE 0x1
989 #define PMXEVTYPER_P 0x80000000
990 #define PMXEVTYPER_U 0x40000000
991 #define PMXEVTYPER_NSK 0x20000000
992 #define PMXEVTYPER_NSU 0x10000000
993 #define PMXEVTYPER_NSH 0x08000000
994 #define PMXEVTYPER_M 0x04000000
995 #define PMXEVTYPER_MT 0x02000000
996 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
997 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
998 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
999 PMXEVTYPER_M | PMXEVTYPER_MT | \
1000 PMXEVTYPER_EVTCOUNT)
1002 #define PMCCFILTR 0xf8000000
1003 #define PMCCFILTR_M PMXEVTYPER_M
1004 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1006 static inline uint32_t pmu_num_counters(CPUARMState *env)
1008 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1011 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1012 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1014 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1017 typedef struct pm_event {
1018 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1019 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1020 bool (*supported)(CPUARMState *);
1022 * Retrieve the current count of the underlying event. The programmed
1023 * counters hold a difference from the return value from this function
1025 uint64_t (*get_count)(CPUARMState *);
1027 * Return how many nanoseconds it will take (at a minimum) for count events
1028 * to occur. A negative value indicates the counter will never overflow, or
1029 * that the counter has otherwise arranged for the overflow bit to be set
1030 * and the PMU interrupt to be raised on overflow.
1032 int64_t (*ns_per_count)(uint64_t);
1033 } pm_event;
1035 static bool event_always_supported(CPUARMState *env)
1037 return true;
1040 static uint64_t swinc_get_count(CPUARMState *env)
1043 * SW_INCR events are written directly to the pmevcntr's by writes to
1044 * PMSWINC, so there is no underlying count maintained by the PMU itself
1046 return 0;
1049 static int64_t swinc_ns_per(uint64_t ignored)
1051 return -1;
1055 * Return the underlying cycle count for the PMU cycle counters. If we're in
1056 * usermode, simply return 0.
1058 static uint64_t cycles_get_count(CPUARMState *env)
1060 #ifndef CONFIG_USER_ONLY
1061 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1062 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 #else
1064 return cpu_get_host_ticks();
1065 #endif
1068 #ifndef CONFIG_USER_ONLY
1069 static int64_t cycles_ns_per(uint64_t cycles)
1071 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1074 static bool instructions_supported(CPUARMState *env)
1076 return use_icount == 1 /* Precise instruction counting */;
1079 static uint64_t instructions_get_count(CPUARMState *env)
1081 return (uint64_t)cpu_get_icount_raw();
1084 static int64_t instructions_ns_per(uint64_t icount)
1086 return cpu_icount_to_ns((int64_t)icount);
1088 #endif
1090 static const pm_event pm_events[] = {
1091 { .number = 0x000, /* SW_INCR */
1092 .supported = event_always_supported,
1093 .get_count = swinc_get_count,
1094 .ns_per_count = swinc_ns_per,
1096 #ifndef CONFIG_USER_ONLY
1097 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1098 .supported = instructions_supported,
1099 .get_count = instructions_get_count,
1100 .ns_per_count = instructions_ns_per,
1102 { .number = 0x011, /* CPU_CYCLES, Cycle */
1103 .supported = event_always_supported,
1104 .get_count = cycles_get_count,
1105 .ns_per_count = cycles_ns_per,
1107 #endif
1111 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1112 * events (i.e. the statistical profiling extension), this implementation
1113 * should first be updated to something sparse instead of the current
1114 * supported_event_map[] array.
1116 #define MAX_EVENT_ID 0x11
1117 #define UNSUPPORTED_EVENT UINT16_MAX
1118 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1121 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1122 * of ARM event numbers to indices in our pm_events array.
1124 * Note: Events in the 0x40XX range are not currently supported.
1126 void pmu_init(ARMCPU *cpu)
1128 unsigned int i;
1131 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1132 * events to them
1134 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1135 supported_event_map[i] = UNSUPPORTED_EVENT;
1137 cpu->pmceid0 = 0;
1138 cpu->pmceid1 = 0;
1140 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1141 const pm_event *cnt = &pm_events[i];
1142 assert(cnt->number <= MAX_EVENT_ID);
1143 /* We do not currently support events in the 0x40xx range */
1144 assert(cnt->number <= 0x3f);
1146 if (cnt->supported(&cpu->env)) {
1147 supported_event_map[cnt->number] = i;
1148 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1149 if (cnt->number & 0x20) {
1150 cpu->pmceid1 |= event_mask;
1151 } else {
1152 cpu->pmceid0 |= event_mask;
1159 * Check at runtime whether a PMU event is supported for the current machine
1161 static bool event_supported(uint16_t number)
1163 if (number > MAX_EVENT_ID) {
1164 return false;
1166 return supported_event_map[number] != UNSUPPORTED_EVENT;
1169 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1170 bool isread)
1172 /* Performance monitor registers user accessibility is controlled
1173 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1174 * trapping to EL2 or EL3 for other accesses.
1176 int el = arm_current_el(env);
1178 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1179 return CP_ACCESS_TRAP;
1181 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1182 && !arm_is_secure_below_el3(env)) {
1183 return CP_ACCESS_TRAP_EL2;
1185 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1186 return CP_ACCESS_TRAP_EL3;
1189 return CP_ACCESS_OK;
1192 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1193 const ARMCPRegInfo *ri,
1194 bool isread)
1196 /* ER: event counter read trap control */
1197 if (arm_feature(env, ARM_FEATURE_V8)
1198 && arm_current_el(env) == 0
1199 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1200 && isread) {
1201 return CP_ACCESS_OK;
1204 return pmreg_access(env, ri, isread);
1207 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1208 const ARMCPRegInfo *ri,
1209 bool isread)
1211 /* SW: software increment write trap control */
1212 if (arm_feature(env, ARM_FEATURE_V8)
1213 && arm_current_el(env) == 0
1214 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1215 && !isread) {
1216 return CP_ACCESS_OK;
1219 return pmreg_access(env, ri, isread);
1222 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1223 const ARMCPRegInfo *ri,
1224 bool isread)
1226 /* ER: event counter read trap control */
1227 if (arm_feature(env, ARM_FEATURE_V8)
1228 && arm_current_el(env) == 0
1229 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1230 return CP_ACCESS_OK;
1233 return pmreg_access(env, ri, isread);
1236 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1237 const ARMCPRegInfo *ri,
1238 bool isread)
1240 /* CR: cycle counter read trap control */
1241 if (arm_feature(env, ARM_FEATURE_V8)
1242 && arm_current_el(env) == 0
1243 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1244 && isread) {
1245 return CP_ACCESS_OK;
1248 return pmreg_access(env, ri, isread);
1251 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1252 * the current EL, security state, and register configuration.
1254 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1256 uint64_t filter;
1257 bool e, p, u, nsk, nsu, nsh, m;
1258 bool enabled, prohibited, filtered;
1259 bool secure = arm_is_secure(env);
1260 int el = arm_current_el(env);
1261 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1263 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1264 return false;
1267 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1268 (counter < hpmn || counter == 31)) {
1269 e = env->cp15.c9_pmcr & PMCRE;
1270 } else {
1271 e = env->cp15.mdcr_el2 & MDCR_HPME;
1273 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1275 if (!secure) {
1276 if (el == 2 && (counter < hpmn || counter == 31)) {
1277 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1278 } else {
1279 prohibited = false;
1281 } else {
1282 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1283 (env->cp15.mdcr_el3 & MDCR_SPME);
1286 if (prohibited && counter == 31) {
1287 prohibited = env->cp15.c9_pmcr & PMCRDP;
1290 if (counter == 31) {
1291 filter = env->cp15.pmccfiltr_el0;
1292 } else {
1293 filter = env->cp15.c14_pmevtyper[counter];
1296 p = filter & PMXEVTYPER_P;
1297 u = filter & PMXEVTYPER_U;
1298 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1299 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1300 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1301 m = arm_el_is_aa64(env, 1) &&
1302 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1304 if (el == 0) {
1305 filtered = secure ? u : u != nsu;
1306 } else if (el == 1) {
1307 filtered = secure ? p : p != nsk;
1308 } else if (el == 2) {
1309 filtered = !nsh;
1310 } else { /* EL3 */
1311 filtered = m != p;
1314 if (counter != 31) {
1316 * If not checking PMCCNTR, ensure the counter is setup to an event we
1317 * support
1319 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1320 if (!event_supported(event)) {
1321 return false;
1325 return enabled && !prohibited && !filtered;
1328 static void pmu_update_irq(CPUARMState *env)
1330 ARMCPU *cpu = arm_env_get_cpu(env);
1331 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1332 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1336 * Ensure c15_ccnt is the guest-visible count so that operations such as
1337 * enabling/disabling the counter or filtering, modifying the count itself,
1338 * etc. can be done logically. This is essentially a no-op if the counter is
1339 * not enabled at the time of the call.
1341 static void pmccntr_op_start(CPUARMState *env)
1343 uint64_t cycles = cycles_get_count(env);
1345 if (pmu_counter_enabled(env, 31)) {
1346 uint64_t eff_cycles = cycles;
1347 if (env->cp15.c9_pmcr & PMCRD) {
1348 /* Increment once every 64 processor clock cycles */
1349 eff_cycles /= 64;
1352 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1354 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1355 1ull << 63 : 1ull << 31;
1356 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1357 env->cp15.c9_pmovsr |= (1 << 31);
1358 pmu_update_irq(env);
1361 env->cp15.c15_ccnt = new_pmccntr;
1363 env->cp15.c15_ccnt_delta = cycles;
1367 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1368 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1369 * pmccntr_op_start.
1371 static void pmccntr_op_finish(CPUARMState *env)
1373 if (pmu_counter_enabled(env, 31)) {
1374 #ifndef CONFIG_USER_ONLY
1375 /* Calculate when the counter will next overflow */
1376 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1377 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1378 remaining_cycles = (uint32_t)remaining_cycles;
1380 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1382 if (overflow_in > 0) {
1383 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1384 overflow_in;
1385 ARMCPU *cpu = arm_env_get_cpu(env);
1386 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1388 #endif
1390 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1391 if (env->cp15.c9_pmcr & PMCRD) {
1392 /* Increment once every 64 processor clock cycles */
1393 prev_cycles /= 64;
1395 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1399 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1402 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1403 uint64_t count = 0;
1404 if (event_supported(event)) {
1405 uint16_t event_idx = supported_event_map[event];
1406 count = pm_events[event_idx].get_count(env);
1409 if (pmu_counter_enabled(env, counter)) {
1410 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1412 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1413 env->cp15.c9_pmovsr |= (1 << counter);
1414 pmu_update_irq(env);
1416 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1418 env->cp15.c14_pmevcntr_delta[counter] = count;
1421 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1423 if (pmu_counter_enabled(env, counter)) {
1424 #ifndef CONFIG_USER_ONLY
1425 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1426 uint16_t event_idx = supported_event_map[event];
1427 uint64_t delta = UINT32_MAX -
1428 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1429 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1431 if (overflow_in > 0) {
1432 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1433 overflow_in;
1434 ARMCPU *cpu = arm_env_get_cpu(env);
1435 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1437 #endif
1439 env->cp15.c14_pmevcntr_delta[counter] -=
1440 env->cp15.c14_pmevcntr[counter];
1444 void pmu_op_start(CPUARMState *env)
1446 unsigned int i;
1447 pmccntr_op_start(env);
1448 for (i = 0; i < pmu_num_counters(env); i++) {
1449 pmevcntr_op_start(env, i);
1453 void pmu_op_finish(CPUARMState *env)
1455 unsigned int i;
1456 pmccntr_op_finish(env);
1457 for (i = 0; i < pmu_num_counters(env); i++) {
1458 pmevcntr_op_finish(env, i);
1462 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_start(&cpu->env);
1467 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1469 pmu_op_finish(&cpu->env);
1472 void arm_pmu_timer_cb(void *opaque)
1474 ARMCPU *cpu = opaque;
1477 * Update all the counter values based on the current underlying counts,
1478 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1479 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1480 * counter may expire.
1482 pmu_op_start(&cpu->env);
1483 pmu_op_finish(&cpu->env);
1486 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1487 uint64_t value)
1489 pmu_op_start(env);
1491 if (value & PMCRC) {
1492 /* The counter has been reset */
1493 env->cp15.c15_ccnt = 0;
1496 if (value & PMCRP) {
1497 unsigned int i;
1498 for (i = 0; i < pmu_num_counters(env); i++) {
1499 env->cp15.c14_pmevcntr[i] = 0;
1503 /* only the DP, X, D and E bits are writable */
1504 env->cp15.c9_pmcr &= ~0x39;
1505 env->cp15.c9_pmcr |= (value & 0x39);
1507 pmu_op_finish(env);
1510 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1511 uint64_t value)
1513 unsigned int i;
1514 for (i = 0; i < pmu_num_counters(env); i++) {
1515 /* Increment a counter's count iff: */
1516 if ((value & (1 << i)) && /* counter's bit is set */
1517 /* counter is enabled and not filtered */
1518 pmu_counter_enabled(env, i) &&
1519 /* counter is SW_INCR */
1520 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1521 pmevcntr_op_start(env, i);
1524 * Detect if this write causes an overflow since we can't predict
1525 * PMSWINC overflows like we can for other events
1527 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1529 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1530 env->cp15.c9_pmovsr |= (1 << i);
1531 pmu_update_irq(env);
1534 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1536 pmevcntr_op_finish(env, i);
1541 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1543 uint64_t ret;
1544 pmccntr_op_start(env);
1545 ret = env->cp15.c15_ccnt;
1546 pmccntr_op_finish(env);
1547 return ret;
1550 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1553 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1554 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1555 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1556 * accessed.
1558 env->cp15.c9_pmselr = value & 0x1f;
1561 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1562 uint64_t value)
1564 pmccntr_op_start(env);
1565 env->cp15.c15_ccnt = value;
1566 pmccntr_op_finish(env);
1569 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1570 uint64_t value)
1572 uint64_t cur_val = pmccntr_read(env, NULL);
1574 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1577 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1580 pmccntr_op_start(env);
1581 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1582 pmccntr_op_finish(env);
1585 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1588 pmccntr_op_start(env);
1589 /* M is not accessible from AArch32 */
1590 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1591 (value & PMCCFILTR);
1592 pmccntr_op_finish(env);
1595 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1597 /* M is not visible in AArch32 */
1598 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1601 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmcnten |= value;
1608 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value)
1611 value &= pmu_counter_mask(env);
1612 env->cp15.c9_pmcnten &= ~value;
1615 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1616 uint64_t value)
1618 value &= pmu_counter_mask(env);
1619 env->cp15.c9_pmovsr &= ~value;
1620 pmu_update_irq(env);
1623 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624 uint64_t value)
1626 value &= pmu_counter_mask(env);
1627 env->cp15.c9_pmovsr |= value;
1628 pmu_update_irq(env);
1631 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632 uint64_t value, const uint8_t counter)
1634 if (counter == 31) {
1635 pmccfiltr_write(env, ri, value);
1636 } else if (counter < pmu_num_counters(env)) {
1637 pmevcntr_op_start(env, counter);
1640 * If this counter's event type is changing, store the current
1641 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1642 * pmevcntr_op_finish has the correct baseline when it converts back to
1643 * a delta.
1645 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1646 PMXEVTYPER_EVTCOUNT;
1647 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1648 if (old_event != new_event) {
1649 uint64_t count = 0;
1650 if (event_supported(new_event)) {
1651 uint16_t event_idx = supported_event_map[new_event];
1652 count = pm_events[event_idx].get_count(env);
1654 env->cp15.c14_pmevcntr_delta[counter] = count;
1657 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1658 pmevcntr_op_finish(env, counter);
1660 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1661 * PMSELR value is equal to or greater than the number of implemented
1662 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1666 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1667 const uint8_t counter)
1669 if (counter == 31) {
1670 return env->cp15.pmccfiltr_el0;
1671 } else if (counter < pmu_num_counters(env)) {
1672 return env->cp15.c14_pmevtyper[counter];
1673 } else {
1675 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1676 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1678 return 0;
1682 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1683 uint64_t value)
1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686 pmevtyper_write(env, ri, value, counter);
1689 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690 uint64_t value)
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 env->cp15.c14_pmevtyper[counter] = value;
1696 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1697 * pmu_op_finish calls when loading saved state for a migration. Because
1698 * we're potentially updating the type of event here, the value written to
1699 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1700 * different counter type. Therefore, we need to set this value to the
1701 * current count for the counter type we're writing so that pmu_op_finish
1702 * has the correct count for its calculation.
1704 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1705 if (event_supported(event)) {
1706 uint16_t event_idx = supported_event_map[event];
1707 env->cp15.c14_pmevcntr_delta[counter] =
1708 pm_events[event_idx].get_count(env);
1712 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1714 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1715 return pmevtyper_read(env, ri, counter);
1718 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1721 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1724 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1729 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1730 uint64_t value, uint8_t counter)
1732 if (counter < pmu_num_counters(env)) {
1733 pmevcntr_op_start(env, counter);
1734 env->cp15.c14_pmevcntr[counter] = value;
1735 pmevcntr_op_finish(env, counter);
1738 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1739 * are CONSTRAINED UNPREDICTABLE.
1743 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1744 uint8_t counter)
1746 if (counter < pmu_num_counters(env)) {
1747 uint64_t ret;
1748 pmevcntr_op_start(env, counter);
1749 ret = env->cp15.c14_pmevcntr[counter];
1750 pmevcntr_op_finish(env, counter);
1751 return ret;
1752 } else {
1753 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1754 * are CONSTRAINED UNPREDICTABLE. */
1755 return 0;
1759 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1760 uint64_t value)
1762 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1763 pmevcntr_write(env, ri, value, counter);
1766 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1768 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1769 return pmevcntr_read(env, ri, counter);
1772 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1776 assert(counter < pmu_num_counters(env));
1777 env->cp15.c14_pmevcntr[counter] = value;
1778 pmevcntr_write(env, ri, value, counter);
1781 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1783 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1784 assert(counter < pmu_num_counters(env));
1785 return env->cp15.c14_pmevcntr[counter];
1788 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 uint64_t value)
1791 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1794 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1796 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1799 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1800 uint64_t value)
1802 if (arm_feature(env, ARM_FEATURE_V8)) {
1803 env->cp15.c9_pmuserenr = value & 0xf;
1804 } else {
1805 env->cp15.c9_pmuserenr = value & 1;
1809 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810 uint64_t value)
1812 /* We have no event counters so only the C bit can be changed */
1813 value &= pmu_counter_mask(env);
1814 env->cp15.c9_pminten |= value;
1815 pmu_update_irq(env);
1818 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 uint64_t value)
1821 value &= pmu_counter_mask(env);
1822 env->cp15.c9_pminten &= ~value;
1823 pmu_update_irq(env);
1826 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1827 uint64_t value)
1829 /* Note that even though the AArch64 view of this register has bits
1830 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1831 * architectural requirements for bits which are RES0 only in some
1832 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1833 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1835 raw_write(env, ri, value & ~0x1FULL);
1838 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1840 /* Begin with base v8.0 state. */
1841 uint32_t valid_mask = 0x3fff;
1842 ARMCPU *cpu = arm_env_get_cpu(env);
1844 if (arm_el_is_aa64(env, 3)) {
1845 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1846 valid_mask &= ~SCR_NET;
1847 } else {
1848 valid_mask &= ~(SCR_RW | SCR_ST);
1851 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1852 valid_mask &= ~SCR_HCE;
1854 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1855 * supported if EL2 exists. The bit is UNK/SBZP when
1856 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1857 * when EL2 is unavailable.
1858 * On ARMv8, this bit is always available.
1860 if (arm_feature(env, ARM_FEATURE_V7) &&
1861 !arm_feature(env, ARM_FEATURE_V8)) {
1862 valid_mask &= ~SCR_SMD;
1865 if (cpu_isar_feature(aa64_lor, cpu)) {
1866 valid_mask |= SCR_TLOR;
1868 if (cpu_isar_feature(aa64_pauth, cpu)) {
1869 valid_mask |= SCR_API | SCR_APK;
1872 /* Clear all-context RES0 bits. */
1873 value &= valid_mask;
1874 raw_write(env, ri, value);
1877 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1879 ARMCPU *cpu = arm_env_get_cpu(env);
1881 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1882 * bank
1884 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1885 ri->secure & ARM_CP_SECSTATE_S);
1887 return cpu->ccsidr[index];
1890 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1891 uint64_t value)
1893 raw_write(env, ri, value & 0xf);
1896 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1898 CPUState *cs = ENV_GET_CPU(env);
1899 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1900 uint64_t ret = 0;
1902 if (hcr_el2 & HCR_IMO) {
1903 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1904 ret |= CPSR_I;
1906 } else {
1907 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1908 ret |= CPSR_I;
1912 if (hcr_el2 & HCR_FMO) {
1913 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1914 ret |= CPSR_F;
1916 } else {
1917 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1918 ret |= CPSR_F;
1922 /* External aborts are not possible in QEMU so A bit is always clear */
1923 return ret;
1926 static const ARMCPRegInfo v7_cp_reginfo[] = {
1927 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1928 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1929 .access = PL1_W, .type = ARM_CP_NOP },
1930 /* Performance monitors are implementation defined in v7,
1931 * but with an ARM recommended set of registers, which we
1932 * follow.
1934 * Performance registers fall into three categories:
1935 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1936 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1937 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1938 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1939 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1941 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1942 .access = PL0_RW, .type = ARM_CP_ALIAS,
1943 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1944 .writefn = pmcntenset_write,
1945 .accessfn = pmreg_access,
1946 .raw_writefn = raw_write },
1947 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1948 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1949 .access = PL0_RW, .accessfn = pmreg_access,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1951 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1952 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1953 .access = PL0_RW,
1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1955 .accessfn = pmreg_access,
1956 .writefn = pmcntenclr_write,
1957 .type = ARM_CP_ALIAS },
1958 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1960 .access = PL0_RW, .accessfn = pmreg_access,
1961 .type = ARM_CP_ALIAS,
1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1963 .writefn = pmcntenclr_write },
1964 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1965 .access = PL0_RW, .type = ARM_CP_IO,
1966 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1967 .accessfn = pmreg_access,
1968 .writefn = pmovsr_write,
1969 .raw_writefn = raw_write },
1970 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1971 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1972 .access = PL0_RW, .accessfn = pmreg_access,
1973 .type = ARM_CP_ALIAS | ARM_CP_IO,
1974 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1975 .writefn = pmovsr_write,
1976 .raw_writefn = raw_write },
1977 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1978 .access = PL0_W, .accessfn = pmreg_access_swinc,
1979 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1980 .writefn = pmswinc_write },
1981 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1983 .access = PL0_W, .accessfn = pmreg_access_swinc,
1984 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1985 .writefn = pmswinc_write },
1986 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1987 .access = PL0_RW, .type = ARM_CP_ALIAS,
1988 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1989 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1990 .raw_writefn = raw_write},
1991 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1993 .access = PL0_RW, .accessfn = pmreg_access_selr,
1994 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1995 .writefn = pmselr_write, .raw_writefn = raw_write, },
1996 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1997 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1998 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1999 .accessfn = pmreg_access_ccntr },
2000 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2002 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2003 .type = ARM_CP_IO,
2004 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2005 .readfn = pmccntr_read, .writefn = pmccntr_write,
2006 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2007 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2008 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2009 .access = PL0_RW, .accessfn = pmreg_access,
2010 .type = ARM_CP_ALIAS | ARM_CP_IO,
2011 .resetvalue = 0, },
2012 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2014 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2015 .access = PL0_RW, .accessfn = pmreg_access,
2016 .type = ARM_CP_IO,
2017 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2018 .resetvalue = 0, },
2019 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2020 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .accessfn = pmreg_access,
2022 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2023 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2024 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2025 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = pmreg_access,
2027 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2028 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2029 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2030 .accessfn = pmreg_access_xevcntr,
2031 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2032 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2033 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2034 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2035 .accessfn = pmreg_access_xevcntr,
2036 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2037 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2038 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2039 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2040 .resetvalue = 0,
2041 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2042 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2043 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2044 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2045 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2046 .resetvalue = 0,
2047 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2048 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2049 .access = PL1_RW, .accessfn = access_tpm,
2050 .type = ARM_CP_ALIAS | ARM_CP_IO,
2051 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2052 .resetvalue = 0,
2053 .writefn = pmintenset_write, .raw_writefn = raw_write },
2054 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2055 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2056 .access = PL1_RW, .accessfn = access_tpm,
2057 .type = ARM_CP_IO,
2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2059 .writefn = pmintenset_write, .raw_writefn = raw_write,
2060 .resetvalue = 0x0 },
2061 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2062 .access = PL1_RW, .accessfn = access_tpm,
2063 .type = ARM_CP_ALIAS | ARM_CP_IO,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2065 .writefn = pmintenclr_write, },
2066 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2067 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2068 .access = PL1_RW, .accessfn = access_tpm,
2069 .type = ARM_CP_ALIAS | ARM_CP_IO,
2070 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2071 .writefn = pmintenclr_write },
2072 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2073 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2074 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2075 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2076 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2077 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2078 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2079 offsetof(CPUARMState, cp15.csselr_ns) } },
2080 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2081 * just RAZ for all cores:
2083 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2084 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2085 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2086 /* Auxiliary fault status registers: these also are IMPDEF, and we
2087 * choose to RAZ/WI for all cores.
2089 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2090 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2091 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2092 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2093 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2094 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2095 /* MAIR can just read-as-written because we don't implement caches
2096 * and so don't need to care about memory attributes.
2098 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2099 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2100 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2101 .resetvalue = 0 },
2102 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2104 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2105 .resetvalue = 0 },
2106 /* For non-long-descriptor page tables these are PRRR and NMRR;
2107 * regardless they still act as reads-as-written for QEMU.
2109 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2110 * allows them to assign the correct fieldoffset based on the endianness
2111 * handled in the field definitions.
2113 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2114 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2115 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2116 offsetof(CPUARMState, cp15.mair0_ns) },
2117 .resetfn = arm_cp_reset_ignore },
2118 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2119 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2120 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2121 offsetof(CPUARMState, cp15.mair1_ns) },
2122 .resetfn = arm_cp_reset_ignore },
2123 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2124 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2125 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2126 /* 32 bit ITLB invalidates */
2127 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2128 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2129 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2131 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2133 /* 32 bit DTLB invalidates */
2134 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2136 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2138 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2139 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2140 /* 32 bit TLB invalidates */
2141 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2142 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2143 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2145 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2147 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2148 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2149 REGINFO_SENTINEL
2152 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2153 /* 32 bit TLB invalidates, Inner Shareable */
2154 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2155 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2156 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2157 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2158 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2159 .type = ARM_CP_NO_RAW, .access = PL1_W,
2160 .writefn = tlbiasid_is_write },
2161 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2162 .type = ARM_CP_NO_RAW, .access = PL1_W,
2163 .writefn = tlbimvaa_is_write },
2164 REGINFO_SENTINEL
2167 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2168 /* PMOVSSET is not implemented in v7 before v7ve */
2169 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2170 .access = PL0_RW, .accessfn = pmreg_access,
2171 .type = ARM_CP_ALIAS | ARM_CP_IO,
2172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2173 .writefn = pmovsset_write,
2174 .raw_writefn = raw_write },
2175 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2176 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2177 .access = PL0_RW, .accessfn = pmreg_access,
2178 .type = ARM_CP_ALIAS | ARM_CP_IO,
2179 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2180 .writefn = pmovsset_write,
2181 .raw_writefn = raw_write },
2182 REGINFO_SENTINEL
2185 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2186 uint64_t value)
2188 value &= 1;
2189 env->teecr = value;
2192 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2193 bool isread)
2195 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2196 return CP_ACCESS_TRAP;
2198 return CP_ACCESS_OK;
2201 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2202 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2203 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2204 .resetvalue = 0,
2205 .writefn = teecr_write },
2206 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2207 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2208 .accessfn = teehbr_access, .resetvalue = 0 },
2209 REGINFO_SENTINEL
2212 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2213 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2214 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2215 .access = PL0_RW,
2216 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2217 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2218 .access = PL0_RW,
2219 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2220 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2221 .resetfn = arm_cp_reset_ignore },
2222 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2223 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2224 .access = PL0_R|PL1_W,
2225 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2226 .resetvalue = 0},
2227 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2228 .access = PL0_R|PL1_W,
2229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2230 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2231 .resetfn = arm_cp_reset_ignore },
2232 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2233 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2234 .access = PL1_RW,
2235 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2236 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2237 .access = PL1_RW,
2238 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2239 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2240 .resetvalue = 0 },
2241 REGINFO_SENTINEL
2244 #ifndef CONFIG_USER_ONLY
2246 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2247 bool isread)
2249 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2250 * Writable only at the highest implemented exception level.
2252 int el = arm_current_el(env);
2254 switch (el) {
2255 case 0:
2256 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2257 return CP_ACCESS_TRAP;
2259 break;
2260 case 1:
2261 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2262 arm_is_secure_below_el3(env)) {
2263 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2264 return CP_ACCESS_TRAP_UNCATEGORIZED;
2266 break;
2267 case 2:
2268 case 3:
2269 break;
2272 if (!isread && el < arm_highest_el(env)) {
2273 return CP_ACCESS_TRAP_UNCATEGORIZED;
2276 return CP_ACCESS_OK;
2279 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2280 bool isread)
2282 unsigned int cur_el = arm_current_el(env);
2283 bool secure = arm_is_secure(env);
2285 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2286 if (cur_el == 0 &&
2287 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2288 return CP_ACCESS_TRAP;
2291 if (arm_feature(env, ARM_FEATURE_EL2) &&
2292 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2293 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2294 return CP_ACCESS_TRAP_EL2;
2296 return CP_ACCESS_OK;
2299 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2300 bool isread)
2302 unsigned int cur_el = arm_current_el(env);
2303 bool secure = arm_is_secure(env);
2305 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2306 * EL0[PV]TEN is zero.
2308 if (cur_el == 0 &&
2309 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2310 return CP_ACCESS_TRAP;
2313 if (arm_feature(env, ARM_FEATURE_EL2) &&
2314 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2315 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2316 return CP_ACCESS_TRAP_EL2;
2318 return CP_ACCESS_OK;
2321 static CPAccessResult gt_pct_access(CPUARMState *env,
2322 const ARMCPRegInfo *ri,
2323 bool isread)
2325 return gt_counter_access(env, GTIMER_PHYS, isread);
2328 static CPAccessResult gt_vct_access(CPUARMState *env,
2329 const ARMCPRegInfo *ri,
2330 bool isread)
2332 return gt_counter_access(env, GTIMER_VIRT, isread);
2335 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2336 bool isread)
2338 return gt_timer_access(env, GTIMER_PHYS, isread);
2341 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2342 bool isread)
2344 return gt_timer_access(env, GTIMER_VIRT, isread);
2347 static CPAccessResult gt_stimer_access(CPUARMState *env,
2348 const ARMCPRegInfo *ri,
2349 bool isread)
2351 /* The AArch64 register view of the secure physical timer is
2352 * always accessible from EL3, and configurably accessible from
2353 * Secure EL1.
2355 switch (arm_current_el(env)) {
2356 case 1:
2357 if (!arm_is_secure(env)) {
2358 return CP_ACCESS_TRAP;
2360 if (!(env->cp15.scr_el3 & SCR_ST)) {
2361 return CP_ACCESS_TRAP_EL3;
2363 return CP_ACCESS_OK;
2364 case 0:
2365 case 2:
2366 return CP_ACCESS_TRAP;
2367 case 3:
2368 return CP_ACCESS_OK;
2369 default:
2370 g_assert_not_reached();
2374 static uint64_t gt_get_countervalue(CPUARMState *env)
2376 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2379 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2381 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2383 if (gt->ctl & 1) {
2384 /* Timer enabled: calculate and set current ISTATUS, irq, and
2385 * reset timer to when ISTATUS next has to change
2387 uint64_t offset = timeridx == GTIMER_VIRT ?
2388 cpu->env.cp15.cntvoff_el2 : 0;
2389 uint64_t count = gt_get_countervalue(&cpu->env);
2390 /* Note that this must be unsigned 64 bit arithmetic: */
2391 int istatus = count - offset >= gt->cval;
2392 uint64_t nexttick;
2393 int irqstate;
2395 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2397 irqstate = (istatus && !(gt->ctl & 2));
2398 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2400 if (istatus) {
2401 /* Next transition is when count rolls back over to zero */
2402 nexttick = UINT64_MAX;
2403 } else {
2404 /* Next transition is when we hit cval */
2405 nexttick = gt->cval + offset;
2407 /* Note that the desired next expiry time might be beyond the
2408 * signed-64-bit range of a QEMUTimer -- in this case we just
2409 * set the timer for as far in the future as possible. When the
2410 * timer expires we will reset the timer for any remaining period.
2412 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2413 nexttick = INT64_MAX / GTIMER_SCALE;
2415 timer_mod(cpu->gt_timer[timeridx], nexttick);
2416 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2417 } else {
2418 /* Timer disabled: ISTATUS and timer output always clear */
2419 gt->ctl &= ~4;
2420 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2421 timer_del(cpu->gt_timer[timeridx]);
2422 trace_arm_gt_recalc_disabled(timeridx);
2426 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2427 int timeridx)
2429 ARMCPU *cpu = arm_env_get_cpu(env);
2431 timer_del(cpu->gt_timer[timeridx]);
2434 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 return gt_get_countervalue(env);
2439 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2441 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2444 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2445 int timeridx,
2446 uint64_t value)
2448 trace_arm_gt_cval_write(timeridx, value);
2449 env->cp15.c14_timer[timeridx].cval = value;
2450 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2453 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2454 int timeridx)
2456 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2458 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2459 (gt_get_countervalue(env) - offset));
2462 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463 int timeridx,
2464 uint64_t value)
2466 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2468 trace_arm_gt_tval_write(timeridx, value);
2469 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2470 sextract64(value, 0, 32);
2471 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2474 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475 int timeridx,
2476 uint64_t value)
2478 ARMCPU *cpu = arm_env_get_cpu(env);
2479 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2481 trace_arm_gt_ctl_write(timeridx, value);
2482 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2483 if ((oldval ^ value) & 1) {
2484 /* Enable toggled */
2485 gt_recalc_timer(cpu, timeridx);
2486 } else if ((oldval ^ value) & 2) {
2487 /* IMASK toggled: don't need to recalculate,
2488 * just set the interrupt line based on ISTATUS
2490 int irqstate = (oldval & 4) && !(value & 2);
2492 trace_arm_gt_imask_toggle(timeridx, irqstate);
2493 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2497 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2499 gt_timer_reset(env, ri, GTIMER_PHYS);
2502 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503 uint64_t value)
2505 gt_cval_write(env, ri, GTIMER_PHYS, value);
2508 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2510 return gt_tval_read(env, ri, GTIMER_PHYS);
2513 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2514 uint64_t value)
2516 gt_tval_write(env, ri, GTIMER_PHYS, value);
2519 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2520 uint64_t value)
2522 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2525 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2527 gt_timer_reset(env, ri, GTIMER_VIRT);
2530 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531 uint64_t value)
2533 gt_cval_write(env, ri, GTIMER_VIRT, value);
2536 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2538 return gt_tval_read(env, ri, GTIMER_VIRT);
2541 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 uint64_t value)
2544 gt_tval_write(env, ri, GTIMER_VIRT, value);
2547 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 uint64_t value)
2550 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2553 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554 uint64_t value)
2556 ARMCPU *cpu = arm_env_get_cpu(env);
2558 trace_arm_gt_cntvoff_write(value);
2559 raw_write(env, ri, value);
2560 gt_recalc_timer(cpu, GTIMER_VIRT);
2563 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2565 gt_timer_reset(env, ri, GTIMER_HYP);
2568 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2569 uint64_t value)
2571 gt_cval_write(env, ri, GTIMER_HYP, value);
2574 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2576 return gt_tval_read(env, ri, GTIMER_HYP);
2579 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2580 uint64_t value)
2582 gt_tval_write(env, ri, GTIMER_HYP, value);
2585 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 uint64_t value)
2588 gt_ctl_write(env, ri, GTIMER_HYP, value);
2591 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2593 gt_timer_reset(env, ri, GTIMER_SEC);
2596 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2597 uint64_t value)
2599 gt_cval_write(env, ri, GTIMER_SEC, value);
2602 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2604 return gt_tval_read(env, ri, GTIMER_SEC);
2607 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608 uint64_t value)
2610 gt_tval_write(env, ri, GTIMER_SEC, value);
2613 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2616 gt_ctl_write(env, ri, GTIMER_SEC, value);
2619 void arm_gt_ptimer_cb(void *opaque)
2621 ARMCPU *cpu = opaque;
2623 gt_recalc_timer(cpu, GTIMER_PHYS);
2626 void arm_gt_vtimer_cb(void *opaque)
2628 ARMCPU *cpu = opaque;
2630 gt_recalc_timer(cpu, GTIMER_VIRT);
2633 void arm_gt_htimer_cb(void *opaque)
2635 ARMCPU *cpu = opaque;
2637 gt_recalc_timer(cpu, GTIMER_HYP);
2640 void arm_gt_stimer_cb(void *opaque)
2642 ARMCPU *cpu = opaque;
2644 gt_recalc_timer(cpu, GTIMER_SEC);
2647 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2648 /* Note that CNTFRQ is purely reads-as-written for the benefit
2649 * of software; writing it doesn't actually change the timer frequency.
2650 * Our reset value matches the fixed frequency we implement the timer at.
2652 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2653 .type = ARM_CP_ALIAS,
2654 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2655 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2657 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2659 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2660 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2661 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2663 /* overall control: mostly access permissions */
2664 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2665 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2666 .access = PL1_RW,
2667 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2668 .resetvalue = 0,
2670 /* per-timer control */
2671 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2672 .secure = ARM_CP_SECSTATE_NS,
2673 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2674 .accessfn = gt_ptimer_access,
2675 .fieldoffset = offsetoflow32(CPUARMState,
2676 cp15.c14_timer[GTIMER_PHYS].ctl),
2677 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2679 { .name = "CNTP_CTL_S",
2680 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2681 .secure = ARM_CP_SECSTATE_S,
2682 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2683 .accessfn = gt_ptimer_access,
2684 .fieldoffset = offsetoflow32(CPUARMState,
2685 cp15.c14_timer[GTIMER_SEC].ctl),
2686 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2688 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2689 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2690 .type = ARM_CP_IO, .access = PL0_RW,
2691 .accessfn = gt_ptimer_access,
2692 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2693 .resetvalue = 0,
2694 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2696 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2697 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2698 .accessfn = gt_vtimer_access,
2699 .fieldoffset = offsetoflow32(CPUARMState,
2700 cp15.c14_timer[GTIMER_VIRT].ctl),
2701 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2703 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2704 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2705 .type = ARM_CP_IO, .access = PL0_RW,
2706 .accessfn = gt_vtimer_access,
2707 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2708 .resetvalue = 0,
2709 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2711 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2712 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2713 .secure = ARM_CP_SECSTATE_NS,
2714 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2715 .accessfn = gt_ptimer_access,
2716 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2718 { .name = "CNTP_TVAL_S",
2719 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2720 .secure = ARM_CP_SECSTATE_S,
2721 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2722 .accessfn = gt_ptimer_access,
2723 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2725 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2726 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2727 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2728 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2729 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2731 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2732 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2733 .accessfn = gt_vtimer_access,
2734 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2736 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2737 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2738 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2739 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2740 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2742 /* The counter itself */
2743 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2744 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2745 .accessfn = gt_pct_access,
2746 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2748 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2749 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2750 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2751 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2753 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2754 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2755 .accessfn = gt_vct_access,
2756 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2758 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2759 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2760 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2761 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2763 /* Comparison value, indicating when the timer goes off */
2764 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2765 .secure = ARM_CP_SECSTATE_NS,
2766 .access = PL0_RW,
2767 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2768 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2769 .accessfn = gt_ptimer_access,
2770 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2772 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2773 .secure = ARM_CP_SECSTATE_S,
2774 .access = PL0_RW,
2775 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2776 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2777 .accessfn = gt_ptimer_access,
2778 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2780 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2781 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2782 .access = PL0_RW,
2783 .type = ARM_CP_IO,
2784 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2785 .resetvalue = 0, .accessfn = gt_ptimer_access,
2786 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2788 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2789 .access = PL0_RW,
2790 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2791 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2792 .accessfn = gt_vtimer_access,
2793 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2795 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2796 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2797 .access = PL0_RW,
2798 .type = ARM_CP_IO,
2799 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2800 .resetvalue = 0, .accessfn = gt_vtimer_access,
2801 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2803 /* Secure timer -- this is actually restricted to only EL3
2804 * and configurably Secure-EL1 via the accessfn.
2806 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2807 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2808 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2809 .accessfn = gt_stimer_access,
2810 .readfn = gt_sec_tval_read,
2811 .writefn = gt_sec_tval_write,
2812 .resetfn = gt_sec_timer_reset,
2814 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2815 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2816 .type = ARM_CP_IO, .access = PL1_RW,
2817 .accessfn = gt_stimer_access,
2818 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2819 .resetvalue = 0,
2820 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2822 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2823 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2824 .type = ARM_CP_IO, .access = PL1_RW,
2825 .accessfn = gt_stimer_access,
2826 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2827 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2829 REGINFO_SENTINEL
2832 #else
2834 /* In user-mode most of the generic timer registers are inaccessible
2835 * however modern kernels (4.12+) allow access to cntvct_el0
2838 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2840 /* Currently we have no support for QEMUTimer in linux-user so we
2841 * can't call gt_get_countervalue(env), instead we directly
2842 * call the lower level functions.
2844 return cpu_get_clock() / GTIMER_SCALE;
2847 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2848 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2850 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2851 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2852 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2854 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2855 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2856 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2857 .readfn = gt_virt_cnt_read,
2859 REGINFO_SENTINEL
2862 #endif
2864 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2866 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2867 raw_write(env, ri, value);
2868 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2869 raw_write(env, ri, value & 0xfffff6ff);
2870 } else {
2871 raw_write(env, ri, value & 0xfffff1ff);
2875 #ifndef CONFIG_USER_ONLY
2876 /* get_phys_addr() isn't present for user-mode-only targets */
2878 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2879 bool isread)
2881 if (ri->opc2 & 4) {
2882 /* The ATS12NSO* operations must trap to EL3 if executed in
2883 * Secure EL1 (which can only happen if EL3 is AArch64).
2884 * They are simply UNDEF if executed from NS EL1.
2885 * They function normally from EL2 or EL3.
2887 if (arm_current_el(env) == 1) {
2888 if (arm_is_secure_below_el3(env)) {
2889 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2891 return CP_ACCESS_TRAP_UNCATEGORIZED;
2894 return CP_ACCESS_OK;
2897 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2898 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2900 hwaddr phys_addr;
2901 target_ulong page_size;
2902 int prot;
2903 bool ret;
2904 uint64_t par64;
2905 bool format64 = false;
2906 MemTxAttrs attrs = {};
2907 ARMMMUFaultInfo fi = {};
2908 ARMCacheAttrs cacheattrs = {};
2910 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2911 &prot, &page_size, &fi, &cacheattrs);
2913 if (is_a64(env)) {
2914 format64 = true;
2915 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2917 * ATS1Cxx:
2918 * * TTBCR.EAE determines whether the result is returned using the
2919 * 32-bit or the 64-bit PAR format
2920 * * Instructions executed in Hyp mode always use the 64bit format
2922 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2923 * * The Non-secure TTBCR.EAE bit is set to 1
2924 * * The implementation includes EL2, and the value of HCR.VM is 1
2926 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2928 * ATS1Hx always uses the 64bit format.
2930 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2932 if (arm_feature(env, ARM_FEATURE_EL2)) {
2933 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2934 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2935 } else {
2936 format64 |= arm_current_el(env) == 2;
2941 if (format64) {
2942 /* Create a 64-bit PAR */
2943 par64 = (1 << 11); /* LPAE bit always set */
2944 if (!ret) {
2945 par64 |= phys_addr & ~0xfffULL;
2946 if (!attrs.secure) {
2947 par64 |= (1 << 9); /* NS */
2949 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2950 par64 |= cacheattrs.shareability << 7; /* SH */
2951 } else {
2952 uint32_t fsr = arm_fi_to_lfsc(&fi);
2954 par64 |= 1; /* F */
2955 par64 |= (fsr & 0x3f) << 1; /* FS */
2956 if (fi.stage2) {
2957 par64 |= (1 << 9); /* S */
2959 if (fi.s1ptw) {
2960 par64 |= (1 << 8); /* PTW */
2963 } else {
2964 /* fsr is a DFSR/IFSR value for the short descriptor
2965 * translation table format (with WnR always clear).
2966 * Convert it to a 32-bit PAR.
2968 if (!ret) {
2969 /* We do not set any attribute bits in the PAR */
2970 if (page_size == (1 << 24)
2971 && arm_feature(env, ARM_FEATURE_V7)) {
2972 par64 = (phys_addr & 0xff000000) | (1 << 1);
2973 } else {
2974 par64 = phys_addr & 0xfffff000;
2976 if (!attrs.secure) {
2977 par64 |= (1 << 9); /* NS */
2979 } else {
2980 uint32_t fsr = arm_fi_to_sfsc(&fi);
2982 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2983 ((fsr & 0xf) << 1) | 1;
2986 return par64;
2989 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2991 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2992 uint64_t par64;
2993 ARMMMUIdx mmu_idx;
2994 int el = arm_current_el(env);
2995 bool secure = arm_is_secure_below_el3(env);
2997 switch (ri->opc2 & 6) {
2998 case 0:
2999 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3000 switch (el) {
3001 case 3:
3002 mmu_idx = ARMMMUIdx_S1E3;
3003 break;
3004 case 2:
3005 mmu_idx = ARMMMUIdx_S1NSE1;
3006 break;
3007 case 1:
3008 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3009 break;
3010 default:
3011 g_assert_not_reached();
3013 break;
3014 case 2:
3015 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3016 switch (el) {
3017 case 3:
3018 mmu_idx = ARMMMUIdx_S1SE0;
3019 break;
3020 case 2:
3021 mmu_idx = ARMMMUIdx_S1NSE0;
3022 break;
3023 case 1:
3024 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3025 break;
3026 default:
3027 g_assert_not_reached();
3029 break;
3030 case 4:
3031 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3032 mmu_idx = ARMMMUIdx_S12NSE1;
3033 break;
3034 case 6:
3035 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3036 mmu_idx = ARMMMUIdx_S12NSE0;
3037 break;
3038 default:
3039 g_assert_not_reached();
3042 par64 = do_ats_write(env, value, access_type, mmu_idx);
3044 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3047 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3050 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3051 uint64_t par64;
3053 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3055 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3058 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3059 bool isread)
3061 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3062 return CP_ACCESS_TRAP;
3064 return CP_ACCESS_OK;
3067 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3068 uint64_t value)
3070 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3071 ARMMMUIdx mmu_idx;
3072 int secure = arm_is_secure_below_el3(env);
3074 switch (ri->opc2 & 6) {
3075 case 0:
3076 switch (ri->opc1) {
3077 case 0: /* AT S1E1R, AT S1E1W */
3078 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3079 break;
3080 case 4: /* AT S1E2R, AT S1E2W */
3081 mmu_idx = ARMMMUIdx_S1E2;
3082 break;
3083 case 6: /* AT S1E3R, AT S1E3W */
3084 mmu_idx = ARMMMUIdx_S1E3;
3085 break;
3086 default:
3087 g_assert_not_reached();
3089 break;
3090 case 2: /* AT S1E0R, AT S1E0W */
3091 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3092 break;
3093 case 4: /* AT S12E1R, AT S12E1W */
3094 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3095 break;
3096 case 6: /* AT S12E0R, AT S12E0W */
3097 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3098 break;
3099 default:
3100 g_assert_not_reached();
3103 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3105 #endif
3107 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3108 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3109 .access = PL1_RW, .resetvalue = 0,
3110 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3111 offsetoflow32(CPUARMState, cp15.par_ns) },
3112 .writefn = par_write },
3113 #ifndef CONFIG_USER_ONLY
3114 /* This underdecoding is safe because the reginfo is NO_RAW. */
3115 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3116 .access = PL1_W, .accessfn = ats_access,
3117 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3118 #endif
3119 REGINFO_SENTINEL
3122 /* Return basic MPU access permission bits. */
3123 static uint32_t simple_mpu_ap_bits(uint32_t val)
3125 uint32_t ret;
3126 uint32_t mask;
3127 int i;
3128 ret = 0;
3129 mask = 3;
3130 for (i = 0; i < 16; i += 2) {
3131 ret |= (val >> i) & mask;
3132 mask <<= 2;
3134 return ret;
3137 /* Pad basic MPU access permission bits to extended format. */
3138 static uint32_t extended_mpu_ap_bits(uint32_t val)
3140 uint32_t ret;
3141 uint32_t mask;
3142 int i;
3143 ret = 0;
3144 mask = 3;
3145 for (i = 0; i < 16; i += 2) {
3146 ret |= (val & mask) << i;
3147 mask <<= 2;
3149 return ret;
3152 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3153 uint64_t value)
3155 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3158 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3160 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3163 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164 uint64_t value)
3166 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3169 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3171 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3174 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3176 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3178 if (!u32p) {
3179 return 0;
3182 u32p += env->pmsav7.rnr[M_REG_NS];
3183 return *u32p;
3186 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187 uint64_t value)
3189 ARMCPU *cpu = arm_env_get_cpu(env);
3190 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3192 if (!u32p) {
3193 return;
3196 u32p += env->pmsav7.rnr[M_REG_NS];
3197 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3198 *u32p = value;
3201 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202 uint64_t value)
3204 ARMCPU *cpu = arm_env_get_cpu(env);
3205 uint32_t nrgs = cpu->pmsav7_dregion;
3207 if (value >= nrgs) {
3208 qemu_log_mask(LOG_GUEST_ERROR,
3209 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3210 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3211 return;
3214 raw_write(env, ri, value);
3217 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3218 /* Reset for all these registers is handled in arm_cpu_reset(),
3219 * because the PMSAv7 is also used by M-profile CPUs, which do
3220 * not register cpregs but still need the state to be reset.
3222 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3223 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3224 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3225 .readfn = pmsav7_read, .writefn = pmsav7_write,
3226 .resetfn = arm_cp_reset_ignore },
3227 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3228 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3229 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3230 .readfn = pmsav7_read, .writefn = pmsav7_write,
3231 .resetfn = arm_cp_reset_ignore },
3232 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3233 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3234 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3235 .readfn = pmsav7_read, .writefn = pmsav7_write,
3236 .resetfn = arm_cp_reset_ignore },
3237 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3238 .access = PL1_RW,
3239 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3240 .writefn = pmsav7_rgnr_write,
3241 .resetfn = arm_cp_reset_ignore },
3242 REGINFO_SENTINEL
3245 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3246 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3247 .access = PL1_RW, .type = ARM_CP_ALIAS,
3248 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3249 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3250 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3251 .access = PL1_RW, .type = ARM_CP_ALIAS,
3252 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3253 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3254 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3255 .access = PL1_RW,
3256 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3257 .resetvalue = 0, },
3258 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3259 .access = PL1_RW,
3260 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3261 .resetvalue = 0, },
3262 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3263 .access = PL1_RW,
3264 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3265 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3266 .access = PL1_RW,
3267 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3268 /* Protection region base and size registers */
3269 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3270 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3271 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3272 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3273 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3274 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3275 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3276 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3277 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3278 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3279 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3280 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3281 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3282 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3283 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3284 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3285 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3287 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3288 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3290 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3291 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3292 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3293 REGINFO_SENTINEL
3296 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3297 uint64_t value)
3299 TCR *tcr = raw_ptr(env, ri);
3300 int maskshift = extract32(value, 0, 3);
3302 if (!arm_feature(env, ARM_FEATURE_V8)) {
3303 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3304 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3305 * using Long-desciptor translation table format */
3306 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3307 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3308 /* In an implementation that includes the Security Extensions
3309 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3310 * Short-descriptor translation table format.
3312 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3313 } else {
3314 value &= TTBCR_N;
3318 /* Update the masks corresponding to the TCR bank being written
3319 * Note that we always calculate mask and base_mask, but
3320 * they are only used for short-descriptor tables (ie if EAE is 0);
3321 * for long-descriptor tables the TCR fields are used differently
3322 * and the mask and base_mask values are meaningless.
3324 tcr->raw_tcr = value;
3325 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3326 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3329 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3330 uint64_t value)
3332 ARMCPU *cpu = arm_env_get_cpu(env);
3333 TCR *tcr = raw_ptr(env, ri);
3335 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3336 /* With LPAE the TTBCR could result in a change of ASID
3337 * via the TTBCR.A1 bit, so do a TLB flush.
3339 tlb_flush(CPU(cpu));
3341 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3342 value = deposit64(tcr->raw_tcr, 0, 32, value);
3343 vmsa_ttbcr_raw_write(env, ri, value);
3346 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3348 TCR *tcr = raw_ptr(env, ri);
3350 /* Reset both the TCR as well as the masks corresponding to the bank of
3351 * the TCR being reset.
3353 tcr->raw_tcr = 0;
3354 tcr->mask = 0;
3355 tcr->base_mask = 0xffffc000u;
3358 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3359 uint64_t value)
3361 ARMCPU *cpu = arm_env_get_cpu(env);
3362 TCR *tcr = raw_ptr(env, ri);
3364 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3365 tlb_flush(CPU(cpu));
3366 tcr->raw_tcr = value;
3369 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3370 uint64_t value)
3372 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3373 if (cpreg_field_is_64bit(ri) &&
3374 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3375 ARMCPU *cpu = arm_env_get_cpu(env);
3376 tlb_flush(CPU(cpu));
3378 raw_write(env, ri, value);
3381 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3382 uint64_t value)
3384 ARMCPU *cpu = arm_env_get_cpu(env);
3385 CPUState *cs = CPU(cpu);
3387 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3388 if (raw_read(env, ri) != value) {
3389 tlb_flush_by_mmuidx(cs,
3390 ARMMMUIdxBit_S12NSE1 |
3391 ARMMMUIdxBit_S12NSE0 |
3392 ARMMMUIdxBit_S2NS);
3393 raw_write(env, ri, value);
3397 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3398 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3399 .access = PL1_RW, .type = ARM_CP_ALIAS,
3400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3401 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3402 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3403 .access = PL1_RW, .resetvalue = 0,
3404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3405 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3406 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3407 .access = PL1_RW, .resetvalue = 0,
3408 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3409 offsetof(CPUARMState, cp15.dfar_ns) } },
3410 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3411 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3413 .resetvalue = 0, },
3414 REGINFO_SENTINEL
3417 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3418 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3419 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3420 .access = PL1_RW,
3421 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3422 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3423 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3424 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3425 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3426 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3427 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3428 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3429 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3430 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3431 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3432 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3433 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3434 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3435 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3436 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3437 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3438 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3439 .raw_writefn = vmsa_ttbcr_raw_write,
3440 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3441 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3442 REGINFO_SENTINEL
3445 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3446 * qemu tlbs nor adjusting cached masks.
3448 static const ARMCPRegInfo ttbcr2_reginfo = {
3449 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3450 .access = PL1_RW, .type = ARM_CP_ALIAS,
3451 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3452 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3455 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3456 uint64_t value)
3458 env->cp15.c15_ticonfig = value & 0xe7;
3459 /* The OS_TYPE bit in this register changes the reported CPUID! */
3460 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3461 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3464 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3465 uint64_t value)
3467 env->cp15.c15_threadid = value & 0xffff;
3470 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3471 uint64_t value)
3473 /* Wait-for-interrupt (deprecated) */
3474 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3477 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3478 uint64_t value)
3480 /* On OMAP there are registers indicating the max/min index of dcache lines
3481 * containing a dirty line; cache flush operations have to reset these.
3483 env->cp15.c15_i_max = 0x000;
3484 env->cp15.c15_i_min = 0xff0;
3487 static const ARMCPRegInfo omap_cp_reginfo[] = {
3488 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3489 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3490 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3491 .resetvalue = 0, },
3492 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3493 .access = PL1_RW, .type = ARM_CP_NOP },
3494 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3495 .access = PL1_RW,
3496 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3497 .writefn = omap_ticonfig_write },
3498 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3499 .access = PL1_RW,
3500 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3501 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3502 .access = PL1_RW, .resetvalue = 0xff0,
3503 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3504 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3505 .access = PL1_RW,
3506 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3507 .writefn = omap_threadid_write },
3508 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3509 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3510 .type = ARM_CP_NO_RAW,
3511 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3512 /* TODO: Peripheral port remap register:
3513 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3514 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3515 * when MMU is off.
3517 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3518 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3519 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3520 .writefn = omap_cachemaint_write },
3521 { .name = "C9", .cp = 15, .crn = 9,
3522 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3523 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3524 REGINFO_SENTINEL
3527 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3528 uint64_t value)
3530 env->cp15.c15_cpar = value & 0x3fff;
3533 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3534 { .name = "XSCALE_CPAR",
3535 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3536 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3537 .writefn = xscale_cpar_write, },
3538 { .name = "XSCALE_AUXCR",
3539 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3540 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3541 .resetvalue = 0, },
3542 /* XScale specific cache-lockdown: since we have no cache we NOP these
3543 * and hope the guest does not really rely on cache behaviour.
3545 { .name = "XSCALE_LOCK_ICACHE_LINE",
3546 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3547 .access = PL1_W, .type = ARM_CP_NOP },
3548 { .name = "XSCALE_UNLOCK_ICACHE",
3549 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3550 .access = PL1_W, .type = ARM_CP_NOP },
3551 { .name = "XSCALE_DCACHE_LOCK",
3552 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3553 .access = PL1_RW, .type = ARM_CP_NOP },
3554 { .name = "XSCALE_UNLOCK_DCACHE",
3555 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3556 .access = PL1_W, .type = ARM_CP_NOP },
3557 REGINFO_SENTINEL
3560 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3561 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3562 * implementation of this implementation-defined space.
3563 * Ideally this should eventually disappear in favour of actually
3564 * implementing the correct behaviour for all cores.
3566 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3567 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3568 .access = PL1_RW,
3569 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3570 .resetvalue = 0 },
3571 REGINFO_SENTINEL
3574 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3575 /* Cache status: RAZ because we have no cache so it's always clean */
3576 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3577 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3578 .resetvalue = 0 },
3579 REGINFO_SENTINEL
3582 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3583 /* We never have a a block transfer operation in progress */
3584 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3585 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3586 .resetvalue = 0 },
3587 /* The cache ops themselves: these all NOP for QEMU */
3588 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3589 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3590 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3591 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3592 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3593 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3594 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3595 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3596 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3597 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3598 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3599 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3600 REGINFO_SENTINEL
3603 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3604 /* The cache test-and-clean instructions always return (1 << 30)
3605 * to indicate that there are no dirty cache lines.
3607 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3608 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3609 .resetvalue = (1 << 30) },
3610 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3611 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612 .resetvalue = (1 << 30) },
3613 REGINFO_SENTINEL
3616 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3617 /* Ignore ReadBuffer accesses */
3618 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3619 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3620 .access = PL1_RW, .resetvalue = 0,
3621 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3622 REGINFO_SENTINEL
3625 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3627 ARMCPU *cpu = arm_env_get_cpu(env);
3628 unsigned int cur_el = arm_current_el(env);
3629 bool secure = arm_is_secure(env);
3631 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3632 return env->cp15.vpidr_el2;
3634 return raw_read(env, ri);
3637 static uint64_t mpidr_read_val(CPUARMState *env)
3639 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3640 uint64_t mpidr = cpu->mp_affinity;
3642 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3643 mpidr |= (1U << 31);
3644 /* Cores which are uniprocessor (non-coherent)
3645 * but still implement the MP extensions set
3646 * bit 30. (For instance, Cortex-R5).
3648 if (cpu->mp_is_up) {
3649 mpidr |= (1u << 30);
3652 return mpidr;
3655 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3657 unsigned int cur_el = arm_current_el(env);
3658 bool secure = arm_is_secure(env);
3660 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3661 return env->cp15.vmpidr_el2;
3663 return mpidr_read_val(env);
3666 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3667 /* NOP AMAIR0/1 */
3668 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3669 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3670 .access = PL1_RW, .type = ARM_CP_CONST,
3671 .resetvalue = 0 },
3672 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3673 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3674 .access = PL1_RW, .type = ARM_CP_CONST,
3675 .resetvalue = 0 },
3676 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3677 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3678 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3679 offsetof(CPUARMState, cp15.par_ns)} },
3680 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3681 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3682 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3683 offsetof(CPUARMState, cp15.ttbr0_ns) },
3684 .writefn = vmsa_ttbr_write, },
3685 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3686 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3687 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3688 offsetof(CPUARMState, cp15.ttbr1_ns) },
3689 .writefn = vmsa_ttbr_write, },
3690 REGINFO_SENTINEL
3693 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3695 return vfp_get_fpcr(env);
3698 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3699 uint64_t value)
3701 vfp_set_fpcr(env, value);
3704 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3706 return vfp_get_fpsr(env);
3709 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710 uint64_t value)
3712 vfp_set_fpsr(env, value);
3715 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3716 bool isread)
3718 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3719 return CP_ACCESS_TRAP;
3721 return CP_ACCESS_OK;
3724 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3725 uint64_t value)
3727 env->daif = value & PSTATE_DAIF;
3730 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3731 const ARMCPRegInfo *ri,
3732 bool isread)
3734 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3735 * SCTLR_EL1.UCI is set.
3737 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3738 return CP_ACCESS_TRAP;
3740 return CP_ACCESS_OK;
3743 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3744 * Page D4-1736 (DDI0487A.b)
3747 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748 uint64_t value)
3750 CPUState *cs = ENV_GET_CPU(env);
3751 bool sec = arm_is_secure_below_el3(env);
3753 if (sec) {
3754 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3755 ARMMMUIdxBit_S1SE1 |
3756 ARMMMUIdxBit_S1SE0);
3757 } else {
3758 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3759 ARMMMUIdxBit_S12NSE1 |
3760 ARMMMUIdxBit_S12NSE0);
3764 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3765 uint64_t value)
3767 CPUState *cs = ENV_GET_CPU(env);
3769 if (tlb_force_broadcast(env)) {
3770 tlbi_aa64_vmalle1is_write(env, NULL, value);
3771 return;
3774 if (arm_is_secure_below_el3(env)) {
3775 tlb_flush_by_mmuidx(cs,
3776 ARMMMUIdxBit_S1SE1 |
3777 ARMMMUIdxBit_S1SE0);
3778 } else {
3779 tlb_flush_by_mmuidx(cs,
3780 ARMMMUIdxBit_S12NSE1 |
3781 ARMMMUIdxBit_S12NSE0);
3785 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786 uint64_t value)
3788 /* Note that the 'ALL' scope must invalidate both stage 1 and
3789 * stage 2 translations, whereas most other scopes only invalidate
3790 * stage 1 translations.
3792 ARMCPU *cpu = arm_env_get_cpu(env);
3793 CPUState *cs = CPU(cpu);
3795 if (arm_is_secure_below_el3(env)) {
3796 tlb_flush_by_mmuidx(cs,
3797 ARMMMUIdxBit_S1SE1 |
3798 ARMMMUIdxBit_S1SE0);
3799 } else {
3800 if (arm_feature(env, ARM_FEATURE_EL2)) {
3801 tlb_flush_by_mmuidx(cs,
3802 ARMMMUIdxBit_S12NSE1 |
3803 ARMMMUIdxBit_S12NSE0 |
3804 ARMMMUIdxBit_S2NS);
3805 } else {
3806 tlb_flush_by_mmuidx(cs,
3807 ARMMMUIdxBit_S12NSE1 |
3808 ARMMMUIdxBit_S12NSE0);
3813 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3814 uint64_t value)
3816 ARMCPU *cpu = arm_env_get_cpu(env);
3817 CPUState *cs = CPU(cpu);
3819 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3822 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3823 uint64_t value)
3825 ARMCPU *cpu = arm_env_get_cpu(env);
3826 CPUState *cs = CPU(cpu);
3828 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3831 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832 uint64_t value)
3834 /* Note that the 'ALL' scope must invalidate both stage 1 and
3835 * stage 2 translations, whereas most other scopes only invalidate
3836 * stage 1 translations.
3838 CPUState *cs = ENV_GET_CPU(env);
3839 bool sec = arm_is_secure_below_el3(env);
3840 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3842 if (sec) {
3843 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3844 ARMMMUIdxBit_S1SE1 |
3845 ARMMMUIdxBit_S1SE0);
3846 } else if (has_el2) {
3847 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3848 ARMMMUIdxBit_S12NSE1 |
3849 ARMMMUIdxBit_S12NSE0 |
3850 ARMMMUIdxBit_S2NS);
3851 } else {
3852 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3853 ARMMMUIdxBit_S12NSE1 |
3854 ARMMMUIdxBit_S12NSE0);
3858 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3859 uint64_t value)
3861 CPUState *cs = ENV_GET_CPU(env);
3863 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3866 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3867 uint64_t value)
3869 CPUState *cs = ENV_GET_CPU(env);
3871 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3874 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875 uint64_t value)
3877 /* Invalidate by VA, EL2
3878 * Currently handles both VAE2 and VALE2, since we don't support
3879 * flush-last-level-only.
3881 ARMCPU *cpu = arm_env_get_cpu(env);
3882 CPUState *cs = CPU(cpu);
3883 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3885 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3888 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889 uint64_t value)
3891 /* Invalidate by VA, EL3
3892 * Currently handles both VAE3 and VALE3, since we don't support
3893 * flush-last-level-only.
3895 ARMCPU *cpu = arm_env_get_cpu(env);
3896 CPUState *cs = CPU(cpu);
3897 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3899 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3902 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
3905 ARMCPU *cpu = arm_env_get_cpu(env);
3906 CPUState *cs = CPU(cpu);
3907 bool sec = arm_is_secure_below_el3(env);
3908 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3910 if (sec) {
3911 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3912 ARMMMUIdxBit_S1SE1 |
3913 ARMMMUIdxBit_S1SE0);
3914 } else {
3915 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3916 ARMMMUIdxBit_S12NSE1 |
3917 ARMMMUIdxBit_S12NSE0);
3921 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3922 uint64_t value)
3924 /* Invalidate by VA, EL1&0 (AArch64 version).
3925 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3926 * since we don't support flush-for-specific-ASID-only or
3927 * flush-last-level-only.
3929 ARMCPU *cpu = arm_env_get_cpu(env);
3930 CPUState *cs = CPU(cpu);
3931 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3933 if (tlb_force_broadcast(env)) {
3934 tlbi_aa64_vae1is_write(env, NULL, value);
3935 return;
3938 if (arm_is_secure_below_el3(env)) {
3939 tlb_flush_page_by_mmuidx(cs, pageaddr,
3940 ARMMMUIdxBit_S1SE1 |
3941 ARMMMUIdxBit_S1SE0);
3942 } else {
3943 tlb_flush_page_by_mmuidx(cs, pageaddr,
3944 ARMMMUIdxBit_S12NSE1 |
3945 ARMMMUIdxBit_S12NSE0);
3949 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3950 uint64_t value)
3952 CPUState *cs = ENV_GET_CPU(env);
3953 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3955 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3956 ARMMMUIdxBit_S1E2);
3959 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3960 uint64_t value)
3962 CPUState *cs = ENV_GET_CPU(env);
3963 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3965 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3966 ARMMMUIdxBit_S1E3);
3969 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3970 uint64_t value)
3972 /* Invalidate by IPA. This has to invalidate any structures that
3973 * contain only stage 2 translation information, but does not need
3974 * to apply to structures that contain combined stage 1 and stage 2
3975 * translation information.
3976 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3978 ARMCPU *cpu = arm_env_get_cpu(env);
3979 CPUState *cs = CPU(cpu);
3980 uint64_t pageaddr;
3982 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3983 return;
3986 pageaddr = sextract64(value << 12, 0, 48);
3988 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3991 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992 uint64_t value)
3994 CPUState *cs = ENV_GET_CPU(env);
3995 uint64_t pageaddr;
3997 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3998 return;
4001 pageaddr = sextract64(value << 12, 0, 48);
4003 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4004 ARMMMUIdxBit_S2NS);
4007 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4008 bool isread)
4010 /* We don't implement EL2, so the only control on DC ZVA is the
4011 * bit in the SCTLR which can prohibit access for EL0.
4013 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4014 return CP_ACCESS_TRAP;
4016 return CP_ACCESS_OK;
4019 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4021 ARMCPU *cpu = arm_env_get_cpu(env);
4022 int dzp_bit = 1 << 4;
4024 /* DZP indicates whether DC ZVA access is allowed */
4025 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4026 dzp_bit = 0;
4028 return cpu->dcz_blocksize | dzp_bit;
4031 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4032 bool isread)
4034 if (!(env->pstate & PSTATE_SP)) {
4035 /* Access to SP_EL0 is undefined if it's being used as
4036 * the stack pointer.
4038 return CP_ACCESS_TRAP_UNCATEGORIZED;
4040 return CP_ACCESS_OK;
4043 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 return env->pstate & PSTATE_SP;
4048 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4050 update_spsel(env, val);
4053 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4054 uint64_t value)
4056 ARMCPU *cpu = arm_env_get_cpu(env);
4058 if (raw_read(env, ri) == value) {
4059 /* Skip the TLB flush if nothing actually changed; Linux likes
4060 * to do a lot of pointless SCTLR writes.
4062 return;
4065 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4066 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4067 value &= ~SCTLR_M;
4070 raw_write(env, ri, value);
4071 /* ??? Lots of these bits are not implemented. */
4072 /* This may enable/disable the MMU, so do a TLB flush. */
4073 tlb_flush(CPU(cpu));
4076 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4077 bool isread)
4079 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4080 return CP_ACCESS_TRAP_FP_EL2;
4082 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4083 return CP_ACCESS_TRAP_FP_EL3;
4085 return CP_ACCESS_OK;
4088 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089 uint64_t value)
4091 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4094 static const ARMCPRegInfo v8_cp_reginfo[] = {
4095 /* Minimal set of EL0-visible registers. This will need to be expanded
4096 * significantly for system emulation of AArch64 CPUs.
4098 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4099 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4100 .access = PL0_RW, .type = ARM_CP_NZCV },
4101 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4103 .type = ARM_CP_NO_RAW,
4104 .access = PL0_RW, .accessfn = aa64_daif_access,
4105 .fieldoffset = offsetof(CPUARMState, daif),
4106 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4107 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4108 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4109 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4110 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4111 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4112 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4113 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4114 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4115 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4117 .access = PL0_R, .type = ARM_CP_NO_RAW,
4118 .readfn = aa64_dczid_read },
4119 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4121 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4122 #ifndef CONFIG_USER_ONLY
4123 /* Avoid overhead of an access check that always passes in user-mode */
4124 .accessfn = aa64_zva_access,
4125 #endif
4127 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4128 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4129 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4130 /* Cache ops: all NOPs since we don't emulate caches */
4131 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4132 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4133 .access = PL1_W, .type = ARM_CP_NOP },
4134 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4135 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4136 .access = PL1_W, .type = ARM_CP_NOP },
4137 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4139 .access = PL0_W, .type = ARM_CP_NOP,
4140 .accessfn = aa64_cacheop_access },
4141 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4143 .access = PL1_W, .type = ARM_CP_NOP },
4144 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4145 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4146 .access = PL1_W, .type = ARM_CP_NOP },
4147 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4149 .access = PL0_W, .type = ARM_CP_NOP,
4150 .accessfn = aa64_cacheop_access },
4151 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4153 .access = PL1_W, .type = ARM_CP_NOP },
4154 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4155 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4156 .access = PL0_W, .type = ARM_CP_NOP,
4157 .accessfn = aa64_cacheop_access },
4158 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4159 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4160 .access = PL0_W, .type = ARM_CP_NOP,
4161 .accessfn = aa64_cacheop_access },
4162 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4164 .access = PL1_W, .type = ARM_CP_NOP },
4165 /* TLBI operations */
4166 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4167 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4168 .access = PL1_W, .type = ARM_CP_NO_RAW,
4169 .writefn = tlbi_aa64_vmalle1is_write },
4170 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4172 .access = PL1_W, .type = ARM_CP_NO_RAW,
4173 .writefn = tlbi_aa64_vae1is_write },
4174 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4175 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4176 .access = PL1_W, .type = ARM_CP_NO_RAW,
4177 .writefn = tlbi_aa64_vmalle1is_write },
4178 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4179 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4180 .access = PL1_W, .type = ARM_CP_NO_RAW,
4181 .writefn = tlbi_aa64_vae1is_write },
4182 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4183 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4184 .access = PL1_W, .type = ARM_CP_NO_RAW,
4185 .writefn = tlbi_aa64_vae1is_write },
4186 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4187 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4188 .access = PL1_W, .type = ARM_CP_NO_RAW,
4189 .writefn = tlbi_aa64_vae1is_write },
4190 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4191 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4192 .access = PL1_W, .type = ARM_CP_NO_RAW,
4193 .writefn = tlbi_aa64_vmalle1_write },
4194 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4195 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4196 .access = PL1_W, .type = ARM_CP_NO_RAW,
4197 .writefn = tlbi_aa64_vae1_write },
4198 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4199 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4200 .access = PL1_W, .type = ARM_CP_NO_RAW,
4201 .writefn = tlbi_aa64_vmalle1_write },
4202 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4204 .access = PL1_W, .type = ARM_CP_NO_RAW,
4205 .writefn = tlbi_aa64_vae1_write },
4206 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4207 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4208 .access = PL1_W, .type = ARM_CP_NO_RAW,
4209 .writefn = tlbi_aa64_vae1_write },
4210 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4211 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4212 .access = PL1_W, .type = ARM_CP_NO_RAW,
4213 .writefn = tlbi_aa64_vae1_write },
4214 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4216 .access = PL2_W, .type = ARM_CP_NO_RAW,
4217 .writefn = tlbi_aa64_ipas2e1is_write },
4218 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4220 .access = PL2_W, .type = ARM_CP_NO_RAW,
4221 .writefn = tlbi_aa64_ipas2e1is_write },
4222 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4223 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4224 .access = PL2_W, .type = ARM_CP_NO_RAW,
4225 .writefn = tlbi_aa64_alle1is_write },
4226 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4227 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4228 .access = PL2_W, .type = ARM_CP_NO_RAW,
4229 .writefn = tlbi_aa64_alle1is_write },
4230 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4231 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4232 .access = PL2_W, .type = ARM_CP_NO_RAW,
4233 .writefn = tlbi_aa64_ipas2e1_write },
4234 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4235 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4236 .access = PL2_W, .type = ARM_CP_NO_RAW,
4237 .writefn = tlbi_aa64_ipas2e1_write },
4238 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4239 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4240 .access = PL2_W, .type = ARM_CP_NO_RAW,
4241 .writefn = tlbi_aa64_alle1_write },
4242 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4243 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4244 .access = PL2_W, .type = ARM_CP_NO_RAW,
4245 .writefn = tlbi_aa64_alle1is_write },
4246 #ifndef CONFIG_USER_ONLY
4247 /* 64 bit address translation operations */
4248 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4250 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4251 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4252 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4253 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4254 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4256 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4257 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4258 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4259 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4260 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4263 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4265 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4266 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4267 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4268 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4269 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4270 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4271 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4272 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4273 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4274 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4275 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4276 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4278 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4279 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4280 .type = ARM_CP_ALIAS,
4281 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4282 .access = PL1_RW, .resetvalue = 0,
4283 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4284 .writefn = par_write },
4285 #endif
4286 /* TLB invalidate last level of translation table walk */
4287 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4288 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4289 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4290 .type = ARM_CP_NO_RAW, .access = PL1_W,
4291 .writefn = tlbimvaa_is_write },
4292 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4293 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4294 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4295 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4296 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4297 .type = ARM_CP_NO_RAW, .access = PL2_W,
4298 .writefn = tlbimva_hyp_write },
4299 { .name = "TLBIMVALHIS",
4300 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4301 .type = ARM_CP_NO_RAW, .access = PL2_W,
4302 .writefn = tlbimva_hyp_is_write },
4303 { .name = "TLBIIPAS2",
4304 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4305 .type = ARM_CP_NO_RAW, .access = PL2_W,
4306 .writefn = tlbiipas2_write },
4307 { .name = "TLBIIPAS2IS",
4308 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4309 .type = ARM_CP_NO_RAW, .access = PL2_W,
4310 .writefn = tlbiipas2_is_write },
4311 { .name = "TLBIIPAS2L",
4312 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4313 .type = ARM_CP_NO_RAW, .access = PL2_W,
4314 .writefn = tlbiipas2_write },
4315 { .name = "TLBIIPAS2LIS",
4316 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4317 .type = ARM_CP_NO_RAW, .access = PL2_W,
4318 .writefn = tlbiipas2_is_write },
4319 /* 32 bit cache operations */
4320 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4321 .type = ARM_CP_NOP, .access = PL1_W },
4322 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4323 .type = ARM_CP_NOP, .access = PL1_W },
4324 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4325 .type = ARM_CP_NOP, .access = PL1_W },
4326 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4327 .type = ARM_CP_NOP, .access = PL1_W },
4328 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4329 .type = ARM_CP_NOP, .access = PL1_W },
4330 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4331 .type = ARM_CP_NOP, .access = PL1_W },
4332 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4333 .type = ARM_CP_NOP, .access = PL1_W },
4334 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4335 .type = ARM_CP_NOP, .access = PL1_W },
4336 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4337 .type = ARM_CP_NOP, .access = PL1_W },
4338 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4339 .type = ARM_CP_NOP, .access = PL1_W },
4340 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4341 .type = ARM_CP_NOP, .access = PL1_W },
4342 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4343 .type = ARM_CP_NOP, .access = PL1_W },
4344 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4345 .type = ARM_CP_NOP, .access = PL1_W },
4346 /* MMU Domain access control / MPU write buffer control */
4347 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4348 .access = PL1_RW, .resetvalue = 0,
4349 .writefn = dacr_write, .raw_writefn = raw_write,
4350 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4351 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4352 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4353 .type = ARM_CP_ALIAS,
4354 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4355 .access = PL1_RW,
4356 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4357 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4358 .type = ARM_CP_ALIAS,
4359 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4360 .access = PL1_RW,
4361 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4362 /* We rely on the access checks not allowing the guest to write to the
4363 * state field when SPSel indicates that it's being used as the stack
4364 * pointer.
4366 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4367 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4368 .access = PL1_RW, .accessfn = sp_el0_access,
4369 .type = ARM_CP_ALIAS,
4370 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4371 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4372 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4373 .access = PL2_RW, .type = ARM_CP_ALIAS,
4374 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4375 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4376 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4377 .type = ARM_CP_NO_RAW,
4378 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4379 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4381 .type = ARM_CP_ALIAS,
4382 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4383 .access = PL2_RW, .accessfn = fpexc32_access },
4384 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4385 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4386 .access = PL2_RW, .resetvalue = 0,
4387 .writefn = dacr_write, .raw_writefn = raw_write,
4388 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4389 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4390 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4391 .access = PL2_RW, .resetvalue = 0,
4392 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4393 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4394 .type = ARM_CP_ALIAS,
4395 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4396 .access = PL2_RW,
4397 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4398 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4399 .type = ARM_CP_ALIAS,
4400 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4401 .access = PL2_RW,
4402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4403 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4404 .type = ARM_CP_ALIAS,
4405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4406 .access = PL2_RW,
4407 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4408 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4409 .type = ARM_CP_ALIAS,
4410 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4411 .access = PL2_RW,
4412 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4413 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4415 .resetvalue = 0,
4416 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4417 { .name = "SDCR", .type = ARM_CP_ALIAS,
4418 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4419 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4420 .writefn = sdcr_write,
4421 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4422 REGINFO_SENTINEL
4425 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4426 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4427 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4428 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4429 .access = PL2_RW,
4430 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4431 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4432 .type = ARM_CP_NO_RAW,
4433 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4434 .access = PL2_RW,
4435 .type = ARM_CP_CONST, .resetvalue = 0 },
4436 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4437 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4438 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4439 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4440 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4441 .access = PL2_RW,
4442 .type = ARM_CP_CONST, .resetvalue = 0 },
4443 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4444 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4445 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4446 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4447 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4448 .access = PL2_RW, .type = ARM_CP_CONST,
4449 .resetvalue = 0 },
4450 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4451 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4452 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4453 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4454 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4455 .access = PL2_RW, .type = ARM_CP_CONST,
4456 .resetvalue = 0 },
4457 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4458 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4459 .access = PL2_RW, .type = ARM_CP_CONST,
4460 .resetvalue = 0 },
4461 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4463 .access = PL2_RW, .type = ARM_CP_CONST,
4464 .resetvalue = 0 },
4465 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4467 .access = PL2_RW, .type = ARM_CP_CONST,
4468 .resetvalue = 0 },
4469 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4470 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4471 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4472 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4474 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4475 .type = ARM_CP_CONST, .resetvalue = 0 },
4476 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4477 .cp = 15, .opc1 = 6, .crm = 2,
4478 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4479 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4480 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4481 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4482 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4483 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4484 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4485 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4486 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4487 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4488 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4489 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4490 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4491 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4492 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4493 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4494 .resetvalue = 0 },
4495 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4497 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4498 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4499 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4500 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4501 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4502 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4503 .resetvalue = 0 },
4504 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4505 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4506 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4507 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4508 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4509 .resetvalue = 0 },
4510 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4511 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4512 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4513 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4514 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4515 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4516 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4517 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4518 .access = PL2_RW, .accessfn = access_tda,
4519 .type = ARM_CP_CONST, .resetvalue = 0 },
4520 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4521 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4522 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4523 .type = ARM_CP_CONST, .resetvalue = 0 },
4524 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4525 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4526 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4527 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4528 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4529 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4530 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4531 .type = ARM_CP_CONST,
4532 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4533 .access = PL2_RW, .resetvalue = 0 },
4534 REGINFO_SENTINEL
4537 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4538 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4539 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4540 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4541 .access = PL2_RW,
4542 .type = ARM_CP_CONST, .resetvalue = 0 },
4543 REGINFO_SENTINEL
4546 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4548 ARMCPU *cpu = arm_env_get_cpu(env);
4549 uint64_t valid_mask = HCR_MASK;
4551 if (arm_feature(env, ARM_FEATURE_EL3)) {
4552 valid_mask &= ~HCR_HCD;
4553 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4554 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4555 * However, if we're using the SMC PSCI conduit then QEMU is
4556 * effectively acting like EL3 firmware and so the guest at
4557 * EL2 should retain the ability to prevent EL1 from being
4558 * able to make SMC calls into the ersatz firmware, so in
4559 * that case HCR.TSC should be read/write.
4561 valid_mask &= ~HCR_TSC;
4563 if (cpu_isar_feature(aa64_lor, cpu)) {
4564 valid_mask |= HCR_TLOR;
4566 if (cpu_isar_feature(aa64_pauth, cpu)) {
4567 valid_mask |= HCR_API | HCR_APK;
4570 /* Clear RES0 bits. */
4571 value &= valid_mask;
4573 /* These bits change the MMU setup:
4574 * HCR_VM enables stage 2 translation
4575 * HCR_PTW forbids certain page-table setups
4576 * HCR_DC Disables stage1 and enables stage2 translation
4578 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4579 tlb_flush(CPU(cpu));
4581 env->cp15.hcr_el2 = value;
4584 * Updates to VI and VF require us to update the status of
4585 * virtual interrupts, which are the logical OR of these bits
4586 * and the state of the input lines from the GIC. (This requires
4587 * that we have the iothread lock, which is done by marking the
4588 * reginfo structs as ARM_CP_IO.)
4589 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4590 * possible for it to be taken immediately, because VIRQ and
4591 * VFIQ are masked unless running at EL0 or EL1, and HCR
4592 * can only be written at EL2.
4594 g_assert(qemu_mutex_iothread_locked());
4595 arm_cpu_update_virq(cpu);
4596 arm_cpu_update_vfiq(cpu);
4599 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4600 uint64_t value)
4602 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4603 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4604 hcr_write(env, NULL, value);
4607 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4608 uint64_t value)
4610 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4611 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4612 hcr_write(env, NULL, value);
4616 * Return the effective value of HCR_EL2.
4617 * Bits that are not included here:
4618 * RW (read from SCR_EL3.RW as needed)
4620 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4622 uint64_t ret = env->cp15.hcr_el2;
4624 if (arm_is_secure_below_el3(env)) {
4626 * "This register has no effect if EL2 is not enabled in the
4627 * current Security state". This is ARMv8.4-SecEL2 speak for
4628 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4630 * Prior to that, the language was "In an implementation that
4631 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4632 * as if this field is 0 for all purposes other than a direct
4633 * read or write access of HCR_EL2". With lots of enumeration
4634 * on a per-field basis. In current QEMU, this is condition
4635 * is arm_is_secure_below_el3.
4637 * Since the v8.4 language applies to the entire register, and
4638 * appears to be backward compatible, use that.
4640 ret = 0;
4641 } else if (ret & HCR_TGE) {
4642 /* These bits are up-to-date as of ARMv8.4. */
4643 if (ret & HCR_E2H) {
4644 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4645 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4646 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4647 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4648 } else {
4649 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4651 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4652 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4653 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4654 HCR_TLOR);
4657 return ret;
4660 static const ARMCPRegInfo el2_cp_reginfo[] = {
4661 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4662 .type = ARM_CP_IO,
4663 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4664 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4665 .writefn = hcr_write },
4666 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4667 .type = ARM_CP_ALIAS | ARM_CP_IO,
4668 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4669 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4670 .writefn = hcr_writelow },
4671 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4672 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4673 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4674 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4675 .type = ARM_CP_ALIAS,
4676 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4677 .access = PL2_RW,
4678 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4679 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4680 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4681 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4682 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4683 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4684 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4685 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4686 .type = ARM_CP_ALIAS,
4687 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4688 .access = PL2_RW,
4689 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4690 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4691 .type = ARM_CP_ALIAS,
4692 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4693 .access = PL2_RW,
4694 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4695 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4696 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4697 .access = PL2_RW, .writefn = vbar_write,
4698 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4699 .resetvalue = 0 },
4700 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4701 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4702 .access = PL3_RW, .type = ARM_CP_ALIAS,
4703 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4704 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4705 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4706 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4707 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4708 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4709 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4710 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4711 .resetvalue = 0 },
4712 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4713 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4714 .access = PL2_RW, .type = ARM_CP_ALIAS,
4715 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4716 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4717 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4718 .access = PL2_RW, .type = ARM_CP_CONST,
4719 .resetvalue = 0 },
4720 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4721 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4722 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4723 .access = PL2_RW, .type = ARM_CP_CONST,
4724 .resetvalue = 0 },
4725 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4726 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4727 .access = PL2_RW, .type = ARM_CP_CONST,
4728 .resetvalue = 0 },
4729 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4730 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4731 .access = PL2_RW, .type = ARM_CP_CONST,
4732 .resetvalue = 0 },
4733 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4734 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4735 .access = PL2_RW,
4736 /* no .writefn needed as this can't cause an ASID change;
4737 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4739 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4740 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4741 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4742 .type = ARM_CP_ALIAS,
4743 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4744 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4745 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4747 .access = PL2_RW,
4748 /* no .writefn needed as this can't cause an ASID change;
4749 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4751 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4752 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4753 .cp = 15, .opc1 = 6, .crm = 2,
4754 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4755 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4756 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4757 .writefn = vttbr_write },
4758 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4760 .access = PL2_RW, .writefn = vttbr_write,
4761 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4762 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4763 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4764 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4765 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4766 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4767 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4768 .access = PL2_RW, .resetvalue = 0,
4769 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4770 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4772 .access = PL2_RW, .resetvalue = 0,
4773 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4774 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4775 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4776 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4777 { .name = "TLBIALLNSNH",
4778 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4779 .type = ARM_CP_NO_RAW, .access = PL2_W,
4780 .writefn = tlbiall_nsnh_write },
4781 { .name = "TLBIALLNSNHIS",
4782 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4783 .type = ARM_CP_NO_RAW, .access = PL2_W,
4784 .writefn = tlbiall_nsnh_is_write },
4785 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4786 .type = ARM_CP_NO_RAW, .access = PL2_W,
4787 .writefn = tlbiall_hyp_write },
4788 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4789 .type = ARM_CP_NO_RAW, .access = PL2_W,
4790 .writefn = tlbiall_hyp_is_write },
4791 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4792 .type = ARM_CP_NO_RAW, .access = PL2_W,
4793 .writefn = tlbimva_hyp_write },
4794 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4795 .type = ARM_CP_NO_RAW, .access = PL2_W,
4796 .writefn = tlbimva_hyp_is_write },
4797 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4799 .type = ARM_CP_NO_RAW, .access = PL2_W,
4800 .writefn = tlbi_aa64_alle2_write },
4801 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4802 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4803 .type = ARM_CP_NO_RAW, .access = PL2_W,
4804 .writefn = tlbi_aa64_vae2_write },
4805 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4806 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4807 .access = PL2_W, .type = ARM_CP_NO_RAW,
4808 .writefn = tlbi_aa64_vae2_write },
4809 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4811 .access = PL2_W, .type = ARM_CP_NO_RAW,
4812 .writefn = tlbi_aa64_alle2is_write },
4813 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4815 .type = ARM_CP_NO_RAW, .access = PL2_W,
4816 .writefn = tlbi_aa64_vae2is_write },
4817 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4819 .access = PL2_W, .type = ARM_CP_NO_RAW,
4820 .writefn = tlbi_aa64_vae2is_write },
4821 #ifndef CONFIG_USER_ONLY
4822 /* Unlike the other EL2-related AT operations, these must
4823 * UNDEF from EL3 if EL2 is not implemented, which is why we
4824 * define them here rather than with the rest of the AT ops.
4826 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4828 .access = PL2_W, .accessfn = at_s1e2_access,
4829 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4830 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4832 .access = PL2_W, .accessfn = at_s1e2_access,
4833 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4834 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4835 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4836 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4837 * to behave as if SCR.NS was 1.
4839 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4840 .access = PL2_W,
4841 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4842 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4843 .access = PL2_W,
4844 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4845 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4846 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4847 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4848 * reset values as IMPDEF. We choose to reset to 3 to comply with
4849 * both ARMv7 and ARMv8.
4851 .access = PL2_RW, .resetvalue = 3,
4852 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4853 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4855 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4856 .writefn = gt_cntvoff_write,
4857 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4858 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4859 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4860 .writefn = gt_cntvoff_write,
4861 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4862 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4864 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4865 .type = ARM_CP_IO, .access = PL2_RW,
4866 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4867 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4868 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4869 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4870 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4871 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4872 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4873 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4874 .resetfn = gt_hyp_timer_reset,
4875 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4876 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4877 .type = ARM_CP_IO,
4878 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4879 .access = PL2_RW,
4880 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4881 .resetvalue = 0,
4882 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4883 #endif
4884 /* The only field of MDCR_EL2 that has a defined architectural reset value
4885 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4886 * don't implement any PMU event counters, so using zero as a reset
4887 * value for MDCR_EL2 is okay
4889 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4890 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4891 .access = PL2_RW, .resetvalue = 0,
4892 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4893 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4894 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4895 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4896 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4897 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4899 .access = PL2_RW,
4900 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4901 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4902 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4903 .access = PL2_RW,
4904 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4905 REGINFO_SENTINEL
4908 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4909 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4910 .type = ARM_CP_ALIAS | ARM_CP_IO,
4911 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4912 .access = PL2_RW,
4913 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4914 .writefn = hcr_writehigh },
4915 REGINFO_SENTINEL
4918 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4919 bool isread)
4921 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4922 * At Secure EL1 it traps to EL3.
4924 if (arm_current_el(env) == 3) {
4925 return CP_ACCESS_OK;
4927 if (arm_is_secure_below_el3(env)) {
4928 return CP_ACCESS_TRAP_EL3;
4930 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4931 if (isread) {
4932 return CP_ACCESS_OK;
4934 return CP_ACCESS_TRAP_UNCATEGORIZED;
4937 static const ARMCPRegInfo el3_cp_reginfo[] = {
4938 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4939 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4940 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4941 .resetvalue = 0, .writefn = scr_write },
4942 { .name = "SCR", .type = ARM_CP_ALIAS,
4943 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4944 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4945 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4946 .writefn = scr_write },
4947 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4948 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4949 .access = PL3_RW, .resetvalue = 0,
4950 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4951 { .name = "SDER",
4952 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4953 .access = PL3_RW, .resetvalue = 0,
4954 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4955 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4956 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4957 .writefn = vbar_write, .resetvalue = 0,
4958 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4959 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4960 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4961 .access = PL3_RW, .resetvalue = 0,
4962 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4963 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4964 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4965 .access = PL3_RW,
4966 /* no .writefn needed as this can't cause an ASID change;
4967 * we must provide a .raw_writefn and .resetfn because we handle
4968 * reset and migration for the AArch32 TTBCR(S), which might be
4969 * using mask and base_mask.
4971 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4972 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4973 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4974 .type = ARM_CP_ALIAS,
4975 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4976 .access = PL3_RW,
4977 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4978 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4979 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4980 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4981 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4983 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4984 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4985 .type = ARM_CP_ALIAS,
4986 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4987 .access = PL3_RW,
4988 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4989 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4991 .access = PL3_RW, .writefn = vbar_write,
4992 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4993 .resetvalue = 0 },
4994 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4995 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4996 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4997 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4998 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4999 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5000 .access = PL3_RW, .resetvalue = 0,
5001 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5002 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5003 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5004 .access = PL3_RW, .type = ARM_CP_CONST,
5005 .resetvalue = 0 },
5006 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5007 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5008 .access = PL3_RW, .type = ARM_CP_CONST,
5009 .resetvalue = 0 },
5010 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5011 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5012 .access = PL3_RW, .type = ARM_CP_CONST,
5013 .resetvalue = 0 },
5014 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5015 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5016 .access = PL3_W, .type = ARM_CP_NO_RAW,
5017 .writefn = tlbi_aa64_alle3is_write },
5018 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5019 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5020 .access = PL3_W, .type = ARM_CP_NO_RAW,
5021 .writefn = tlbi_aa64_vae3is_write },
5022 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5023 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5024 .access = PL3_W, .type = ARM_CP_NO_RAW,
5025 .writefn = tlbi_aa64_vae3is_write },
5026 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5027 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5028 .access = PL3_W, .type = ARM_CP_NO_RAW,
5029 .writefn = tlbi_aa64_alle3_write },
5030 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5031 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5032 .access = PL3_W, .type = ARM_CP_NO_RAW,
5033 .writefn = tlbi_aa64_vae3_write },
5034 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5035 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5036 .access = PL3_W, .type = ARM_CP_NO_RAW,
5037 .writefn = tlbi_aa64_vae3_write },
5038 REGINFO_SENTINEL
5041 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5042 bool isread)
5044 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5045 * but the AArch32 CTR has its own reginfo struct)
5047 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5048 return CP_ACCESS_TRAP;
5050 return CP_ACCESS_OK;
5053 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5054 uint64_t value)
5056 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5057 * read via a bit in OSLSR_EL1.
5059 int oslock;
5061 if (ri->state == ARM_CP_STATE_AA32) {
5062 oslock = (value == 0xC5ACCE55);
5063 } else {
5064 oslock = value & 1;
5067 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5070 static const ARMCPRegInfo debug_cp_reginfo[] = {
5071 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5072 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5073 * unlike DBGDRAR it is never accessible from EL0.
5074 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5075 * accessor.
5077 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5078 .access = PL0_R, .accessfn = access_tdra,
5079 .type = ARM_CP_CONST, .resetvalue = 0 },
5080 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5081 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5082 .access = PL1_R, .accessfn = access_tdra,
5083 .type = ARM_CP_CONST, .resetvalue = 0 },
5084 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5085 .access = PL0_R, .accessfn = access_tdra,
5086 .type = ARM_CP_CONST, .resetvalue = 0 },
5087 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5088 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5089 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5090 .access = PL1_RW, .accessfn = access_tda,
5091 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5092 .resetvalue = 0 },
5093 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5094 * We don't implement the configurable EL0 access.
5096 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5098 .type = ARM_CP_ALIAS,
5099 .access = PL1_R, .accessfn = access_tda,
5100 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5101 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5103 .access = PL1_W, .type = ARM_CP_NO_RAW,
5104 .accessfn = access_tdosa,
5105 .writefn = oslar_write },
5106 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5107 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5108 .access = PL1_R, .resetvalue = 10,
5109 .accessfn = access_tdosa,
5110 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5111 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5112 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5113 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5114 .access = PL1_RW, .accessfn = access_tdosa,
5115 .type = ARM_CP_NOP },
5116 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5117 * implement vector catch debug events yet.
5119 { .name = "DBGVCR",
5120 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5121 .access = PL1_RW, .accessfn = access_tda,
5122 .type = ARM_CP_NOP },
5123 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5124 * to save and restore a 32-bit guest's DBGVCR)
5126 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5127 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5128 .access = PL2_RW, .accessfn = access_tda,
5129 .type = ARM_CP_NOP },
5130 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5131 * Channel but Linux may try to access this register. The 32-bit
5132 * alias is DBGDCCINT.
5134 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5135 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5136 .access = PL1_RW, .accessfn = access_tda,
5137 .type = ARM_CP_NOP },
5138 REGINFO_SENTINEL
5141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5142 /* 64 bit access versions of the (dummy) debug registers */
5143 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5144 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5145 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5146 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5147 REGINFO_SENTINEL
5150 /* Return the exception level to which exceptions should be taken
5151 * via SVEAccessTrap. If an exception should be routed through
5152 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5153 * take care of raising that exception.
5154 * C.f. the ARM pseudocode function CheckSVEEnabled.
5156 int sve_exception_el(CPUARMState *env, int el)
5158 #ifndef CONFIG_USER_ONLY
5159 if (el <= 1) {
5160 bool disabled = false;
5162 /* The CPACR.ZEN controls traps to EL1:
5163 * 0, 2 : trap EL0 and EL1 accesses
5164 * 1 : trap only EL0 accesses
5165 * 3 : trap no accesses
5167 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5168 disabled = true;
5169 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5170 disabled = el == 0;
5172 if (disabled) {
5173 /* route_to_el2 */
5174 return (arm_feature(env, ARM_FEATURE_EL2)
5175 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5178 /* Check CPACR.FPEN. */
5179 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5180 disabled = true;
5181 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5182 disabled = el == 0;
5184 if (disabled) {
5185 return 0;
5189 /* CPTR_EL2. Since TZ and TFP are positive,
5190 * they will be zero when EL2 is not present.
5192 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5193 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5194 return 2;
5196 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5197 return 0;
5201 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5202 if (arm_feature(env, ARM_FEATURE_EL3)
5203 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5204 return 3;
5206 #endif
5207 return 0;
5211 * Given that SVE is enabled, return the vector length for EL.
5213 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5215 ARMCPU *cpu = arm_env_get_cpu(env);
5216 uint32_t zcr_len = cpu->sve_max_vq - 1;
5218 if (el <= 1) {
5219 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5221 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5222 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5224 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5225 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5227 return zcr_len;
5230 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5231 uint64_t value)
5233 int cur_el = arm_current_el(env);
5234 int old_len = sve_zcr_len_for_el(env, cur_el);
5235 int new_len;
5237 /* Bits other than [3:0] are RAZ/WI. */
5238 raw_write(env, ri, value & 0xf);
5241 * Because we arrived here, we know both FP and SVE are enabled;
5242 * otherwise we would have trapped access to the ZCR_ELn register.
5244 new_len = sve_zcr_len_for_el(env, cur_el);
5245 if (new_len < old_len) {
5246 aarch64_sve_narrow_vq(env, new_len + 1);
5250 static const ARMCPRegInfo zcr_el1_reginfo = {
5251 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5252 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5253 .access = PL1_RW, .type = ARM_CP_SVE,
5254 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5255 .writefn = zcr_write, .raw_writefn = raw_write
5258 static const ARMCPRegInfo zcr_el2_reginfo = {
5259 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5260 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5261 .access = PL2_RW, .type = ARM_CP_SVE,
5262 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5263 .writefn = zcr_write, .raw_writefn = raw_write
5266 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5267 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5268 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5269 .access = PL2_RW, .type = ARM_CP_SVE,
5270 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5273 static const ARMCPRegInfo zcr_el3_reginfo = {
5274 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5275 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5276 .access = PL3_RW, .type = ARM_CP_SVE,
5277 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5278 .writefn = zcr_write, .raw_writefn = raw_write
5281 void hw_watchpoint_update(ARMCPU *cpu, int n)
5283 CPUARMState *env = &cpu->env;
5284 vaddr len = 0;
5285 vaddr wvr = env->cp15.dbgwvr[n];
5286 uint64_t wcr = env->cp15.dbgwcr[n];
5287 int mask;
5288 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5290 if (env->cpu_watchpoint[n]) {
5291 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5292 env->cpu_watchpoint[n] = NULL;
5295 if (!extract64(wcr, 0, 1)) {
5296 /* E bit clear : watchpoint disabled */
5297 return;
5300 switch (extract64(wcr, 3, 2)) {
5301 case 0:
5302 /* LSC 00 is reserved and must behave as if the wp is disabled */
5303 return;
5304 case 1:
5305 flags |= BP_MEM_READ;
5306 break;
5307 case 2:
5308 flags |= BP_MEM_WRITE;
5309 break;
5310 case 3:
5311 flags |= BP_MEM_ACCESS;
5312 break;
5315 /* Attempts to use both MASK and BAS fields simultaneously are
5316 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5317 * thus generating a watchpoint for every byte in the masked region.
5319 mask = extract64(wcr, 24, 4);
5320 if (mask == 1 || mask == 2) {
5321 /* Reserved values of MASK; we must act as if the mask value was
5322 * some non-reserved value, or as if the watchpoint were disabled.
5323 * We choose the latter.
5325 return;
5326 } else if (mask) {
5327 /* Watchpoint covers an aligned area up to 2GB in size */
5328 len = 1ULL << mask;
5329 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5330 * whether the watchpoint fires when the unmasked bits match; we opt
5331 * to generate the exceptions.
5333 wvr &= ~(len - 1);
5334 } else {
5335 /* Watchpoint covers bytes defined by the byte address select bits */
5336 int bas = extract64(wcr, 5, 8);
5337 int basstart;
5339 if (bas == 0) {
5340 /* This must act as if the watchpoint is disabled */
5341 return;
5344 if (extract64(wvr, 2, 1)) {
5345 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5346 * ignored, and BAS[3:0] define which bytes to watch.
5348 bas &= 0xf;
5350 /* The BAS bits are supposed to be programmed to indicate a contiguous
5351 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5352 * we fire for each byte in the word/doubleword addressed by the WVR.
5353 * We choose to ignore any non-zero bits after the first range of 1s.
5355 basstart = ctz32(bas);
5356 len = cto32(bas >> basstart);
5357 wvr += basstart;
5360 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5361 &env->cpu_watchpoint[n]);
5364 void hw_watchpoint_update_all(ARMCPU *cpu)
5366 int i;
5367 CPUARMState *env = &cpu->env;
5369 /* Completely clear out existing QEMU watchpoints and our array, to
5370 * avoid possible stale entries following migration load.
5372 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5373 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5375 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5376 hw_watchpoint_update(cpu, i);
5380 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5381 uint64_t value)
5383 ARMCPU *cpu = arm_env_get_cpu(env);
5384 int i = ri->crm;
5386 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5387 * register reads and behaves as if values written are sign extended.
5388 * Bits [1:0] are RES0.
5390 value = sextract64(value, 0, 49) & ~3ULL;
5392 raw_write(env, ri, value);
5393 hw_watchpoint_update(cpu, i);
5396 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5397 uint64_t value)
5399 ARMCPU *cpu = arm_env_get_cpu(env);
5400 int i = ri->crm;
5402 raw_write(env, ri, value);
5403 hw_watchpoint_update(cpu, i);
5406 void hw_breakpoint_update(ARMCPU *cpu, int n)
5408 CPUARMState *env = &cpu->env;
5409 uint64_t bvr = env->cp15.dbgbvr[n];
5410 uint64_t bcr = env->cp15.dbgbcr[n];
5411 vaddr addr;
5412 int bt;
5413 int flags = BP_CPU;
5415 if (env->cpu_breakpoint[n]) {
5416 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5417 env->cpu_breakpoint[n] = NULL;
5420 if (!extract64(bcr, 0, 1)) {
5421 /* E bit clear : watchpoint disabled */
5422 return;
5425 bt = extract64(bcr, 20, 4);
5427 switch (bt) {
5428 case 4: /* unlinked address mismatch (reserved if AArch64) */
5429 case 5: /* linked address mismatch (reserved if AArch64) */
5430 qemu_log_mask(LOG_UNIMP,
5431 "arm: address mismatch breakpoint types not implemented\n");
5432 return;
5433 case 0: /* unlinked address match */
5434 case 1: /* linked address match */
5436 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5437 * we behave as if the register was sign extended. Bits [1:0] are
5438 * RES0. The BAS field is used to allow setting breakpoints on 16
5439 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5440 * a bp will fire if the addresses covered by the bp and the addresses
5441 * covered by the insn overlap but the insn doesn't start at the
5442 * start of the bp address range. We choose to require the insn and
5443 * the bp to have the same address. The constraints on writing to
5444 * BAS enforced in dbgbcr_write mean we have only four cases:
5445 * 0b0000 => no breakpoint
5446 * 0b0011 => breakpoint on addr
5447 * 0b1100 => breakpoint on addr + 2
5448 * 0b1111 => breakpoint on addr
5449 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5451 int bas = extract64(bcr, 5, 4);
5452 addr = sextract64(bvr, 0, 49) & ~3ULL;
5453 if (bas == 0) {
5454 return;
5456 if (bas == 0xc) {
5457 addr += 2;
5459 break;
5461 case 2: /* unlinked context ID match */
5462 case 8: /* unlinked VMID match (reserved if no EL2) */
5463 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5464 qemu_log_mask(LOG_UNIMP,
5465 "arm: unlinked context breakpoint types not implemented\n");
5466 return;
5467 case 9: /* linked VMID match (reserved if no EL2) */
5468 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5469 case 3: /* linked context ID match */
5470 default:
5471 /* We must generate no events for Linked context matches (unless
5472 * they are linked to by some other bp/wp, which is handled in
5473 * updates for the linking bp/wp). We choose to also generate no events
5474 * for reserved values.
5476 return;
5479 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5482 void hw_breakpoint_update_all(ARMCPU *cpu)
5484 int i;
5485 CPUARMState *env = &cpu->env;
5487 /* Completely clear out existing QEMU breakpoints and our array, to
5488 * avoid possible stale entries following migration load.
5490 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5491 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5493 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5494 hw_breakpoint_update(cpu, i);
5498 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5499 uint64_t value)
5501 ARMCPU *cpu = arm_env_get_cpu(env);
5502 int i = ri->crm;
5504 raw_write(env, ri, value);
5505 hw_breakpoint_update(cpu, i);
5508 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5509 uint64_t value)
5511 ARMCPU *cpu = arm_env_get_cpu(env);
5512 int i = ri->crm;
5514 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5515 * copy of BAS[0].
5517 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5518 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5520 raw_write(env, ri, value);
5521 hw_breakpoint_update(cpu, i);
5524 static void define_debug_regs(ARMCPU *cpu)
5526 /* Define v7 and v8 architectural debug registers.
5527 * These are just dummy implementations for now.
5529 int i;
5530 int wrps, brps, ctx_cmps;
5531 ARMCPRegInfo dbgdidr = {
5532 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5533 .access = PL0_R, .accessfn = access_tda,
5534 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5537 /* Note that all these register fields hold "number of Xs minus 1". */
5538 brps = extract32(cpu->dbgdidr, 24, 4);
5539 wrps = extract32(cpu->dbgdidr, 28, 4);
5540 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5542 assert(ctx_cmps <= brps);
5544 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5545 * of the debug registers such as number of breakpoints;
5546 * check that if they both exist then they agree.
5548 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5549 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5550 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5551 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5554 define_one_arm_cp_reg(cpu, &dbgdidr);
5555 define_arm_cp_regs(cpu, debug_cp_reginfo);
5557 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5558 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5561 for (i = 0; i < brps + 1; i++) {
5562 ARMCPRegInfo dbgregs[] = {
5563 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5564 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5565 .access = PL1_RW, .accessfn = access_tda,
5566 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5567 .writefn = dbgbvr_write, .raw_writefn = raw_write
5569 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5570 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5571 .access = PL1_RW, .accessfn = access_tda,
5572 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5573 .writefn = dbgbcr_write, .raw_writefn = raw_write
5575 REGINFO_SENTINEL
5577 define_arm_cp_regs(cpu, dbgregs);
5580 for (i = 0; i < wrps + 1; i++) {
5581 ARMCPRegInfo dbgregs[] = {
5582 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5583 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5584 .access = PL1_RW, .accessfn = access_tda,
5585 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5586 .writefn = dbgwvr_write, .raw_writefn = raw_write
5588 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5589 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5590 .access = PL1_RW, .accessfn = access_tda,
5591 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5592 .writefn = dbgwcr_write, .raw_writefn = raw_write
5594 REGINFO_SENTINEL
5596 define_arm_cp_regs(cpu, dbgregs);
5600 /* We don't know until after realize whether there's a GICv3
5601 * attached, and that is what registers the gicv3 sysregs.
5602 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5603 * at runtime.
5605 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5607 ARMCPU *cpu = arm_env_get_cpu(env);
5608 uint64_t pfr1 = cpu->id_pfr1;
5610 if (env->gicv3state) {
5611 pfr1 |= 1 << 28;
5613 return pfr1;
5616 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5618 ARMCPU *cpu = arm_env_get_cpu(env);
5619 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5621 if (env->gicv3state) {
5622 pfr0 |= 1 << 24;
5624 return pfr0;
5627 /* Shared logic between LORID and the rest of the LOR* registers.
5628 * Secure state has already been delt with.
5630 static CPAccessResult access_lor_ns(CPUARMState *env)
5632 int el = arm_current_el(env);
5634 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5635 return CP_ACCESS_TRAP_EL2;
5637 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5638 return CP_ACCESS_TRAP_EL3;
5640 return CP_ACCESS_OK;
5643 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5644 bool isread)
5646 if (arm_is_secure_below_el3(env)) {
5647 /* Access ok in secure mode. */
5648 return CP_ACCESS_OK;
5650 return access_lor_ns(env);
5653 static CPAccessResult access_lor_other(CPUARMState *env,
5654 const ARMCPRegInfo *ri, bool isread)
5656 if (arm_is_secure_below_el3(env)) {
5657 /* Access denied in secure mode. */
5658 return CP_ACCESS_TRAP;
5660 return access_lor_ns(env);
5663 #ifdef TARGET_AARCH64
5664 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5665 bool isread)
5667 int el = arm_current_el(env);
5669 if (el < 2 &&
5670 arm_feature(env, ARM_FEATURE_EL2) &&
5671 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5672 return CP_ACCESS_TRAP_EL2;
5674 if (el < 3 &&
5675 arm_feature(env, ARM_FEATURE_EL3) &&
5676 !(env->cp15.scr_el3 & SCR_APK)) {
5677 return CP_ACCESS_TRAP_EL3;
5679 return CP_ACCESS_OK;
5682 static const ARMCPRegInfo pauth_reginfo[] = {
5683 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5684 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5685 .access = PL1_RW, .accessfn = access_pauth,
5686 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5687 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5688 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5689 .access = PL1_RW, .accessfn = access_pauth,
5690 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5691 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5692 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5693 .access = PL1_RW, .accessfn = access_pauth,
5694 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5695 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5696 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5697 .access = PL1_RW, .accessfn = access_pauth,
5698 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5699 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5700 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5701 .access = PL1_RW, .accessfn = access_pauth,
5702 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5703 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5704 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5705 .access = PL1_RW, .accessfn = access_pauth,
5706 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5707 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5708 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5709 .access = PL1_RW, .accessfn = access_pauth,
5710 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5711 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5712 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5713 .access = PL1_RW, .accessfn = access_pauth,
5714 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5715 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5716 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5717 .access = PL1_RW, .accessfn = access_pauth,
5718 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5719 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5721 .access = PL1_RW, .accessfn = access_pauth,
5722 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5723 REGINFO_SENTINEL
5725 #endif
5727 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5728 bool isread)
5730 int el = arm_current_el(env);
5732 if (el == 0) {
5733 uint64_t sctlr = arm_sctlr(env, el);
5734 if (!(sctlr & SCTLR_EnRCTX)) {
5735 return CP_ACCESS_TRAP;
5737 } else if (el == 1) {
5738 uint64_t hcr = arm_hcr_el2_eff(env);
5739 if (hcr & HCR_NV) {
5740 return CP_ACCESS_TRAP_EL2;
5743 return CP_ACCESS_OK;
5746 static const ARMCPRegInfo predinv_reginfo[] = {
5747 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5749 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5750 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5752 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5753 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5754 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5755 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5757 * Note the AArch32 opcodes have a different OPC1.
5759 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5760 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5761 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5762 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5763 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5764 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5765 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5766 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5767 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5768 REGINFO_SENTINEL
5771 void register_cp_regs_for_features(ARMCPU *cpu)
5773 /* Register all the coprocessor registers based on feature bits */
5774 CPUARMState *env = &cpu->env;
5775 if (arm_feature(env, ARM_FEATURE_M)) {
5776 /* M profile has no coprocessor registers */
5777 return;
5780 define_arm_cp_regs(cpu, cp_reginfo);
5781 if (!arm_feature(env, ARM_FEATURE_V8)) {
5782 /* Must go early as it is full of wildcards that may be
5783 * overridden by later definitions.
5785 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5788 if (arm_feature(env, ARM_FEATURE_V6)) {
5789 /* The ID registers all have impdef reset values */
5790 ARMCPRegInfo v6_idregs[] = {
5791 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5793 .access = PL1_R, .type = ARM_CP_CONST,
5794 .resetvalue = cpu->id_pfr0 },
5795 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5796 * the value of the GIC field until after we define these regs.
5798 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5800 .access = PL1_R, .type = ARM_CP_NO_RAW,
5801 .readfn = id_pfr1_read,
5802 .writefn = arm_cp_write_ignore },
5803 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5805 .access = PL1_R, .type = ARM_CP_CONST,
5806 .resetvalue = cpu->id_dfr0 },
5807 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5809 .access = PL1_R, .type = ARM_CP_CONST,
5810 .resetvalue = cpu->id_afr0 },
5811 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5813 .access = PL1_R, .type = ARM_CP_CONST,
5814 .resetvalue = cpu->id_mmfr0 },
5815 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5817 .access = PL1_R, .type = ARM_CP_CONST,
5818 .resetvalue = cpu->id_mmfr1 },
5819 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5821 .access = PL1_R, .type = ARM_CP_CONST,
5822 .resetvalue = cpu->id_mmfr2 },
5823 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5825 .access = PL1_R, .type = ARM_CP_CONST,
5826 .resetvalue = cpu->id_mmfr3 },
5827 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5829 .access = PL1_R, .type = ARM_CP_CONST,
5830 .resetvalue = cpu->isar.id_isar0 },
5831 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5833 .access = PL1_R, .type = ARM_CP_CONST,
5834 .resetvalue = cpu->isar.id_isar1 },
5835 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5837 .access = PL1_R, .type = ARM_CP_CONST,
5838 .resetvalue = cpu->isar.id_isar2 },
5839 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5841 .access = PL1_R, .type = ARM_CP_CONST,
5842 .resetvalue = cpu->isar.id_isar3 },
5843 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5845 .access = PL1_R, .type = ARM_CP_CONST,
5846 .resetvalue = cpu->isar.id_isar4 },
5847 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5849 .access = PL1_R, .type = ARM_CP_CONST,
5850 .resetvalue = cpu->isar.id_isar5 },
5851 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5853 .access = PL1_R, .type = ARM_CP_CONST,
5854 .resetvalue = cpu->id_mmfr4 },
5855 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5857 .access = PL1_R, .type = ARM_CP_CONST,
5858 .resetvalue = cpu->isar.id_isar6 },
5859 REGINFO_SENTINEL
5861 define_arm_cp_regs(cpu, v6_idregs);
5862 define_arm_cp_regs(cpu, v6_cp_reginfo);
5863 } else {
5864 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5866 if (arm_feature(env, ARM_FEATURE_V6K)) {
5867 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5869 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5870 !arm_feature(env, ARM_FEATURE_PMSA)) {
5871 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5873 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5874 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5876 if (arm_feature(env, ARM_FEATURE_V7)) {
5877 /* v7 performance monitor control register: same implementor
5878 * field as main ID register, and we implement four counters in
5879 * addition to the cycle count register.
5881 unsigned int i, pmcrn = 4;
5882 ARMCPRegInfo pmcr = {
5883 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5884 .access = PL0_RW,
5885 .type = ARM_CP_IO | ARM_CP_ALIAS,
5886 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5887 .accessfn = pmreg_access, .writefn = pmcr_write,
5888 .raw_writefn = raw_write,
5890 ARMCPRegInfo pmcr64 = {
5891 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5892 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5893 .access = PL0_RW, .accessfn = pmreg_access,
5894 .type = ARM_CP_IO,
5895 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5896 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5897 .writefn = pmcr_write, .raw_writefn = raw_write,
5899 define_one_arm_cp_reg(cpu, &pmcr);
5900 define_one_arm_cp_reg(cpu, &pmcr64);
5901 for (i = 0; i < pmcrn; i++) {
5902 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5903 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5904 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5905 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5906 ARMCPRegInfo pmev_regs[] = {
5907 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5908 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5909 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5910 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5911 .accessfn = pmreg_access },
5912 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5913 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5914 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5915 .type = ARM_CP_IO,
5916 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5917 .raw_readfn = pmevcntr_rawread,
5918 .raw_writefn = pmevcntr_rawwrite },
5919 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5920 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5921 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5922 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5923 .accessfn = pmreg_access },
5924 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5925 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5926 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5927 .type = ARM_CP_IO,
5928 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5929 .raw_writefn = pmevtyper_rawwrite },
5930 REGINFO_SENTINEL
5932 define_arm_cp_regs(cpu, pmev_regs);
5933 g_free(pmevcntr_name);
5934 g_free(pmevcntr_el0_name);
5935 g_free(pmevtyper_name);
5936 g_free(pmevtyper_el0_name);
5938 ARMCPRegInfo clidr = {
5939 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5940 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5941 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5943 define_one_arm_cp_reg(cpu, &clidr);
5944 define_arm_cp_regs(cpu, v7_cp_reginfo);
5945 define_debug_regs(cpu);
5946 } else {
5947 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5949 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5950 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5951 ARMCPRegInfo v81_pmu_regs[] = {
5952 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5953 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5954 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5955 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5956 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5957 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5958 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5959 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5960 REGINFO_SENTINEL
5962 define_arm_cp_regs(cpu, v81_pmu_regs);
5964 if (arm_feature(env, ARM_FEATURE_V8)) {
5965 /* AArch64 ID registers, which all have impdef reset values.
5966 * Note that within the ID register ranges the unused slots
5967 * must all RAZ, not UNDEF; future architecture versions may
5968 * define new registers here.
5970 ARMCPRegInfo v8_idregs[] = {
5971 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5972 * know the right value for the GIC field until after we
5973 * define these regs.
5975 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5976 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5977 .access = PL1_R, .type = ARM_CP_NO_RAW,
5978 .readfn = id_aa64pfr0_read,
5979 .writefn = arm_cp_write_ignore },
5980 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5982 .access = PL1_R, .type = ARM_CP_CONST,
5983 .resetvalue = cpu->isar.id_aa64pfr1},
5984 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5986 .access = PL1_R, .type = ARM_CP_CONST,
5987 .resetvalue = 0 },
5988 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5990 .access = PL1_R, .type = ARM_CP_CONST,
5991 .resetvalue = 0 },
5992 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5994 .access = PL1_R, .type = ARM_CP_CONST,
5995 /* At present, only SVEver == 0 is defined anyway. */
5996 .resetvalue = 0 },
5997 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5999 .access = PL1_R, .type = ARM_CP_CONST,
6000 .resetvalue = 0 },
6001 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6003 .access = PL1_R, .type = ARM_CP_CONST,
6004 .resetvalue = 0 },
6005 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6007 .access = PL1_R, .type = ARM_CP_CONST,
6008 .resetvalue = 0 },
6009 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6011 .access = PL1_R, .type = ARM_CP_CONST,
6012 .resetvalue = cpu->id_aa64dfr0 },
6013 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6015 .access = PL1_R, .type = ARM_CP_CONST,
6016 .resetvalue = cpu->id_aa64dfr1 },
6017 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6019 .access = PL1_R, .type = ARM_CP_CONST,
6020 .resetvalue = 0 },
6021 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6023 .access = PL1_R, .type = ARM_CP_CONST,
6024 .resetvalue = 0 },
6025 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6027 .access = PL1_R, .type = ARM_CP_CONST,
6028 .resetvalue = cpu->id_aa64afr0 },
6029 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6031 .access = PL1_R, .type = ARM_CP_CONST,
6032 .resetvalue = cpu->id_aa64afr1 },
6033 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6035 .access = PL1_R, .type = ARM_CP_CONST,
6036 .resetvalue = 0 },
6037 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6039 .access = PL1_R, .type = ARM_CP_CONST,
6040 .resetvalue = 0 },
6041 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6043 .access = PL1_R, .type = ARM_CP_CONST,
6044 .resetvalue = cpu->isar.id_aa64isar0 },
6045 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6047 .access = PL1_R, .type = ARM_CP_CONST,
6048 .resetvalue = cpu->isar.id_aa64isar1 },
6049 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6051 .access = PL1_R, .type = ARM_CP_CONST,
6052 .resetvalue = 0 },
6053 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6055 .access = PL1_R, .type = ARM_CP_CONST,
6056 .resetvalue = 0 },
6057 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6059 .access = PL1_R, .type = ARM_CP_CONST,
6060 .resetvalue = 0 },
6061 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6063 .access = PL1_R, .type = ARM_CP_CONST,
6064 .resetvalue = 0 },
6065 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6067 .access = PL1_R, .type = ARM_CP_CONST,
6068 .resetvalue = 0 },
6069 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6071 .access = PL1_R, .type = ARM_CP_CONST,
6072 .resetvalue = 0 },
6073 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6075 .access = PL1_R, .type = ARM_CP_CONST,
6076 .resetvalue = cpu->isar.id_aa64mmfr0 },
6077 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6079 .access = PL1_R, .type = ARM_CP_CONST,
6080 .resetvalue = cpu->isar.id_aa64mmfr1 },
6081 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6083 .access = PL1_R, .type = ARM_CP_CONST,
6084 .resetvalue = 0 },
6085 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6087 .access = PL1_R, .type = ARM_CP_CONST,
6088 .resetvalue = 0 },
6089 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6091 .access = PL1_R, .type = ARM_CP_CONST,
6092 .resetvalue = 0 },
6093 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6095 .access = PL1_R, .type = ARM_CP_CONST,
6096 .resetvalue = 0 },
6097 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6099 .access = PL1_R, .type = ARM_CP_CONST,
6100 .resetvalue = 0 },
6101 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6103 .access = PL1_R, .type = ARM_CP_CONST,
6104 .resetvalue = 0 },
6105 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6107 .access = PL1_R, .type = ARM_CP_CONST,
6108 .resetvalue = cpu->isar.mvfr0 },
6109 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6111 .access = PL1_R, .type = ARM_CP_CONST,
6112 .resetvalue = cpu->isar.mvfr1 },
6113 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6115 .access = PL1_R, .type = ARM_CP_CONST,
6116 .resetvalue = cpu->isar.mvfr2 },
6117 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6119 .access = PL1_R, .type = ARM_CP_CONST,
6120 .resetvalue = 0 },
6121 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6123 .access = PL1_R, .type = ARM_CP_CONST,
6124 .resetvalue = 0 },
6125 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6127 .access = PL1_R, .type = ARM_CP_CONST,
6128 .resetvalue = 0 },
6129 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6131 .access = PL1_R, .type = ARM_CP_CONST,
6132 .resetvalue = 0 },
6133 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6135 .access = PL1_R, .type = ARM_CP_CONST,
6136 .resetvalue = 0 },
6137 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6138 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6139 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6140 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6141 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6143 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6144 .resetvalue = cpu->pmceid0 },
6145 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6146 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6147 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6148 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6149 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6150 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6151 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6152 .resetvalue = cpu->pmceid1 },
6153 REGINFO_SENTINEL
6155 #ifdef CONFIG_USER_ONLY
6156 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6157 { .name = "ID_AA64PFR0_EL1",
6158 .exported_bits = 0x000f000f00ff0000,
6159 .fixed_bits = 0x0000000000000011 },
6160 { .name = "ID_AA64PFR1_EL1",
6161 .exported_bits = 0x00000000000000f0 },
6162 { .name = "ID_AA64PFR*_EL1_RESERVED",
6163 .is_glob = true },
6164 { .name = "ID_AA64ZFR0_EL1" },
6165 { .name = "ID_AA64MMFR0_EL1",
6166 .fixed_bits = 0x00000000ff000000 },
6167 { .name = "ID_AA64MMFR1_EL1" },
6168 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6169 .is_glob = true },
6170 { .name = "ID_AA64DFR0_EL1",
6171 .fixed_bits = 0x0000000000000006 },
6172 { .name = "ID_AA64DFR1_EL1" },
6173 { .name = "ID_AA64DFR*_EL1_RESERVED",
6174 .is_glob = true },
6175 { .name = "ID_AA64AFR*",
6176 .is_glob = true },
6177 { .name = "ID_AA64ISAR0_EL1",
6178 .exported_bits = 0x00fffffff0fffff0 },
6179 { .name = "ID_AA64ISAR1_EL1",
6180 .exported_bits = 0x000000f0ffffffff },
6181 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6182 .is_glob = true },
6183 REGUSERINFO_SENTINEL
6185 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6186 #endif
6187 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6188 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6189 !arm_feature(env, ARM_FEATURE_EL2)) {
6190 ARMCPRegInfo rvbar = {
6191 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6192 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6193 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6195 define_one_arm_cp_reg(cpu, &rvbar);
6197 define_arm_cp_regs(cpu, v8_idregs);
6198 define_arm_cp_regs(cpu, v8_cp_reginfo);
6200 if (arm_feature(env, ARM_FEATURE_EL2)) {
6201 uint64_t vmpidr_def = mpidr_read_val(env);
6202 ARMCPRegInfo vpidr_regs[] = {
6203 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6204 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6205 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6206 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6207 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6208 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6209 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6210 .access = PL2_RW, .resetvalue = cpu->midr,
6211 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6212 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6213 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6214 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6215 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6216 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6217 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6218 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6219 .access = PL2_RW,
6220 .resetvalue = vmpidr_def,
6221 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6222 REGINFO_SENTINEL
6224 define_arm_cp_regs(cpu, vpidr_regs);
6225 define_arm_cp_regs(cpu, el2_cp_reginfo);
6226 if (arm_feature(env, ARM_FEATURE_V8)) {
6227 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6229 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6230 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6231 ARMCPRegInfo rvbar = {
6232 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6233 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6234 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6236 define_one_arm_cp_reg(cpu, &rvbar);
6238 } else {
6239 /* If EL2 is missing but higher ELs are enabled, we need to
6240 * register the no_el2 reginfos.
6242 if (arm_feature(env, ARM_FEATURE_EL3)) {
6243 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6244 * of MIDR_EL1 and MPIDR_EL1.
6246 ARMCPRegInfo vpidr_regs[] = {
6247 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6248 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6249 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6250 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6251 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6252 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6253 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6254 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6255 .type = ARM_CP_NO_RAW,
6256 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6257 REGINFO_SENTINEL
6259 define_arm_cp_regs(cpu, vpidr_regs);
6260 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6261 if (arm_feature(env, ARM_FEATURE_V8)) {
6262 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6266 if (arm_feature(env, ARM_FEATURE_EL3)) {
6267 define_arm_cp_regs(cpu, el3_cp_reginfo);
6268 ARMCPRegInfo el3_regs[] = {
6269 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6270 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6271 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6272 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6273 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6274 .access = PL3_RW,
6275 .raw_writefn = raw_write, .writefn = sctlr_write,
6276 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6277 .resetvalue = cpu->reset_sctlr },
6278 REGINFO_SENTINEL
6281 define_arm_cp_regs(cpu, el3_regs);
6283 /* The behaviour of NSACR is sufficiently various that we don't
6284 * try to describe it in a single reginfo:
6285 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6286 * reads as constant 0xc00 from NS EL1 and NS EL2
6287 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6288 * if v7 without EL3, register doesn't exist
6289 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6291 if (arm_feature(env, ARM_FEATURE_EL3)) {
6292 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6293 ARMCPRegInfo nsacr = {
6294 .name = "NSACR", .type = ARM_CP_CONST,
6295 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6296 .access = PL1_RW, .accessfn = nsacr_access,
6297 .resetvalue = 0xc00
6299 define_one_arm_cp_reg(cpu, &nsacr);
6300 } else {
6301 ARMCPRegInfo nsacr = {
6302 .name = "NSACR",
6303 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6304 .access = PL3_RW | PL1_R,
6305 .resetvalue = 0,
6306 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6308 define_one_arm_cp_reg(cpu, &nsacr);
6310 } else {
6311 if (arm_feature(env, ARM_FEATURE_V8)) {
6312 ARMCPRegInfo nsacr = {
6313 .name = "NSACR", .type = ARM_CP_CONST,
6314 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6315 .access = PL1_R,
6316 .resetvalue = 0xc00
6318 define_one_arm_cp_reg(cpu, &nsacr);
6322 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6323 if (arm_feature(env, ARM_FEATURE_V6)) {
6324 /* PMSAv6 not implemented */
6325 assert(arm_feature(env, ARM_FEATURE_V7));
6326 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6327 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6328 } else {
6329 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6331 } else {
6332 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6333 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6334 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6335 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6336 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6339 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6340 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6342 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6343 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6345 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6346 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6348 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6349 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6351 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6352 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6354 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6355 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6357 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6358 define_arm_cp_regs(cpu, omap_cp_reginfo);
6360 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6361 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6363 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6364 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6366 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6367 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6369 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6370 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6372 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6373 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6374 * be read-only (ie write causes UNDEF exception).
6377 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6378 /* Pre-v8 MIDR space.
6379 * Note that the MIDR isn't a simple constant register because
6380 * of the TI925 behaviour where writes to another register can
6381 * cause the MIDR value to change.
6383 * Unimplemented registers in the c15 0 0 0 space default to
6384 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6385 * and friends override accordingly.
6387 { .name = "MIDR",
6388 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6389 .access = PL1_R, .resetvalue = cpu->midr,
6390 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6391 .readfn = midr_read,
6392 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6393 .type = ARM_CP_OVERRIDE },
6394 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6395 { .name = "DUMMY",
6396 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6397 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6398 { .name = "DUMMY",
6399 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6400 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6401 { .name = "DUMMY",
6402 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6403 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6404 { .name = "DUMMY",
6405 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6406 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6407 { .name = "DUMMY",
6408 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6409 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6410 REGINFO_SENTINEL
6412 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6413 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6415 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6416 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6417 .readfn = midr_read },
6418 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6419 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6420 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6421 .access = PL1_R, .resetvalue = cpu->midr },
6422 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6423 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6424 .access = PL1_R, .resetvalue = cpu->midr },
6425 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6427 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6428 REGINFO_SENTINEL
6430 ARMCPRegInfo id_cp_reginfo[] = {
6431 /* These are common to v8 and pre-v8 */
6432 { .name = "CTR",
6433 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6434 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6435 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6436 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6437 .access = PL0_R, .accessfn = ctr_el0_access,
6438 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6439 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6440 { .name = "TCMTR",
6441 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6442 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6443 REGINFO_SENTINEL
6445 /* TLBTR is specific to VMSA */
6446 ARMCPRegInfo id_tlbtr_reginfo = {
6447 .name = "TLBTR",
6448 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6449 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6451 /* MPUIR is specific to PMSA V6+ */
6452 ARMCPRegInfo id_mpuir_reginfo = {
6453 .name = "MPUIR",
6454 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6455 .access = PL1_R, .type = ARM_CP_CONST,
6456 .resetvalue = cpu->pmsav7_dregion << 8
6458 ARMCPRegInfo crn0_wi_reginfo = {
6459 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6460 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6461 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6463 #ifdef CONFIG_USER_ONLY
6464 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6465 { .name = "MIDR_EL1",
6466 .exported_bits = 0x00000000ffffffff },
6467 { .name = "REVIDR_EL1" },
6468 REGUSERINFO_SENTINEL
6470 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6471 #endif
6472 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6473 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6474 ARMCPRegInfo *r;
6475 /* Register the blanket "writes ignored" value first to cover the
6476 * whole space. Then update the specific ID registers to allow write
6477 * access, so that they ignore writes rather than causing them to
6478 * UNDEF.
6480 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6481 for (r = id_pre_v8_midr_cp_reginfo;
6482 r->type != ARM_CP_SENTINEL; r++) {
6483 r->access = PL1_RW;
6485 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6486 r->access = PL1_RW;
6488 id_mpuir_reginfo.access = PL1_RW;
6489 id_tlbtr_reginfo.access = PL1_RW;
6491 if (arm_feature(env, ARM_FEATURE_V8)) {
6492 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6493 } else {
6494 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6496 define_arm_cp_regs(cpu, id_cp_reginfo);
6497 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6498 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6499 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6500 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6504 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6505 ARMCPRegInfo mpidr_cp_reginfo[] = {
6506 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6507 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6508 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6509 REGINFO_SENTINEL
6511 #ifdef CONFIG_USER_ONLY
6512 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6513 { .name = "MPIDR_EL1",
6514 .fixed_bits = 0x0000000080000000 },
6515 REGUSERINFO_SENTINEL
6517 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6518 #endif
6519 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6522 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6523 ARMCPRegInfo auxcr_reginfo[] = {
6524 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6525 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6526 .access = PL1_RW, .type = ARM_CP_CONST,
6527 .resetvalue = cpu->reset_auxcr },
6528 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6529 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6530 .access = PL2_RW, .type = ARM_CP_CONST,
6531 .resetvalue = 0 },
6532 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6533 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6534 .access = PL3_RW, .type = ARM_CP_CONST,
6535 .resetvalue = 0 },
6536 REGINFO_SENTINEL
6538 define_arm_cp_regs(cpu, auxcr_reginfo);
6539 if (arm_feature(env, ARM_FEATURE_V8)) {
6540 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6541 ARMCPRegInfo hactlr2_reginfo = {
6542 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6543 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6544 .access = PL2_RW, .type = ARM_CP_CONST,
6545 .resetvalue = 0
6547 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6551 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6552 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6553 /* 32 bit view is [31:18] 0...0 [43:32]. */
6554 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6555 | extract64(cpu->reset_cbar, 32, 12);
6556 ARMCPRegInfo cbar_reginfo[] = {
6557 { .name = "CBAR",
6558 .type = ARM_CP_CONST,
6559 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6560 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6561 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6562 .type = ARM_CP_CONST,
6563 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6564 .access = PL1_R, .resetvalue = cbar32 },
6565 REGINFO_SENTINEL
6567 /* We don't implement a r/w 64 bit CBAR currently */
6568 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6569 define_arm_cp_regs(cpu, cbar_reginfo);
6570 } else {
6571 ARMCPRegInfo cbar = {
6572 .name = "CBAR",
6573 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6574 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6575 .fieldoffset = offsetof(CPUARMState,
6576 cp15.c15_config_base_address)
6578 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6579 cbar.access = PL1_R;
6580 cbar.fieldoffset = 0;
6581 cbar.type = ARM_CP_CONST;
6583 define_one_arm_cp_reg(cpu, &cbar);
6587 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6588 ARMCPRegInfo vbar_cp_reginfo[] = {
6589 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6590 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6591 .access = PL1_RW, .writefn = vbar_write,
6592 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6593 offsetof(CPUARMState, cp15.vbar_ns) },
6594 .resetvalue = 0 },
6595 REGINFO_SENTINEL
6597 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6600 /* Generic registers whose values depend on the implementation */
6602 ARMCPRegInfo sctlr = {
6603 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6604 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6605 .access = PL1_RW,
6606 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6607 offsetof(CPUARMState, cp15.sctlr_ns) },
6608 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6609 .raw_writefn = raw_write,
6611 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6612 /* Normally we would always end the TB on an SCTLR write, but Linux
6613 * arch/arm/mach-pxa/sleep.S expects two instructions following
6614 * an MMU enable to execute from cache. Imitate this behaviour.
6616 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6618 define_one_arm_cp_reg(cpu, &sctlr);
6621 if (cpu_isar_feature(aa64_lor, cpu)) {
6623 * A trivial implementation of ARMv8.1-LOR leaves all of these
6624 * registers fixed at 0, which indicates that there are zero
6625 * supported Limited Ordering regions.
6627 static const ARMCPRegInfo lor_reginfo[] = {
6628 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6629 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6630 .access = PL1_RW, .accessfn = access_lor_other,
6631 .type = ARM_CP_CONST, .resetvalue = 0 },
6632 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6633 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6634 .access = PL1_RW, .accessfn = access_lor_other,
6635 .type = ARM_CP_CONST, .resetvalue = 0 },
6636 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6637 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6638 .access = PL1_RW, .accessfn = access_lor_other,
6639 .type = ARM_CP_CONST, .resetvalue = 0 },
6640 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6641 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6642 .access = PL1_RW, .accessfn = access_lor_other,
6643 .type = ARM_CP_CONST, .resetvalue = 0 },
6644 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6645 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6646 .access = PL1_R, .accessfn = access_lorid,
6647 .type = ARM_CP_CONST, .resetvalue = 0 },
6648 REGINFO_SENTINEL
6650 define_arm_cp_regs(cpu, lor_reginfo);
6653 if (cpu_isar_feature(aa64_sve, cpu)) {
6654 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6655 if (arm_feature(env, ARM_FEATURE_EL2)) {
6656 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6657 } else {
6658 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6660 if (arm_feature(env, ARM_FEATURE_EL3)) {
6661 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6665 #ifdef TARGET_AARCH64
6666 if (cpu_isar_feature(aa64_pauth, cpu)) {
6667 define_arm_cp_regs(cpu, pauth_reginfo);
6669 #endif
6672 * While all v8.0 cpus support aarch64, QEMU does have configurations
6673 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6674 * which will set ID_ISAR6.
6676 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6677 ? cpu_isar_feature(aa64_predinv, cpu)
6678 : cpu_isar_feature(aa32_predinv, cpu)) {
6679 define_arm_cp_regs(cpu, predinv_reginfo);
6683 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6685 CPUState *cs = CPU(cpu);
6686 CPUARMState *env = &cpu->env;
6688 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6689 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6690 aarch64_fpu_gdb_set_reg,
6691 34, "aarch64-fpu.xml", 0);
6692 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6693 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6694 51, "arm-neon.xml", 0);
6695 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6696 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6697 35, "arm-vfp3.xml", 0);
6698 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6699 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6700 19, "arm-vfp.xml", 0);
6702 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6703 arm_gen_dynamic_xml(cs),
6704 "system-registers.xml", 0);
6707 /* Sort alphabetically by type name, except for "any". */
6708 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6710 ObjectClass *class_a = (ObjectClass *)a;
6711 ObjectClass *class_b = (ObjectClass *)b;
6712 const char *name_a, *name_b;
6714 name_a = object_class_get_name(class_a);
6715 name_b = object_class_get_name(class_b);
6716 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6717 return 1;
6718 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6719 return -1;
6720 } else {
6721 return strcmp(name_a, name_b);
6725 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6727 ObjectClass *oc = data;
6728 const char *typename;
6729 char *name;
6731 typename = object_class_get_name(oc);
6732 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6733 qemu_printf(" %s\n", name);
6734 g_free(name);
6737 void arm_cpu_list(void)
6739 GSList *list;
6741 list = object_class_get_list(TYPE_ARM_CPU, false);
6742 list = g_slist_sort(list, arm_cpu_list_compare);
6743 qemu_printf("Available CPUs:\n");
6744 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6745 g_slist_free(list);
6748 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6750 ObjectClass *oc = data;
6751 CpuDefinitionInfoList **cpu_list = user_data;
6752 CpuDefinitionInfoList *entry;
6753 CpuDefinitionInfo *info;
6754 const char *typename;
6756 typename = object_class_get_name(oc);
6757 info = g_malloc0(sizeof(*info));
6758 info->name = g_strndup(typename,
6759 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6760 info->q_typename = g_strdup(typename);
6762 entry = g_malloc0(sizeof(*entry));
6763 entry->value = info;
6764 entry->next = *cpu_list;
6765 *cpu_list = entry;
6768 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6770 CpuDefinitionInfoList *cpu_list = NULL;
6771 GSList *list;
6773 list = object_class_get_list(TYPE_ARM_CPU, false);
6774 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6775 g_slist_free(list);
6777 return cpu_list;
6780 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6781 void *opaque, int state, int secstate,
6782 int crm, int opc1, int opc2,
6783 const char *name)
6785 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6786 * add a single reginfo struct to the hash table.
6788 uint32_t *key = g_new(uint32_t, 1);
6789 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6790 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6791 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6793 r2->name = g_strdup(name);
6794 /* Reset the secure state to the specific incoming state. This is
6795 * necessary as the register may have been defined with both states.
6797 r2->secure = secstate;
6799 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6800 /* Register is banked (using both entries in array).
6801 * Overwriting fieldoffset as the array is only used to define
6802 * banked registers but later only fieldoffset is used.
6804 r2->fieldoffset = r->bank_fieldoffsets[ns];
6807 if (state == ARM_CP_STATE_AA32) {
6808 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6809 /* If the register is banked then we don't need to migrate or
6810 * reset the 32-bit instance in certain cases:
6812 * 1) If the register has both 32-bit and 64-bit instances then we
6813 * can count on the 64-bit instance taking care of the
6814 * non-secure bank.
6815 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6816 * taking care of the secure bank. This requires that separate
6817 * 32 and 64-bit definitions are provided.
6819 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6820 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6821 r2->type |= ARM_CP_ALIAS;
6823 } else if ((secstate != r->secure) && !ns) {
6824 /* The register is not banked so we only want to allow migration of
6825 * the non-secure instance.
6827 r2->type |= ARM_CP_ALIAS;
6830 if (r->state == ARM_CP_STATE_BOTH) {
6831 /* We assume it is a cp15 register if the .cp field is left unset.
6833 if (r2->cp == 0) {
6834 r2->cp = 15;
6837 #ifdef HOST_WORDS_BIGENDIAN
6838 if (r2->fieldoffset) {
6839 r2->fieldoffset += sizeof(uint32_t);
6841 #endif
6844 if (state == ARM_CP_STATE_AA64) {
6845 /* To allow abbreviation of ARMCPRegInfo
6846 * definitions, we treat cp == 0 as equivalent to
6847 * the value for "standard guest-visible sysreg".
6848 * STATE_BOTH definitions are also always "standard
6849 * sysreg" in their AArch64 view (the .cp value may
6850 * be non-zero for the benefit of the AArch32 view).
6852 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6853 r2->cp = CP_REG_ARM64_SYSREG_CP;
6855 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6856 r2->opc0, opc1, opc2);
6857 } else {
6858 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6860 if (opaque) {
6861 r2->opaque = opaque;
6863 /* reginfo passed to helpers is correct for the actual access,
6864 * and is never ARM_CP_STATE_BOTH:
6866 r2->state = state;
6867 /* Make sure reginfo passed to helpers for wildcarded regs
6868 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6870 r2->crm = crm;
6871 r2->opc1 = opc1;
6872 r2->opc2 = opc2;
6873 /* By convention, for wildcarded registers only the first
6874 * entry is used for migration; the others are marked as
6875 * ALIAS so we don't try to transfer the register
6876 * multiple times. Special registers (ie NOP/WFI) are
6877 * never migratable and not even raw-accessible.
6879 if ((r->type & ARM_CP_SPECIAL)) {
6880 r2->type |= ARM_CP_NO_RAW;
6882 if (((r->crm == CP_ANY) && crm != 0) ||
6883 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6884 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6885 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6888 /* Check that raw accesses are either forbidden or handled. Note that
6889 * we can't assert this earlier because the setup of fieldoffset for
6890 * banked registers has to be done first.
6892 if (!(r2->type & ARM_CP_NO_RAW)) {
6893 assert(!raw_accessors_invalid(r2));
6896 /* Overriding of an existing definition must be explicitly
6897 * requested.
6899 if (!(r->type & ARM_CP_OVERRIDE)) {
6900 ARMCPRegInfo *oldreg;
6901 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6902 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6903 fprintf(stderr, "Register redefined: cp=%d %d bit "
6904 "crn=%d crm=%d opc1=%d opc2=%d, "
6905 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6906 r2->crn, r2->crm, r2->opc1, r2->opc2,
6907 oldreg->name, r2->name);
6908 g_assert_not_reached();
6911 g_hash_table_insert(cpu->cp_regs, key, r2);
6915 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6916 const ARMCPRegInfo *r, void *opaque)
6918 /* Define implementations of coprocessor registers.
6919 * We store these in a hashtable because typically
6920 * there are less than 150 registers in a space which
6921 * is 16*16*16*8*8 = 262144 in size.
6922 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6923 * If a register is defined twice then the second definition is
6924 * used, so this can be used to define some generic registers and
6925 * then override them with implementation specific variations.
6926 * At least one of the original and the second definition should
6927 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6928 * against accidental use.
6930 * The state field defines whether the register is to be
6931 * visible in the AArch32 or AArch64 execution state. If the
6932 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6933 * reginfo structure for the AArch32 view, which sees the lower
6934 * 32 bits of the 64 bit register.
6936 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6937 * be wildcarded. AArch64 registers are always considered to be 64
6938 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6939 * the register, if any.
6941 int crm, opc1, opc2, state;
6942 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6943 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6944 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6945 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6946 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6947 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6948 /* 64 bit registers have only CRm and Opc1 fields */
6949 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6950 /* op0 only exists in the AArch64 encodings */
6951 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6952 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6953 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6954 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6955 * encodes a minimum access level for the register. We roll this
6956 * runtime check into our general permission check code, so check
6957 * here that the reginfo's specified permissions are strict enough
6958 * to encompass the generic architectural permission check.
6960 if (r->state != ARM_CP_STATE_AA32) {
6961 int mask = 0;
6962 switch (r->opc1) {
6963 case 0:
6964 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6965 mask = PL0U_R | PL1_RW;
6966 break;
6967 case 1: case 2:
6968 /* min_EL EL1 */
6969 mask = PL1_RW;
6970 break;
6971 case 3:
6972 /* min_EL EL0 */
6973 mask = PL0_RW;
6974 break;
6975 case 4:
6976 /* min_EL EL2 */
6977 mask = PL2_RW;
6978 break;
6979 case 5:
6980 /* unallocated encoding, so not possible */
6981 assert(false);
6982 break;
6983 case 6:
6984 /* min_EL EL3 */
6985 mask = PL3_RW;
6986 break;
6987 case 7:
6988 /* min_EL EL1, secure mode only (we don't check the latter) */
6989 mask = PL1_RW;
6990 break;
6991 default:
6992 /* broken reginfo with out-of-range opc1 */
6993 assert(false);
6994 break;
6996 /* assert our permissions are not too lax (stricter is fine) */
6997 assert((r->access & ~mask) == 0);
7000 /* Check that the register definition has enough info to handle
7001 * reads and writes if they are permitted.
7003 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7004 if (r->access & PL3_R) {
7005 assert((r->fieldoffset ||
7006 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7007 r->readfn);
7009 if (r->access & PL3_W) {
7010 assert((r->fieldoffset ||
7011 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7012 r->writefn);
7015 /* Bad type field probably means missing sentinel at end of reg list */
7016 assert(cptype_valid(r->type));
7017 for (crm = crmmin; crm <= crmmax; crm++) {
7018 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7019 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7020 for (state = ARM_CP_STATE_AA32;
7021 state <= ARM_CP_STATE_AA64; state++) {
7022 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7023 continue;
7025 if (state == ARM_CP_STATE_AA32) {
7026 /* Under AArch32 CP registers can be common
7027 * (same for secure and non-secure world) or banked.
7029 char *name;
7031 switch (r->secure) {
7032 case ARM_CP_SECSTATE_S:
7033 case ARM_CP_SECSTATE_NS:
7034 add_cpreg_to_hashtable(cpu, r, opaque, state,
7035 r->secure, crm, opc1, opc2,
7036 r->name);
7037 break;
7038 default:
7039 name = g_strdup_printf("%s_S", r->name);
7040 add_cpreg_to_hashtable(cpu, r, opaque, state,
7041 ARM_CP_SECSTATE_S,
7042 crm, opc1, opc2, name);
7043 g_free(name);
7044 add_cpreg_to_hashtable(cpu, r, opaque, state,
7045 ARM_CP_SECSTATE_NS,
7046 crm, opc1, opc2, r->name);
7047 break;
7049 } else {
7050 /* AArch64 registers get mapped to non-secure instance
7051 * of AArch32 */
7052 add_cpreg_to_hashtable(cpu, r, opaque, state,
7053 ARM_CP_SECSTATE_NS,
7054 crm, opc1, opc2, r->name);
7062 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7063 const ARMCPRegInfo *regs, void *opaque)
7065 /* Define a whole list of registers */
7066 const ARMCPRegInfo *r;
7067 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7068 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7073 * Modify ARMCPRegInfo for access from userspace.
7075 * This is a data driven modification directed by
7076 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7077 * user-space cannot alter any values and dynamic values pertaining to
7078 * execution state are hidden from user space view anyway.
7080 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7082 const ARMCPRegUserSpaceInfo *m;
7083 ARMCPRegInfo *r;
7085 for (m = mods; m->name; m++) {
7086 GPatternSpec *pat = NULL;
7087 if (m->is_glob) {
7088 pat = g_pattern_spec_new(m->name);
7090 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7091 if (pat && g_pattern_match_string(pat, r->name)) {
7092 r->type = ARM_CP_CONST;
7093 r->access = PL0U_R;
7094 r->resetvalue = 0;
7095 /* continue */
7096 } else if (strcmp(r->name, m->name) == 0) {
7097 r->type = ARM_CP_CONST;
7098 r->access = PL0U_R;
7099 r->resetvalue &= m->exported_bits;
7100 r->resetvalue |= m->fixed_bits;
7101 break;
7104 if (pat) {
7105 g_pattern_spec_free(pat);
7110 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7112 return g_hash_table_lookup(cpregs, &encoded_cp);
7115 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7116 uint64_t value)
7118 /* Helper coprocessor write function for write-ignore registers */
7121 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7123 /* Helper coprocessor write function for read-as-zero registers */
7124 return 0;
7127 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7129 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7132 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7134 /* Return true if it is not valid for us to switch to
7135 * this CPU mode (ie all the UNPREDICTABLE cases in
7136 * the ARM ARM CPSRWriteByInstr pseudocode).
7139 /* Changes to or from Hyp via MSR and CPS are illegal. */
7140 if (write_type == CPSRWriteByInstr &&
7141 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7142 mode == ARM_CPU_MODE_HYP)) {
7143 return 1;
7146 switch (mode) {
7147 case ARM_CPU_MODE_USR:
7148 return 0;
7149 case ARM_CPU_MODE_SYS:
7150 case ARM_CPU_MODE_SVC:
7151 case ARM_CPU_MODE_ABT:
7152 case ARM_CPU_MODE_UND:
7153 case ARM_CPU_MODE_IRQ:
7154 case ARM_CPU_MODE_FIQ:
7155 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7156 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7158 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7159 * and CPS are treated as illegal mode changes.
7161 if (write_type == CPSRWriteByInstr &&
7162 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7163 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7164 return 1;
7166 return 0;
7167 case ARM_CPU_MODE_HYP:
7168 return !arm_feature(env, ARM_FEATURE_EL2)
7169 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7170 case ARM_CPU_MODE_MON:
7171 return arm_current_el(env) < 3;
7172 default:
7173 return 1;
7177 uint32_t cpsr_read(CPUARMState *env)
7179 int ZF;
7180 ZF = (env->ZF == 0);
7181 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7182 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7183 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7184 | ((env->condexec_bits & 0xfc) << 8)
7185 | (env->GE << 16) | (env->daif & CPSR_AIF);
7188 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7189 CPSRWriteType write_type)
7191 uint32_t changed_daif;
7193 if (mask & CPSR_NZCV) {
7194 env->ZF = (~val) & CPSR_Z;
7195 env->NF = val;
7196 env->CF = (val >> 29) & 1;
7197 env->VF = (val << 3) & 0x80000000;
7199 if (mask & CPSR_Q)
7200 env->QF = ((val & CPSR_Q) != 0);
7201 if (mask & CPSR_T)
7202 env->thumb = ((val & CPSR_T) != 0);
7203 if (mask & CPSR_IT_0_1) {
7204 env->condexec_bits &= ~3;
7205 env->condexec_bits |= (val >> 25) & 3;
7207 if (mask & CPSR_IT_2_7) {
7208 env->condexec_bits &= 3;
7209 env->condexec_bits |= (val >> 8) & 0xfc;
7211 if (mask & CPSR_GE) {
7212 env->GE = (val >> 16) & 0xf;
7215 /* In a V7 implementation that includes the security extensions but does
7216 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7217 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7218 * bits respectively.
7220 * In a V8 implementation, it is permitted for privileged software to
7221 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7223 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7224 arm_feature(env, ARM_FEATURE_EL3) &&
7225 !arm_feature(env, ARM_FEATURE_EL2) &&
7226 !arm_is_secure(env)) {
7228 changed_daif = (env->daif ^ val) & mask;
7230 if (changed_daif & CPSR_A) {
7231 /* Check to see if we are allowed to change the masking of async
7232 * abort exceptions from a non-secure state.
7234 if (!(env->cp15.scr_el3 & SCR_AW)) {
7235 qemu_log_mask(LOG_GUEST_ERROR,
7236 "Ignoring attempt to switch CPSR_A flag from "
7237 "non-secure world with SCR.AW bit clear\n");
7238 mask &= ~CPSR_A;
7242 if (changed_daif & CPSR_F) {
7243 /* Check to see if we are allowed to change the masking of FIQ
7244 * exceptions from a non-secure state.
7246 if (!(env->cp15.scr_el3 & SCR_FW)) {
7247 qemu_log_mask(LOG_GUEST_ERROR,
7248 "Ignoring attempt to switch CPSR_F flag from "
7249 "non-secure world with SCR.FW bit clear\n");
7250 mask &= ~CPSR_F;
7253 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7254 * If this bit is set software is not allowed to mask
7255 * FIQs, but is allowed to set CPSR_F to 0.
7257 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7258 (val & CPSR_F)) {
7259 qemu_log_mask(LOG_GUEST_ERROR,
7260 "Ignoring attempt to enable CPSR_F flag "
7261 "(non-maskable FIQ [NMFI] support enabled)\n");
7262 mask &= ~CPSR_F;
7267 env->daif &= ~(CPSR_AIF & mask);
7268 env->daif |= val & CPSR_AIF & mask;
7270 if (write_type != CPSRWriteRaw &&
7271 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7272 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7273 /* Note that we can only get here in USR mode if this is a
7274 * gdb stub write; for this case we follow the architectural
7275 * behaviour for guest writes in USR mode of ignoring an attempt
7276 * to switch mode. (Those are caught by translate.c for writes
7277 * triggered by guest instructions.)
7279 mask &= ~CPSR_M;
7280 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7281 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7282 * v7, and has defined behaviour in v8:
7283 * + leave CPSR.M untouched
7284 * + allow changes to the other CPSR fields
7285 * + set PSTATE.IL
7286 * For user changes via the GDB stub, we don't set PSTATE.IL,
7287 * as this would be unnecessarily harsh for a user error.
7289 mask &= ~CPSR_M;
7290 if (write_type != CPSRWriteByGDBStub &&
7291 arm_feature(env, ARM_FEATURE_V8)) {
7292 mask |= CPSR_IL;
7293 val |= CPSR_IL;
7295 qemu_log_mask(LOG_GUEST_ERROR,
7296 "Illegal AArch32 mode switch attempt from %s to %s\n",
7297 aarch32_mode_name(env->uncached_cpsr),
7298 aarch32_mode_name(val));
7299 } else {
7300 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7301 write_type == CPSRWriteExceptionReturn ?
7302 "Exception return from AArch32" :
7303 "AArch32 mode switch from",
7304 aarch32_mode_name(env->uncached_cpsr),
7305 aarch32_mode_name(val), env->regs[15]);
7306 switch_mode(env, val & CPSR_M);
7309 mask &= ~CACHED_CPSR_BITS;
7310 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7313 /* Sign/zero extend */
7314 uint32_t HELPER(sxtb16)(uint32_t x)
7316 uint32_t res;
7317 res = (uint16_t)(int8_t)x;
7318 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7319 return res;
7322 uint32_t HELPER(uxtb16)(uint32_t x)
7324 uint32_t res;
7325 res = (uint16_t)(uint8_t)x;
7326 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7327 return res;
7330 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7332 if (den == 0)
7333 return 0;
7334 if (num == INT_MIN && den == -1)
7335 return INT_MIN;
7336 return num / den;
7339 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7341 if (den == 0)
7342 return 0;
7343 return num / den;
7346 uint32_t HELPER(rbit)(uint32_t x)
7348 return revbit32(x);
7351 #ifdef CONFIG_USER_ONLY
7353 /* These should probably raise undefined insn exceptions. */
7354 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7356 ARMCPU *cpu = arm_env_get_cpu(env);
7358 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7361 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7363 ARMCPU *cpu = arm_env_get_cpu(env);
7365 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7366 return 0;
7369 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7371 /* translate.c should never generate calls here in user-only mode */
7372 g_assert_not_reached();
7375 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7377 /* translate.c should never generate calls here in user-only mode */
7378 g_assert_not_reached();
7381 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7383 /* The TT instructions can be used by unprivileged code, but in
7384 * user-only emulation we don't have the MPU.
7385 * Luckily since we know we are NonSecure unprivileged (and that in
7386 * turn means that the A flag wasn't specified), all the bits in the
7387 * register must be zero:
7388 * IREGION: 0 because IRVALID is 0
7389 * IRVALID: 0 because NS
7390 * S: 0 because NS
7391 * NSRW: 0 because NS
7392 * NSR: 0 because NS
7393 * RW: 0 because unpriv and A flag not set
7394 * R: 0 because unpriv and A flag not set
7395 * SRVALID: 0 because NS
7396 * MRVALID: 0 because unpriv and A flag not set
7397 * SREGION: 0 becaus SRVALID is 0
7398 * MREGION: 0 because MRVALID is 0
7400 return 0;
7403 static void switch_mode(CPUARMState *env, int mode)
7405 ARMCPU *cpu = arm_env_get_cpu(env);
7407 if (mode != ARM_CPU_MODE_USR) {
7408 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7412 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7413 uint32_t cur_el, bool secure)
7415 return 1;
7418 void aarch64_sync_64_to_32(CPUARMState *env)
7420 g_assert_not_reached();
7423 #else
7425 static void switch_mode(CPUARMState *env, int mode)
7427 int old_mode;
7428 int i;
7430 old_mode = env->uncached_cpsr & CPSR_M;
7431 if (mode == old_mode)
7432 return;
7434 if (old_mode == ARM_CPU_MODE_FIQ) {
7435 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7436 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7437 } else if (mode == ARM_CPU_MODE_FIQ) {
7438 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7439 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7442 i = bank_number(old_mode);
7443 env->banked_r13[i] = env->regs[13];
7444 env->banked_spsr[i] = env->spsr;
7446 i = bank_number(mode);
7447 env->regs[13] = env->banked_r13[i];
7448 env->spsr = env->banked_spsr[i];
7450 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7451 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7454 /* Physical Interrupt Target EL Lookup Table
7456 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7458 * The below multi-dimensional table is used for looking up the target
7459 * exception level given numerous condition criteria. Specifically, the
7460 * target EL is based on SCR and HCR routing controls as well as the
7461 * currently executing EL and secure state.
7463 * Dimensions:
7464 * target_el_table[2][2][2][2][2][4]
7465 * | | | | | +--- Current EL
7466 * | | | | +------ Non-secure(0)/Secure(1)
7467 * | | | +--------- HCR mask override
7468 * | | +------------ SCR exec state control
7469 * | +--------------- SCR mask override
7470 * +------------------ 32-bit(0)/64-bit(1) EL3
7472 * The table values are as such:
7473 * 0-3 = EL0-EL3
7474 * -1 = Cannot occur
7476 * The ARM ARM target EL table includes entries indicating that an "exception
7477 * is not taken". The two cases where this is applicable are:
7478 * 1) An exception is taken from EL3 but the SCR does not have the exception
7479 * routed to EL3.
7480 * 2) An exception is taken from EL2 but the HCR does not have the exception
7481 * routed to EL2.
7482 * In these two cases, the below table contain a target of EL1. This value is
7483 * returned as it is expected that the consumer of the table data will check
7484 * for "target EL >= current EL" to ensure the exception is not taken.
7486 * SCR HCR
7487 * 64 EA AMO From
7488 * BIT IRQ IMO Non-secure Secure
7489 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7491 static const int8_t target_el_table[2][2][2][2][2][4] = {
7492 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7493 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7494 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7495 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7496 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7497 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7498 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7499 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7500 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7501 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7502 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7503 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7504 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7505 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7506 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7507 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7511 * Determine the target EL for physical exceptions
7513 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7514 uint32_t cur_el, bool secure)
7516 CPUARMState *env = cs->env_ptr;
7517 bool rw;
7518 bool scr;
7519 bool hcr;
7520 int target_el;
7521 /* Is the highest EL AArch64? */
7522 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7523 uint64_t hcr_el2;
7525 if (arm_feature(env, ARM_FEATURE_EL3)) {
7526 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7527 } else {
7528 /* Either EL2 is the highest EL (and so the EL2 register width
7529 * is given by is64); or there is no EL2 or EL3, in which case
7530 * the value of 'rw' does not affect the table lookup anyway.
7532 rw = is64;
7535 hcr_el2 = arm_hcr_el2_eff(env);
7536 switch (excp_idx) {
7537 case EXCP_IRQ:
7538 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7539 hcr = hcr_el2 & HCR_IMO;
7540 break;
7541 case EXCP_FIQ:
7542 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7543 hcr = hcr_el2 & HCR_FMO;
7544 break;
7545 default:
7546 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7547 hcr = hcr_el2 & HCR_AMO;
7548 break;
7551 /* Perform a table-lookup for the target EL given the current state */
7552 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7554 assert(target_el > 0);
7556 return target_el;
7560 * Return true if the v7M CPACR permits access to the FPU for the specified
7561 * security state and privilege level.
7563 static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv)
7565 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
7566 case 0:
7567 case 2: /* UNPREDICTABLE: we treat like 0 */
7568 return false;
7569 case 1:
7570 return is_priv;
7571 case 3:
7572 return true;
7573 default:
7574 g_assert_not_reached();
7578 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7579 ARMMMUIdx mmu_idx, bool ignfault)
7581 CPUState *cs = CPU(cpu);
7582 CPUARMState *env = &cpu->env;
7583 MemTxAttrs attrs = {};
7584 MemTxResult txres;
7585 target_ulong page_size;
7586 hwaddr physaddr;
7587 int prot;
7588 ARMMMUFaultInfo fi = {};
7589 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7590 int exc;
7591 bool exc_secure;
7593 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7594 &attrs, &prot, &page_size, &fi, NULL)) {
7595 /* MPU/SAU lookup failed */
7596 if (fi.type == ARMFault_QEMU_SFault) {
7597 qemu_log_mask(CPU_LOG_INT,
7598 "...SecureFault with SFSR.AUVIOL during stacking\n");
7599 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7600 env->v7m.sfar = addr;
7601 exc = ARMV7M_EXCP_SECURE;
7602 exc_secure = false;
7603 } else {
7604 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7605 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7606 exc = ARMV7M_EXCP_MEM;
7607 exc_secure = secure;
7609 goto pend_fault;
7611 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7612 attrs, &txres);
7613 if (txres != MEMTX_OK) {
7614 /* BusFault trying to write the data */
7615 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7616 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7617 exc = ARMV7M_EXCP_BUS;
7618 exc_secure = false;
7619 goto pend_fault;
7621 return true;
7623 pend_fault:
7624 /* By pending the exception at this point we are making
7625 * the IMPDEF choice "overridden exceptions pended" (see the
7626 * MergeExcInfo() pseudocode). The other choice would be to not
7627 * pend them now and then make a choice about which to throw away
7628 * later if we have two derived exceptions.
7629 * The only case when we must not pend the exception but instead
7630 * throw it away is if we are doing the push of the callee registers
7631 * and we've already generated a derived exception. Even in this
7632 * case we will still update the fault status registers.
7634 if (!ignfault) {
7635 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7637 return false;
7640 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7641 ARMMMUIdx mmu_idx)
7643 CPUState *cs = CPU(cpu);
7644 CPUARMState *env = &cpu->env;
7645 MemTxAttrs attrs = {};
7646 MemTxResult txres;
7647 target_ulong page_size;
7648 hwaddr physaddr;
7649 int prot;
7650 ARMMMUFaultInfo fi = {};
7651 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7652 int exc;
7653 bool exc_secure;
7654 uint32_t value;
7656 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7657 &attrs, &prot, &page_size, &fi, NULL)) {
7658 /* MPU/SAU lookup failed */
7659 if (fi.type == ARMFault_QEMU_SFault) {
7660 qemu_log_mask(CPU_LOG_INT,
7661 "...SecureFault with SFSR.AUVIOL during unstack\n");
7662 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7663 env->v7m.sfar = addr;
7664 exc = ARMV7M_EXCP_SECURE;
7665 exc_secure = false;
7666 } else {
7667 qemu_log_mask(CPU_LOG_INT,
7668 "...MemManageFault with CFSR.MUNSTKERR\n");
7669 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7670 exc = ARMV7M_EXCP_MEM;
7671 exc_secure = secure;
7673 goto pend_fault;
7676 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7677 attrs, &txres);
7678 if (txres != MEMTX_OK) {
7679 /* BusFault trying to read the data */
7680 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7681 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7682 exc = ARMV7M_EXCP_BUS;
7683 exc_secure = false;
7684 goto pend_fault;
7687 *dest = value;
7688 return true;
7690 pend_fault:
7691 /* By pending the exception at this point we are making
7692 * the IMPDEF choice "overridden exceptions pended" (see the
7693 * MergeExcInfo() pseudocode). The other choice would be to not
7694 * pend them now and then make a choice about which to throw away
7695 * later if we have two derived exceptions.
7697 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7698 return false;
7701 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7702 * This may change the current stack pointer between Main and Process
7703 * stack pointers if it is done for the CONTROL register for the current
7704 * security state.
7706 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7707 bool new_spsel,
7708 bool secstate)
7710 bool old_is_psp = v7m_using_psp(env);
7712 env->v7m.control[secstate] =
7713 deposit32(env->v7m.control[secstate],
7714 R_V7M_CONTROL_SPSEL_SHIFT,
7715 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7717 if (secstate == env->v7m.secure) {
7718 bool new_is_psp = v7m_using_psp(env);
7719 uint32_t tmp;
7721 if (old_is_psp != new_is_psp) {
7722 tmp = env->v7m.other_sp;
7723 env->v7m.other_sp = env->regs[13];
7724 env->regs[13] = tmp;
7729 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7730 * stack pointer between Main and Process stack pointers.
7732 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7734 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7737 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7739 /* Write a new value to v7m.exception, thus transitioning into or out
7740 * of Handler mode; this may result in a change of active stack pointer.
7742 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7743 uint32_t tmp;
7745 env->v7m.exception = new_exc;
7747 new_is_psp = v7m_using_psp(env);
7749 if (old_is_psp != new_is_psp) {
7750 tmp = env->v7m.other_sp;
7751 env->v7m.other_sp = env->regs[13];
7752 env->regs[13] = tmp;
7756 /* Switch M profile security state between NS and S */
7757 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7759 uint32_t new_ss_msp, new_ss_psp;
7761 if (env->v7m.secure == new_secstate) {
7762 return;
7765 /* All the banked state is accessed by looking at env->v7m.secure
7766 * except for the stack pointer; rearrange the SP appropriately.
7768 new_ss_msp = env->v7m.other_ss_msp;
7769 new_ss_psp = env->v7m.other_ss_psp;
7771 if (v7m_using_psp(env)) {
7772 env->v7m.other_ss_psp = env->regs[13];
7773 env->v7m.other_ss_msp = env->v7m.other_sp;
7774 } else {
7775 env->v7m.other_ss_msp = env->regs[13];
7776 env->v7m.other_ss_psp = env->v7m.other_sp;
7779 env->v7m.secure = new_secstate;
7781 if (v7m_using_psp(env)) {
7782 env->regs[13] = new_ss_psp;
7783 env->v7m.other_sp = new_ss_msp;
7784 } else {
7785 env->regs[13] = new_ss_msp;
7786 env->v7m.other_sp = new_ss_psp;
7790 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7792 /* Handle v7M BXNS:
7793 * - if the return value is a magic value, do exception return (like BX)
7794 * - otherwise bit 0 of the return value is the target security state
7796 uint32_t min_magic;
7798 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7799 /* Covers FNC_RETURN and EXC_RETURN magic */
7800 min_magic = FNC_RETURN_MIN_MAGIC;
7801 } else {
7802 /* EXC_RETURN magic only */
7803 min_magic = EXC_RETURN_MIN_MAGIC;
7806 if (dest >= min_magic) {
7807 /* This is an exception return magic value; put it where
7808 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7809 * Note that if we ever add gen_ss_advance() singlestep support to
7810 * M profile this should count as an "instruction execution complete"
7811 * event (compare gen_bx_excret_final_code()).
7813 env->regs[15] = dest & ~1;
7814 env->thumb = dest & 1;
7815 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7816 /* notreached */
7819 /* translate.c should have made BXNS UNDEF unless we're secure */
7820 assert(env->v7m.secure);
7822 if (!(dest & 1)) {
7823 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7825 switch_v7m_security_state(env, dest & 1);
7826 env->thumb = 1;
7827 env->regs[15] = dest & ~1;
7830 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7832 /* Handle v7M BLXNS:
7833 * - bit 0 of the destination address is the target security state
7836 /* At this point regs[15] is the address just after the BLXNS */
7837 uint32_t nextinst = env->regs[15] | 1;
7838 uint32_t sp = env->regs[13] - 8;
7839 uint32_t saved_psr;
7841 /* translate.c will have made BLXNS UNDEF unless we're secure */
7842 assert(env->v7m.secure);
7844 if (dest & 1) {
7845 /* target is Secure, so this is just a normal BLX,
7846 * except that the low bit doesn't indicate Thumb/not.
7848 env->regs[14] = nextinst;
7849 env->thumb = 1;
7850 env->regs[15] = dest & ~1;
7851 return;
7854 /* Target is non-secure: first push a stack frame */
7855 if (!QEMU_IS_ALIGNED(sp, 8)) {
7856 qemu_log_mask(LOG_GUEST_ERROR,
7857 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7860 if (sp < v7m_sp_limit(env)) {
7861 raise_exception(env, EXCP_STKOF, 0, 1);
7864 saved_psr = env->v7m.exception;
7865 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7866 saved_psr |= XPSR_SFPA;
7869 /* Note that these stores can throw exceptions on MPU faults */
7870 cpu_stl_data(env, sp, nextinst);
7871 cpu_stl_data(env, sp + 4, saved_psr);
7873 env->regs[13] = sp;
7874 env->regs[14] = 0xfeffffff;
7875 if (arm_v7m_is_handler_mode(env)) {
7876 /* Write a dummy value to IPSR, to avoid leaking the current secure
7877 * exception number to non-secure code. This is guaranteed not
7878 * to cause write_v7m_exception() to actually change stacks.
7880 write_v7m_exception(env, 1);
7882 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7883 switch_v7m_security_state(env, 0);
7884 env->thumb = 1;
7885 env->regs[15] = dest;
7888 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7889 bool spsel)
7891 /* Return a pointer to the location where we currently store the
7892 * stack pointer for the requested security state and thread mode.
7893 * This pointer will become invalid if the CPU state is updated
7894 * such that the stack pointers are switched around (eg changing
7895 * the SPSEL control bit).
7896 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7897 * Unlike that pseudocode, we require the caller to pass us in the
7898 * SPSEL control bit value; this is because we also use this
7899 * function in handling of pushing of the callee-saves registers
7900 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7901 * and in the tailchain codepath the SPSEL bit comes from the exception
7902 * return magic LR value from the previous exception. The pseudocode
7903 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7904 * to make this utility function generic enough to do the job.
7906 bool want_psp = threadmode && spsel;
7908 if (secure == env->v7m.secure) {
7909 if (want_psp == v7m_using_psp(env)) {
7910 return &env->regs[13];
7911 } else {
7912 return &env->v7m.other_sp;
7914 } else {
7915 if (want_psp) {
7916 return &env->v7m.other_ss_psp;
7917 } else {
7918 return &env->v7m.other_ss_msp;
7923 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7924 uint32_t *pvec)
7926 CPUState *cs = CPU(cpu);
7927 CPUARMState *env = &cpu->env;
7928 MemTxResult result;
7929 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7930 uint32_t vector_entry;
7931 MemTxAttrs attrs = {};
7932 ARMMMUIdx mmu_idx;
7933 bool exc_secure;
7935 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7937 /* We don't do a get_phys_addr() here because the rules for vector
7938 * loads are special: they always use the default memory map, and
7939 * the default memory map permits reads from all addresses.
7940 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7941 * that we want this special case which would always say "yes",
7942 * we just do the SAU lookup here followed by a direct physical load.
7944 attrs.secure = targets_secure;
7945 attrs.user = false;
7947 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7948 V8M_SAttributes sattrs = {};
7950 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7951 if (sattrs.ns) {
7952 attrs.secure = false;
7953 } else if (!targets_secure) {
7954 /* NS access to S memory */
7955 goto load_fail;
7959 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7960 attrs, &result);
7961 if (result != MEMTX_OK) {
7962 goto load_fail;
7964 *pvec = vector_entry;
7965 return true;
7967 load_fail:
7968 /* All vector table fetch fails are reported as HardFault, with
7969 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7970 * technically the underlying exception is a MemManage or BusFault
7971 * that is escalated to HardFault.) This is a terminal exception,
7972 * so we will either take the HardFault immediately or else enter
7973 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7975 exc_secure = targets_secure ||
7976 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7977 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7978 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7979 return false;
7982 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7983 bool ignore_faults)
7985 /* For v8M, push the callee-saves register part of the stack frame.
7986 * Compare the v8M pseudocode PushCalleeStack().
7987 * In the tailchaining case this may not be the current stack.
7989 CPUARMState *env = &cpu->env;
7990 uint32_t *frame_sp_p;
7991 uint32_t frameptr;
7992 ARMMMUIdx mmu_idx;
7993 bool stacked_ok;
7994 uint32_t limit;
7995 bool want_psp;
7997 if (dotailchain) {
7998 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7999 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8000 !mode;
8002 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8003 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
8004 lr & R_V7M_EXCRET_SPSEL_MASK);
8005 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8006 if (want_psp) {
8007 limit = env->v7m.psplim[M_REG_S];
8008 } else {
8009 limit = env->v7m.msplim[M_REG_S];
8011 } else {
8012 mmu_idx = arm_mmu_idx(env);
8013 frame_sp_p = &env->regs[13];
8014 limit = v7m_sp_limit(env);
8017 frameptr = *frame_sp_p - 0x28;
8018 if (frameptr < limit) {
8020 * Stack limit failure: set SP to the limit value, and generate
8021 * STKOF UsageFault. Stack pushes below the limit must not be
8022 * performed. It is IMPDEF whether pushes above the limit are
8023 * performed; we choose not to.
8025 qemu_log_mask(CPU_LOG_INT,
8026 "...STKOF during callee-saves register stacking\n");
8027 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8028 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8029 env->v7m.secure);
8030 *frame_sp_p = limit;
8031 return true;
8034 /* Write as much of the stack frame as we can. A write failure may
8035 * cause us to pend a derived exception.
8037 stacked_ok =
8038 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
8039 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
8040 ignore_faults) &&
8041 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
8042 ignore_faults) &&
8043 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
8044 ignore_faults) &&
8045 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
8046 ignore_faults) &&
8047 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
8048 ignore_faults) &&
8049 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
8050 ignore_faults) &&
8051 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
8052 ignore_faults) &&
8053 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
8054 ignore_faults);
8056 /* Update SP regardless of whether any of the stack accesses failed. */
8057 *frame_sp_p = frameptr;
8059 return !stacked_ok;
8062 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8063 bool ignore_stackfaults)
8065 /* Do the "take the exception" parts of exception entry,
8066 * but not the pushing of state to the stack. This is
8067 * similar to the pseudocode ExceptionTaken() function.
8069 CPUARMState *env = &cpu->env;
8070 uint32_t addr;
8071 bool targets_secure;
8072 int exc;
8073 bool push_failed = false;
8075 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8076 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8077 targets_secure ? "secure" : "nonsecure", exc);
8079 if (arm_feature(env, ARM_FEATURE_V8)) {
8080 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8081 (lr & R_V7M_EXCRET_S_MASK)) {
8082 /* The background code (the owner of the registers in the
8083 * exception frame) is Secure. This means it may either already
8084 * have or now needs to push callee-saves registers.
8086 if (targets_secure) {
8087 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8088 /* We took an exception from Secure to NonSecure
8089 * (which means the callee-saved registers got stacked)
8090 * and are now tailchaining to a Secure exception.
8091 * Clear DCRS so eventual return from this Secure
8092 * exception unstacks the callee-saved registers.
8094 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8096 } else {
8097 /* We're going to a non-secure exception; push the
8098 * callee-saves registers to the stack now, if they're
8099 * not already saved.
8101 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8102 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8103 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8104 ignore_stackfaults);
8106 lr |= R_V7M_EXCRET_DCRS_MASK;
8110 lr &= ~R_V7M_EXCRET_ES_MASK;
8111 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8112 lr |= R_V7M_EXCRET_ES_MASK;
8114 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8115 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8116 lr |= R_V7M_EXCRET_SPSEL_MASK;
8119 /* Clear registers if necessary to prevent non-secure exception
8120 * code being able to see register values from secure code.
8121 * Where register values become architecturally UNKNOWN we leave
8122 * them with their previous values.
8124 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8125 if (!targets_secure) {
8126 /* Always clear the caller-saved registers (they have been
8127 * pushed to the stack earlier in v7m_push_stack()).
8128 * Clear callee-saved registers if the background code is
8129 * Secure (in which case these regs were saved in
8130 * v7m_push_callee_stack()).
8132 int i;
8134 for (i = 0; i < 13; i++) {
8135 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8136 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8137 env->regs[i] = 0;
8140 /* Clear EAPSR */
8141 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8146 if (push_failed && !ignore_stackfaults) {
8147 /* Derived exception on callee-saves register stacking:
8148 * we might now want to take a different exception which
8149 * targets a different security state, so try again from the top.
8151 qemu_log_mask(CPU_LOG_INT,
8152 "...derived exception on callee-saves register stacking");
8153 v7m_exception_taken(cpu, lr, true, true);
8154 return;
8157 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8158 /* Vector load failed: derived exception */
8159 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8160 v7m_exception_taken(cpu, lr, true, true);
8161 return;
8164 /* Now we've done everything that might cause a derived exception
8165 * we can go ahead and activate whichever exception we're going to
8166 * take (which might now be the derived exception).
8168 armv7m_nvic_acknowledge_irq(env->nvic);
8170 /* Switch to target security state -- must do this before writing SPSEL */
8171 switch_v7m_security_state(env, targets_secure);
8172 write_v7m_control_spsel(env, 0);
8173 arm_clear_exclusive(env);
8174 /* Clear SFPA and FPCA (has no effect if no FPU) */
8175 env->v7m.control[M_REG_S] &=
8176 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
8177 /* Clear IT bits */
8178 env->condexec_bits = 0;
8179 env->regs[14] = lr;
8180 env->regs[15] = addr & 0xfffffffe;
8181 env->thumb = addr & 1;
8184 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8185 bool apply_splim)
8188 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8189 * that we will need later in order to do lazy FP reg stacking.
8191 bool is_secure = env->v7m.secure;
8192 void *nvic = env->nvic;
8194 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8195 * are banked and we want to update the bit in the bank for the
8196 * current security state; and in one case we want to specifically
8197 * update the NS banked version of a bit even if we are secure.
8199 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8200 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8201 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8202 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8204 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8206 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8207 bool splimviol;
8208 uint32_t splim = v7m_sp_limit(env);
8209 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8210 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8212 splimviol = !ign && frameptr < splim;
8213 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8216 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8218 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8220 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8222 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8223 !arm_v7m_is_handler_mode(env));
8225 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8226 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8228 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8229 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8231 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8232 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8234 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8235 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8237 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8238 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8240 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8241 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8242 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8244 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8245 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8249 static bool v7m_push_stack(ARMCPU *cpu)
8251 /* Do the "set up stack frame" part of exception entry,
8252 * similar to pseudocode PushStack().
8253 * Return true if we generate a derived exception (and so
8254 * should ignore further stack faults trying to process
8255 * that derived exception.)
8257 bool stacked_ok = true, limitviol = false;
8258 CPUARMState *env = &cpu->env;
8259 uint32_t xpsr = xpsr_read(env);
8260 uint32_t frameptr = env->regs[13];
8261 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8262 uint32_t framesize;
8263 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8265 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8266 (env->v7m.secure || nsacr_cp10)) {
8267 if (env->v7m.secure &&
8268 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8269 framesize = 0xa8;
8270 } else {
8271 framesize = 0x68;
8273 } else {
8274 framesize = 0x20;
8277 /* Align stack pointer if the guest wants that */
8278 if ((frameptr & 4) &&
8279 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8280 frameptr -= 4;
8281 xpsr |= XPSR_SPREALIGN;
8284 xpsr &= ~XPSR_SFPA;
8285 if (env->v7m.secure &&
8286 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8287 xpsr |= XPSR_SFPA;
8290 frameptr -= framesize;
8292 if (arm_feature(env, ARM_FEATURE_V8)) {
8293 uint32_t limit = v7m_sp_limit(env);
8295 if (frameptr < limit) {
8297 * Stack limit failure: set SP to the limit value, and generate
8298 * STKOF UsageFault. Stack pushes below the limit must not be
8299 * performed. It is IMPDEF whether pushes above the limit are
8300 * performed; we choose not to.
8302 qemu_log_mask(CPU_LOG_INT,
8303 "...STKOF during stacking\n");
8304 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8305 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8306 env->v7m.secure);
8307 env->regs[13] = limit;
8309 * We won't try to perform any further memory accesses but
8310 * we must continue through the following code to check for
8311 * permission faults during FPU state preservation, and we
8312 * must update FPCCR if lazy stacking is enabled.
8314 limitviol = true;
8315 stacked_ok = false;
8319 /* Write as much of the stack frame as we can. If we fail a stack
8320 * write this will result in a derived exception being pended
8321 * (which may be taken in preference to the one we started with
8322 * if it has higher priority).
8324 stacked_ok = stacked_ok &&
8325 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8326 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8327 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8328 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8329 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8330 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8331 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8332 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8334 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8335 /* FPU is active, try to save its registers */
8336 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8337 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8339 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8340 qemu_log_mask(CPU_LOG_INT,
8341 "...SecureFault because LSPACT and FPCA both set\n");
8342 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8343 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8344 } else if (!env->v7m.secure && !nsacr_cp10) {
8345 qemu_log_mask(CPU_LOG_INT,
8346 "...Secure UsageFault with CFSR.NOCP because "
8347 "NSACR.CP10 prevents stacking FP regs\n");
8348 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8349 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8350 } else {
8351 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8352 /* Lazy stacking disabled, save registers now */
8353 int i;
8354 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8355 arm_current_el(env) != 0);
8357 if (stacked_ok && !cpacr_pass) {
8359 * Take UsageFault if CPACR forbids access. The pseudocode
8360 * here does a full CheckCPEnabled() but we know the NSACR
8361 * check can never fail as we have already handled that.
8363 qemu_log_mask(CPU_LOG_INT,
8364 "...UsageFault with CFSR.NOCP because "
8365 "CPACR.CP10 prevents stacking FP regs\n");
8366 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8367 env->v7m.secure);
8368 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8369 stacked_ok = false;
8372 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8373 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8374 uint32_t faddr = frameptr + 0x20 + 4 * i;
8375 uint32_t slo = extract64(dn, 0, 32);
8376 uint32_t shi = extract64(dn, 32, 32);
8378 if (i >= 16) {
8379 faddr += 8; /* skip the slot for the FPSCR */
8381 stacked_ok = stacked_ok &&
8382 v7m_stack_write(cpu, faddr, slo, mmu_idx, false) &&
8383 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, false);
8385 stacked_ok = stacked_ok &&
8386 v7m_stack_write(cpu, frameptr + 0x60,
8387 vfp_get_fpscr(env), mmu_idx, false);
8388 if (cpacr_pass) {
8389 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8390 *aa32_vfp_dreg(env, i / 2) = 0;
8392 vfp_set_fpscr(env, 0);
8394 } else {
8395 /* Lazy stacking enabled, save necessary info to stack later */
8396 v7m_update_fpccr(env, frameptr + 0x20, true);
8402 * If we broke a stack limit then SP was already updated earlier;
8403 * otherwise we update SP regardless of whether any of the stack
8404 * accesses failed or we took some other kind of fault.
8406 if (!limitviol) {
8407 env->regs[13] = frameptr;
8410 return !stacked_ok;
8413 static void do_v7m_exception_exit(ARMCPU *cpu)
8415 CPUARMState *env = &cpu->env;
8416 uint32_t excret;
8417 uint32_t xpsr;
8418 bool ufault = false;
8419 bool sfault = false;
8420 bool return_to_sp_process;
8421 bool return_to_handler;
8422 bool rettobase = false;
8423 bool exc_secure = false;
8424 bool return_to_secure;
8426 /* If we're not in Handler mode then jumps to magic exception-exit
8427 * addresses don't have magic behaviour. However for the v8M
8428 * security extensions the magic secure-function-return has to
8429 * work in thread mode too, so to avoid doing an extra check in
8430 * the generated code we allow exception-exit magic to also cause the
8431 * internal exception and bring us here in thread mode. Correct code
8432 * will never try to do this (the following insn fetch will always
8433 * fault) so we the overhead of having taken an unnecessary exception
8434 * doesn't matter.
8436 if (!arm_v7m_is_handler_mode(env)) {
8437 return;
8440 /* In the spec pseudocode ExceptionReturn() is called directly
8441 * from BXWritePC() and gets the full target PC value including
8442 * bit zero. In QEMU's implementation we treat it as a normal
8443 * jump-to-register (which is then caught later on), and so split
8444 * the target value up between env->regs[15] and env->thumb in
8445 * gen_bx(). Reconstitute it.
8447 excret = env->regs[15];
8448 if (env->thumb) {
8449 excret |= 1;
8452 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8453 " previous exception %d\n",
8454 excret, env->v7m.exception);
8456 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8457 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8458 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8459 excret);
8462 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8463 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8464 * we pick which FAULTMASK to clear.
8466 if (!env->v7m.secure &&
8467 ((excret & R_V7M_EXCRET_ES_MASK) ||
8468 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8469 sfault = 1;
8470 /* For all other purposes, treat ES as 0 (R_HXSR) */
8471 excret &= ~R_V7M_EXCRET_ES_MASK;
8473 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8476 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8477 /* Auto-clear FAULTMASK on return from other than NMI.
8478 * If the security extension is implemented then this only
8479 * happens if the raw execution priority is >= 0; the
8480 * value of the ES bit in the exception return value indicates
8481 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8483 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8484 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8485 env->v7m.faultmask[exc_secure] = 0;
8487 } else {
8488 env->v7m.faultmask[M_REG_NS] = 0;
8492 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8493 exc_secure)) {
8494 case -1:
8495 /* attempt to exit an exception that isn't active */
8496 ufault = true;
8497 break;
8498 case 0:
8499 /* still an irq active now */
8500 break;
8501 case 1:
8502 /* we returned to base exception level, no nesting.
8503 * (In the pseudocode this is written using "NestedActivation != 1"
8504 * where we have 'rettobase == false'.)
8506 rettobase = true;
8507 break;
8508 default:
8509 g_assert_not_reached();
8512 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8513 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8514 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8515 (excret & R_V7M_EXCRET_S_MASK);
8517 if (arm_feature(env, ARM_FEATURE_V8)) {
8518 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8519 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8520 * we choose to take the UsageFault.
8522 if ((excret & R_V7M_EXCRET_S_MASK) ||
8523 (excret & R_V7M_EXCRET_ES_MASK) ||
8524 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8525 ufault = true;
8528 if (excret & R_V7M_EXCRET_RES0_MASK) {
8529 ufault = true;
8531 } else {
8532 /* For v7M we only recognize certain combinations of the low bits */
8533 switch (excret & 0xf) {
8534 case 1: /* Return to Handler */
8535 break;
8536 case 13: /* Return to Thread using Process stack */
8537 case 9: /* Return to Thread using Main stack */
8538 /* We only need to check NONBASETHRDENA for v7M, because in
8539 * v8M this bit does not exist (it is RES1).
8541 if (!rettobase &&
8542 !(env->v7m.ccr[env->v7m.secure] &
8543 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8544 ufault = true;
8546 break;
8547 default:
8548 ufault = true;
8553 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8554 * Handler mode (and will be until we write the new XPSR.Interrupt
8555 * field) this does not switch around the current stack pointer.
8556 * We must do this before we do any kind of tailchaining, including
8557 * for the derived exceptions on integrity check failures, or we will
8558 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8560 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8562 if (sfault) {
8563 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8564 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8565 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8566 "stackframe: failed EXC_RETURN.ES validity check\n");
8567 v7m_exception_taken(cpu, excret, true, false);
8568 return;
8571 if (ufault) {
8572 /* Bad exception return: instead of popping the exception
8573 * stack, directly take a usage fault on the current stack.
8575 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8576 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8577 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8578 "stackframe: failed exception return integrity check\n");
8579 v7m_exception_taken(cpu, excret, true, false);
8580 return;
8584 * Tailchaining: if there is currently a pending exception that
8585 * is high enough priority to preempt execution at the level we're
8586 * about to return to, then just directly take that exception now,
8587 * avoiding an unstack-and-then-stack. Note that now we have
8588 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8589 * our current execution priority is already the execution priority we are
8590 * returning to -- none of the state we would unstack or set based on
8591 * the EXCRET value affects it.
8593 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8594 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8595 v7m_exception_taken(cpu, excret, true, false);
8596 return;
8599 switch_v7m_security_state(env, return_to_secure);
8602 /* The stack pointer we should be reading the exception frame from
8603 * depends on bits in the magic exception return type value (and
8604 * for v8M isn't necessarily the stack pointer we will eventually
8605 * end up resuming execution with). Get a pointer to the location
8606 * in the CPU state struct where the SP we need is currently being
8607 * stored; we will use and modify it in place.
8608 * We use this limited C variable scope so we don't accidentally
8609 * use 'frame_sp_p' after we do something that makes it invalid.
8611 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8612 return_to_secure,
8613 !return_to_handler,
8614 return_to_sp_process);
8615 uint32_t frameptr = *frame_sp_p;
8616 bool pop_ok = true;
8617 ARMMMUIdx mmu_idx;
8618 bool return_to_priv = return_to_handler ||
8619 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8621 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8622 return_to_priv);
8624 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8625 arm_feature(env, ARM_FEATURE_V8)) {
8626 qemu_log_mask(LOG_GUEST_ERROR,
8627 "M profile exception return with non-8-aligned SP "
8628 "for destination state is UNPREDICTABLE\n");
8631 /* Do we need to pop callee-saved registers? */
8632 if (return_to_secure &&
8633 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8634 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8635 uint32_t expected_sig = 0xfefa125b;
8636 uint32_t actual_sig;
8638 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8640 if (pop_ok && expected_sig != actual_sig) {
8641 /* Take a SecureFault on the current stack */
8642 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8643 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8644 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8645 "stackframe: failed exception return integrity "
8646 "signature check\n");
8647 v7m_exception_taken(cpu, excret, true, false);
8648 return;
8651 pop_ok = pop_ok &&
8652 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8653 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8654 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8655 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8656 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8657 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8658 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8659 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8661 frameptr += 0x28;
8664 /* Pop registers */
8665 pop_ok = pop_ok &&
8666 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8667 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8668 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8669 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8670 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8671 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8672 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8673 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8675 if (!pop_ok) {
8676 /* v7m_stack_read() pended a fault, so take it (as a tail
8677 * chained exception on the same stack frame)
8679 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8680 v7m_exception_taken(cpu, excret, true, false);
8681 return;
8684 /* Returning from an exception with a PC with bit 0 set is defined
8685 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8686 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8687 * the lsbit, and there are several RTOSes out there which incorrectly
8688 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8689 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8690 * complain about the badly behaved guest.
8692 if (env->regs[15] & 1) {
8693 env->regs[15] &= ~1U;
8694 if (!arm_feature(env, ARM_FEATURE_V8)) {
8695 qemu_log_mask(LOG_GUEST_ERROR,
8696 "M profile return from interrupt with misaligned "
8697 "PC is UNPREDICTABLE on v7M\n");
8701 if (arm_feature(env, ARM_FEATURE_V8)) {
8702 /* For v8M we have to check whether the xPSR exception field
8703 * matches the EXCRET value for return to handler/thread
8704 * before we commit to changing the SP and xPSR.
8706 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8707 if (return_to_handler != will_be_handler) {
8708 /* Take an INVPC UsageFault on the current stack.
8709 * By this point we will have switched to the security state
8710 * for the background state, so this UsageFault will target
8711 * that state.
8713 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8714 env->v7m.secure);
8715 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8716 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8717 "stackframe: failed exception return integrity "
8718 "check\n");
8719 v7m_exception_taken(cpu, excret, true, false);
8720 return;
8724 /* Commit to consuming the stack frame */
8725 frameptr += 0x20;
8726 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8727 * pre-exception SP was not 8-aligned and we added a padding word to
8728 * align it, so we undo this by ORing in the bit that increases it
8729 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8730 * would work too but a logical OR is how the pseudocode specifies it.)
8732 if (xpsr & XPSR_SPREALIGN) {
8733 frameptr |= 4;
8735 *frame_sp_p = frameptr;
8737 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8738 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8740 /* The restored xPSR exception field will be zero if we're
8741 * resuming in Thread mode. If that doesn't match what the
8742 * exception return excret specified then this is a UsageFault.
8743 * v7M requires we make this check here; v8M did it earlier.
8745 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8746 /* Take an INVPC UsageFault by pushing the stack again;
8747 * we know we're v7M so this is never a Secure UsageFault.
8749 bool ignore_stackfaults;
8751 assert(!arm_feature(env, ARM_FEATURE_V8));
8752 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8753 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8754 ignore_stackfaults = v7m_push_stack(cpu);
8755 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8756 "failed exception return integrity check\n");
8757 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8758 return;
8761 /* Otherwise, we have a successful exception exit. */
8762 arm_clear_exclusive(env);
8763 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8766 static bool do_v7m_function_return(ARMCPU *cpu)
8768 /* v8M security extensions magic function return.
8769 * We may either:
8770 * (1) throw an exception (longjump)
8771 * (2) return true if we successfully handled the function return
8772 * (3) return false if we failed a consistency check and have
8773 * pended a UsageFault that needs to be taken now
8775 * At this point the magic return value is split between env->regs[15]
8776 * and env->thumb. We don't bother to reconstitute it because we don't
8777 * need it (all values are handled the same way).
8779 CPUARMState *env = &cpu->env;
8780 uint32_t newpc, newpsr, newpsr_exc;
8782 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8785 bool threadmode, spsel;
8786 TCGMemOpIdx oi;
8787 ARMMMUIdx mmu_idx;
8788 uint32_t *frame_sp_p;
8789 uint32_t frameptr;
8791 /* Pull the return address and IPSR from the Secure stack */
8792 threadmode = !arm_v7m_is_handler_mode(env);
8793 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8795 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8796 frameptr = *frame_sp_p;
8798 /* These loads may throw an exception (for MPU faults). We want to
8799 * do them as secure, so work out what MMU index that is.
8801 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8802 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8803 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8804 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8806 /* Consistency checks on new IPSR */
8807 newpsr_exc = newpsr & XPSR_EXCP;
8808 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8809 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8810 /* Pend the fault and tell our caller to take it */
8811 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8812 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8813 env->v7m.secure);
8814 qemu_log_mask(CPU_LOG_INT,
8815 "...taking INVPC UsageFault: "
8816 "IPSR consistency check failed\n");
8817 return false;
8820 *frame_sp_p = frameptr + 8;
8823 /* This invalidates frame_sp_p */
8824 switch_v7m_security_state(env, true);
8825 env->v7m.exception = newpsr_exc;
8826 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8827 if (newpsr & XPSR_SFPA) {
8828 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8830 xpsr_write(env, 0, XPSR_IT);
8831 env->thumb = newpc & 1;
8832 env->regs[15] = newpc & ~1;
8834 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8835 return true;
8838 static void arm_log_exception(int idx)
8840 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8841 const char *exc = NULL;
8842 static const char * const excnames[] = {
8843 [EXCP_UDEF] = "Undefined Instruction",
8844 [EXCP_SWI] = "SVC",
8845 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8846 [EXCP_DATA_ABORT] = "Data Abort",
8847 [EXCP_IRQ] = "IRQ",
8848 [EXCP_FIQ] = "FIQ",
8849 [EXCP_BKPT] = "Breakpoint",
8850 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8851 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8852 [EXCP_HVC] = "Hypervisor Call",
8853 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8854 [EXCP_SMC] = "Secure Monitor Call",
8855 [EXCP_VIRQ] = "Virtual IRQ",
8856 [EXCP_VFIQ] = "Virtual FIQ",
8857 [EXCP_SEMIHOST] = "Semihosting call",
8858 [EXCP_NOCP] = "v7M NOCP UsageFault",
8859 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8860 [EXCP_STKOF] = "v8M STKOF UsageFault",
8863 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8864 exc = excnames[idx];
8866 if (!exc) {
8867 exc = "unknown";
8869 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8873 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8874 uint32_t addr, uint16_t *insn)
8876 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8877 * or false on failure (in which case we will have pended the appropriate
8878 * exception).
8879 * We need to do the instruction fetch's MPU and SAU checks
8880 * like this because there is no MMU index that would allow
8881 * doing the load with a single function call. Instead we must
8882 * first check that the security attributes permit the load
8883 * and that they don't mismatch on the two halves of the instruction,
8884 * and then we do the load as a secure load (ie using the security
8885 * attributes of the address, not the CPU, as architecturally required).
8887 CPUState *cs = CPU(cpu);
8888 CPUARMState *env = &cpu->env;
8889 V8M_SAttributes sattrs = {};
8890 MemTxAttrs attrs = {};
8891 ARMMMUFaultInfo fi = {};
8892 MemTxResult txres;
8893 target_ulong page_size;
8894 hwaddr physaddr;
8895 int prot;
8897 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8898 if (!sattrs.nsc || sattrs.ns) {
8899 /* This must be the second half of the insn, and it straddles a
8900 * region boundary with the second half not being S&NSC.
8902 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8903 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8904 qemu_log_mask(CPU_LOG_INT,
8905 "...really SecureFault with SFSR.INVEP\n");
8906 return false;
8908 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8909 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8910 /* the MPU lookup failed */
8911 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8912 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8913 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8914 return false;
8916 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8917 attrs, &txres);
8918 if (txres != MEMTX_OK) {
8919 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8920 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8921 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8922 return false;
8924 return true;
8927 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8929 /* Check whether this attempt to execute code in a Secure & NS-Callable
8930 * memory region is for an SG instruction; if so, then emulate the
8931 * effect of the SG instruction and return true. Otherwise pend
8932 * the correct kind of exception and return false.
8934 CPUARMState *env = &cpu->env;
8935 ARMMMUIdx mmu_idx;
8936 uint16_t insn;
8938 /* We should never get here unless get_phys_addr_pmsav8() caused
8939 * an exception for NS executing in S&NSC memory.
8941 assert(!env->v7m.secure);
8942 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8944 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8945 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8947 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8948 return false;
8951 if (!env->thumb) {
8952 goto gen_invep;
8955 if (insn != 0xe97f) {
8956 /* Not an SG instruction first half (we choose the IMPDEF
8957 * early-SG-check option).
8959 goto gen_invep;
8962 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8963 return false;
8966 if (insn != 0xe97f) {
8967 /* Not an SG instruction second half (yes, both halves of the SG
8968 * insn have the same hex value)
8970 goto gen_invep;
8973 /* OK, we have confirmed that we really have an SG instruction.
8974 * We know we're NS in S memory so don't need to repeat those checks.
8976 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8977 ", executing it\n", env->regs[15]);
8978 env->regs[14] &= ~1;
8979 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8980 switch_v7m_security_state(env, true);
8981 xpsr_write(env, 0, XPSR_IT);
8982 env->regs[15] += 4;
8983 return true;
8985 gen_invep:
8986 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8987 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8988 qemu_log_mask(CPU_LOG_INT,
8989 "...really SecureFault with SFSR.INVEP\n");
8990 return false;
8993 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8995 ARMCPU *cpu = ARM_CPU(cs);
8996 CPUARMState *env = &cpu->env;
8997 uint32_t lr;
8998 bool ignore_stackfaults;
9000 arm_log_exception(cs->exception_index);
9002 /* For exceptions we just mark as pending on the NVIC, and let that
9003 handle it. */
9004 switch (cs->exception_index) {
9005 case EXCP_UDEF:
9006 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9007 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
9008 break;
9009 case EXCP_NOCP:
9012 * NOCP might be directed to something other than the current
9013 * security state if this fault is because of NSACR; we indicate
9014 * the target security state using exception.target_el.
9016 int target_secstate;
9018 if (env->exception.target_el == 3) {
9019 target_secstate = M_REG_S;
9020 } else {
9021 target_secstate = env->v7m.secure;
9023 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9024 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
9025 break;
9027 case EXCP_INVSTATE:
9028 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9029 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
9030 break;
9031 case EXCP_STKOF:
9032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9033 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9034 break;
9035 case EXCP_SWI:
9036 /* The PC already points to the next instruction. */
9037 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
9038 break;
9039 case EXCP_PREFETCH_ABORT:
9040 case EXCP_DATA_ABORT:
9041 /* Note that for M profile we don't have a guest facing FSR, but
9042 * the env->exception.fsr will be populated by the code that
9043 * raises the fault, in the A profile short-descriptor format.
9045 switch (env->exception.fsr & 0xf) {
9046 case M_FAKE_FSR_NSC_EXEC:
9047 /* Exception generated when we try to execute code at an address
9048 * which is marked as Secure & Non-Secure Callable and the CPU
9049 * is in the Non-Secure state. The only instruction which can
9050 * be executed like this is SG (and that only if both halves of
9051 * the SG instruction have the same security attributes.)
9052 * Everything else must generate an INVEP SecureFault, so we
9053 * emulate the SG instruction here.
9055 if (v7m_handle_execute_nsc(cpu)) {
9056 return;
9058 break;
9059 case M_FAKE_FSR_SFAULT:
9060 /* Various flavours of SecureFault for attempts to execute or
9061 * access data in the wrong security state.
9063 switch (cs->exception_index) {
9064 case EXCP_PREFETCH_ABORT:
9065 if (env->v7m.secure) {
9066 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9067 qemu_log_mask(CPU_LOG_INT,
9068 "...really SecureFault with SFSR.INVTRAN\n");
9069 } else {
9070 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9071 qemu_log_mask(CPU_LOG_INT,
9072 "...really SecureFault with SFSR.INVEP\n");
9074 break;
9075 case EXCP_DATA_ABORT:
9076 /* This must be an NS access to S memory */
9077 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9078 qemu_log_mask(CPU_LOG_INT,
9079 "...really SecureFault with SFSR.AUVIOL\n");
9080 break;
9082 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9083 break;
9084 case 0x8: /* External Abort */
9085 switch (cs->exception_index) {
9086 case EXCP_PREFETCH_ABORT:
9087 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9088 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
9089 break;
9090 case EXCP_DATA_ABORT:
9091 env->v7m.cfsr[M_REG_NS] |=
9092 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
9093 env->v7m.bfar = env->exception.vaddress;
9094 qemu_log_mask(CPU_LOG_INT,
9095 "...with CFSR.PRECISERR and BFAR 0x%x\n",
9096 env->v7m.bfar);
9097 break;
9099 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9100 break;
9101 default:
9102 /* All other FSR values are either MPU faults or "can't happen
9103 * for M profile" cases.
9105 switch (cs->exception_index) {
9106 case EXCP_PREFETCH_ABORT:
9107 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9108 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9109 break;
9110 case EXCP_DATA_ABORT:
9111 env->v7m.cfsr[env->v7m.secure] |=
9112 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
9113 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
9114 qemu_log_mask(CPU_LOG_INT,
9115 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
9116 env->v7m.mmfar[env->v7m.secure]);
9117 break;
9119 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9120 env->v7m.secure);
9121 break;
9123 break;
9124 case EXCP_BKPT:
9125 if (semihosting_enabled()) {
9126 int nr;
9127 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
9128 if (nr == 0xab) {
9129 env->regs[15] += 2;
9130 qemu_log_mask(CPU_LOG_INT,
9131 "...handling as semihosting call 0x%x\n",
9132 env->regs[0]);
9133 env->regs[0] = do_arm_semihosting(env);
9134 return;
9137 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
9138 break;
9139 case EXCP_IRQ:
9140 break;
9141 case EXCP_EXCEPTION_EXIT:
9142 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9143 /* Must be v8M security extension function return */
9144 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9145 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9146 if (do_v7m_function_return(cpu)) {
9147 return;
9149 } else {
9150 do_v7m_exception_exit(cpu);
9151 return;
9153 break;
9154 default:
9155 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9156 return; /* Never happens. Keep compiler happy. */
9159 if (arm_feature(env, ARM_FEATURE_V8)) {
9160 lr = R_V7M_EXCRET_RES1_MASK |
9161 R_V7M_EXCRET_DCRS_MASK;
9162 /* The S bit indicates whether we should return to Secure
9163 * or NonSecure (ie our current state).
9164 * The ES bit indicates whether we're taking this exception
9165 * to Secure or NonSecure (ie our target state). We set it
9166 * later, in v7m_exception_taken().
9167 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9168 * This corresponds to the ARM ARM pseudocode for v8M setting
9169 * some LR bits in PushStack() and some in ExceptionTaken();
9170 * the distinction matters for the tailchain cases where we
9171 * can take an exception without pushing the stack.
9173 if (env->v7m.secure) {
9174 lr |= R_V7M_EXCRET_S_MASK;
9176 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9177 lr |= R_V7M_EXCRET_FTYPE_MASK;
9179 } else {
9180 lr = R_V7M_EXCRET_RES1_MASK |
9181 R_V7M_EXCRET_S_MASK |
9182 R_V7M_EXCRET_DCRS_MASK |
9183 R_V7M_EXCRET_FTYPE_MASK |
9184 R_V7M_EXCRET_ES_MASK;
9185 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9186 lr |= R_V7M_EXCRET_SPSEL_MASK;
9189 if (!arm_v7m_is_handler_mode(env)) {
9190 lr |= R_V7M_EXCRET_MODE_MASK;
9193 ignore_stackfaults = v7m_push_stack(cpu);
9194 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9197 /* Function used to synchronize QEMU's AArch64 register set with AArch32
9198 * register set. This is necessary when switching between AArch32 and AArch64
9199 * execution state.
9201 void aarch64_sync_32_to_64(CPUARMState *env)
9203 int i;
9204 uint32_t mode = env->uncached_cpsr & CPSR_M;
9206 /* We can blanket copy R[0:7] to X[0:7] */
9207 for (i = 0; i < 8; i++) {
9208 env->xregs[i] = env->regs[i];
9211 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9212 * Otherwise, they come from the banked user regs.
9214 if (mode == ARM_CPU_MODE_FIQ) {
9215 for (i = 8; i < 13; i++) {
9216 env->xregs[i] = env->usr_regs[i - 8];
9218 } else {
9219 for (i = 8; i < 13; i++) {
9220 env->xregs[i] = env->regs[i];
9224 /* Registers x13-x23 are the various mode SP and FP registers. Registers
9225 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9226 * from the mode banked register.
9228 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9229 env->xregs[13] = env->regs[13];
9230 env->xregs[14] = env->regs[14];
9231 } else {
9232 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9233 /* HYP is an exception in that it is copied from r14 */
9234 if (mode == ARM_CPU_MODE_HYP) {
9235 env->xregs[14] = env->regs[14];
9236 } else {
9237 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9241 if (mode == ARM_CPU_MODE_HYP) {
9242 env->xregs[15] = env->regs[13];
9243 } else {
9244 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9247 if (mode == ARM_CPU_MODE_IRQ) {
9248 env->xregs[16] = env->regs[14];
9249 env->xregs[17] = env->regs[13];
9250 } else {
9251 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9252 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9255 if (mode == ARM_CPU_MODE_SVC) {
9256 env->xregs[18] = env->regs[14];
9257 env->xregs[19] = env->regs[13];
9258 } else {
9259 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9260 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9263 if (mode == ARM_CPU_MODE_ABT) {
9264 env->xregs[20] = env->regs[14];
9265 env->xregs[21] = env->regs[13];
9266 } else {
9267 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9268 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9271 if (mode == ARM_CPU_MODE_UND) {
9272 env->xregs[22] = env->regs[14];
9273 env->xregs[23] = env->regs[13];
9274 } else {
9275 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9276 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9279 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9280 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9281 * FIQ bank for r8-r14.
9283 if (mode == ARM_CPU_MODE_FIQ) {
9284 for (i = 24; i < 31; i++) {
9285 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9287 } else {
9288 for (i = 24; i < 29; i++) {
9289 env->xregs[i] = env->fiq_regs[i - 24];
9291 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9292 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9295 env->pc = env->regs[15];
9298 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9299 * register set. This is necessary when switching between AArch32 and AArch64
9300 * execution state.
9302 void aarch64_sync_64_to_32(CPUARMState *env)
9304 int i;
9305 uint32_t mode = env->uncached_cpsr & CPSR_M;
9307 /* We can blanket copy X[0:7] to R[0:7] */
9308 for (i = 0; i < 8; i++) {
9309 env->regs[i] = env->xregs[i];
9312 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9313 * Otherwise, we copy x8-x12 into the banked user regs.
9315 if (mode == ARM_CPU_MODE_FIQ) {
9316 for (i = 8; i < 13; i++) {
9317 env->usr_regs[i - 8] = env->xregs[i];
9319 } else {
9320 for (i = 8; i < 13; i++) {
9321 env->regs[i] = env->xregs[i];
9325 /* Registers r13 & r14 depend on the current mode.
9326 * If we are in a given mode, we copy the corresponding x registers to r13
9327 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9328 * for the mode.
9330 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9331 env->regs[13] = env->xregs[13];
9332 env->regs[14] = env->xregs[14];
9333 } else {
9334 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9336 /* HYP is an exception in that it does not have its own banked r14 but
9337 * shares the USR r14
9339 if (mode == ARM_CPU_MODE_HYP) {
9340 env->regs[14] = env->xregs[14];
9341 } else {
9342 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9346 if (mode == ARM_CPU_MODE_HYP) {
9347 env->regs[13] = env->xregs[15];
9348 } else {
9349 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9352 if (mode == ARM_CPU_MODE_IRQ) {
9353 env->regs[14] = env->xregs[16];
9354 env->regs[13] = env->xregs[17];
9355 } else {
9356 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9357 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9360 if (mode == ARM_CPU_MODE_SVC) {
9361 env->regs[14] = env->xregs[18];
9362 env->regs[13] = env->xregs[19];
9363 } else {
9364 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9365 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9368 if (mode == ARM_CPU_MODE_ABT) {
9369 env->regs[14] = env->xregs[20];
9370 env->regs[13] = env->xregs[21];
9371 } else {
9372 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9373 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9376 if (mode == ARM_CPU_MODE_UND) {
9377 env->regs[14] = env->xregs[22];
9378 env->regs[13] = env->xregs[23];
9379 } else {
9380 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9381 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9384 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9385 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9386 * FIQ bank for r8-r14.
9388 if (mode == ARM_CPU_MODE_FIQ) {
9389 for (i = 24; i < 31; i++) {
9390 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9392 } else {
9393 for (i = 24; i < 29; i++) {
9394 env->fiq_regs[i - 24] = env->xregs[i];
9396 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9397 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9400 env->regs[15] = env->pc;
9403 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9404 uint32_t mask, uint32_t offset,
9405 uint32_t newpc)
9407 /* Change the CPU state so as to actually take the exception. */
9408 switch_mode(env, new_mode);
9410 * For exceptions taken to AArch32 we must clear the SS bit in both
9411 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9413 env->uncached_cpsr &= ~PSTATE_SS;
9414 env->spsr = cpsr_read(env);
9415 /* Clear IT bits. */
9416 env->condexec_bits = 0;
9417 /* Switch to the new mode, and to the correct instruction set. */
9418 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9419 /* Set new mode endianness */
9420 env->uncached_cpsr &= ~CPSR_E;
9421 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9422 env->uncached_cpsr |= CPSR_E;
9424 /* J and IL must always be cleared for exception entry */
9425 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9426 env->daif |= mask;
9428 if (new_mode == ARM_CPU_MODE_HYP) {
9429 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9430 env->elr_el[2] = env->regs[15];
9431 } else {
9433 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9434 * and we should just guard the thumb mode on V4
9436 if (arm_feature(env, ARM_FEATURE_V4T)) {
9437 env->thumb =
9438 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9440 env->regs[14] = env->regs[15] + offset;
9442 env->regs[15] = newpc;
9445 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9448 * Handle exception entry to Hyp mode; this is sufficiently
9449 * different to entry to other AArch32 modes that we handle it
9450 * separately here.
9452 * The vector table entry used is always the 0x14 Hyp mode entry point,
9453 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9454 * The offset applied to the preferred return address is always zero
9455 * (see DDI0487C.a section G1.12.3).
9456 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9458 uint32_t addr, mask;
9459 ARMCPU *cpu = ARM_CPU(cs);
9460 CPUARMState *env = &cpu->env;
9462 switch (cs->exception_index) {
9463 case EXCP_UDEF:
9464 addr = 0x04;
9465 break;
9466 case EXCP_SWI:
9467 addr = 0x14;
9468 break;
9469 case EXCP_BKPT:
9470 /* Fall through to prefetch abort. */
9471 case EXCP_PREFETCH_ABORT:
9472 env->cp15.ifar_s = env->exception.vaddress;
9473 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9474 (uint32_t)env->exception.vaddress);
9475 addr = 0x0c;
9476 break;
9477 case EXCP_DATA_ABORT:
9478 env->cp15.dfar_s = env->exception.vaddress;
9479 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9480 (uint32_t)env->exception.vaddress);
9481 addr = 0x10;
9482 break;
9483 case EXCP_IRQ:
9484 addr = 0x18;
9485 break;
9486 case EXCP_FIQ:
9487 addr = 0x1c;
9488 break;
9489 case EXCP_HVC:
9490 addr = 0x08;
9491 break;
9492 case EXCP_HYP_TRAP:
9493 addr = 0x14;
9494 default:
9495 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9498 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9499 if (!arm_feature(env, ARM_FEATURE_V8)) {
9501 * QEMU syndrome values are v8-style. v7 has the IL bit
9502 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9503 * If this is a v7 CPU, squash the IL bit in those cases.
9505 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9506 (cs->exception_index == EXCP_DATA_ABORT &&
9507 !(env->exception.syndrome & ARM_EL_ISV)) ||
9508 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9509 env->exception.syndrome &= ~ARM_EL_IL;
9512 env->cp15.esr_el[2] = env->exception.syndrome;
9515 if (arm_current_el(env) != 2 && addr < 0x14) {
9516 addr = 0x14;
9519 mask = 0;
9520 if (!(env->cp15.scr_el3 & SCR_EA)) {
9521 mask |= CPSR_A;
9523 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9524 mask |= CPSR_I;
9526 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9527 mask |= CPSR_F;
9530 addr += env->cp15.hvbar;
9532 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9535 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9537 ARMCPU *cpu = ARM_CPU(cs);
9538 CPUARMState *env = &cpu->env;
9539 uint32_t addr;
9540 uint32_t mask;
9541 int new_mode;
9542 uint32_t offset;
9543 uint32_t moe;
9545 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9546 switch (syn_get_ec(env->exception.syndrome)) {
9547 case EC_BREAKPOINT:
9548 case EC_BREAKPOINT_SAME_EL:
9549 moe = 1;
9550 break;
9551 case EC_WATCHPOINT:
9552 case EC_WATCHPOINT_SAME_EL:
9553 moe = 10;
9554 break;
9555 case EC_AA32_BKPT:
9556 moe = 3;
9557 break;
9558 case EC_VECTORCATCH:
9559 moe = 5;
9560 break;
9561 default:
9562 moe = 0;
9563 break;
9566 if (moe) {
9567 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9570 if (env->exception.target_el == 2) {
9571 arm_cpu_do_interrupt_aarch32_hyp(cs);
9572 return;
9575 switch (cs->exception_index) {
9576 case EXCP_UDEF:
9577 new_mode = ARM_CPU_MODE_UND;
9578 addr = 0x04;
9579 mask = CPSR_I;
9580 if (env->thumb)
9581 offset = 2;
9582 else
9583 offset = 4;
9584 break;
9585 case EXCP_SWI:
9586 new_mode = ARM_CPU_MODE_SVC;
9587 addr = 0x08;
9588 mask = CPSR_I;
9589 /* The PC already points to the next instruction. */
9590 offset = 0;
9591 break;
9592 case EXCP_BKPT:
9593 /* Fall through to prefetch abort. */
9594 case EXCP_PREFETCH_ABORT:
9595 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9596 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9597 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9598 env->exception.fsr, (uint32_t)env->exception.vaddress);
9599 new_mode = ARM_CPU_MODE_ABT;
9600 addr = 0x0c;
9601 mask = CPSR_A | CPSR_I;
9602 offset = 4;
9603 break;
9604 case EXCP_DATA_ABORT:
9605 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9606 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9607 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9608 env->exception.fsr,
9609 (uint32_t)env->exception.vaddress);
9610 new_mode = ARM_CPU_MODE_ABT;
9611 addr = 0x10;
9612 mask = CPSR_A | CPSR_I;
9613 offset = 8;
9614 break;
9615 case EXCP_IRQ:
9616 new_mode = ARM_CPU_MODE_IRQ;
9617 addr = 0x18;
9618 /* Disable IRQ and imprecise data aborts. */
9619 mask = CPSR_A | CPSR_I;
9620 offset = 4;
9621 if (env->cp15.scr_el3 & SCR_IRQ) {
9622 /* IRQ routed to monitor mode */
9623 new_mode = ARM_CPU_MODE_MON;
9624 mask |= CPSR_F;
9626 break;
9627 case EXCP_FIQ:
9628 new_mode = ARM_CPU_MODE_FIQ;
9629 addr = 0x1c;
9630 /* Disable FIQ, IRQ and imprecise data aborts. */
9631 mask = CPSR_A | CPSR_I | CPSR_F;
9632 if (env->cp15.scr_el3 & SCR_FIQ) {
9633 /* FIQ routed to monitor mode */
9634 new_mode = ARM_CPU_MODE_MON;
9636 offset = 4;
9637 break;
9638 case EXCP_VIRQ:
9639 new_mode = ARM_CPU_MODE_IRQ;
9640 addr = 0x18;
9641 /* Disable IRQ and imprecise data aborts. */
9642 mask = CPSR_A | CPSR_I;
9643 offset = 4;
9644 break;
9645 case EXCP_VFIQ:
9646 new_mode = ARM_CPU_MODE_FIQ;
9647 addr = 0x1c;
9648 /* Disable FIQ, IRQ and imprecise data aborts. */
9649 mask = CPSR_A | CPSR_I | CPSR_F;
9650 offset = 4;
9651 break;
9652 case EXCP_SMC:
9653 new_mode = ARM_CPU_MODE_MON;
9654 addr = 0x08;
9655 mask = CPSR_A | CPSR_I | CPSR_F;
9656 offset = 0;
9657 break;
9658 default:
9659 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9660 return; /* Never happens. Keep compiler happy. */
9663 if (new_mode == ARM_CPU_MODE_MON) {
9664 addr += env->cp15.mvbar;
9665 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9666 /* High vectors. When enabled, base address cannot be remapped. */
9667 addr += 0xffff0000;
9668 } else {
9669 /* ARM v7 architectures provide a vector base address register to remap
9670 * the interrupt vector table.
9671 * This register is only followed in non-monitor mode, and is banked.
9672 * Note: only bits 31:5 are valid.
9674 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9677 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9678 env->cp15.scr_el3 &= ~SCR_NS;
9681 take_aarch32_exception(env, new_mode, mask, offset, addr);
9684 /* Handle exception entry to a target EL which is using AArch64 */
9685 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9687 ARMCPU *cpu = ARM_CPU(cs);
9688 CPUARMState *env = &cpu->env;
9689 unsigned int new_el = env->exception.target_el;
9690 target_ulong addr = env->cp15.vbar_el[new_el];
9691 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9692 unsigned int cur_el = arm_current_el(env);
9695 * Note that new_el can never be 0. If cur_el is 0, then
9696 * el0_a64 is is_a64(), else el0_a64 is ignored.
9698 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9700 if (cur_el < new_el) {
9701 /* Entry vector offset depends on whether the implemented EL
9702 * immediately lower than the target level is using AArch32 or AArch64
9704 bool is_aa64;
9706 switch (new_el) {
9707 case 3:
9708 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9709 break;
9710 case 2:
9711 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9712 break;
9713 case 1:
9714 is_aa64 = is_a64(env);
9715 break;
9716 default:
9717 g_assert_not_reached();
9720 if (is_aa64) {
9721 addr += 0x400;
9722 } else {
9723 addr += 0x600;
9725 } else if (pstate_read(env) & PSTATE_SP) {
9726 addr += 0x200;
9729 switch (cs->exception_index) {
9730 case EXCP_PREFETCH_ABORT:
9731 case EXCP_DATA_ABORT:
9732 env->cp15.far_el[new_el] = env->exception.vaddress;
9733 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9734 env->cp15.far_el[new_el]);
9735 /* fall through */
9736 case EXCP_BKPT:
9737 case EXCP_UDEF:
9738 case EXCP_SWI:
9739 case EXCP_HVC:
9740 case EXCP_HYP_TRAP:
9741 case EXCP_SMC:
9742 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9744 * QEMU internal FP/SIMD syndromes from AArch32 include the
9745 * TA and coproc fields which are only exposed if the exception
9746 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9747 * AArch64 format syndrome.
9749 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9751 env->cp15.esr_el[new_el] = env->exception.syndrome;
9752 break;
9753 case EXCP_IRQ:
9754 case EXCP_VIRQ:
9755 addr += 0x80;
9756 break;
9757 case EXCP_FIQ:
9758 case EXCP_VFIQ:
9759 addr += 0x100;
9760 break;
9761 case EXCP_SEMIHOST:
9762 qemu_log_mask(CPU_LOG_INT,
9763 "...handling as semihosting call 0x%" PRIx64 "\n",
9764 env->xregs[0]);
9765 env->xregs[0] = do_arm_semihosting(env);
9766 return;
9767 default:
9768 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9771 if (is_a64(env)) {
9772 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9773 aarch64_save_sp(env, arm_current_el(env));
9774 env->elr_el[new_el] = env->pc;
9775 } else {
9776 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9777 env->elr_el[new_el] = env->regs[15];
9779 aarch64_sync_32_to_64(env);
9781 env->condexec_bits = 0;
9783 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9784 env->elr_el[new_el]);
9786 pstate_write(env, PSTATE_DAIF | new_mode);
9787 env->aarch64 = 1;
9788 aarch64_restore_sp(env, new_el);
9790 env->pc = addr;
9792 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9793 new_el, env->pc, pstate_read(env));
9796 static inline bool check_for_semihosting(CPUState *cs)
9798 /* Check whether this exception is a semihosting call; if so
9799 * then handle it and return true; otherwise return false.
9801 ARMCPU *cpu = ARM_CPU(cs);
9802 CPUARMState *env = &cpu->env;
9804 if (is_a64(env)) {
9805 if (cs->exception_index == EXCP_SEMIHOST) {
9806 /* This is always the 64-bit semihosting exception.
9807 * The "is this usermode" and "is semihosting enabled"
9808 * checks have been done at translate time.
9810 qemu_log_mask(CPU_LOG_INT,
9811 "...handling as semihosting call 0x%" PRIx64 "\n",
9812 env->xregs[0]);
9813 env->xregs[0] = do_arm_semihosting(env);
9814 return true;
9816 return false;
9817 } else {
9818 uint32_t imm;
9820 /* Only intercept calls from privileged modes, to provide some
9821 * semblance of security.
9823 if (cs->exception_index != EXCP_SEMIHOST &&
9824 (!semihosting_enabled() ||
9825 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9826 return false;
9829 switch (cs->exception_index) {
9830 case EXCP_SEMIHOST:
9831 /* This is always a semihosting call; the "is this usermode"
9832 * and "is semihosting enabled" checks have been done at
9833 * translate time.
9835 break;
9836 case EXCP_SWI:
9837 /* Check for semihosting interrupt. */
9838 if (env->thumb) {
9839 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9840 & 0xff;
9841 if (imm == 0xab) {
9842 break;
9844 } else {
9845 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9846 & 0xffffff;
9847 if (imm == 0x123456) {
9848 break;
9851 return false;
9852 case EXCP_BKPT:
9853 /* See if this is a semihosting syscall. */
9854 if (env->thumb) {
9855 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9856 & 0xff;
9857 if (imm == 0xab) {
9858 env->regs[15] += 2;
9859 break;
9862 return false;
9863 default:
9864 return false;
9867 qemu_log_mask(CPU_LOG_INT,
9868 "...handling as semihosting call 0x%x\n",
9869 env->regs[0]);
9870 env->regs[0] = do_arm_semihosting(env);
9871 return true;
9875 /* Handle a CPU exception for A and R profile CPUs.
9876 * Do any appropriate logging, handle PSCI calls, and then hand off
9877 * to the AArch64-entry or AArch32-entry function depending on the
9878 * target exception level's register width.
9880 void arm_cpu_do_interrupt(CPUState *cs)
9882 ARMCPU *cpu = ARM_CPU(cs);
9883 CPUARMState *env = &cpu->env;
9884 unsigned int new_el = env->exception.target_el;
9886 assert(!arm_feature(env, ARM_FEATURE_M));
9888 arm_log_exception(cs->exception_index);
9889 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9890 new_el);
9891 if (qemu_loglevel_mask(CPU_LOG_INT)
9892 && !excp_is_internal(cs->exception_index)) {
9893 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9894 syn_get_ec(env->exception.syndrome),
9895 env->exception.syndrome);
9898 if (arm_is_psci_call(cpu, cs->exception_index)) {
9899 arm_handle_psci_call(cpu);
9900 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9901 return;
9904 /* Semihosting semantics depend on the register width of the
9905 * code that caused the exception, not the target exception level,
9906 * so must be handled here.
9908 if (check_for_semihosting(cs)) {
9909 return;
9912 /* Hooks may change global state so BQL should be held, also the
9913 * BQL needs to be held for any modification of
9914 * cs->interrupt_request.
9916 g_assert(qemu_mutex_iothread_locked());
9918 arm_call_pre_el_change_hook(cpu);
9920 assert(!excp_is_internal(cs->exception_index));
9921 if (arm_el_is_aa64(env, new_el)) {
9922 arm_cpu_do_interrupt_aarch64(cs);
9923 } else {
9924 arm_cpu_do_interrupt_aarch32(cs);
9927 arm_call_el_change_hook(cpu);
9929 if (!kvm_enabled()) {
9930 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9933 #endif /* !CONFIG_USER_ONLY */
9935 /* Return the exception level which controls this address translation regime */
9936 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9938 switch (mmu_idx) {
9939 case ARMMMUIdx_S2NS:
9940 case ARMMMUIdx_S1E2:
9941 return 2;
9942 case ARMMMUIdx_S1E3:
9943 return 3;
9944 case ARMMMUIdx_S1SE0:
9945 return arm_el_is_aa64(env, 3) ? 1 : 3;
9946 case ARMMMUIdx_S1SE1:
9947 case ARMMMUIdx_S1NSE0:
9948 case ARMMMUIdx_S1NSE1:
9949 case ARMMMUIdx_MPrivNegPri:
9950 case ARMMMUIdx_MUserNegPri:
9951 case ARMMMUIdx_MPriv:
9952 case ARMMMUIdx_MUser:
9953 case ARMMMUIdx_MSPrivNegPri:
9954 case ARMMMUIdx_MSUserNegPri:
9955 case ARMMMUIdx_MSPriv:
9956 case ARMMMUIdx_MSUser:
9957 return 1;
9958 default:
9959 g_assert_not_reached();
9963 #ifndef CONFIG_USER_ONLY
9965 /* Return the SCTLR value which controls this address translation regime */
9966 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9968 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9971 /* Return true if the specified stage of address translation is disabled */
9972 static inline bool regime_translation_disabled(CPUARMState *env,
9973 ARMMMUIdx mmu_idx)
9975 if (arm_feature(env, ARM_FEATURE_M)) {
9976 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9977 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9978 case R_V7M_MPU_CTRL_ENABLE_MASK:
9979 /* Enabled, but not for HardFault and NMI */
9980 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9981 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9982 /* Enabled for all cases */
9983 return false;
9984 case 0:
9985 default:
9986 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9987 * we warned about that in armv7m_nvic.c when the guest set it.
9989 return true;
9993 if (mmu_idx == ARMMMUIdx_S2NS) {
9994 /* HCR.DC means HCR.VM behaves as 1 */
9995 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9998 if (env->cp15.hcr_el2 & HCR_TGE) {
9999 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10000 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10001 return true;
10005 if ((env->cp15.hcr_el2 & HCR_DC) &&
10006 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10007 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10008 return true;
10011 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10014 static inline bool regime_translation_big_endian(CPUARMState *env,
10015 ARMMMUIdx mmu_idx)
10017 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10020 /* Return the TTBR associated with this translation regime */
10021 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10022 int ttbrn)
10024 if (mmu_idx == ARMMMUIdx_S2NS) {
10025 return env->cp15.vttbr_el2;
10027 if (ttbrn == 0) {
10028 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10029 } else {
10030 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10034 #endif /* !CONFIG_USER_ONLY */
10036 /* Return the TCR controlling this translation regime */
10037 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10039 if (mmu_idx == ARMMMUIdx_S2NS) {
10040 return &env->cp15.vtcr_el2;
10042 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10045 /* Convert a possible stage1+2 MMU index into the appropriate
10046 * stage 1 MMU index
10048 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10050 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10051 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10053 return mmu_idx;
10056 /* Return true if the translation regime is using LPAE format page tables */
10057 static inline bool regime_using_lpae_format(CPUARMState *env,
10058 ARMMMUIdx mmu_idx)
10060 int el = regime_el(env, mmu_idx);
10061 if (el == 2 || arm_el_is_aa64(env, el)) {
10062 return true;
10064 if (arm_feature(env, ARM_FEATURE_LPAE)
10065 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10066 return true;
10068 return false;
10071 /* Returns true if the stage 1 translation regime is using LPAE format page
10072 * tables. Used when raising alignment exceptions, whose FSR changes depending
10073 * on whether the long or short descriptor format is in use. */
10074 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10076 mmu_idx = stage_1_mmu_idx(mmu_idx);
10078 return regime_using_lpae_format(env, mmu_idx);
10081 #ifndef CONFIG_USER_ONLY
10082 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10084 switch (mmu_idx) {
10085 case ARMMMUIdx_S1SE0:
10086 case ARMMMUIdx_S1NSE0:
10087 case ARMMMUIdx_MUser:
10088 case ARMMMUIdx_MSUser:
10089 case ARMMMUIdx_MUserNegPri:
10090 case ARMMMUIdx_MSUserNegPri:
10091 return true;
10092 default:
10093 return false;
10094 case ARMMMUIdx_S12NSE0:
10095 case ARMMMUIdx_S12NSE1:
10096 g_assert_not_reached();
10100 /* Translate section/page access permissions to page
10101 * R/W protection flags
10103 * @env: CPUARMState
10104 * @mmu_idx: MMU index indicating required translation regime
10105 * @ap: The 3-bit access permissions (AP[2:0])
10106 * @domain_prot: The 2-bit domain access permissions
10108 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10109 int ap, int domain_prot)
10111 bool is_user = regime_is_user(env, mmu_idx);
10113 if (domain_prot == 3) {
10114 return PAGE_READ | PAGE_WRITE;
10117 switch (ap) {
10118 case 0:
10119 if (arm_feature(env, ARM_FEATURE_V7)) {
10120 return 0;
10122 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10123 case SCTLR_S:
10124 return is_user ? 0 : PAGE_READ;
10125 case SCTLR_R:
10126 return PAGE_READ;
10127 default:
10128 return 0;
10130 case 1:
10131 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10132 case 2:
10133 if (is_user) {
10134 return PAGE_READ;
10135 } else {
10136 return PAGE_READ | PAGE_WRITE;
10138 case 3:
10139 return PAGE_READ | PAGE_WRITE;
10140 case 4: /* Reserved. */
10141 return 0;
10142 case 5:
10143 return is_user ? 0 : PAGE_READ;
10144 case 6:
10145 return PAGE_READ;
10146 case 7:
10147 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10148 return 0;
10150 return PAGE_READ;
10151 default:
10152 g_assert_not_reached();
10156 /* Translate section/page access permissions to page
10157 * R/W protection flags.
10159 * @ap: The 2-bit simple AP (AP[2:1])
10160 * @is_user: TRUE if accessing from PL0
10162 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10164 switch (ap) {
10165 case 0:
10166 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10167 case 1:
10168 return PAGE_READ | PAGE_WRITE;
10169 case 2:
10170 return is_user ? 0 : PAGE_READ;
10171 case 3:
10172 return PAGE_READ;
10173 default:
10174 g_assert_not_reached();
10178 static inline int
10179 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10181 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10184 /* Translate S2 section/page access permissions to protection flags
10186 * @env: CPUARMState
10187 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10188 * @xn: XN (execute-never) bit
10190 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10192 int prot = 0;
10194 if (s2ap & 1) {
10195 prot |= PAGE_READ;
10197 if (s2ap & 2) {
10198 prot |= PAGE_WRITE;
10200 if (!xn) {
10201 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10202 prot |= PAGE_EXEC;
10205 return prot;
10208 /* Translate section/page access permissions to protection flags
10210 * @env: CPUARMState
10211 * @mmu_idx: MMU index indicating required translation regime
10212 * @is_aa64: TRUE if AArch64
10213 * @ap: The 2-bit simple AP (AP[2:1])
10214 * @ns: NS (non-secure) bit
10215 * @xn: XN (execute-never) bit
10216 * @pxn: PXN (privileged execute-never) bit
10218 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10219 int ap, int ns, int xn, int pxn)
10221 bool is_user = regime_is_user(env, mmu_idx);
10222 int prot_rw, user_rw;
10223 bool have_wxn;
10224 int wxn = 0;
10226 assert(mmu_idx != ARMMMUIdx_S2NS);
10228 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10229 if (is_user) {
10230 prot_rw = user_rw;
10231 } else {
10232 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10235 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10236 return prot_rw;
10239 /* TODO have_wxn should be replaced with
10240 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10241 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10242 * compatible processors have EL2, which is required for [U]WXN.
10244 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10246 if (have_wxn) {
10247 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10250 if (is_aa64) {
10251 switch (regime_el(env, mmu_idx)) {
10252 case 1:
10253 if (!is_user) {
10254 xn = pxn || (user_rw & PAGE_WRITE);
10256 break;
10257 case 2:
10258 case 3:
10259 break;
10261 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10262 switch (regime_el(env, mmu_idx)) {
10263 case 1:
10264 case 3:
10265 if (is_user) {
10266 xn = xn || !(user_rw & PAGE_READ);
10267 } else {
10268 int uwxn = 0;
10269 if (have_wxn) {
10270 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10272 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10273 (uwxn && (user_rw & PAGE_WRITE));
10275 break;
10276 case 2:
10277 break;
10279 } else {
10280 xn = wxn = 0;
10283 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10284 return prot_rw;
10286 return prot_rw | PAGE_EXEC;
10289 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10290 uint32_t *table, uint32_t address)
10292 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10293 TCR *tcr = regime_tcr(env, mmu_idx);
10295 if (address & tcr->mask) {
10296 if (tcr->raw_tcr & TTBCR_PD1) {
10297 /* Translation table walk disabled for TTBR1 */
10298 return false;
10300 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10301 } else {
10302 if (tcr->raw_tcr & TTBCR_PD0) {
10303 /* Translation table walk disabled for TTBR0 */
10304 return false;
10306 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10308 *table |= (address >> 18) & 0x3ffc;
10309 return true;
10312 /* Translate a S1 pagetable walk through S2 if needed. */
10313 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10314 hwaddr addr, MemTxAttrs txattrs,
10315 ARMMMUFaultInfo *fi)
10317 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10318 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10319 target_ulong s2size;
10320 hwaddr s2pa;
10321 int s2prot;
10322 int ret;
10323 ARMCacheAttrs cacheattrs = {};
10324 ARMCacheAttrs *pcacheattrs = NULL;
10326 if (env->cp15.hcr_el2 & HCR_PTW) {
10328 * PTW means we must fault if this S1 walk touches S2 Device
10329 * memory; otherwise we don't care about the attributes and can
10330 * save the S2 translation the effort of computing them.
10332 pcacheattrs = &cacheattrs;
10335 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10336 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10337 if (ret) {
10338 assert(fi->type != ARMFault_None);
10339 fi->s2addr = addr;
10340 fi->stage2 = true;
10341 fi->s1ptw = true;
10342 return ~0;
10344 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10345 /* Access was to Device memory: generate Permission fault */
10346 fi->type = ARMFault_Permission;
10347 fi->s2addr = addr;
10348 fi->stage2 = true;
10349 fi->s1ptw = true;
10350 return ~0;
10352 addr = s2pa;
10354 return addr;
10357 /* All loads done in the course of a page table walk go through here. */
10358 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10359 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10361 ARMCPU *cpu = ARM_CPU(cs);
10362 CPUARMState *env = &cpu->env;
10363 MemTxAttrs attrs = {};
10364 MemTxResult result = MEMTX_OK;
10365 AddressSpace *as;
10366 uint32_t data;
10368 attrs.secure = is_secure;
10369 as = arm_addressspace(cs, attrs);
10370 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10371 if (fi->s1ptw) {
10372 return 0;
10374 if (regime_translation_big_endian(env, mmu_idx)) {
10375 data = address_space_ldl_be(as, addr, attrs, &result);
10376 } else {
10377 data = address_space_ldl_le(as, addr, attrs, &result);
10379 if (result == MEMTX_OK) {
10380 return data;
10382 fi->type = ARMFault_SyncExternalOnWalk;
10383 fi->ea = arm_extabort_type(result);
10384 return 0;
10387 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10388 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10390 ARMCPU *cpu = ARM_CPU(cs);
10391 CPUARMState *env = &cpu->env;
10392 MemTxAttrs attrs = {};
10393 MemTxResult result = MEMTX_OK;
10394 AddressSpace *as;
10395 uint64_t data;
10397 attrs.secure = is_secure;
10398 as = arm_addressspace(cs, attrs);
10399 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10400 if (fi->s1ptw) {
10401 return 0;
10403 if (regime_translation_big_endian(env, mmu_idx)) {
10404 data = address_space_ldq_be(as, addr, attrs, &result);
10405 } else {
10406 data = address_space_ldq_le(as, addr, attrs, &result);
10408 if (result == MEMTX_OK) {
10409 return data;
10411 fi->type = ARMFault_SyncExternalOnWalk;
10412 fi->ea = arm_extabort_type(result);
10413 return 0;
10416 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10417 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10418 hwaddr *phys_ptr, int *prot,
10419 target_ulong *page_size,
10420 ARMMMUFaultInfo *fi)
10422 CPUState *cs = CPU(arm_env_get_cpu(env));
10423 int level = 1;
10424 uint32_t table;
10425 uint32_t desc;
10426 int type;
10427 int ap;
10428 int domain = 0;
10429 int domain_prot;
10430 hwaddr phys_addr;
10431 uint32_t dacr;
10433 /* Pagetable walk. */
10434 /* Lookup l1 descriptor. */
10435 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10436 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10437 fi->type = ARMFault_Translation;
10438 goto do_fault;
10440 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10441 mmu_idx, fi);
10442 if (fi->type != ARMFault_None) {
10443 goto do_fault;
10445 type = (desc & 3);
10446 domain = (desc >> 5) & 0x0f;
10447 if (regime_el(env, mmu_idx) == 1) {
10448 dacr = env->cp15.dacr_ns;
10449 } else {
10450 dacr = env->cp15.dacr_s;
10452 domain_prot = (dacr >> (domain * 2)) & 3;
10453 if (type == 0) {
10454 /* Section translation fault. */
10455 fi->type = ARMFault_Translation;
10456 goto do_fault;
10458 if (type != 2) {
10459 level = 2;
10461 if (domain_prot == 0 || domain_prot == 2) {
10462 fi->type = ARMFault_Domain;
10463 goto do_fault;
10465 if (type == 2) {
10466 /* 1Mb section. */
10467 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10468 ap = (desc >> 10) & 3;
10469 *page_size = 1024 * 1024;
10470 } else {
10471 /* Lookup l2 entry. */
10472 if (type == 1) {
10473 /* Coarse pagetable. */
10474 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10475 } else {
10476 /* Fine pagetable. */
10477 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10479 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10480 mmu_idx, fi);
10481 if (fi->type != ARMFault_None) {
10482 goto do_fault;
10484 switch (desc & 3) {
10485 case 0: /* Page translation fault. */
10486 fi->type = ARMFault_Translation;
10487 goto do_fault;
10488 case 1: /* 64k page. */
10489 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10490 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10491 *page_size = 0x10000;
10492 break;
10493 case 2: /* 4k page. */
10494 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10495 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10496 *page_size = 0x1000;
10497 break;
10498 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10499 if (type == 1) {
10500 /* ARMv6/XScale extended small page format */
10501 if (arm_feature(env, ARM_FEATURE_XSCALE)
10502 || arm_feature(env, ARM_FEATURE_V6)) {
10503 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10504 *page_size = 0x1000;
10505 } else {
10506 /* UNPREDICTABLE in ARMv5; we choose to take a
10507 * page translation fault.
10509 fi->type = ARMFault_Translation;
10510 goto do_fault;
10512 } else {
10513 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10514 *page_size = 0x400;
10516 ap = (desc >> 4) & 3;
10517 break;
10518 default:
10519 /* Never happens, but compiler isn't smart enough to tell. */
10520 abort();
10523 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10524 *prot |= *prot ? PAGE_EXEC : 0;
10525 if (!(*prot & (1 << access_type))) {
10526 /* Access permission fault. */
10527 fi->type = ARMFault_Permission;
10528 goto do_fault;
10530 *phys_ptr = phys_addr;
10531 return false;
10532 do_fault:
10533 fi->domain = domain;
10534 fi->level = level;
10535 return true;
10538 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10539 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10540 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10541 target_ulong *page_size, ARMMMUFaultInfo *fi)
10543 CPUState *cs = CPU(arm_env_get_cpu(env));
10544 int level = 1;
10545 uint32_t table;
10546 uint32_t desc;
10547 uint32_t xn;
10548 uint32_t pxn = 0;
10549 int type;
10550 int ap;
10551 int domain = 0;
10552 int domain_prot;
10553 hwaddr phys_addr;
10554 uint32_t dacr;
10555 bool ns;
10557 /* Pagetable walk. */
10558 /* Lookup l1 descriptor. */
10559 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10560 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10561 fi->type = ARMFault_Translation;
10562 goto do_fault;
10564 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10565 mmu_idx, fi);
10566 if (fi->type != ARMFault_None) {
10567 goto do_fault;
10569 type = (desc & 3);
10570 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10571 /* Section translation fault, or attempt to use the encoding
10572 * which is Reserved on implementations without PXN.
10574 fi->type = ARMFault_Translation;
10575 goto do_fault;
10577 if ((type == 1) || !(desc & (1 << 18))) {
10578 /* Page or Section. */
10579 domain = (desc >> 5) & 0x0f;
10581 if (regime_el(env, mmu_idx) == 1) {
10582 dacr = env->cp15.dacr_ns;
10583 } else {
10584 dacr = env->cp15.dacr_s;
10586 if (type == 1) {
10587 level = 2;
10589 domain_prot = (dacr >> (domain * 2)) & 3;
10590 if (domain_prot == 0 || domain_prot == 2) {
10591 /* Section or Page domain fault */
10592 fi->type = ARMFault_Domain;
10593 goto do_fault;
10595 if (type != 1) {
10596 if (desc & (1 << 18)) {
10597 /* Supersection. */
10598 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10599 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10600 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10601 *page_size = 0x1000000;
10602 } else {
10603 /* Section. */
10604 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10605 *page_size = 0x100000;
10607 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10608 xn = desc & (1 << 4);
10609 pxn = desc & 1;
10610 ns = extract32(desc, 19, 1);
10611 } else {
10612 if (arm_feature(env, ARM_FEATURE_PXN)) {
10613 pxn = (desc >> 2) & 1;
10615 ns = extract32(desc, 3, 1);
10616 /* Lookup l2 entry. */
10617 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10618 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10619 mmu_idx, fi);
10620 if (fi->type != ARMFault_None) {
10621 goto do_fault;
10623 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10624 switch (desc & 3) {
10625 case 0: /* Page translation fault. */
10626 fi->type = ARMFault_Translation;
10627 goto do_fault;
10628 case 1: /* 64k page. */
10629 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10630 xn = desc & (1 << 15);
10631 *page_size = 0x10000;
10632 break;
10633 case 2: case 3: /* 4k page. */
10634 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10635 xn = desc & 1;
10636 *page_size = 0x1000;
10637 break;
10638 default:
10639 /* Never happens, but compiler isn't smart enough to tell. */
10640 abort();
10643 if (domain_prot == 3) {
10644 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10645 } else {
10646 if (pxn && !regime_is_user(env, mmu_idx)) {
10647 xn = 1;
10649 if (xn && access_type == MMU_INST_FETCH) {
10650 fi->type = ARMFault_Permission;
10651 goto do_fault;
10654 if (arm_feature(env, ARM_FEATURE_V6K) &&
10655 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10656 /* The simplified model uses AP[0] as an access control bit. */
10657 if ((ap & 1) == 0) {
10658 /* Access flag fault. */
10659 fi->type = ARMFault_AccessFlag;
10660 goto do_fault;
10662 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10663 } else {
10664 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10666 if (*prot && !xn) {
10667 *prot |= PAGE_EXEC;
10669 if (!(*prot & (1 << access_type))) {
10670 /* Access permission fault. */
10671 fi->type = ARMFault_Permission;
10672 goto do_fault;
10675 if (ns) {
10676 /* The NS bit will (as required by the architecture) have no effect if
10677 * the CPU doesn't support TZ or this is a non-secure translation
10678 * regime, because the attribute will already be non-secure.
10680 attrs->secure = false;
10682 *phys_ptr = phys_addr;
10683 return false;
10684 do_fault:
10685 fi->domain = domain;
10686 fi->level = level;
10687 return true;
10691 * check_s2_mmu_setup
10692 * @cpu: ARMCPU
10693 * @is_aa64: True if the translation regime is in AArch64 state
10694 * @startlevel: Suggested starting level
10695 * @inputsize: Bitsize of IPAs
10696 * @stride: Page-table stride (See the ARM ARM)
10698 * Returns true if the suggested S2 translation parameters are OK and
10699 * false otherwise.
10701 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10702 int inputsize, int stride)
10704 const int grainsize = stride + 3;
10705 int startsizecheck;
10707 /* Negative levels are never allowed. */
10708 if (level < 0) {
10709 return false;
10712 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10713 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10714 return false;
10717 if (is_aa64) {
10718 CPUARMState *env = &cpu->env;
10719 unsigned int pamax = arm_pamax(cpu);
10721 switch (stride) {
10722 case 13: /* 64KB Pages. */
10723 if (level == 0 || (level == 1 && pamax <= 42)) {
10724 return false;
10726 break;
10727 case 11: /* 16KB Pages. */
10728 if (level == 0 || (level == 1 && pamax <= 40)) {
10729 return false;
10731 break;
10732 case 9: /* 4KB Pages. */
10733 if (level == 0 && pamax <= 42) {
10734 return false;
10736 break;
10737 default:
10738 g_assert_not_reached();
10741 /* Inputsize checks. */
10742 if (inputsize > pamax &&
10743 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10744 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10745 return false;
10747 } else {
10748 /* AArch32 only supports 4KB pages. Assert on that. */
10749 assert(stride == 9);
10751 if (level == 0) {
10752 return false;
10755 return true;
10758 /* Translate from the 4-bit stage 2 representation of
10759 * memory attributes (without cache-allocation hints) to
10760 * the 8-bit representation of the stage 1 MAIR registers
10761 * (which includes allocation hints).
10763 * ref: shared/translation/attrs/S2AttrDecode()
10764 * .../S2ConvertAttrsHints()
10766 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10768 uint8_t hiattr = extract32(s2attrs, 2, 2);
10769 uint8_t loattr = extract32(s2attrs, 0, 2);
10770 uint8_t hihint = 0, lohint = 0;
10772 if (hiattr != 0) { /* normal memory */
10773 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10774 hiattr = loattr = 1; /* non-cacheable */
10775 } else {
10776 if (hiattr != 1) { /* Write-through or write-back */
10777 hihint = 3; /* RW allocate */
10779 if (loattr != 1) { /* Write-through or write-back */
10780 lohint = 3; /* RW allocate */
10785 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10787 #endif /* !CONFIG_USER_ONLY */
10789 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10790 ARMMMUIdx mmu_idx)
10792 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10793 uint32_t el = regime_el(env, mmu_idx);
10794 bool tbi, tbid, epd, hpd, using16k, using64k;
10795 int select, tsz;
10798 * Bit 55 is always between the two regions, and is canonical for
10799 * determining if address tagging is enabled.
10801 select = extract64(va, 55, 1);
10803 if (el > 1) {
10804 tsz = extract32(tcr, 0, 6);
10805 using64k = extract32(tcr, 14, 1);
10806 using16k = extract32(tcr, 15, 1);
10807 if (mmu_idx == ARMMMUIdx_S2NS) {
10808 /* VTCR_EL2 */
10809 tbi = tbid = hpd = false;
10810 } else {
10811 tbi = extract32(tcr, 20, 1);
10812 hpd = extract32(tcr, 24, 1);
10813 tbid = extract32(tcr, 29, 1);
10815 epd = false;
10816 } else if (!select) {
10817 tsz = extract32(tcr, 0, 6);
10818 epd = extract32(tcr, 7, 1);
10819 using64k = extract32(tcr, 14, 1);
10820 using16k = extract32(tcr, 15, 1);
10821 tbi = extract64(tcr, 37, 1);
10822 hpd = extract64(tcr, 41, 1);
10823 tbid = extract64(tcr, 51, 1);
10824 } else {
10825 int tg = extract32(tcr, 30, 2);
10826 using16k = tg == 1;
10827 using64k = tg == 3;
10828 tsz = extract32(tcr, 16, 6);
10829 epd = extract32(tcr, 23, 1);
10830 tbi = extract64(tcr, 38, 1);
10831 hpd = extract64(tcr, 42, 1);
10832 tbid = extract64(tcr, 52, 1);
10834 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10835 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10837 return (ARMVAParameters) {
10838 .tsz = tsz,
10839 .select = select,
10840 .tbi = tbi,
10841 .tbid = tbid,
10842 .epd = epd,
10843 .hpd = hpd,
10844 .using16k = using16k,
10845 .using64k = using64k,
10849 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10850 ARMMMUIdx mmu_idx, bool data)
10852 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10854 /* Present TBI as a composite with TBID. */
10855 ret.tbi &= (data || !ret.tbid);
10856 return ret;
10859 #ifndef CONFIG_USER_ONLY
10860 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10861 ARMMMUIdx mmu_idx)
10863 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10864 uint32_t el = regime_el(env, mmu_idx);
10865 int select, tsz;
10866 bool epd, hpd;
10868 if (mmu_idx == ARMMMUIdx_S2NS) {
10869 /* VTCR */
10870 bool sext = extract32(tcr, 4, 1);
10871 bool sign = extract32(tcr, 3, 1);
10874 * If the sign-extend bit is not the same as t0sz[3], the result
10875 * is unpredictable. Flag this as a guest error.
10877 if (sign != sext) {
10878 qemu_log_mask(LOG_GUEST_ERROR,
10879 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10881 tsz = sextract32(tcr, 0, 4) + 8;
10882 select = 0;
10883 hpd = false;
10884 epd = false;
10885 } else if (el == 2) {
10886 /* HTCR */
10887 tsz = extract32(tcr, 0, 3);
10888 select = 0;
10889 hpd = extract64(tcr, 24, 1);
10890 epd = false;
10891 } else {
10892 int t0sz = extract32(tcr, 0, 3);
10893 int t1sz = extract32(tcr, 16, 3);
10895 if (t1sz == 0) {
10896 select = va > (0xffffffffu >> t0sz);
10897 } else {
10898 /* Note that we will detect errors later. */
10899 select = va >= ~(0xffffffffu >> t1sz);
10901 if (!select) {
10902 tsz = t0sz;
10903 epd = extract32(tcr, 7, 1);
10904 hpd = extract64(tcr, 41, 1);
10905 } else {
10906 tsz = t1sz;
10907 epd = extract32(tcr, 23, 1);
10908 hpd = extract64(tcr, 42, 1);
10910 /* For aarch32, hpd0 is not enabled without t2e as well. */
10911 hpd &= extract32(tcr, 6, 1);
10914 return (ARMVAParameters) {
10915 .tsz = tsz,
10916 .select = select,
10917 .epd = epd,
10918 .hpd = hpd,
10922 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10923 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10924 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10925 target_ulong *page_size_ptr,
10926 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10928 ARMCPU *cpu = arm_env_get_cpu(env);
10929 CPUState *cs = CPU(cpu);
10930 /* Read an LPAE long-descriptor translation table. */
10931 ARMFaultType fault_type = ARMFault_Translation;
10932 uint32_t level;
10933 ARMVAParameters param;
10934 uint64_t ttbr;
10935 hwaddr descaddr, indexmask, indexmask_grainsize;
10936 uint32_t tableattrs;
10937 target_ulong page_size;
10938 uint32_t attrs;
10939 int32_t stride;
10940 int addrsize, inputsize;
10941 TCR *tcr = regime_tcr(env, mmu_idx);
10942 int ap, ns, xn, pxn;
10943 uint32_t el = regime_el(env, mmu_idx);
10944 bool ttbr1_valid;
10945 uint64_t descaddrmask;
10946 bool aarch64 = arm_el_is_aa64(env, el);
10947 bool guarded = false;
10949 /* TODO:
10950 * This code does not handle the different format TCR for VTCR_EL2.
10951 * This code also does not support shareability levels.
10952 * Attribute and permission bit handling should also be checked when adding
10953 * support for those page table walks.
10955 if (aarch64) {
10956 param = aa64_va_parameters(env, address, mmu_idx,
10957 access_type != MMU_INST_FETCH);
10958 level = 0;
10959 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10960 * invalid.
10962 ttbr1_valid = (el < 2);
10963 addrsize = 64 - 8 * param.tbi;
10964 inputsize = 64 - param.tsz;
10965 } else {
10966 param = aa32_va_parameters(env, address, mmu_idx);
10967 level = 1;
10968 /* There is no TTBR1 for EL2 */
10969 ttbr1_valid = (el != 2);
10970 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10971 inputsize = addrsize - param.tsz;
10975 * We determined the region when collecting the parameters, but we
10976 * have not yet validated that the address is valid for the region.
10977 * Extract the top bits and verify that they all match select.
10979 * For aa32, if inputsize == addrsize, then we have selected the
10980 * region by exclusion in aa32_va_parameters and there is no more
10981 * validation to do here.
10983 if (inputsize < addrsize) {
10984 target_ulong top_bits = sextract64(address, inputsize,
10985 addrsize - inputsize);
10986 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10987 /* The gap between the two regions is a Translation fault */
10988 fault_type = ARMFault_Translation;
10989 goto do_fault;
10993 if (param.using64k) {
10994 stride = 13;
10995 } else if (param.using16k) {
10996 stride = 11;
10997 } else {
10998 stride = 9;
11001 /* Note that QEMU ignores shareability and cacheability attributes,
11002 * so we don't need to do anything with the SH, ORGN, IRGN fields
11003 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11004 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11005 * implement any ASID-like capability so we can ignore it (instead
11006 * we will always flush the TLB any time the ASID is changed).
11008 ttbr = regime_ttbr(env, mmu_idx, param.select);
11010 /* Here we should have set up all the parameters for the translation:
11011 * inputsize, ttbr, epd, stride, tbi
11014 if (param.epd) {
11015 /* Translation table walk disabled => Translation fault on TLB miss
11016 * Note: This is always 0 on 64-bit EL2 and EL3.
11018 goto do_fault;
11021 if (mmu_idx != ARMMMUIdx_S2NS) {
11022 /* The starting level depends on the virtual address size (which can
11023 * be up to 48 bits) and the translation granule size. It indicates
11024 * the number of strides (stride bits at a time) needed to
11025 * consume the bits of the input address. In the pseudocode this is:
11026 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11027 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11028 * our 'stride + 3' and 'stride' is our 'stride'.
11029 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11030 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11031 * = 4 - (inputsize - 4) / stride;
11033 level = 4 - (inputsize - 4) / stride;
11034 } else {
11035 /* For stage 2 translations the starting level is specified by the
11036 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11038 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11039 uint32_t startlevel;
11040 bool ok;
11042 if (!aarch64 || stride == 9) {
11043 /* AArch32 or 4KB pages */
11044 startlevel = 2 - sl0;
11045 } else {
11046 /* 16KB or 64KB pages */
11047 startlevel = 3 - sl0;
11050 /* Check that the starting level is valid. */
11051 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11052 inputsize, stride);
11053 if (!ok) {
11054 fault_type = ARMFault_Translation;
11055 goto do_fault;
11057 level = startlevel;
11060 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11061 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11063 /* Now we can extract the actual base address from the TTBR */
11064 descaddr = extract64(ttbr, 0, 48);
11065 descaddr &= ~indexmask;
11067 /* The address field in the descriptor goes up to bit 39 for ARMv7
11068 * but up to bit 47 for ARMv8, but we use the descaddrmask
11069 * up to bit 39 for AArch32, because we don't need other bits in that case
11070 * to construct next descriptor address (anyway they should be all zeroes).
11072 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11073 ~indexmask_grainsize;
11075 /* Secure accesses start with the page table in secure memory and
11076 * can be downgraded to non-secure at any step. Non-secure accesses
11077 * remain non-secure. We implement this by just ORing in the NSTable/NS
11078 * bits at each step.
11080 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11081 for (;;) {
11082 uint64_t descriptor;
11083 bool nstable;
11085 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11086 descaddr &= ~7ULL;
11087 nstable = extract32(tableattrs, 4, 1);
11088 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11089 if (fi->type != ARMFault_None) {
11090 goto do_fault;
11093 if (!(descriptor & 1) ||
11094 (!(descriptor & 2) && (level == 3))) {
11095 /* Invalid, or the Reserved level 3 encoding */
11096 goto do_fault;
11098 descaddr = descriptor & descaddrmask;
11100 if ((descriptor & 2) && (level < 3)) {
11101 /* Table entry. The top five bits are attributes which may
11102 * propagate down through lower levels of the table (and
11103 * which are all arranged so that 0 means "no effect", so
11104 * we can gather them up by ORing in the bits at each level).
11106 tableattrs |= extract64(descriptor, 59, 5);
11107 level++;
11108 indexmask = indexmask_grainsize;
11109 continue;
11111 /* Block entry at level 1 or 2, or page entry at level 3.
11112 * These are basically the same thing, although the number
11113 * of bits we pull in from the vaddr varies.
11115 page_size = (1ULL << ((stride * (4 - level)) + 3));
11116 descaddr |= (address & (page_size - 1));
11117 /* Extract attributes from the descriptor */
11118 attrs = extract64(descriptor, 2, 10)
11119 | (extract64(descriptor, 52, 12) << 10);
11121 if (mmu_idx == ARMMMUIdx_S2NS) {
11122 /* Stage 2 table descriptors do not include any attribute fields */
11123 break;
11125 /* Merge in attributes from table descriptors */
11126 attrs |= nstable << 3; /* NS */
11127 guarded = extract64(descriptor, 50, 1); /* GP */
11128 if (param.hpd) {
11129 /* HPD disables all the table attributes except NSTable. */
11130 break;
11132 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11133 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11134 * means "force PL1 access only", which means forcing AP[1] to 0.
11136 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11137 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11138 break;
11140 /* Here descaddr is the final physical address, and attributes
11141 * are all in attrs.
11143 fault_type = ARMFault_AccessFlag;
11144 if ((attrs & (1 << 8)) == 0) {
11145 /* Access flag */
11146 goto do_fault;
11149 ap = extract32(attrs, 4, 2);
11150 xn = extract32(attrs, 12, 1);
11152 if (mmu_idx == ARMMMUIdx_S2NS) {
11153 ns = true;
11154 *prot = get_S2prot(env, ap, xn);
11155 } else {
11156 ns = extract32(attrs, 3, 1);
11157 pxn = extract32(attrs, 11, 1);
11158 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11161 fault_type = ARMFault_Permission;
11162 if (!(*prot & (1 << access_type))) {
11163 goto do_fault;
11166 if (ns) {
11167 /* The NS bit will (as required by the architecture) have no effect if
11168 * the CPU doesn't support TZ or this is a non-secure translation
11169 * regime, because the attribute will already be non-secure.
11171 txattrs->secure = false;
11173 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11174 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11175 txattrs->target_tlb_bit0 = true;
11178 if (cacheattrs != NULL) {
11179 if (mmu_idx == ARMMMUIdx_S2NS) {
11180 cacheattrs->attrs = convert_stage2_attrs(env,
11181 extract32(attrs, 0, 4));
11182 } else {
11183 /* Index into MAIR registers for cache attributes */
11184 uint8_t attrindx = extract32(attrs, 0, 3);
11185 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11186 assert(attrindx <= 7);
11187 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11189 cacheattrs->shareability = extract32(attrs, 6, 2);
11192 *phys_ptr = descaddr;
11193 *page_size_ptr = page_size;
11194 return false;
11196 do_fault:
11197 fi->type = fault_type;
11198 fi->level = level;
11199 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11200 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
11201 return true;
11204 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11205 ARMMMUIdx mmu_idx,
11206 int32_t address, int *prot)
11208 if (!arm_feature(env, ARM_FEATURE_M)) {
11209 *prot = PAGE_READ | PAGE_WRITE;
11210 switch (address) {
11211 case 0xF0000000 ... 0xFFFFFFFF:
11212 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11213 /* hivecs execing is ok */
11214 *prot |= PAGE_EXEC;
11216 break;
11217 case 0x00000000 ... 0x7FFFFFFF:
11218 *prot |= PAGE_EXEC;
11219 break;
11221 } else {
11222 /* Default system address map for M profile cores.
11223 * The architecture specifies which regions are execute-never;
11224 * at the MPU level no other checks are defined.
11226 switch (address) {
11227 case 0x00000000 ... 0x1fffffff: /* ROM */
11228 case 0x20000000 ... 0x3fffffff: /* SRAM */
11229 case 0x60000000 ... 0x7fffffff: /* RAM */
11230 case 0x80000000 ... 0x9fffffff: /* RAM */
11231 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11232 break;
11233 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11234 case 0xa0000000 ... 0xbfffffff: /* Device */
11235 case 0xc0000000 ... 0xdfffffff: /* Device */
11236 case 0xe0000000 ... 0xffffffff: /* System */
11237 *prot = PAGE_READ | PAGE_WRITE;
11238 break;
11239 default:
11240 g_assert_not_reached();
11245 static bool pmsav7_use_background_region(ARMCPU *cpu,
11246 ARMMMUIdx mmu_idx, bool is_user)
11248 /* Return true if we should use the default memory map as a
11249 * "background" region if there are no hits against any MPU regions.
11251 CPUARMState *env = &cpu->env;
11253 if (is_user) {
11254 return false;
11257 if (arm_feature(env, ARM_FEATURE_M)) {
11258 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11259 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11260 } else {
11261 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11265 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11267 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11268 return arm_feature(env, ARM_FEATURE_M) &&
11269 extract32(address, 20, 12) == 0xe00;
11272 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11274 /* True if address is in the M profile system region
11275 * 0xe0000000 - 0xffffffff
11277 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11280 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11281 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11282 hwaddr *phys_ptr, int *prot,
11283 target_ulong *page_size,
11284 ARMMMUFaultInfo *fi)
11286 ARMCPU *cpu = arm_env_get_cpu(env);
11287 int n;
11288 bool is_user = regime_is_user(env, mmu_idx);
11290 *phys_ptr = address;
11291 *page_size = TARGET_PAGE_SIZE;
11292 *prot = 0;
11294 if (regime_translation_disabled(env, mmu_idx) ||
11295 m_is_ppb_region(env, address)) {
11296 /* MPU disabled or M profile PPB access: use default memory map.
11297 * The other case which uses the default memory map in the
11298 * v7M ARM ARM pseudocode is exception vector reads from the vector
11299 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11300 * which always does a direct read using address_space_ldl(), rather
11301 * than going via this function, so we don't need to check that here.
11303 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11304 } else { /* MPU enabled */
11305 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11306 /* region search */
11307 uint32_t base = env->pmsav7.drbar[n];
11308 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11309 uint32_t rmask;
11310 bool srdis = false;
11312 if (!(env->pmsav7.drsr[n] & 0x1)) {
11313 continue;
11316 if (!rsize) {
11317 qemu_log_mask(LOG_GUEST_ERROR,
11318 "DRSR[%d]: Rsize field cannot be 0\n", n);
11319 continue;
11321 rsize++;
11322 rmask = (1ull << rsize) - 1;
11324 if (base & rmask) {
11325 qemu_log_mask(LOG_GUEST_ERROR,
11326 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11327 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11328 n, base, rmask);
11329 continue;
11332 if (address < base || address > base + rmask) {
11334 * Address not in this region. We must check whether the
11335 * region covers addresses in the same page as our address.
11336 * In that case we must not report a size that covers the
11337 * whole page for a subsequent hit against a different MPU
11338 * region or the background region, because it would result in
11339 * incorrect TLB hits for subsequent accesses to addresses that
11340 * are in this MPU region.
11342 if (ranges_overlap(base, rmask,
11343 address & TARGET_PAGE_MASK,
11344 TARGET_PAGE_SIZE)) {
11345 *page_size = 1;
11347 continue;
11350 /* Region matched */
11352 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11353 int i, snd;
11354 uint32_t srdis_mask;
11356 rsize -= 3; /* sub region size (power of 2) */
11357 snd = ((address - base) >> rsize) & 0x7;
11358 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11360 srdis_mask = srdis ? 0x3 : 0x0;
11361 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11362 /* This will check in groups of 2, 4 and then 8, whether
11363 * the subregion bits are consistent. rsize is incremented
11364 * back up to give the region size, considering consistent
11365 * adjacent subregions as one region. Stop testing if rsize
11366 * is already big enough for an entire QEMU page.
11368 int snd_rounded = snd & ~(i - 1);
11369 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11370 snd_rounded + 8, i);
11371 if (srdis_mask ^ srdis_multi) {
11372 break;
11374 srdis_mask = (srdis_mask << i) | srdis_mask;
11375 rsize++;
11378 if (srdis) {
11379 continue;
11381 if (rsize < TARGET_PAGE_BITS) {
11382 *page_size = 1 << rsize;
11384 break;
11387 if (n == -1) { /* no hits */
11388 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11389 /* background fault */
11390 fi->type = ARMFault_Background;
11391 return true;
11393 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11394 } else { /* a MPU hit! */
11395 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11396 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11398 if (m_is_system_region(env, address)) {
11399 /* System space is always execute never */
11400 xn = 1;
11403 if (is_user) { /* User mode AP bit decoding */
11404 switch (ap) {
11405 case 0:
11406 case 1:
11407 case 5:
11408 break; /* no access */
11409 case 3:
11410 *prot |= PAGE_WRITE;
11411 /* fall through */
11412 case 2:
11413 case 6:
11414 *prot |= PAGE_READ | PAGE_EXEC;
11415 break;
11416 case 7:
11417 /* for v7M, same as 6; for R profile a reserved value */
11418 if (arm_feature(env, ARM_FEATURE_M)) {
11419 *prot |= PAGE_READ | PAGE_EXEC;
11420 break;
11422 /* fall through */
11423 default:
11424 qemu_log_mask(LOG_GUEST_ERROR,
11425 "DRACR[%d]: Bad value for AP bits: 0x%"
11426 PRIx32 "\n", n, ap);
11428 } else { /* Priv. mode AP bits decoding */
11429 switch (ap) {
11430 case 0:
11431 break; /* no access */
11432 case 1:
11433 case 2:
11434 case 3:
11435 *prot |= PAGE_WRITE;
11436 /* fall through */
11437 case 5:
11438 case 6:
11439 *prot |= PAGE_READ | PAGE_EXEC;
11440 break;
11441 case 7:
11442 /* for v7M, same as 6; for R profile a reserved value */
11443 if (arm_feature(env, ARM_FEATURE_M)) {
11444 *prot |= PAGE_READ | PAGE_EXEC;
11445 break;
11447 /* fall through */
11448 default:
11449 qemu_log_mask(LOG_GUEST_ERROR,
11450 "DRACR[%d]: Bad value for AP bits: 0x%"
11451 PRIx32 "\n", n, ap);
11455 /* execute never */
11456 if (xn) {
11457 *prot &= ~PAGE_EXEC;
11462 fi->type = ARMFault_Permission;
11463 fi->level = 1;
11464 return !(*prot & (1 << access_type));
11467 static bool v8m_is_sau_exempt(CPUARMState *env,
11468 uint32_t address, MMUAccessType access_type)
11470 /* The architecture specifies that certain address ranges are
11471 * exempt from v8M SAU/IDAU checks.
11473 return
11474 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11475 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11476 (address >= 0xe000e000 && address <= 0xe000efff) ||
11477 (address >= 0xe002e000 && address <= 0xe002efff) ||
11478 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11479 (address >= 0xe00ff000 && address <= 0xe00fffff);
11482 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11483 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11484 V8M_SAttributes *sattrs)
11486 /* Look up the security attributes for this address. Compare the
11487 * pseudocode SecurityCheck() function.
11488 * We assume the caller has zero-initialized *sattrs.
11490 ARMCPU *cpu = arm_env_get_cpu(env);
11491 int r;
11492 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11493 int idau_region = IREGION_NOTVALID;
11494 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11495 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11497 if (cpu->idau) {
11498 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11499 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11501 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11502 &idau_nsc);
11505 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11506 /* 0xf0000000..0xffffffff is always S for insn fetches */
11507 return;
11510 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11511 sattrs->ns = !regime_is_secure(env, mmu_idx);
11512 return;
11515 if (idau_region != IREGION_NOTVALID) {
11516 sattrs->irvalid = true;
11517 sattrs->iregion = idau_region;
11520 switch (env->sau.ctrl & 3) {
11521 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11522 break;
11523 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11524 sattrs->ns = true;
11525 break;
11526 default: /* SAU.ENABLE == 1 */
11527 for (r = 0; r < cpu->sau_sregion; r++) {
11528 if (env->sau.rlar[r] & 1) {
11529 uint32_t base = env->sau.rbar[r] & ~0x1f;
11530 uint32_t limit = env->sau.rlar[r] | 0x1f;
11532 if (base <= address && limit >= address) {
11533 if (base > addr_page_base || limit < addr_page_limit) {
11534 sattrs->subpage = true;
11536 if (sattrs->srvalid) {
11537 /* If we hit in more than one region then we must report
11538 * as Secure, not NS-Callable, with no valid region
11539 * number info.
11541 sattrs->ns = false;
11542 sattrs->nsc = false;
11543 sattrs->sregion = 0;
11544 sattrs->srvalid = false;
11545 break;
11546 } else {
11547 if (env->sau.rlar[r] & 2) {
11548 sattrs->nsc = true;
11549 } else {
11550 sattrs->ns = true;
11552 sattrs->srvalid = true;
11553 sattrs->sregion = r;
11555 } else {
11557 * Address not in this region. We must check whether the
11558 * region covers addresses in the same page as our address.
11559 * In that case we must not report a size that covers the
11560 * whole page for a subsequent hit against a different MPU
11561 * region or the background region, because it would result
11562 * in incorrect TLB hits for subsequent accesses to
11563 * addresses that are in this MPU region.
11565 if (limit >= base &&
11566 ranges_overlap(base, limit - base + 1,
11567 addr_page_base,
11568 TARGET_PAGE_SIZE)) {
11569 sattrs->subpage = true;
11574 break;
11578 * The IDAU will override the SAU lookup results if it specifies
11579 * higher security than the SAU does.
11581 if (!idau_ns) {
11582 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11583 sattrs->ns = false;
11584 sattrs->nsc = idau_nsc;
11589 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11590 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11591 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11592 int *prot, bool *is_subpage,
11593 ARMMMUFaultInfo *fi, uint32_t *mregion)
11595 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11596 * that a full phys-to-virt translation does).
11597 * mregion is (if not NULL) set to the region number which matched,
11598 * or -1 if no region number is returned (MPU off, address did not
11599 * hit a region, address hit in multiple regions).
11600 * We set is_subpage to true if the region hit doesn't cover the
11601 * entire TARGET_PAGE the address is within.
11603 ARMCPU *cpu = arm_env_get_cpu(env);
11604 bool is_user = regime_is_user(env, mmu_idx);
11605 uint32_t secure = regime_is_secure(env, mmu_idx);
11606 int n;
11607 int matchregion = -1;
11608 bool hit = false;
11609 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11610 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11612 *is_subpage = false;
11613 *phys_ptr = address;
11614 *prot = 0;
11615 if (mregion) {
11616 *mregion = -1;
11619 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11620 * was an exception vector read from the vector table (which is always
11621 * done using the default system address map), because those accesses
11622 * are done in arm_v7m_load_vector(), which always does a direct
11623 * read using address_space_ldl(), rather than going via this function.
11625 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11626 hit = true;
11627 } else if (m_is_ppb_region(env, address)) {
11628 hit = true;
11629 } else {
11630 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11631 hit = true;
11634 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11635 /* region search */
11636 /* Note that the base address is bits [31:5] from the register
11637 * with bits [4:0] all zeroes, but the limit address is bits
11638 * [31:5] from the register with bits [4:0] all ones.
11640 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11641 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11643 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11644 /* Region disabled */
11645 continue;
11648 if (address < base || address > limit) {
11650 * Address not in this region. We must check whether the
11651 * region covers addresses in the same page as our address.
11652 * In that case we must not report a size that covers the
11653 * whole page for a subsequent hit against a different MPU
11654 * region or the background region, because it would result in
11655 * incorrect TLB hits for subsequent accesses to addresses that
11656 * are in this MPU region.
11658 if (limit >= base &&
11659 ranges_overlap(base, limit - base + 1,
11660 addr_page_base,
11661 TARGET_PAGE_SIZE)) {
11662 *is_subpage = true;
11664 continue;
11667 if (base > addr_page_base || limit < addr_page_limit) {
11668 *is_subpage = true;
11671 if (matchregion != -1) {
11672 /* Multiple regions match -- always a failure (unlike
11673 * PMSAv7 where highest-numbered-region wins)
11675 fi->type = ARMFault_Permission;
11676 fi->level = 1;
11677 return true;
11680 matchregion = n;
11681 hit = true;
11685 if (!hit) {
11686 /* background fault */
11687 fi->type = ARMFault_Background;
11688 return true;
11691 if (matchregion == -1) {
11692 /* hit using the background region */
11693 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11694 } else {
11695 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11696 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11698 if (m_is_system_region(env, address)) {
11699 /* System space is always execute never */
11700 xn = 1;
11703 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11704 if (*prot && !xn) {
11705 *prot |= PAGE_EXEC;
11707 /* We don't need to look the attribute up in the MAIR0/MAIR1
11708 * registers because that only tells us about cacheability.
11710 if (mregion) {
11711 *mregion = matchregion;
11715 fi->type = ARMFault_Permission;
11716 fi->level = 1;
11717 return !(*prot & (1 << access_type));
11721 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11722 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11723 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11724 int *prot, target_ulong *page_size,
11725 ARMMMUFaultInfo *fi)
11727 uint32_t secure = regime_is_secure(env, mmu_idx);
11728 V8M_SAttributes sattrs = {};
11729 bool ret;
11730 bool mpu_is_subpage;
11732 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11733 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11734 if (access_type == MMU_INST_FETCH) {
11735 /* Instruction fetches always use the MMU bank and the
11736 * transaction attribute determined by the fetch address,
11737 * regardless of CPU state. This is painful for QEMU
11738 * to handle, because it would mean we need to encode
11739 * into the mmu_idx not just the (user, negpri) information
11740 * for the current security state but also that for the
11741 * other security state, which would balloon the number
11742 * of mmu_idx values needed alarmingly.
11743 * Fortunately we can avoid this because it's not actually
11744 * possible to arbitrarily execute code from memory with
11745 * the wrong security attribute: it will always generate
11746 * an exception of some kind or another, apart from the
11747 * special case of an NS CPU executing an SG instruction
11748 * in S&NSC memory. So we always just fail the translation
11749 * here and sort things out in the exception handler
11750 * (including possibly emulating an SG instruction).
11752 if (sattrs.ns != !secure) {
11753 if (sattrs.nsc) {
11754 fi->type = ARMFault_QEMU_NSCExec;
11755 } else {
11756 fi->type = ARMFault_QEMU_SFault;
11758 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11759 *phys_ptr = address;
11760 *prot = 0;
11761 return true;
11763 } else {
11764 /* For data accesses we always use the MMU bank indicated
11765 * by the current CPU state, but the security attributes
11766 * might downgrade a secure access to nonsecure.
11768 if (sattrs.ns) {
11769 txattrs->secure = false;
11770 } else if (!secure) {
11771 /* NS access to S memory must fault.
11772 * Architecturally we should first check whether the
11773 * MPU information for this address indicates that we
11774 * are doing an unaligned access to Device memory, which
11775 * should generate a UsageFault instead. QEMU does not
11776 * currently check for that kind of unaligned access though.
11777 * If we added it we would need to do so as a special case
11778 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11780 fi->type = ARMFault_QEMU_SFault;
11781 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11782 *phys_ptr = address;
11783 *prot = 0;
11784 return true;
11789 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11790 txattrs, prot, &mpu_is_subpage, fi, NULL);
11791 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11792 return ret;
11795 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11796 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11797 hwaddr *phys_ptr, int *prot,
11798 ARMMMUFaultInfo *fi)
11800 int n;
11801 uint32_t mask;
11802 uint32_t base;
11803 bool is_user = regime_is_user(env, mmu_idx);
11805 if (regime_translation_disabled(env, mmu_idx)) {
11806 /* MPU disabled. */
11807 *phys_ptr = address;
11808 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11809 return false;
11812 *phys_ptr = address;
11813 for (n = 7; n >= 0; n--) {
11814 base = env->cp15.c6_region[n];
11815 if ((base & 1) == 0) {
11816 continue;
11818 mask = 1 << ((base >> 1) & 0x1f);
11819 /* Keep this shift separate from the above to avoid an
11820 (undefined) << 32. */
11821 mask = (mask << 1) - 1;
11822 if (((base ^ address) & ~mask) == 0) {
11823 break;
11826 if (n < 0) {
11827 fi->type = ARMFault_Background;
11828 return true;
11831 if (access_type == MMU_INST_FETCH) {
11832 mask = env->cp15.pmsav5_insn_ap;
11833 } else {
11834 mask = env->cp15.pmsav5_data_ap;
11836 mask = (mask >> (n * 4)) & 0xf;
11837 switch (mask) {
11838 case 0:
11839 fi->type = ARMFault_Permission;
11840 fi->level = 1;
11841 return true;
11842 case 1:
11843 if (is_user) {
11844 fi->type = ARMFault_Permission;
11845 fi->level = 1;
11846 return true;
11848 *prot = PAGE_READ | PAGE_WRITE;
11849 break;
11850 case 2:
11851 *prot = PAGE_READ;
11852 if (!is_user) {
11853 *prot |= PAGE_WRITE;
11855 break;
11856 case 3:
11857 *prot = PAGE_READ | PAGE_WRITE;
11858 break;
11859 case 5:
11860 if (is_user) {
11861 fi->type = ARMFault_Permission;
11862 fi->level = 1;
11863 return true;
11865 *prot = PAGE_READ;
11866 break;
11867 case 6:
11868 *prot = PAGE_READ;
11869 break;
11870 default:
11871 /* Bad permission. */
11872 fi->type = ARMFault_Permission;
11873 fi->level = 1;
11874 return true;
11876 *prot |= PAGE_EXEC;
11877 return false;
11880 /* Combine either inner or outer cacheability attributes for normal
11881 * memory, according to table D4-42 and pseudocode procedure
11882 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11884 * NB: only stage 1 includes allocation hints (RW bits), leading to
11885 * some asymmetry.
11887 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11889 if (s1 == 4 || s2 == 4) {
11890 /* non-cacheable has precedence */
11891 return 4;
11892 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11893 /* stage 1 write-through takes precedence */
11894 return s1;
11895 } else if (extract32(s2, 2, 2) == 2) {
11896 /* stage 2 write-through takes precedence, but the allocation hint
11897 * is still taken from stage 1
11899 return (2 << 2) | extract32(s1, 0, 2);
11900 } else { /* write-back */
11901 return s1;
11905 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11906 * and CombineS1S2Desc()
11908 * @s1: Attributes from stage 1 walk
11909 * @s2: Attributes from stage 2 walk
11911 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11913 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11914 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11915 ARMCacheAttrs ret;
11917 /* Combine shareability attributes (table D4-43) */
11918 if (s1.shareability == 2 || s2.shareability == 2) {
11919 /* if either are outer-shareable, the result is outer-shareable */
11920 ret.shareability = 2;
11921 } else if (s1.shareability == 3 || s2.shareability == 3) {
11922 /* if either are inner-shareable, the result is inner-shareable */
11923 ret.shareability = 3;
11924 } else {
11925 /* both non-shareable */
11926 ret.shareability = 0;
11929 /* Combine memory type and cacheability attributes */
11930 if (s1hi == 0 || s2hi == 0) {
11931 /* Device has precedence over normal */
11932 if (s1lo == 0 || s2lo == 0) {
11933 /* nGnRnE has precedence over anything */
11934 ret.attrs = 0;
11935 } else if (s1lo == 4 || s2lo == 4) {
11936 /* non-Reordering has precedence over Reordering */
11937 ret.attrs = 4; /* nGnRE */
11938 } else if (s1lo == 8 || s2lo == 8) {
11939 /* non-Gathering has precedence over Gathering */
11940 ret.attrs = 8; /* nGRE */
11941 } else {
11942 ret.attrs = 0xc; /* GRE */
11945 /* Any location for which the resultant memory type is any
11946 * type of Device memory is always treated as Outer Shareable.
11948 ret.shareability = 2;
11949 } else { /* Normal memory */
11950 /* Outer/inner cacheability combine independently */
11951 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11952 | combine_cacheattr_nibble(s1lo, s2lo);
11954 if (ret.attrs == 0x44) {
11955 /* Any location for which the resultant memory type is Normal
11956 * Inner Non-cacheable, Outer Non-cacheable is always treated
11957 * as Outer Shareable.
11959 ret.shareability = 2;
11963 return ret;
11967 /* get_phys_addr - get the physical address for this virtual address
11969 * Find the physical address corresponding to the given virtual address,
11970 * by doing a translation table walk on MMU based systems or using the
11971 * MPU state on MPU based systems.
11973 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11974 * prot and page_size may not be filled in, and the populated fsr value provides
11975 * information on why the translation aborted, in the format of a
11976 * DFSR/IFSR fault register, with the following caveats:
11977 * * we honour the short vs long DFSR format differences.
11978 * * the WnR bit is never set (the caller must do this).
11979 * * for PSMAv5 based systems we don't bother to return a full FSR format
11980 * value.
11982 * @env: CPUARMState
11983 * @address: virtual address to get physical address for
11984 * @access_type: 0 for read, 1 for write, 2 for execute
11985 * @mmu_idx: MMU index indicating required translation regime
11986 * @phys_ptr: set to the physical address corresponding to the virtual address
11987 * @attrs: set to the memory transaction attributes to use
11988 * @prot: set to the permissions for the page containing phys_ptr
11989 * @page_size: set to the size of the page containing phys_ptr
11990 * @fi: set to fault info if the translation fails
11991 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11993 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11994 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11995 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11996 target_ulong *page_size,
11997 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11999 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
12000 /* Call ourselves recursively to do the stage 1 and then stage 2
12001 * translations.
12003 if (arm_feature(env, ARM_FEATURE_EL2)) {
12004 hwaddr ipa;
12005 int s2_prot;
12006 int ret;
12007 ARMCacheAttrs cacheattrs2 = {};
12009 ret = get_phys_addr(env, address, access_type,
12010 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12011 prot, page_size, fi, cacheattrs);
12013 /* If S1 fails or S2 is disabled, return early. */
12014 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12015 *phys_ptr = ipa;
12016 return ret;
12019 /* S1 is done. Now do S2 translation. */
12020 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12021 phys_ptr, attrs, &s2_prot,
12022 page_size, fi,
12023 cacheattrs != NULL ? &cacheattrs2 : NULL);
12024 fi->s2addr = ipa;
12025 /* Combine the S1 and S2 perms. */
12026 *prot &= s2_prot;
12028 /* Combine the S1 and S2 cache attributes, if needed */
12029 if (!ret && cacheattrs != NULL) {
12030 if (env->cp15.hcr_el2 & HCR_DC) {
12032 * HCR.DC forces the first stage attributes to
12033 * Normal Non-Shareable,
12034 * Inner Write-Back Read-Allocate Write-Allocate,
12035 * Outer Write-Back Read-Allocate Write-Allocate.
12037 cacheattrs->attrs = 0xff;
12038 cacheattrs->shareability = 0;
12040 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12043 return ret;
12044 } else {
12046 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12048 mmu_idx = stage_1_mmu_idx(mmu_idx);
12052 /* The page table entries may downgrade secure to non-secure, but
12053 * cannot upgrade an non-secure translation regime's attributes
12054 * to secure.
12056 attrs->secure = regime_is_secure(env, mmu_idx);
12057 attrs->user = regime_is_user(env, mmu_idx);
12059 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12060 * In v7 and earlier it affects all stage 1 translations.
12062 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12063 && !arm_feature(env, ARM_FEATURE_V8)) {
12064 if (regime_el(env, mmu_idx) == 3) {
12065 address += env->cp15.fcseidr_s;
12066 } else {
12067 address += env->cp15.fcseidr_ns;
12071 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12072 bool ret;
12073 *page_size = TARGET_PAGE_SIZE;
12075 if (arm_feature(env, ARM_FEATURE_V8)) {
12076 /* PMSAv8 */
12077 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12078 phys_ptr, attrs, prot, page_size, fi);
12079 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12080 /* PMSAv7 */
12081 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12082 phys_ptr, prot, page_size, fi);
12083 } else {
12084 /* Pre-v7 MPU */
12085 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12086 phys_ptr, prot, fi);
12088 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12089 " mmu_idx %u -> %s (prot %c%c%c)\n",
12090 access_type == MMU_DATA_LOAD ? "reading" :
12091 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12092 (uint32_t)address, mmu_idx,
12093 ret ? "Miss" : "Hit",
12094 *prot & PAGE_READ ? 'r' : '-',
12095 *prot & PAGE_WRITE ? 'w' : '-',
12096 *prot & PAGE_EXEC ? 'x' : '-');
12098 return ret;
12101 /* Definitely a real MMU, not an MPU */
12103 if (regime_translation_disabled(env, mmu_idx)) {
12104 /* MMU disabled. */
12105 *phys_ptr = address;
12106 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12107 *page_size = TARGET_PAGE_SIZE;
12108 return 0;
12111 if (regime_using_lpae_format(env, mmu_idx)) {
12112 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12113 phys_ptr, attrs, prot, page_size,
12114 fi, cacheattrs);
12115 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12116 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12117 phys_ptr, attrs, prot, page_size, fi);
12118 } else {
12119 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12120 phys_ptr, prot, page_size, fi);
12124 /* Walk the page table and (if the mapping exists) add the page
12125 * to the TLB. Return false on success, or true on failure. Populate
12126 * fsr with ARM DFSR/IFSR fault register format value on failure.
12128 bool arm_tlb_fill(CPUState *cs, vaddr address,
12129 MMUAccessType access_type, int mmu_idx,
12130 ARMMMUFaultInfo *fi)
12132 ARMCPU *cpu = ARM_CPU(cs);
12133 CPUARMState *env = &cpu->env;
12134 hwaddr phys_addr;
12135 target_ulong page_size;
12136 int prot;
12137 int ret;
12138 MemTxAttrs attrs = {};
12140 ret = get_phys_addr(env, address, access_type,
12141 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
12142 &attrs, &prot, &page_size, fi, NULL);
12143 if (!ret) {
12145 * Map a single [sub]page. Regions smaller than our declared
12146 * target page size are handled specially, so for those we
12147 * pass in the exact addresses.
12149 if (page_size >= TARGET_PAGE_SIZE) {
12150 phys_addr &= TARGET_PAGE_MASK;
12151 address &= TARGET_PAGE_MASK;
12153 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
12154 prot, mmu_idx, page_size);
12155 return 0;
12158 return ret;
12161 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12162 MemTxAttrs *attrs)
12164 ARMCPU *cpu = ARM_CPU(cs);
12165 CPUARMState *env = &cpu->env;
12166 hwaddr phys_addr;
12167 target_ulong page_size;
12168 int prot;
12169 bool ret;
12170 ARMMMUFaultInfo fi = {};
12171 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12173 *attrs = (MemTxAttrs) {};
12175 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12176 attrs, &prot, &page_size, &fi, NULL);
12178 if (ret) {
12179 return -1;
12181 return phys_addr;
12184 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
12186 uint32_t mask;
12187 unsigned el = arm_current_el(env);
12189 /* First handle registers which unprivileged can read */
12191 switch (reg) {
12192 case 0 ... 7: /* xPSR sub-fields */
12193 mask = 0;
12194 if ((reg & 1) && el) {
12195 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
12197 if (!(reg & 4)) {
12198 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
12200 /* EPSR reads as zero */
12201 return xpsr_read(env) & mask;
12202 break;
12203 case 20: /* CONTROL */
12205 uint32_t value = env->v7m.control[env->v7m.secure];
12206 if (!env->v7m.secure) {
12207 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12208 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12210 return value;
12212 case 0x94: /* CONTROL_NS */
12213 /* We have to handle this here because unprivileged Secure code
12214 * can read the NS CONTROL register.
12216 if (!env->v7m.secure) {
12217 return 0;
12219 return env->v7m.control[M_REG_NS] |
12220 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
12223 if (el == 0) {
12224 return 0; /* unprivileged reads others as zero */
12227 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12228 switch (reg) {
12229 case 0x88: /* MSP_NS */
12230 if (!env->v7m.secure) {
12231 return 0;
12233 return env->v7m.other_ss_msp;
12234 case 0x89: /* PSP_NS */
12235 if (!env->v7m.secure) {
12236 return 0;
12238 return env->v7m.other_ss_psp;
12239 case 0x8a: /* MSPLIM_NS */
12240 if (!env->v7m.secure) {
12241 return 0;
12243 return env->v7m.msplim[M_REG_NS];
12244 case 0x8b: /* PSPLIM_NS */
12245 if (!env->v7m.secure) {
12246 return 0;
12248 return env->v7m.psplim[M_REG_NS];
12249 case 0x90: /* PRIMASK_NS */
12250 if (!env->v7m.secure) {
12251 return 0;
12253 return env->v7m.primask[M_REG_NS];
12254 case 0x91: /* BASEPRI_NS */
12255 if (!env->v7m.secure) {
12256 return 0;
12258 return env->v7m.basepri[M_REG_NS];
12259 case 0x93: /* FAULTMASK_NS */
12260 if (!env->v7m.secure) {
12261 return 0;
12263 return env->v7m.faultmask[M_REG_NS];
12264 case 0x98: /* SP_NS */
12266 /* This gives the non-secure SP selected based on whether we're
12267 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12269 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12271 if (!env->v7m.secure) {
12272 return 0;
12274 if (!arm_v7m_is_handler_mode(env) && spsel) {
12275 return env->v7m.other_ss_psp;
12276 } else {
12277 return env->v7m.other_ss_msp;
12280 default:
12281 break;
12285 switch (reg) {
12286 case 8: /* MSP */
12287 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12288 case 9: /* PSP */
12289 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12290 case 10: /* MSPLIM */
12291 if (!arm_feature(env, ARM_FEATURE_V8)) {
12292 goto bad_reg;
12294 return env->v7m.msplim[env->v7m.secure];
12295 case 11: /* PSPLIM */
12296 if (!arm_feature(env, ARM_FEATURE_V8)) {
12297 goto bad_reg;
12299 return env->v7m.psplim[env->v7m.secure];
12300 case 16: /* PRIMASK */
12301 return env->v7m.primask[env->v7m.secure];
12302 case 17: /* BASEPRI */
12303 case 18: /* BASEPRI_MAX */
12304 return env->v7m.basepri[env->v7m.secure];
12305 case 19: /* FAULTMASK */
12306 return env->v7m.faultmask[env->v7m.secure];
12307 default:
12308 bad_reg:
12309 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12310 " register %d\n", reg);
12311 return 0;
12315 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12317 /* We're passed bits [11..0] of the instruction; extract
12318 * SYSm and the mask bits.
12319 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12320 * we choose to treat them as if the mask bits were valid.
12321 * NB that the pseudocode 'mask' variable is bits [11..10],
12322 * whereas ours is [11..8].
12324 uint32_t mask = extract32(maskreg, 8, 4);
12325 uint32_t reg = extract32(maskreg, 0, 8);
12326 int cur_el = arm_current_el(env);
12328 if (cur_el == 0 && reg > 7 && reg != 20) {
12330 * only xPSR sub-fields and CONTROL.SFPA may be written by
12331 * unprivileged code
12333 return;
12336 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12337 switch (reg) {
12338 case 0x88: /* MSP_NS */
12339 if (!env->v7m.secure) {
12340 return;
12342 env->v7m.other_ss_msp = val;
12343 return;
12344 case 0x89: /* PSP_NS */
12345 if (!env->v7m.secure) {
12346 return;
12348 env->v7m.other_ss_psp = val;
12349 return;
12350 case 0x8a: /* MSPLIM_NS */
12351 if (!env->v7m.secure) {
12352 return;
12354 env->v7m.msplim[M_REG_NS] = val & ~7;
12355 return;
12356 case 0x8b: /* PSPLIM_NS */
12357 if (!env->v7m.secure) {
12358 return;
12360 env->v7m.psplim[M_REG_NS] = val & ~7;
12361 return;
12362 case 0x90: /* PRIMASK_NS */
12363 if (!env->v7m.secure) {
12364 return;
12366 env->v7m.primask[M_REG_NS] = val & 1;
12367 return;
12368 case 0x91: /* BASEPRI_NS */
12369 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12370 return;
12372 env->v7m.basepri[M_REG_NS] = val & 0xff;
12373 return;
12374 case 0x93: /* FAULTMASK_NS */
12375 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12376 return;
12378 env->v7m.faultmask[M_REG_NS] = val & 1;
12379 return;
12380 case 0x94: /* CONTROL_NS */
12381 if (!env->v7m.secure) {
12382 return;
12384 write_v7m_control_spsel_for_secstate(env,
12385 val & R_V7M_CONTROL_SPSEL_MASK,
12386 M_REG_NS);
12387 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12388 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12389 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12392 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12393 * RES0 if the FPU is not present, and is stored in the S bank
12395 if (arm_feature(env, ARM_FEATURE_VFP) &&
12396 extract32(env->v7m.nsacr, 10, 1)) {
12397 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12398 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12400 return;
12401 case 0x98: /* SP_NS */
12403 /* This gives the non-secure SP selected based on whether we're
12404 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12406 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12407 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12408 uint32_t limit;
12410 if (!env->v7m.secure) {
12411 return;
12414 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12416 if (val < limit) {
12417 CPUState *cs = CPU(arm_env_get_cpu(env));
12419 cpu_restore_state(cs, GETPC(), true);
12420 raise_exception(env, EXCP_STKOF, 0, 1);
12423 if (is_psp) {
12424 env->v7m.other_ss_psp = val;
12425 } else {
12426 env->v7m.other_ss_msp = val;
12428 return;
12430 default:
12431 break;
12435 switch (reg) {
12436 case 0 ... 7: /* xPSR sub-fields */
12437 /* only APSR is actually writable */
12438 if (!(reg & 4)) {
12439 uint32_t apsrmask = 0;
12441 if (mask & 8) {
12442 apsrmask |= XPSR_NZCV | XPSR_Q;
12444 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12445 apsrmask |= XPSR_GE;
12447 xpsr_write(env, val, apsrmask);
12449 break;
12450 case 8: /* MSP */
12451 if (v7m_using_psp(env)) {
12452 env->v7m.other_sp = val;
12453 } else {
12454 env->regs[13] = val;
12456 break;
12457 case 9: /* PSP */
12458 if (v7m_using_psp(env)) {
12459 env->regs[13] = val;
12460 } else {
12461 env->v7m.other_sp = val;
12463 break;
12464 case 10: /* MSPLIM */
12465 if (!arm_feature(env, ARM_FEATURE_V8)) {
12466 goto bad_reg;
12468 env->v7m.msplim[env->v7m.secure] = val & ~7;
12469 break;
12470 case 11: /* PSPLIM */
12471 if (!arm_feature(env, ARM_FEATURE_V8)) {
12472 goto bad_reg;
12474 env->v7m.psplim[env->v7m.secure] = val & ~7;
12475 break;
12476 case 16: /* PRIMASK */
12477 env->v7m.primask[env->v7m.secure] = val & 1;
12478 break;
12479 case 17: /* BASEPRI */
12480 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12481 goto bad_reg;
12483 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12484 break;
12485 case 18: /* BASEPRI_MAX */
12486 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12487 goto bad_reg;
12489 val &= 0xff;
12490 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12491 || env->v7m.basepri[env->v7m.secure] == 0)) {
12492 env->v7m.basepri[env->v7m.secure] = val;
12494 break;
12495 case 19: /* FAULTMASK */
12496 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12497 goto bad_reg;
12499 env->v7m.faultmask[env->v7m.secure] = val & 1;
12500 break;
12501 case 20: /* CONTROL */
12503 * Writing to the SPSEL bit only has an effect if we are in
12504 * thread mode; other bits can be updated by any privileged code.
12505 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12506 * env->v7m.control, so we only need update the others.
12507 * For v7M, we must just ignore explicit writes to SPSEL in handler
12508 * mode; for v8M the write is permitted but will have no effect.
12509 * All these bits are writes-ignored from non-privileged code,
12510 * except for SFPA.
12512 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
12513 !arm_v7m_is_handler_mode(env))) {
12514 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12516 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
12517 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12518 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12520 if (arm_feature(env, ARM_FEATURE_VFP)) {
12522 * SFPA is RAZ/WI from NS or if no FPU.
12523 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
12524 * Both are stored in the S bank.
12526 if (env->v7m.secure) {
12527 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
12528 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
12530 if (cur_el > 0 &&
12531 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
12532 extract32(env->v7m.nsacr, 10, 1))) {
12533 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12534 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12537 break;
12538 default:
12539 bad_reg:
12540 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12541 " register %d\n", reg);
12542 return;
12546 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12548 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12549 bool forceunpriv = op & 1;
12550 bool alt = op & 2;
12551 V8M_SAttributes sattrs = {};
12552 uint32_t tt_resp;
12553 bool r, rw, nsr, nsrw, mrvalid;
12554 int prot;
12555 ARMMMUFaultInfo fi = {};
12556 MemTxAttrs attrs = {};
12557 hwaddr phys_addr;
12558 ARMMMUIdx mmu_idx;
12559 uint32_t mregion;
12560 bool targetpriv;
12561 bool targetsec = env->v7m.secure;
12562 bool is_subpage;
12564 /* Work out what the security state and privilege level we're
12565 * interested in is...
12567 if (alt) {
12568 targetsec = !targetsec;
12571 if (forceunpriv) {
12572 targetpriv = false;
12573 } else {
12574 targetpriv = arm_v7m_is_handler_mode(env) ||
12575 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12578 /* ...and then figure out which MMU index this is */
12579 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12581 /* We know that the MPU and SAU don't care about the access type
12582 * for our purposes beyond that we don't want to claim to be
12583 * an insn fetch, so we arbitrarily call this a read.
12586 /* MPU region info only available for privileged or if
12587 * inspecting the other MPU state.
12589 if (arm_current_el(env) != 0 || alt) {
12590 /* We can ignore the return value as prot is always set */
12591 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12592 &phys_addr, &attrs, &prot, &is_subpage,
12593 &fi, &mregion);
12594 if (mregion == -1) {
12595 mrvalid = false;
12596 mregion = 0;
12597 } else {
12598 mrvalid = true;
12600 r = prot & PAGE_READ;
12601 rw = prot & PAGE_WRITE;
12602 } else {
12603 r = false;
12604 rw = false;
12605 mrvalid = false;
12606 mregion = 0;
12609 if (env->v7m.secure) {
12610 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12611 nsr = sattrs.ns && r;
12612 nsrw = sattrs.ns && rw;
12613 } else {
12614 sattrs.ns = true;
12615 nsr = false;
12616 nsrw = false;
12619 tt_resp = (sattrs.iregion << 24) |
12620 (sattrs.irvalid << 23) |
12621 ((!sattrs.ns) << 22) |
12622 (nsrw << 21) |
12623 (nsr << 20) |
12624 (rw << 19) |
12625 (r << 18) |
12626 (sattrs.srvalid << 17) |
12627 (mrvalid << 16) |
12628 (sattrs.sregion << 8) |
12629 mregion;
12631 return tt_resp;
12634 #endif
12636 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12638 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12639 * Note that we do not implement the (architecturally mandated)
12640 * alignment fault for attempts to use this on Device memory
12641 * (which matches the usual QEMU behaviour of not implementing either
12642 * alignment faults or any memory attribute handling).
12645 ARMCPU *cpu = arm_env_get_cpu(env);
12646 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12647 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12649 #ifndef CONFIG_USER_ONLY
12651 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12652 * the block size so we might have to do more than one TLB lookup.
12653 * We know that in fact for any v8 CPU the page size is at least 4K
12654 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12655 * 1K as an artefact of legacy v5 subpage support being present in the
12656 * same QEMU executable.
12658 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12659 void *hostaddr[maxidx];
12660 int try, i;
12661 unsigned mmu_idx = cpu_mmu_index(env, false);
12662 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12664 for (try = 0; try < 2; try++) {
12666 for (i = 0; i < maxidx; i++) {
12667 hostaddr[i] = tlb_vaddr_to_host(env,
12668 vaddr + TARGET_PAGE_SIZE * i,
12669 1, mmu_idx);
12670 if (!hostaddr[i]) {
12671 break;
12674 if (i == maxidx) {
12675 /* If it's all in the TLB it's fair game for just writing to;
12676 * we know we don't need to update dirty status, etc.
12678 for (i = 0; i < maxidx - 1; i++) {
12679 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12681 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12682 return;
12684 /* OK, try a store and see if we can populate the tlb. This
12685 * might cause an exception if the memory isn't writable,
12686 * in which case we will longjmp out of here. We must for
12687 * this purpose use the actual register value passed to us
12688 * so that we get the fault address right.
12690 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12691 /* Now we can populate the other TLB entries, if any */
12692 for (i = 0; i < maxidx; i++) {
12693 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12694 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12695 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12700 /* Slow path (probably attempt to do this to an I/O device or
12701 * similar, or clearing of a block of code we have translations
12702 * cached for). Just do a series of byte writes as the architecture
12703 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12704 * memset(), unmap() sequence here because:
12705 * + we'd need to account for the blocksize being larger than a page
12706 * + the direct-RAM access case is almost always going to be dealt
12707 * with in the fastpath code above, so there's no speed benefit
12708 * + we would have to deal with the map returning NULL because the
12709 * bounce buffer was in use
12711 for (i = 0; i < blocklen; i++) {
12712 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12715 #else
12716 memset(g2h(vaddr), 0, blocklen);
12717 #endif
12720 /* Note that signed overflow is undefined in C. The following routines are
12721 careful to use unsigned types where modulo arithmetic is required.
12722 Failure to do so _will_ break on newer gcc. */
12724 /* Signed saturating arithmetic. */
12726 /* Perform 16-bit signed saturating addition. */
12727 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12729 uint16_t res;
12731 res = a + b;
12732 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12733 if (a & 0x8000)
12734 res = 0x8000;
12735 else
12736 res = 0x7fff;
12738 return res;
12741 /* Perform 8-bit signed saturating addition. */
12742 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12744 uint8_t res;
12746 res = a + b;
12747 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12748 if (a & 0x80)
12749 res = 0x80;
12750 else
12751 res = 0x7f;
12753 return res;
12756 /* Perform 16-bit signed saturating subtraction. */
12757 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12759 uint16_t res;
12761 res = a - b;
12762 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12763 if (a & 0x8000)
12764 res = 0x8000;
12765 else
12766 res = 0x7fff;
12768 return res;
12771 /* Perform 8-bit signed saturating subtraction. */
12772 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12774 uint8_t res;
12776 res = a - b;
12777 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12778 if (a & 0x80)
12779 res = 0x80;
12780 else
12781 res = 0x7f;
12783 return res;
12786 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12787 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12788 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12789 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12790 #define PFX q
12792 #include "op_addsub.h"
12794 /* Unsigned saturating arithmetic. */
12795 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12797 uint16_t res;
12798 res = a + b;
12799 if (res < a)
12800 res = 0xffff;
12801 return res;
12804 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12806 if (a > b)
12807 return a - b;
12808 else
12809 return 0;
12812 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12814 uint8_t res;
12815 res = a + b;
12816 if (res < a)
12817 res = 0xff;
12818 return res;
12821 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12823 if (a > b)
12824 return a - b;
12825 else
12826 return 0;
12829 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12830 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12831 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12832 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12833 #define PFX uq
12835 #include "op_addsub.h"
12837 /* Signed modulo arithmetic. */
12838 #define SARITH16(a, b, n, op) do { \
12839 int32_t sum; \
12840 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12841 RESULT(sum, n, 16); \
12842 if (sum >= 0) \
12843 ge |= 3 << (n * 2); \
12844 } while(0)
12846 #define SARITH8(a, b, n, op) do { \
12847 int32_t sum; \
12848 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12849 RESULT(sum, n, 8); \
12850 if (sum >= 0) \
12851 ge |= 1 << n; \
12852 } while(0)
12855 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12856 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12857 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12858 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12859 #define PFX s
12860 #define ARITH_GE
12862 #include "op_addsub.h"
12864 /* Unsigned modulo arithmetic. */
12865 #define ADD16(a, b, n) do { \
12866 uint32_t sum; \
12867 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12868 RESULT(sum, n, 16); \
12869 if ((sum >> 16) == 1) \
12870 ge |= 3 << (n * 2); \
12871 } while(0)
12873 #define ADD8(a, b, n) do { \
12874 uint32_t sum; \
12875 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12876 RESULT(sum, n, 8); \
12877 if ((sum >> 8) == 1) \
12878 ge |= 1 << n; \
12879 } while(0)
12881 #define SUB16(a, b, n) do { \
12882 uint32_t sum; \
12883 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12884 RESULT(sum, n, 16); \
12885 if ((sum >> 16) == 0) \
12886 ge |= 3 << (n * 2); \
12887 } while(0)
12889 #define SUB8(a, b, n) do { \
12890 uint32_t sum; \
12891 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12892 RESULT(sum, n, 8); \
12893 if ((sum >> 8) == 0) \
12894 ge |= 1 << n; \
12895 } while(0)
12897 #define PFX u
12898 #define ARITH_GE
12900 #include "op_addsub.h"
12902 /* Halved signed arithmetic. */
12903 #define ADD16(a, b, n) \
12904 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12905 #define SUB16(a, b, n) \
12906 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12907 #define ADD8(a, b, n) \
12908 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12909 #define SUB8(a, b, n) \
12910 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12911 #define PFX sh
12913 #include "op_addsub.h"
12915 /* Halved unsigned arithmetic. */
12916 #define ADD16(a, b, n) \
12917 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12918 #define SUB16(a, b, n) \
12919 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12920 #define ADD8(a, b, n) \
12921 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12922 #define SUB8(a, b, n) \
12923 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12924 #define PFX uh
12926 #include "op_addsub.h"
12928 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12930 if (a > b)
12931 return a - b;
12932 else
12933 return b - a;
12936 /* Unsigned sum of absolute byte differences. */
12937 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12939 uint32_t sum;
12940 sum = do_usad(a, b);
12941 sum += do_usad(a >> 8, b >> 8);
12942 sum += do_usad(a >> 16, b >>16);
12943 sum += do_usad(a >> 24, b >> 24);
12944 return sum;
12947 /* For ARMv6 SEL instruction. */
12948 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12950 uint32_t mask;
12952 mask = 0;
12953 if (flags & 1)
12954 mask |= 0xff;
12955 if (flags & 2)
12956 mask |= 0xff00;
12957 if (flags & 4)
12958 mask |= 0xff0000;
12959 if (flags & 8)
12960 mask |= 0xff000000;
12961 return (a & mask) | (b & ~mask);
12964 /* CRC helpers.
12965 * The upper bytes of val (above the number specified by 'bytes') must have
12966 * been zeroed out by the caller.
12968 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12970 uint8_t buf[4];
12972 stl_le_p(buf, val);
12974 /* zlib crc32 converts the accumulator and output to one's complement. */
12975 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12978 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12980 uint8_t buf[4];
12982 stl_le_p(buf, val);
12984 /* Linux crc32c converts the output to one's complement. */
12985 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12988 /* Return the exception level to which FP-disabled exceptions should
12989 * be taken, or 0 if FP is enabled.
12991 int fp_exception_el(CPUARMState *env, int cur_el)
12993 #ifndef CONFIG_USER_ONLY
12994 int fpen;
12996 /* CPACR and the CPTR registers don't exist before v6, so FP is
12997 * always accessible
12999 if (!arm_feature(env, ARM_FEATURE_V6)) {
13000 return 0;
13003 if (arm_feature(env, ARM_FEATURE_M)) {
13004 /* CPACR can cause a NOCP UsageFault taken to current security state */
13005 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13006 return 1;
13009 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13010 if (!extract32(env->v7m.nsacr, 10, 1)) {
13011 /* FP insns cause a NOCP UsageFault taken to Secure */
13012 return 3;
13016 return 0;
13019 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13020 * 0, 2 : trap EL0 and EL1/PL1 accesses
13021 * 1 : trap only EL0 accesses
13022 * 3 : trap no accesses
13024 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13025 switch (fpen) {
13026 case 0:
13027 case 2:
13028 if (cur_el == 0 || cur_el == 1) {
13029 /* Trap to PL1, which might be EL1 or EL3 */
13030 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13031 return 3;
13033 return 1;
13035 if (cur_el == 3 && !is_a64(env)) {
13036 /* Secure PL1 running at EL3 */
13037 return 3;
13039 break;
13040 case 1:
13041 if (cur_el == 0) {
13042 return 1;
13044 break;
13045 case 3:
13046 break;
13049 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13050 * check because zero bits in the registers mean "don't trap".
13053 /* CPTR_EL2 : present in v7VE or v8 */
13054 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13055 && !arm_is_secure_below_el3(env)) {
13056 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13057 return 2;
13060 /* CPTR_EL3 : present in v8 */
13061 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13062 /* Trap all FP ops to EL3 */
13063 return 3;
13065 #endif
13066 return 0;
13069 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13070 bool secstate, bool priv)
13072 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13074 if (priv) {
13075 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13078 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13079 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13082 if (secstate) {
13083 mmu_idx |= ARM_MMU_IDX_M_S;
13086 return mmu_idx;
13089 /* Return the MMU index for a v7M CPU in the specified security state */
13090 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13092 bool priv = arm_current_el(env) != 0;
13094 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13097 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13099 int el;
13101 if (arm_feature(env, ARM_FEATURE_M)) {
13102 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13105 el = arm_current_el(env);
13106 if (el < 2 && arm_is_secure_below_el3(env)) {
13107 return ARMMMUIdx_S1SE0 + el;
13108 } else {
13109 return ARMMMUIdx_S12NSE0 + el;
13113 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13115 return arm_to_core_mmu_idx(arm_mmu_idx(env));
13118 #ifndef CONFIG_USER_ONLY
13119 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13121 return stage_1_mmu_idx(arm_mmu_idx(env));
13123 #endif
13125 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13126 target_ulong *cs_base, uint32_t *pflags)
13128 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13129 int current_el = arm_current_el(env);
13130 int fp_el = fp_exception_el(env, current_el);
13131 uint32_t flags = 0;
13133 if (is_a64(env)) {
13134 ARMCPU *cpu = arm_env_get_cpu(env);
13135 uint64_t sctlr;
13137 *pc = env->pc;
13138 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13140 /* Get control bits for tagged addresses. */
13142 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13143 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13144 int tbii, tbid;
13146 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13147 if (regime_el(env, stage1) < 2) {
13148 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13149 tbid = (p1.tbi << 1) | p0.tbi;
13150 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13151 } else {
13152 tbid = p0.tbi;
13153 tbii = tbid & !p0.tbid;
13156 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13157 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13160 if (cpu_isar_feature(aa64_sve, cpu)) {
13161 int sve_el = sve_exception_el(env, current_el);
13162 uint32_t zcr_len;
13164 /* If SVE is disabled, but FP is enabled,
13165 * then the effective len is 0.
13167 if (sve_el != 0 && fp_el == 0) {
13168 zcr_len = 0;
13169 } else {
13170 zcr_len = sve_zcr_len_for_el(env, current_el);
13172 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13173 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13176 sctlr = arm_sctlr(env, current_el);
13178 if (cpu_isar_feature(aa64_pauth, cpu)) {
13180 * In order to save space in flags, we record only whether
13181 * pauth is "inactive", meaning all insns are implemented as
13182 * a nop, or "active" when some action must be performed.
13183 * The decision of which action to take is left to a helper.
13185 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13186 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13190 if (cpu_isar_feature(aa64_bti, cpu)) {
13191 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13192 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13193 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13195 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13197 } else {
13198 *pc = env->regs[15];
13199 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13200 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13201 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13202 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13203 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13204 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13205 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13206 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
13207 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13209 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13212 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13214 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13215 * states defined in the ARM ARM for software singlestep:
13216 * SS_ACTIVE PSTATE.SS State
13217 * 0 x Inactive (the TB flag for SS is always 0)
13218 * 1 0 Active-pending
13219 * 1 1 Active-not-pending
13221 if (arm_singlestep_active(env)) {
13222 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13223 if (is_a64(env)) {
13224 if (env->pstate & PSTATE_SS) {
13225 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13227 } else {
13228 if (env->uncached_cpsr & PSTATE_SS) {
13229 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13233 if (arm_cpu_data_is_big_endian(env)) {
13234 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13236 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13238 if (arm_v7m_is_handler_mode(env)) {
13239 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13242 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13243 * suppressing them because the requested execution priority is less than 0.
13245 if (arm_feature(env, ARM_FEATURE_V8) &&
13246 arm_feature(env, ARM_FEATURE_M) &&
13247 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13248 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13249 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13252 *pflags = flags;
13253 *cs_base = 0;
13256 #ifdef TARGET_AARCH64
13258 * The manual says that when SVE is enabled and VQ is widened the
13259 * implementation is allowed to zero the previously inaccessible
13260 * portion of the registers. The corollary to that is that when
13261 * SVE is enabled and VQ is narrowed we are also allowed to zero
13262 * the now inaccessible portion of the registers.
13264 * The intent of this is that no predicate bit beyond VQ is ever set.
13265 * Which means that some operations on predicate registers themselves
13266 * may operate on full uint64_t or even unrolled across the maximum
13267 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13268 * may well be cheaper than conditionals to restrict the operation
13269 * to the relevant portion of a uint16_t[16].
13271 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13273 int i, j;
13274 uint64_t pmask;
13276 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13277 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
13279 /* Zap the high bits of the zregs. */
13280 for (i = 0; i < 32; i++) {
13281 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13284 /* Zap the high bits of the pregs and ffr. */
13285 pmask = 0;
13286 if (vq & 3) {
13287 pmask = ~(-1ULL << (16 * (vq & 3)));
13289 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13290 for (i = 0; i < 17; ++i) {
13291 env->vfp.pregs[i].p[j] &= pmask;
13293 pmask = 0;
13298 * Notice a change in SVE vector size when changing EL.
13300 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13301 int new_el, bool el0_a64)
13303 ARMCPU *cpu = arm_env_get_cpu(env);
13304 int old_len, new_len;
13305 bool old_a64, new_a64;
13307 /* Nothing to do if no SVE. */
13308 if (!cpu_isar_feature(aa64_sve, cpu)) {
13309 return;
13312 /* Nothing to do if FP is disabled in either EL. */
13313 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13314 return;
13318 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13319 * at ELx, or not available because the EL is in AArch32 state, then
13320 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13321 * has an effective value of 0".
13323 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13324 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13325 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13326 * we already have the correct register contents when encountering the
13327 * vq0->vq0 transition between EL0->EL1.
13329 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13330 old_len = (old_a64 && !sve_exception_el(env, old_el)
13331 ? sve_zcr_len_for_el(env, old_el) : 0);
13332 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13333 new_len = (new_a64 && !sve_exception_el(env, new_el)
13334 ? sve_zcr_len_for_el(env, new_el) : 0);
13336 /* When changing vector length, clear inaccessible state. */
13337 if (new_len < old_len) {
13338 aarch64_sve_narrow_vq(env, new_len + 1);
13341 #endif