hw/ssi: imx_spi: Remove imx_spi_update_irq() in imx_spi_reset()
[qemu/ar7.git] / hw / ssi / imx_spi.c
blob4d488b159afb1cfff08519d11027fb4c349313a7
1 /*
2 * IMX SPI Controller
4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
22 #define DPRINTF(fmt, args...) \
23 do { \
24 if (DEBUG_IMX_SPI) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26 __func__, ##args); \
27 } \
28 } while (0)
30 static const char *imx_spi_reg_name(uint32_t reg)
32 static char unknown[20];
34 switch (reg) {
35 case ECSPI_RXDATA:
36 return "ECSPI_RXDATA";
37 case ECSPI_TXDATA:
38 return "ECSPI_TXDATA";
39 case ECSPI_CONREG:
40 return "ECSPI_CONREG";
41 case ECSPI_CONFIGREG:
42 return "ECSPI_CONFIGREG";
43 case ECSPI_INTREG:
44 return "ECSPI_INTREG";
45 case ECSPI_DMAREG:
46 return "ECSPI_DMAREG";
47 case ECSPI_STATREG:
48 return "ECSPI_STATREG";
49 case ECSPI_PERIODREG:
50 return "ECSPI_PERIODREG";
51 case ECSPI_TESTREG:
52 return "ECSPI_TESTREG";
53 case ECSPI_MSGDATA:
54 return "ECSPI_MSGDATA";
55 default:
56 sprintf(unknown, "%u ?", reg);
57 return unknown;
61 static const VMStateDescription vmstate_imx_spi = {
62 .name = TYPE_IMX_SPI,
63 .version_id = 1,
64 .minimum_version_id = 1,
65 .fields = (VMStateField[]) {
66 VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67 VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68 VMSTATE_INT16(burst_length, IMXSPIState),
69 VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70 VMSTATE_END_OF_LIST()
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
76 fifo32_reset(&s->tx_fifo);
77 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
83 fifo32_reset(&s->rx_fifo);
84 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
89 static void imx_spi_update_irq(IMXSPIState *s)
91 int level;
93 if (fifo32_is_empty(&s->rx_fifo)) {
94 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95 } else {
96 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
99 if (fifo32_is_full(&s->rx_fifo)) {
100 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101 } else {
102 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
105 if (fifo32_is_empty(&s->tx_fifo)) {
106 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107 } else {
108 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
111 if (fifo32_is_full(&s->tx_fifo)) {
112 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113 } else {
114 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
117 level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
119 qemu_set_irq(s->irq, level);
121 DPRINTF("IRQ level is %d\n", level);
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
126 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
131 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
134 static bool imx_spi_is_enabled(IMXSPIState *s)
136 return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
139 static bool imx_spi_channel_is_master(IMXSPIState *s)
141 uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
143 return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
146 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
148 uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
150 return imx_spi_channel_is_master(s) &&
151 !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
152 ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
155 static void imx_spi_flush_txfifo(IMXSPIState *s)
157 uint32_t tx;
158 uint32_t rx;
160 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
161 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
163 while (!fifo32_is_empty(&s->tx_fifo)) {
164 int tx_burst = 0;
165 int index = 0;
167 if (s->burst_length <= 0) {
168 s->burst_length = imx_spi_burst_length(s);
170 DPRINTF("Burst length = %d\n", s->burst_length);
172 if (imx_spi_is_multiple_master_burst(s)) {
173 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
177 tx = fifo32_pop(&s->tx_fifo);
179 DPRINTF("data tx:0x%08x\n", tx);
181 tx_burst = MIN(s->burst_length, 32);
183 rx = 0;
185 while (tx_burst > 0) {
186 uint8_t byte = tx & 0xff;
188 DPRINTF("writing 0x%02x\n", (uint32_t)byte);
190 /* We need to write one byte at a time */
191 byte = ssi_transfer(s->bus, byte);
193 DPRINTF("0x%02x read\n", (uint32_t)byte);
195 tx = tx >> 8;
196 rx |= (byte << (index * 8));
198 /* Remove 8 bits from the actual burst */
199 tx_burst -= 8;
200 s->burst_length -= 8;
201 index++;
204 DPRINTF("data rx:0x%08x\n", rx);
206 if (fifo32_is_full(&s->rx_fifo)) {
207 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
208 } else {
209 fifo32_push(&s->rx_fifo, rx);
212 if (s->burst_length <= 0) {
213 if (!imx_spi_is_multiple_master_burst(s)) {
214 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215 break;
220 if (fifo32_is_empty(&s->tx_fifo)) {
221 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
222 s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
225 /* TODO: We should also use TDR and RDR bits */
227 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
228 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
231 static void imx_spi_reset(DeviceState *dev)
233 IMXSPIState *s = IMX_SPI(dev);
235 DPRINTF("\n");
237 memset(s->regs, 0, sizeof(s->regs));
239 s->regs[ECSPI_STATREG] = 0x00000003;
241 imx_spi_rxfifo_reset(s);
242 imx_spi_txfifo_reset(s);
244 s->burst_length = 0;
247 static void imx_spi_soft_reset(IMXSPIState *s)
249 imx_spi_reset(DEVICE(s));
251 imx_spi_update_irq(s);
254 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
256 uint32_t value = 0;
257 IMXSPIState *s = opaque;
258 uint32_t index = offset >> 2;
260 if (index >= ECSPI_MAX) {
261 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
262 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
263 return 0;
266 switch (index) {
267 case ECSPI_RXDATA:
268 if (!imx_spi_is_enabled(s)) {
269 value = 0;
270 } else if (fifo32_is_empty(&s->rx_fifo)) {
271 /* value is undefined */
272 value = 0xdeadbeef;
273 } else {
274 /* read from the RX FIFO */
275 value = fifo32_pop(&s->rx_fifo);
278 break;
279 case ECSPI_TXDATA:
280 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
281 TYPE_IMX_SPI, __func__);
283 /* Reading from TXDATA gives 0 */
285 break;
286 case ECSPI_MSGDATA:
287 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
288 TYPE_IMX_SPI, __func__);
290 /* Reading from MSGDATA gives 0 */
292 break;
293 default:
294 value = s->regs[index];
295 break;
298 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
300 imx_spi_update_irq(s);
302 return (uint64_t)value;
305 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
306 unsigned size)
308 IMXSPIState *s = opaque;
309 uint32_t index = offset >> 2;
310 uint32_t change_mask;
312 if (index >= ECSPI_MAX) {
313 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
314 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
315 return;
318 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
319 (uint32_t)value);
321 change_mask = s->regs[index] ^ value;
323 switch (index) {
324 case ECSPI_RXDATA:
325 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
326 TYPE_IMX_SPI, __func__);
327 break;
328 case ECSPI_TXDATA:
329 if (!imx_spi_is_enabled(s)) {
330 /* Ignore writes if device is disabled */
331 break;
332 } else if (fifo32_is_full(&s->tx_fifo)) {
333 /* Ignore writes if queue is full */
334 break;
337 fifo32_push(&s->tx_fifo, (uint32_t)value);
339 if (imx_spi_channel_is_master(s) &&
340 (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
342 * Start emitting if current channel is master and SMC bit is
343 * set.
345 imx_spi_flush_txfifo(s);
348 break;
349 case ECSPI_STATREG:
350 /* the RO and TC bits are write-one-to-clear */
351 value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
352 s->regs[ECSPI_STATREG] &= ~value;
354 break;
355 case ECSPI_CONREG:
356 s->regs[ECSPI_CONREG] = value;
358 if (!imx_spi_is_enabled(s)) {
359 /* device is disabled, so this is a soft reset */
360 imx_spi_soft_reset(s);
362 return;
365 if (imx_spi_channel_is_master(s)) {
366 int i;
368 /* We are in master mode */
370 for (i = 0; i < ECSPI_NUM_CS; i++) {
371 qemu_set_irq(s->cs_lines[i],
372 i == imx_spi_selected_channel(s) ? 0 : 1);
375 if ((value & change_mask & ECSPI_CONREG_SMC) &&
376 !fifo32_is_empty(&s->tx_fifo)) {
377 /* SMC bit is set and TX FIFO has some slots filled in */
378 imx_spi_flush_txfifo(s);
379 } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
380 !(value & ECSPI_CONREG_SMC)) {
381 /* This is a request to start emitting */
382 imx_spi_flush_txfifo(s);
386 break;
387 case ECSPI_MSGDATA:
388 /* it is not clear from the spec what MSGDATA is for */
389 /* Anyway it is not used by Linux driver */
390 /* So for now we just ignore it */
391 qemu_log_mask(LOG_UNIMP,
392 "[%s]%s: Trying to write to MSGDATA, ignoring\n",
393 TYPE_IMX_SPI, __func__);
394 break;
395 default:
396 s->regs[index] = value;
398 break;
401 imx_spi_update_irq(s);
404 static const struct MemoryRegionOps imx_spi_ops = {
405 .read = imx_spi_read,
406 .write = imx_spi_write,
407 .endianness = DEVICE_NATIVE_ENDIAN,
408 .valid = {
410 * Our device would not work correctly if the guest was doing
411 * unaligned access. This might not be a limitation on the real
412 * device but in practice there is no reason for a guest to access
413 * this device unaligned.
415 .min_access_size = 4,
416 .max_access_size = 4,
417 .unaligned = false,
421 static void imx_spi_realize(DeviceState *dev, Error **errp)
423 IMXSPIState *s = IMX_SPI(dev);
424 int i;
426 s->bus = ssi_create_bus(dev, "spi");
428 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
429 TYPE_IMX_SPI, 0x1000);
430 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
431 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
433 for (i = 0; i < ECSPI_NUM_CS; ++i) {
434 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
437 s->burst_length = 0;
439 fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
440 fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
443 static void imx_spi_class_init(ObjectClass *klass, void *data)
445 DeviceClass *dc = DEVICE_CLASS(klass);
447 dc->realize = imx_spi_realize;
448 dc->vmsd = &vmstate_imx_spi;
449 dc->reset = imx_spi_reset;
450 dc->desc = "i.MX SPI Controller";
453 static const TypeInfo imx_spi_info = {
454 .name = TYPE_IMX_SPI,
455 .parent = TYPE_SYS_BUS_DEVICE,
456 .instance_size = sizeof(IMXSPIState),
457 .class_init = imx_spi_class_init,
460 static void imx_spi_register_types(void)
462 type_register_static(&imx_spi_info);
465 type_init(imx_spi_register_types)