target/ppc: Add support for scv and rfscv instructions
[qemu/ar7.git] / target / riscv / cpu_helper.c
blobbc80aa87cf7254134a054f905e469ca471d42a97
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
40 target_ulong irqs;
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
66 pending = vspending;
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
77 #endif
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
92 #endif
93 return false;
96 #if !defined(CONFIG_USER_ONLY)
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
101 if (env->mstatus & MSTATUS_FS) {
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103 return false;
105 return true;
108 return false;
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113 target_ulong mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE;
115 bool current_virt = riscv_cpu_virt_enabled(env);
117 g_assert(riscv_has_ext(env, RVH));
119 #if defined(TARGET_RISCV64)
120 mstatus_mask |= MSTATUS64_UXL;
121 #endif
123 if (current_virt) {
124 /* Current V=1 and we are about to change to V=0 */
125 env->vsstatus = env->mstatus & mstatus_mask;
126 env->mstatus &= ~mstatus_mask;
127 env->mstatus |= env->mstatus_hs;
129 #if defined(TARGET_RISCV32)
130 env->vsstatush = env->mstatush;
131 env->mstatush |= env->mstatush_hs;
132 #endif
134 env->vstvec = env->stvec;
135 env->stvec = env->stvec_hs;
137 env->vsscratch = env->sscratch;
138 env->sscratch = env->sscratch_hs;
140 env->vsepc = env->sepc;
141 env->sepc = env->sepc_hs;
143 env->vscause = env->scause;
144 env->scause = env->scause_hs;
146 env->vstval = env->sbadaddr;
147 env->sbadaddr = env->stval_hs;
149 env->vsatp = env->satp;
150 env->satp = env->satp_hs;
151 } else {
152 /* Current V=0 and we are about to change to V=1 */
153 env->mstatus_hs = env->mstatus & mstatus_mask;
154 env->mstatus &= ~mstatus_mask;
155 env->mstatus |= env->vsstatus;
157 #if defined(TARGET_RISCV32)
158 env->mstatush_hs = env->mstatush;
159 env->mstatush |= env->vsstatush;
160 #endif
162 env->stvec_hs = env->stvec;
163 env->stvec = env->vstvec;
165 env->sscratch_hs = env->sscratch;
166 env->sscratch = env->vsscratch;
168 env->sepc_hs = env->sepc;
169 env->sepc = env->vsepc;
171 env->scause_hs = env->scause;
172 env->scause = env->vscause;
174 env->stval_hs = env->sbadaddr;
175 env->sbadaddr = env->vstval;
177 env->satp_hs = env->satp;
178 env->satp = env->vsatp;
182 bool riscv_cpu_virt_enabled(CPURISCVState *env)
184 if (!riscv_has_ext(env, RVH)) {
185 return false;
188 return get_field(env->virt, VIRT_ONOFF);
191 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
193 if (!riscv_has_ext(env, RVH)) {
194 return;
197 /* Flush the TLB on all virt mode changes. */
198 if (get_field(env->virt, VIRT_ONOFF) != enable) {
199 tlb_flush(env_cpu(env));
202 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
205 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
207 if (!riscv_has_ext(env, RVH)) {
208 return false;
211 return get_field(env->virt, FORCE_HS_EXCEP);
214 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
216 if (!riscv_has_ext(env, RVH)) {
217 return;
220 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
223 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
225 CPURISCVState *env = &cpu->env;
226 if (env->miclaim & interrupts) {
227 return -1;
228 } else {
229 env->miclaim |= interrupts;
230 return 0;
234 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
236 CPURISCVState *env = &cpu->env;
237 CPUState *cs = CPU(cpu);
238 uint32_t old = env->mip;
239 bool locked = false;
241 if (!qemu_mutex_iothread_locked()) {
242 locked = true;
243 qemu_mutex_lock_iothread();
246 env->mip = (env->mip & ~mask) | (value & mask);
248 if (env->mip) {
249 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
250 } else {
251 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
254 if (locked) {
255 qemu_mutex_unlock_iothread();
258 return old;
261 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void))
263 env->rdtime_fn = fn;
266 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
268 if (newpriv > PRV_M) {
269 g_assert_not_reached();
271 if (newpriv == PRV_H) {
272 newpriv = PRV_U;
274 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
275 env->priv = newpriv;
278 * Clear the load reservation - otherwise a reservation placed in one
279 * context/process can be used by another, resulting in an SC succeeding
280 * incorrectly. Version 2.2 of the ISA specification explicitly requires
281 * this behaviour, while later revisions say that the kernel "should" use
282 * an SC instruction to force the yielding of a load reservation on a
283 * preemptive context switch. As a result, do both.
285 env->load_res = -1;
288 /* get_physical_address - get the physical address for this virtual address
290 * Do a page table walk to obtain the physical address corresponding to a
291 * virtual address. Returns 0 if the translation was successful
293 * Adapted from Spike's mmu_t::translate and mmu_t::walk
295 * @env: CPURISCVState
296 * @physical: This will be set to the calculated physical address
297 * @prot: The returned protection attributes
298 * @addr: The virtual address to be translated
299 * @access_type: The type of MMU access
300 * @mmu_idx: Indicates current privilege level
301 * @first_stage: Are we in first stage translation?
302 * Second stage is used for hypervisor guest translation
303 * @two_stage: Are we going to perform two stage translation
305 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
306 int *prot, target_ulong addr,
307 int access_type, int mmu_idx,
308 bool first_stage, bool two_stage)
310 /* NOTE: the env->pc value visible here will not be
311 * correct, but the value visible to the exception handler
312 * (riscv_cpu_do_interrupt) is correct */
313 MemTxResult res;
314 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
315 int mode = mmu_idx;
316 bool use_background = false;
319 * Check if we should use the background registers for the two
320 * stage translation. We don't need to check if we actually need
321 * two stage translation as that happened before this function
322 * was called. Background registers will be used if the guest has
323 * forced a two stage translation to be on (in HS or M mode).
325 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
326 if (get_field(env->mstatus, MSTATUS_MPRV)) {
327 mode = get_field(env->mstatus, MSTATUS_MPP);
329 if (riscv_has_ext(env, RVH) &&
330 MSTATUS_MPV_ISSET(env)) {
331 use_background = true;
336 if (mode == PRV_S && access_type != MMU_INST_FETCH &&
337 riscv_has_ext(env, RVH) && !riscv_cpu_virt_enabled(env)) {
338 if (get_field(env->hstatus, HSTATUS_SPRV)) {
339 mode = get_field(env->mstatus, SSTATUS_SPP);
340 use_background = true;
344 if (first_stage == false) {
345 /* We are in stage 2 translation, this is similar to stage 1. */
346 /* Stage 2 is always taken as U-mode */
347 mode = PRV_U;
350 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
351 *physical = addr;
352 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
353 return TRANSLATE_SUCCESS;
356 *prot = 0;
358 hwaddr base;
359 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
361 if (first_stage == true) {
362 mxr = get_field(env->mstatus, MSTATUS_MXR);
363 } else {
364 mxr = get_field(env->vsstatus, MSTATUS_MXR);
367 if (env->priv_ver >= PRIV_VERSION_1_10_0) {
368 if (first_stage == true) {
369 if (use_background) {
370 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
371 vm = get_field(env->vsatp, SATP_MODE);
372 } else {
373 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
374 vm = get_field(env->satp, SATP_MODE);
376 widened = 0;
377 } else {
378 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
379 vm = get_field(env->hgatp, HGATP_MODE);
380 widened = 2;
382 sum = get_field(env->mstatus, MSTATUS_SUM);
383 switch (vm) {
384 case VM_1_10_SV32:
385 levels = 2; ptidxbits = 10; ptesize = 4; break;
386 case VM_1_10_SV39:
387 levels = 3; ptidxbits = 9; ptesize = 8; break;
388 case VM_1_10_SV48:
389 levels = 4; ptidxbits = 9; ptesize = 8; break;
390 case VM_1_10_SV57:
391 levels = 5; ptidxbits = 9; ptesize = 8; break;
392 case VM_1_10_MBARE:
393 *physical = addr;
394 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
395 return TRANSLATE_SUCCESS;
396 default:
397 g_assert_not_reached();
399 } else {
400 widened = 0;
401 base = (hwaddr)(env->sptbr) << PGSHIFT;
402 sum = !get_field(env->mstatus, MSTATUS_PUM);
403 vm = get_field(env->mstatus, MSTATUS_VM);
404 switch (vm) {
405 case VM_1_09_SV32:
406 levels = 2; ptidxbits = 10; ptesize = 4; break;
407 case VM_1_09_SV39:
408 levels = 3; ptidxbits = 9; ptesize = 8; break;
409 case VM_1_09_SV48:
410 levels = 4; ptidxbits = 9; ptesize = 8; break;
411 case VM_1_09_MBARE:
412 *physical = addr;
413 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
414 return TRANSLATE_SUCCESS;
415 default:
416 g_assert_not_reached();
420 CPUState *cs = env_cpu(env);
421 int va_bits = PGSHIFT + levels * ptidxbits + widened;
422 target_ulong mask, masked_msbs;
424 if (TARGET_LONG_BITS > (va_bits - 1)) {
425 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
426 } else {
427 mask = 0;
429 masked_msbs = (addr >> (va_bits - 1)) & mask;
431 if (masked_msbs != 0 && masked_msbs != mask) {
432 return TRANSLATE_FAIL;
435 int ptshift = (levels - 1) * ptidxbits;
436 int i;
438 #if !TCG_OVERSIZED_GUEST
439 restart:
440 #endif
441 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
442 target_ulong idx;
443 if (i == 0) {
444 idx = (addr >> (PGSHIFT + ptshift)) &
445 ((1 << (ptidxbits + widened)) - 1);
446 } else {
447 idx = (addr >> (PGSHIFT + ptshift)) &
448 ((1 << ptidxbits) - 1);
451 /* check that physical address of PTE is legal */
452 hwaddr pte_addr;
454 if (two_stage && first_stage) {
455 int vbase_prot;
456 hwaddr vbase;
458 /* Do the second stage translation on the base PTE address. */
459 get_physical_address(env, &vbase, &vbase_prot, base, access_type,
460 mmu_idx, false, true);
462 pte_addr = vbase + idx * ptesize;
463 } else {
464 pte_addr = base + idx * ptesize;
467 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
468 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
469 1 << MMU_DATA_LOAD, PRV_S)) {
470 return TRANSLATE_PMP_FAIL;
473 #if defined(TARGET_RISCV32)
474 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
475 #elif defined(TARGET_RISCV64)
476 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
477 #endif
478 if (res != MEMTX_OK) {
479 return TRANSLATE_FAIL;
482 hwaddr ppn = pte >> PTE_PPN_SHIFT;
484 if (!(pte & PTE_V)) {
485 /* Invalid PTE */
486 return TRANSLATE_FAIL;
487 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
488 /* Inner PTE, continue walking */
489 base = ppn << PGSHIFT;
490 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
491 /* Reserved leaf PTE flags: PTE_W */
492 return TRANSLATE_FAIL;
493 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
494 /* Reserved leaf PTE flags: PTE_W + PTE_X */
495 return TRANSLATE_FAIL;
496 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
497 (!sum || access_type == MMU_INST_FETCH))) {
498 /* User PTE flags when not U mode and mstatus.SUM is not set,
499 or the access type is an instruction fetch */
500 return TRANSLATE_FAIL;
501 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
502 /* Supervisor PTE flags when not S mode */
503 return TRANSLATE_FAIL;
504 } else if (ppn & ((1ULL << ptshift) - 1)) {
505 /* Misaligned PPN */
506 return TRANSLATE_FAIL;
507 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
508 ((pte & PTE_X) && mxr))) {
509 /* Read access check failed */
510 return TRANSLATE_FAIL;
511 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
512 /* Write access check failed */
513 return TRANSLATE_FAIL;
514 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
515 /* Fetch access check failed */
516 return TRANSLATE_FAIL;
517 } else {
518 /* if necessary, set accessed and dirty bits. */
519 target_ulong updated_pte = pte | PTE_A |
520 (access_type == MMU_DATA_STORE ? PTE_D : 0);
522 /* Page table updates need to be atomic with MTTCG enabled */
523 if (updated_pte != pte) {
525 * - if accessed or dirty bits need updating, and the PTE is
526 * in RAM, then we do so atomically with a compare and swap.
527 * - if the PTE is in IO space or ROM, then it can't be updated
528 * and we return TRANSLATE_FAIL.
529 * - if the PTE changed by the time we went to update it, then
530 * it is no longer valid and we must re-walk the page table.
532 MemoryRegion *mr;
533 hwaddr l = sizeof(target_ulong), addr1;
534 mr = address_space_translate(cs->as, pte_addr,
535 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
536 if (memory_region_is_ram(mr)) {
537 target_ulong *pte_pa =
538 qemu_map_ram_ptr(mr->ram_block, addr1);
539 #if TCG_OVERSIZED_GUEST
540 /* MTTCG is not enabled on oversized TCG guests so
541 * page table updates do not need to be atomic */
542 *pte_pa = pte = updated_pte;
543 #else
544 target_ulong old_pte =
545 atomic_cmpxchg(pte_pa, pte, updated_pte);
546 if (old_pte != pte) {
547 goto restart;
548 } else {
549 pte = updated_pte;
551 #endif
552 } else {
553 /* misconfigured PTE in ROM (AD bits are not preset) or
554 * PTE is in IO space and can't be updated atomically */
555 return TRANSLATE_FAIL;
559 /* for superpage mappings, make a fake leaf PTE for the TLB's
560 benefit. */
561 target_ulong vpn = addr >> PGSHIFT;
562 *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
564 /* set permissions on the TLB entry */
565 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
566 *prot |= PAGE_READ;
568 if ((pte & PTE_X)) {
569 *prot |= PAGE_EXEC;
571 /* add write permission on stores or if the page is already dirty,
572 so that we TLB miss on later writes to update the dirty bit */
573 if ((pte & PTE_W) &&
574 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
575 *prot |= PAGE_WRITE;
577 return TRANSLATE_SUCCESS;
580 return TRANSLATE_FAIL;
583 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
584 MMUAccessType access_type, bool pmp_violation,
585 bool first_stage)
587 CPUState *cs = env_cpu(env);
588 int page_fault_exceptions;
589 if (first_stage) {
590 page_fault_exceptions =
591 (env->priv_ver >= PRIV_VERSION_1_10_0) &&
592 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
593 !pmp_violation;
594 } else {
595 page_fault_exceptions =
596 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
597 !pmp_violation;
599 switch (access_type) {
600 case MMU_INST_FETCH:
601 if (riscv_cpu_virt_enabled(env) && !first_stage) {
602 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
603 } else {
604 cs->exception_index = page_fault_exceptions ?
605 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
607 break;
608 case MMU_DATA_LOAD:
609 if (riscv_cpu_virt_enabled(env) && !first_stage) {
610 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
611 } else {
612 cs->exception_index = page_fault_exceptions ?
613 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
615 break;
616 case MMU_DATA_STORE:
617 if (riscv_cpu_virt_enabled(env) && !first_stage) {
618 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
619 } else {
620 cs->exception_index = page_fault_exceptions ?
621 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
623 break;
624 default:
625 g_assert_not_reached();
627 env->badaddr = address;
630 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
632 RISCVCPU *cpu = RISCV_CPU(cs);
633 CPURISCVState *env = &cpu->env;
634 hwaddr phys_addr;
635 int prot;
636 int mmu_idx = cpu_mmu_index(&cpu->env, false);
638 if (get_physical_address(env, &phys_addr, &prot, addr, 0, mmu_idx,
639 true, riscv_cpu_virt_enabled(env))) {
640 return -1;
643 if (riscv_cpu_virt_enabled(env)) {
644 if (get_physical_address(env, &phys_addr, &prot, phys_addr,
645 0, mmu_idx, false, true)) {
646 return -1;
650 return phys_addr;
653 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
654 vaddr addr, unsigned size,
655 MMUAccessType access_type,
656 int mmu_idx, MemTxAttrs attrs,
657 MemTxResult response, uintptr_t retaddr)
659 RISCVCPU *cpu = RISCV_CPU(cs);
660 CPURISCVState *env = &cpu->env;
662 if (access_type == MMU_DATA_STORE) {
663 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
664 } else {
665 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
668 env->badaddr = addr;
669 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
672 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
673 MMUAccessType access_type, int mmu_idx,
674 uintptr_t retaddr)
676 RISCVCPU *cpu = RISCV_CPU(cs);
677 CPURISCVState *env = &cpu->env;
678 switch (access_type) {
679 case MMU_INST_FETCH:
680 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
681 break;
682 case MMU_DATA_LOAD:
683 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
684 break;
685 case MMU_DATA_STORE:
686 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
687 break;
688 default:
689 g_assert_not_reached();
691 env->badaddr = addr;
692 riscv_raise_exception(env, cs->exception_index, retaddr);
694 #endif
696 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
697 MMUAccessType access_type, int mmu_idx,
698 bool probe, uintptr_t retaddr)
700 RISCVCPU *cpu = RISCV_CPU(cs);
701 CPURISCVState *env = &cpu->env;
702 #ifndef CONFIG_USER_ONLY
703 vaddr im_address;
704 hwaddr pa = 0;
705 int prot, prot2;
706 bool pmp_violation = false;
707 bool m_mode_two_stage = false;
708 bool hs_mode_two_stage = false;
709 bool first_stage_error = true;
710 int ret = TRANSLATE_FAIL;
711 int mode = mmu_idx;
713 env->guest_phys_fault_addr = 0;
715 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
716 __func__, address, access_type, mmu_idx);
719 * Determine if we are in M mode and MPRV is set or in HS mode and SPRV is
720 * set and we want to access a virtulisation address.
722 if (riscv_has_ext(env, RVH)) {
723 m_mode_two_stage = env->priv == PRV_M &&
724 access_type != MMU_INST_FETCH &&
725 get_field(env->mstatus, MSTATUS_MPRV) &&
726 MSTATUS_MPV_ISSET(env);
728 hs_mode_two_stage = env->priv == PRV_S &&
729 !riscv_cpu_virt_enabled(env) &&
730 access_type != MMU_INST_FETCH &&
731 get_field(env->hstatus, HSTATUS_SPRV) &&
732 get_field(env->hstatus, HSTATUS_SPV);
735 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
736 if (get_field(env->mstatus, MSTATUS_MPRV)) {
737 mode = get_field(env->mstatus, MSTATUS_MPP);
741 if (riscv_cpu_virt_enabled(env) || m_mode_two_stage || hs_mode_two_stage) {
742 /* Two stage lookup */
743 ret = get_physical_address(env, &pa, &prot, address, access_type,
744 mmu_idx, true, true);
746 qemu_log_mask(CPU_LOG_MMU,
747 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
748 TARGET_FMT_plx " prot %d\n",
749 __func__, address, ret, pa, prot);
751 if (ret != TRANSLATE_FAIL) {
752 /* Second stage lookup */
753 im_address = pa;
755 ret = get_physical_address(env, &pa, &prot2, im_address,
756 access_type, mmu_idx, false, true);
758 qemu_log_mask(CPU_LOG_MMU,
759 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
760 TARGET_FMT_plx " prot %d\n",
761 __func__, im_address, ret, pa, prot2);
763 prot &= prot2;
765 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
766 (ret == TRANSLATE_SUCCESS) &&
767 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
768 ret = TRANSLATE_PMP_FAIL;
771 if (ret != TRANSLATE_SUCCESS) {
773 * Guest physical address translation failed, this is a HS
774 * level exception
776 first_stage_error = false;
777 env->guest_phys_fault_addr = (im_address |
778 (address &
779 (TARGET_PAGE_SIZE - 1))) >> 2;
782 } else {
783 /* Single stage lookup */
784 ret = get_physical_address(env, &pa, &prot, address, access_type,
785 mmu_idx, true, false);
787 qemu_log_mask(CPU_LOG_MMU,
788 "%s address=%" VADDR_PRIx " ret %d physical "
789 TARGET_FMT_plx " prot %d\n",
790 __func__, address, ret, pa, prot);
793 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
794 (ret == TRANSLATE_SUCCESS) &&
795 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
796 ret = TRANSLATE_PMP_FAIL;
798 if (ret == TRANSLATE_PMP_FAIL) {
799 pmp_violation = true;
802 if (ret == TRANSLATE_SUCCESS) {
803 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
804 prot, mmu_idx, TARGET_PAGE_SIZE);
805 return true;
806 } else if (probe) {
807 return false;
808 } else {
809 raise_mmu_exception(env, address, access_type, pmp_violation, first_stage_error);
810 riscv_raise_exception(env, cs->exception_index, retaddr);
813 return true;
815 #else
816 switch (access_type) {
817 case MMU_INST_FETCH:
818 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
819 break;
820 case MMU_DATA_LOAD:
821 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
822 break;
823 case MMU_DATA_STORE:
824 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
825 break;
826 default:
827 g_assert_not_reached();
829 env->badaddr = address;
830 cpu_loop_exit_restore(cs, retaddr);
831 #endif
835 * Handle Traps
837 * Adapted from Spike's processor_t::take_trap.
840 void riscv_cpu_do_interrupt(CPUState *cs)
842 #if !defined(CONFIG_USER_ONLY)
844 RISCVCPU *cpu = RISCV_CPU(cs);
845 CPURISCVState *env = &cpu->env;
846 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
847 target_ulong s;
849 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
850 * so we mask off the MSB and separate into trap type and cause.
852 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
853 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
854 target_ulong deleg = async ? env->mideleg : env->medeleg;
855 target_ulong tval = 0;
856 target_ulong htval = 0;
857 target_ulong mtval2 = 0;
859 if (!async) {
860 /* set tval to badaddr for traps with address information */
861 switch (cause) {
862 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
863 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
864 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
865 force_hs_execp = true;
866 /* fallthrough */
867 case RISCV_EXCP_INST_ADDR_MIS:
868 case RISCV_EXCP_INST_ACCESS_FAULT:
869 case RISCV_EXCP_LOAD_ADDR_MIS:
870 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
871 case RISCV_EXCP_LOAD_ACCESS_FAULT:
872 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
873 case RISCV_EXCP_INST_PAGE_FAULT:
874 case RISCV_EXCP_LOAD_PAGE_FAULT:
875 case RISCV_EXCP_STORE_PAGE_FAULT:
876 tval = env->badaddr;
877 break;
878 default:
879 break;
881 /* ecall is dispatched as one cause so translate based on mode */
882 if (cause == RISCV_EXCP_U_ECALL) {
883 assert(env->priv <= 3);
885 if (env->priv == PRV_M) {
886 cause = RISCV_EXCP_M_ECALL;
887 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
888 cause = RISCV_EXCP_VS_ECALL;
889 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
890 cause = RISCV_EXCP_S_ECALL;
891 } else if (env->priv == PRV_U) {
892 cause = RISCV_EXCP_U_ECALL;
897 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 23 ?
898 (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
900 if (env->priv <= PRV_S &&
901 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
902 /* handle the trap in S-mode */
903 if (riscv_has_ext(env, RVH)) {
904 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
906 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
907 !force_hs_execp) {
909 * See if we need to adjust cause. Yes if its VS mode interrupt
910 * no if hypervisor has delegated one of hs mode's interrupt
912 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
913 cause == IRQ_VS_EXT)
914 cause = cause - 1;
915 /* Trap to VS mode */
916 } else if (riscv_cpu_virt_enabled(env)) {
917 /* Trap into HS mode, from virt */
918 riscv_cpu_swap_hypervisor_regs(env);
919 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
920 get_field(env->hstatus, HSTATUS_SPV));
921 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
922 get_field(env->mstatus, SSTATUS_SPP));
923 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
924 riscv_cpu_virt_enabled(env));
926 htval = env->guest_phys_fault_addr;
928 riscv_cpu_set_virt_enabled(env, 0);
929 riscv_cpu_set_force_hs_excep(env, 0);
930 } else {
931 /* Trap into HS mode */
932 env->hstatus = set_field(env->hstatus, HSTATUS_SP2V,
933 get_field(env->hstatus, HSTATUS_SPV));
934 env->hstatus = set_field(env->hstatus, HSTATUS_SP2P,
935 get_field(env->mstatus, SSTATUS_SPP));
936 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
937 riscv_cpu_virt_enabled(env));
939 htval = env->guest_phys_fault_addr;
943 s = env->mstatus;
944 s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
945 get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
946 s = set_field(s, MSTATUS_SPP, env->priv);
947 s = set_field(s, MSTATUS_SIE, 0);
948 env->mstatus = s;
949 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
950 env->sepc = env->pc;
951 env->sbadaddr = tval;
952 env->htval = htval;
953 env->pc = (env->stvec >> 2 << 2) +
954 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
955 riscv_cpu_set_mode(env, PRV_S);
956 } else {
957 /* handle the trap in M-mode */
958 if (riscv_has_ext(env, RVH)) {
959 if (riscv_cpu_virt_enabled(env)) {
960 riscv_cpu_swap_hypervisor_regs(env);
962 #ifdef TARGET_RISCV32
963 env->mstatush = set_field(env->mstatush, MSTATUS_MPV,
964 riscv_cpu_virt_enabled(env));
965 env->mstatush = set_field(env->mstatush, MSTATUS_MTL,
966 riscv_cpu_force_hs_excep_enabled(env));
967 #else
968 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
969 riscv_cpu_virt_enabled(env));
970 env->mstatus = set_field(env->mstatus, MSTATUS_MTL,
971 riscv_cpu_force_hs_excep_enabled(env));
972 #endif
974 mtval2 = env->guest_phys_fault_addr;
976 /* Trapping to M mode, virt is disabled */
977 riscv_cpu_set_virt_enabled(env, 0);
978 riscv_cpu_set_force_hs_excep(env, 0);
981 s = env->mstatus;
982 s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
983 get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
984 s = set_field(s, MSTATUS_MPP, env->priv);
985 s = set_field(s, MSTATUS_MIE, 0);
986 env->mstatus = s;
987 env->mcause = cause | ~(((target_ulong)-1) >> async);
988 env->mepc = env->pc;
989 env->mbadaddr = tval;
990 env->mtval2 = mtval2;
991 env->pc = (env->mtvec >> 2 << 2) +
992 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
993 riscv_cpu_set_mode(env, PRV_M);
996 /* NOTE: it is not necessary to yield load reservations here. It is only
997 * necessary for an SC from "another hart" to cause a load reservation
998 * to be yielded. Refer to the memory consistency model section of the
999 * RISC-V ISA Specification.
1002 #endif
1003 cs->exception_index = EXCP_NONE; /* mark handled to qemu */