target/sparc: Correctly handle bus errors in page table walks
[qemu/ar7.git] / hw / ssi / aspeed_smc.c
blob9ffc7e01179a10b0af7c7610abf083bb4b1767dd
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
34 #include "hw/irq.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/ssi/aspeed_smc.h"
38 /* CE Type Setting Register */
39 #define R_CONF (0x00 / 4)
40 #define CONF_LEGACY_DISABLE (1 << 31)
41 #define CONF_ENABLE_W4 20
42 #define CONF_ENABLE_W3 19
43 #define CONF_ENABLE_W2 18
44 #define CONF_ENABLE_W1 17
45 #define CONF_ENABLE_W0 16
46 #define CONF_FLASH_TYPE4 8
47 #define CONF_FLASH_TYPE3 6
48 #define CONF_FLASH_TYPE2 4
49 #define CONF_FLASH_TYPE1 2
50 #define CONF_FLASH_TYPE0 0
51 #define CONF_FLASH_TYPE_NOR 0x0
52 #define CONF_FLASH_TYPE_NAND 0x1
53 #define CONF_FLASH_TYPE_SPI 0x2
55 /* CE Control Register */
56 #define R_CE_CTRL (0x04 / 4)
57 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
58 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
63 /* Interrupt Control and Status Register */
64 #define R_INTR_CTRL (0x08 / 4)
65 #define INTR_CTRL_DMA_STATUS (1 << 11)
66 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
67 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
68 #define INTR_CTRL_DMA_EN (1 << 3)
69 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
70 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
72 /* CEx Control Register */
73 #define R_CTRL0 (0x10 / 4)
74 #define CTRL_IO_DUAL_DATA (1 << 29)
75 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
76 #define CTRL_CMD_SHIFT 16
77 #define CTRL_CMD_MASK 0xff
78 #define CTRL_DUMMY_HIGH_SHIFT 14
79 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
80 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
81 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
82 #define CE_CTRL_CLOCK_FREQ(div) \
83 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
84 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
85 #define CTRL_CE_STOP_ACTIVE (1 << 2)
86 #define CTRL_CMD_MODE_MASK 0x3
87 #define CTRL_READMODE 0x0
88 #define CTRL_FREADMODE 0x1
89 #define CTRL_WRITEMODE 0x2
90 #define CTRL_USERMODE 0x3
91 #define R_CTRL1 (0x14 / 4)
92 #define R_CTRL2 (0x18 / 4)
93 #define R_CTRL3 (0x1C / 4)
94 #define R_CTRL4 (0x20 / 4)
96 /* CEx Segment Address Register */
97 #define R_SEG_ADDR0 (0x30 / 4)
98 #define SEG_END_SHIFT 24 /* 8MB units */
99 #define SEG_END_MASK 0xff
100 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
101 #define SEG_START_MASK 0xff
102 #define R_SEG_ADDR1 (0x34 / 4)
103 #define R_SEG_ADDR2 (0x38 / 4)
104 #define R_SEG_ADDR3 (0x3C / 4)
105 #define R_SEG_ADDR4 (0x40 / 4)
107 /* Misc Control Register #1 */
108 #define R_MISC_CTRL1 (0x50 / 4)
110 /* SPI dummy cycle data */
111 #define R_DUMMY_DATA (0x54 / 4)
113 /* DMA Control/Status Register */
114 #define R_DMA_CTRL (0x80 / 4)
115 #define DMA_CTRL_DELAY_MASK 0xf
116 #define DMA_CTRL_DELAY_SHIFT 8
117 #define DMA_CTRL_FREQ_MASK 0xf
118 #define DMA_CTRL_FREQ_SHIFT 4
119 #define DMA_CTRL_CALIB (1 << 3)
120 #define DMA_CTRL_CKSUM (1 << 2)
121 #define DMA_CTRL_WRITE (1 << 1)
122 #define DMA_CTRL_ENABLE (1 << 0)
124 /* DMA Flash Side Address */
125 #define R_DMA_FLASH_ADDR (0x84 / 4)
127 /* DMA DRAM Side Address */
128 #define R_DMA_DRAM_ADDR (0x88 / 4)
130 /* DMA Length Register */
131 #define R_DMA_LEN (0x8C / 4)
133 /* Checksum Calculation Result */
134 #define R_DMA_CHECKSUM (0x90 / 4)
136 /* Misc Control Register #2 */
137 #define R_TIMINGS (0x94 / 4)
139 /* SPI controller registers and bits */
140 #define R_SPI_CONF (0x00 / 4)
141 #define SPI_CONF_ENABLE_W0 0
142 #define R_SPI_CTRL0 (0x4 / 4)
143 #define R_SPI_MISC_CTRL (0x10 / 4)
144 #define R_SPI_TIMINGS (0x14 / 4)
146 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
147 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
149 #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
150 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
151 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
152 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
155 * DMA DRAM addresses should be 4 bytes aligned and the valid address
156 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
157 * 0x80000000 - 0xBFFFFFFF (AST2500)
159 * DMA flash addresses should be 4 bytes aligned and the valid address
160 * range is 0x20000000 - 0x2FFFFFFF.
162 * DMA length is from 4 bytes to 32MB
163 * 0: 4 bytes
164 * 0x7FFFFF: 32M bytes
166 #define DMA_DRAM_ADDR(s, val) ((s)->sdram_base | \
167 ((val) & (s)->ctrl->dma_dram_mask))
168 #define DMA_FLASH_ADDR(s, val) ((s)->ctrl->flash_window_base | \
169 ((val) & (s)->ctrl->dma_flash_mask))
170 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
172 /* Flash opcodes. */
173 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
175 #define SNOOP_OFF 0xFF
176 #define SNOOP_START 0x0
179 * Default segments mapping addresses and size for each slave per
180 * controller. These can be changed when board is initialized with the
181 * Segment Address Registers.
183 static const AspeedSegments aspeed_segments_legacy[] = {
184 { 0x10000000, 32 * 1024 * 1024 },
187 static const AspeedSegments aspeed_segments_fmc[] = {
188 { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
189 { 0x24000000, 32 * 1024 * 1024 },
190 { 0x26000000, 32 * 1024 * 1024 },
191 { 0x28000000, 32 * 1024 * 1024 },
192 { 0x2A000000, 32 * 1024 * 1024 }
195 static const AspeedSegments aspeed_segments_spi[] = {
196 { 0x30000000, 64 * 1024 * 1024 },
199 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
200 { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
201 { 0x28000000, 32 * 1024 * 1024 },
202 { 0x2A000000, 32 * 1024 * 1024 },
205 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
206 { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
207 { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
210 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
211 { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
212 { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
215 static const AspeedSMCController controllers[] = {
217 .name = "aspeed.smc-ast2400",
218 .r_conf = R_CONF,
219 .r_ce_ctrl = R_CE_CTRL,
220 .r_ctrl0 = R_CTRL0,
221 .r_timings = R_TIMINGS,
222 .conf_enable_w0 = CONF_ENABLE_W0,
223 .max_slaves = 5,
224 .segments = aspeed_segments_legacy,
225 .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
226 .flash_window_size = 0x6000000,
227 .has_dma = false,
228 .nregs = ASPEED_SMC_R_SMC_MAX,
229 }, {
230 .name = "aspeed.fmc-ast2400",
231 .r_conf = R_CONF,
232 .r_ce_ctrl = R_CE_CTRL,
233 .r_ctrl0 = R_CTRL0,
234 .r_timings = R_TIMINGS,
235 .conf_enable_w0 = CONF_ENABLE_W0,
236 .max_slaves = 5,
237 .segments = aspeed_segments_fmc,
238 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
239 .flash_window_size = 0x10000000,
240 .has_dma = true,
241 .dma_flash_mask = 0x0FFFFFFC,
242 .dma_dram_mask = 0x1FFFFFFC,
243 .nregs = ASPEED_SMC_R_MAX,
244 }, {
245 .name = "aspeed.spi1-ast2400",
246 .r_conf = R_SPI_CONF,
247 .r_ce_ctrl = 0xff,
248 .r_ctrl0 = R_SPI_CTRL0,
249 .r_timings = R_SPI_TIMINGS,
250 .conf_enable_w0 = SPI_CONF_ENABLE_W0,
251 .max_slaves = 1,
252 .segments = aspeed_segments_spi,
253 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
254 .flash_window_size = 0x10000000,
255 .has_dma = false,
256 .nregs = ASPEED_SMC_R_SPI_MAX,
257 }, {
258 .name = "aspeed.fmc-ast2500",
259 .r_conf = R_CONF,
260 .r_ce_ctrl = R_CE_CTRL,
261 .r_ctrl0 = R_CTRL0,
262 .r_timings = R_TIMINGS,
263 .conf_enable_w0 = CONF_ENABLE_W0,
264 .max_slaves = 3,
265 .segments = aspeed_segments_ast2500_fmc,
266 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
267 .flash_window_size = 0x10000000,
268 .has_dma = true,
269 .dma_flash_mask = 0x0FFFFFFC,
270 .dma_dram_mask = 0x3FFFFFFC,
271 .nregs = ASPEED_SMC_R_MAX,
272 }, {
273 .name = "aspeed.spi1-ast2500",
274 .r_conf = R_CONF,
275 .r_ce_ctrl = R_CE_CTRL,
276 .r_ctrl0 = R_CTRL0,
277 .r_timings = R_TIMINGS,
278 .conf_enable_w0 = CONF_ENABLE_W0,
279 .max_slaves = 2,
280 .segments = aspeed_segments_ast2500_spi1,
281 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
282 .flash_window_size = 0x8000000,
283 .has_dma = false,
284 .nregs = ASPEED_SMC_R_MAX,
285 }, {
286 .name = "aspeed.spi2-ast2500",
287 .r_conf = R_CONF,
288 .r_ce_ctrl = R_CE_CTRL,
289 .r_ctrl0 = R_CTRL0,
290 .r_timings = R_TIMINGS,
291 .conf_enable_w0 = CONF_ENABLE_W0,
292 .max_slaves = 2,
293 .segments = aspeed_segments_ast2500_spi2,
294 .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
295 .flash_window_size = 0x8000000,
296 .has_dma = false,
297 .nregs = ASPEED_SMC_R_MAX,
302 * The Segment Register uses a 8MB unit to encode the start address
303 * and the end address of the mapping window of a flash SPI slave :
305 * | byte 1 | byte 2 | byte 3 | byte 4 |
306 * +--------+--------+--------+--------+
307 * | end | start | 0 | 0 |
310 static inline uint32_t aspeed_smc_segment_to_reg(const AspeedSegments *seg)
312 uint32_t reg = 0;
313 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
314 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
315 return reg;
318 static inline void aspeed_smc_reg_to_segment(uint32_t reg, AspeedSegments *seg)
320 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
321 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
324 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
325 const AspeedSegments *new,
326 int cs)
328 AspeedSegments seg;
329 int i;
331 for (i = 0; i < s->ctrl->max_slaves; i++) {
332 if (i == cs) {
333 continue;
336 aspeed_smc_reg_to_segment(s->regs[R_SEG_ADDR0 + i], &seg);
338 if (new->addr + new->size > seg.addr &&
339 new->addr < seg.addr + seg.size) {
340 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
341 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
342 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
343 s->ctrl->name, cs, new->addr, new->addr + new->size,
344 i, seg.addr, seg.addr + seg.size);
345 return true;
348 return false;
351 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
352 uint64_t new)
354 AspeedSMCFlash *fl = &s->flashes[cs];
355 AspeedSegments seg;
357 aspeed_smc_reg_to_segment(new, &seg);
359 /* The start address of CS0 is read-only */
360 if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
361 qemu_log_mask(LOG_GUEST_ERROR,
362 "%s: Tried to change CS0 start address to 0x%"
363 HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
364 seg.addr = s->ctrl->flash_window_base;
365 new = aspeed_smc_segment_to_reg(&seg);
369 * The end address of the AST2500 spi controllers is also
370 * read-only.
372 if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
373 s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
374 cs == s->ctrl->max_slaves &&
375 seg.addr + seg.size != s->ctrl->segments[cs].addr +
376 s->ctrl->segments[cs].size) {
377 qemu_log_mask(LOG_GUEST_ERROR,
378 "%s: Tried to change CS%d end address to 0x%"
379 HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
380 seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
381 seg.addr;
382 new = aspeed_smc_segment_to_reg(&seg);
385 /* Keep the segment in the overall flash window */
386 if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
387 seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
388 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
389 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
390 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
391 return;
394 /* Check start address vs. alignment */
395 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
396 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
397 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
398 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
401 /* And segments should not overlap (in the specs) */
402 aspeed_smc_flash_overlap(s, &seg, cs);
404 /* All should be fine now to move the region */
405 memory_region_transaction_begin();
406 memory_region_set_size(&fl->mmio, seg.size);
407 memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
408 memory_region_set_enabled(&fl->mmio, true);
409 memory_region_transaction_commit();
411 s->regs[R_SEG_ADDR0 + cs] = new;
414 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
415 unsigned size)
417 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
418 PRIx64 "\n", __func__, addr, size);
419 return 0;
422 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
423 uint64_t data, unsigned size)
425 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
426 PRIx64 "\n", __func__, addr, size, data);
429 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
430 .read = aspeed_smc_flash_default_read,
431 .write = aspeed_smc_flash_default_write,
432 .endianness = DEVICE_LITTLE_ENDIAN,
433 .valid = {
434 .min_access_size = 1,
435 .max_access_size = 4,
439 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
441 const AspeedSMCState *s = fl->controller;
443 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
446 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
448 const AspeedSMCState *s = fl->controller;
450 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
453 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
455 const AspeedSMCState *s = fl->controller;
456 int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
458 /* In read mode, the default SPI command is READ (0x3). In other
459 * modes, the command should necessarily be defined */
460 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
461 cmd = SPI_OP_READ;
464 if (!cmd) {
465 qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
466 __func__, aspeed_smc_flash_mode(fl));
469 return cmd;
472 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
474 const AspeedSMCState *s = fl->controller;
476 if (s->ctrl->segments == aspeed_segments_spi) {
477 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
478 } else {
479 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
483 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
485 const AspeedSMCState *s = fl->controller;
487 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
490 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
492 AspeedSMCState *s = fl->controller;
494 s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
495 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
498 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
500 AspeedSMCState *s = fl->controller;
502 s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
503 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
506 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
507 uint32_t addr)
509 const AspeedSMCState *s = fl->controller;
510 AspeedSegments seg;
512 aspeed_smc_reg_to_segment(s->regs[R_SEG_ADDR0 + fl->id], &seg);
513 if ((addr % seg.size) != addr) {
514 qemu_log_mask(LOG_GUEST_ERROR,
515 "%s: invalid address 0x%08x for CS%d segment : "
516 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
517 s->ctrl->name, addr, fl->id, seg.addr,
518 seg.addr + seg.size);
519 addr %= seg.size;
522 return addr;
525 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
527 const AspeedSMCState *s = fl->controller;
528 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
529 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
530 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
531 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
533 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
534 dummies /= 2;
537 return dummies;
540 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
542 const AspeedSMCState *s = fl->controller;
543 uint8_t cmd = aspeed_smc_flash_cmd(fl);
544 int i;
546 /* Flash access can not exceed CS segment */
547 addr = aspeed_smc_check_segment_addr(fl, addr);
549 ssi_transfer(s->spi, cmd);
551 if (aspeed_smc_flash_is_4byte(fl)) {
552 ssi_transfer(s->spi, (addr >> 24) & 0xff);
554 ssi_transfer(s->spi, (addr >> 16) & 0xff);
555 ssi_transfer(s->spi, (addr >> 8) & 0xff);
556 ssi_transfer(s->spi, (addr & 0xff));
559 * Use fake transfers to model dummy bytes. The value should
560 * be configured to some non-zero value in fast read mode and
561 * zero in read mode. But, as the HW allows inconsistent
562 * settings, let's check for fast read mode.
564 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
565 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
566 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
571 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
573 AspeedSMCFlash *fl = opaque;
574 AspeedSMCState *s = fl->controller;
575 uint64_t ret = 0;
576 int i;
578 switch (aspeed_smc_flash_mode(fl)) {
579 case CTRL_USERMODE:
580 for (i = 0; i < size; i++) {
581 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
583 break;
584 case CTRL_READMODE:
585 case CTRL_FREADMODE:
586 aspeed_smc_flash_select(fl);
587 aspeed_smc_flash_setup(fl, addr);
589 for (i = 0; i < size; i++) {
590 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
593 aspeed_smc_flash_unselect(fl);
594 break;
595 default:
596 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
597 __func__, aspeed_smc_flash_mode(fl));
600 return ret;
604 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
605 * common include header.
607 typedef enum {
608 READ = 0x3, READ_4 = 0x13,
609 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
610 DOR = 0x3b, DOR_4 = 0x3c,
611 QOR = 0x6b, QOR_4 = 0x6c,
612 DIOR = 0xbb, DIOR_4 = 0xbc,
613 QIOR = 0xeb, QIOR_4 = 0xec,
615 PP = 0x2, PP_4 = 0x12,
616 DPP = 0xa2,
617 QPP = 0x32, QPP_4 = 0x34,
618 } FlashCMD;
620 static int aspeed_smc_num_dummies(uint8_t command)
622 switch (command) { /* check for dummies */
623 case READ: /* no dummy bytes/cycles */
624 case PP:
625 case DPP:
626 case QPP:
627 case READ_4:
628 case PP_4:
629 case QPP_4:
630 return 0;
631 case FAST_READ:
632 case DOR:
633 case QOR:
634 case DOR_4:
635 case QOR_4:
636 return 1;
637 case DIOR:
638 case FAST_READ_4:
639 case DIOR_4:
640 return 2;
641 case QIOR:
642 case QIOR_4:
643 return 4;
644 default:
645 return -1;
649 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
650 unsigned size)
652 AspeedSMCState *s = fl->controller;
653 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
655 if (s->snoop_index == SNOOP_OFF) {
656 return false; /* Do nothing */
658 } else if (s->snoop_index == SNOOP_START) {
659 uint8_t cmd = data & 0xff;
660 int ndummies = aspeed_smc_num_dummies(cmd);
663 * No dummy cycles are expected with the current command. Turn
664 * off snooping and let the transfer proceed normally.
666 if (ndummies <= 0) {
667 s->snoop_index = SNOOP_OFF;
668 return false;
671 s->snoop_dummies = ndummies * 8;
673 } else if (s->snoop_index >= addr_width + 1) {
675 /* The SPI transfer has reached the dummy cycles sequence */
676 for (; s->snoop_dummies; s->snoop_dummies--) {
677 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
680 /* If no more dummy cycles are expected, turn off snooping */
681 if (!s->snoop_dummies) {
682 s->snoop_index = SNOOP_OFF;
683 } else {
684 s->snoop_index += size;
688 * Dummy cycles have been faked already. Ignore the current
689 * SPI transfer
691 return true;
694 s->snoop_index += size;
695 return false;
698 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
699 unsigned size)
701 AspeedSMCFlash *fl = opaque;
702 AspeedSMCState *s = fl->controller;
703 int i;
705 if (!aspeed_smc_is_writable(fl)) {
706 qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
707 HWADDR_PRIx "\n", __func__, addr);
708 return;
711 switch (aspeed_smc_flash_mode(fl)) {
712 case CTRL_USERMODE:
713 if (aspeed_smc_do_snoop(fl, data, size)) {
714 break;
717 for (i = 0; i < size; i++) {
718 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
720 break;
721 case CTRL_WRITEMODE:
722 aspeed_smc_flash_select(fl);
723 aspeed_smc_flash_setup(fl, addr);
725 for (i = 0; i < size; i++) {
726 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
729 aspeed_smc_flash_unselect(fl);
730 break;
731 default:
732 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
733 __func__, aspeed_smc_flash_mode(fl));
737 static const MemoryRegionOps aspeed_smc_flash_ops = {
738 .read = aspeed_smc_flash_read,
739 .write = aspeed_smc_flash_write,
740 .endianness = DEVICE_LITTLE_ENDIAN,
741 .valid = {
742 .min_access_size = 1,
743 .max_access_size = 4,
747 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
749 AspeedSMCState *s = fl->controller;
751 s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
753 qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
756 static void aspeed_smc_reset(DeviceState *d)
758 AspeedSMCState *s = ASPEED_SMC(d);
759 int i;
761 memset(s->regs, 0, sizeof s->regs);
763 /* Unselect all slaves */
764 for (i = 0; i < s->num_cs; ++i) {
765 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
766 qemu_set_irq(s->cs_lines[i], true);
769 /* setup default segment register values for all */
770 for (i = 0; i < s->ctrl->max_slaves; ++i) {
771 s->regs[R_SEG_ADDR0 + i] =
772 aspeed_smc_segment_to_reg(&s->ctrl->segments[i]);
775 /* HW strapping flash type for FMC controllers */
776 if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
777 /* flash type is fixed to SPI for CE0 and CE1 */
778 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
779 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
782 /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
783 * configuration of the palmetto-bmc machine */
784 if (s->ctrl->segments == aspeed_segments_fmc) {
785 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
788 s->snoop_index = SNOOP_OFF;
789 s->snoop_dummies = 0;
792 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
794 AspeedSMCState *s = ASPEED_SMC(opaque);
796 addr >>= 2;
798 if (addr == s->r_conf ||
799 addr == s->r_timings ||
800 addr == s->r_ce_ctrl ||
801 addr == R_INTR_CTRL ||
802 addr == R_DUMMY_DATA ||
803 (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
804 (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
805 (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
806 (s->ctrl->has_dma && addr == R_DMA_LEN) ||
807 (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
808 (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
809 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
810 return s->regs[addr];
811 } else {
812 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
813 __func__, addr);
814 return -1;
818 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
820 /* HCLK/1 .. HCLK/16 */
821 const uint8_t hclk_divisors[] = {
822 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
824 int i;
826 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
827 if (hclk_mask == hclk_divisors[i]) {
828 return i + 1;
832 qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
833 return 0;
837 * When doing calibration, the SPI clock rate in the CE0 Control
838 * Register and the read delay cycles in the Read Timing Compensation
839 * Register are set using bit[11:4] of the DMA Control Register.
841 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
843 uint8_t delay =
844 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
845 uint8_t hclk_mask =
846 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
847 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
848 uint32_t hclk_shift = (hclk_div - 1) << 2;
849 uint8_t cs;
852 * The Read Timing Compensation Register values apply to all CS on
853 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
855 if (hclk_div && hclk_div < 6) {
856 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
857 s->regs[s->r_timings] |= delay << hclk_shift;
861 * TODO: compute the CS from the DMA address and the segment
862 * registers. This is not really a problem for now because the
863 * Timing Register values apply to all CS and software uses CS0 to
864 * do calibration.
866 cs = 0;
867 s->regs[s->r_ctrl0 + cs] &=
868 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
869 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
873 * Emulate read errors in the DMA Checksum Register for high
874 * frequencies and optimistic settings of the Read Timing Compensation
875 * Register. This will help in tuning the SPI timing calibration
876 * algorithm.
878 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
880 uint8_t delay =
881 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
882 uint8_t hclk_mask =
883 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
886 * Typical values of a palmetto-bmc machine.
888 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
889 case 4 ... 16:
890 return false;
891 case 3: /* at least one HCLK cycle delay */
892 return (delay & 0x7) < 1;
893 case 2: /* at least two HCLK cycle delay */
894 return (delay & 0x7) < 2;
895 case 1: /* (> 100MHz) is above the max freq of the controller */
896 return true;
897 default:
898 g_assert_not_reached();
903 * Accumulate the result of the reads to provide a checksum that will
904 * be used to validate the read timing settings.
906 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
908 MemTxResult result;
909 uint32_t data;
911 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
912 qemu_log_mask(LOG_GUEST_ERROR,
913 "%s: invalid direction for DMA checksum\n", __func__);
914 return;
917 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
918 aspeed_smc_dma_calibration(s);
921 while (s->regs[R_DMA_LEN]) {
922 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
923 MEMTXATTRS_UNSPECIFIED, &result);
924 if (result != MEMTX_OK) {
925 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
926 __func__, s->regs[R_DMA_FLASH_ADDR]);
927 return;
931 * When the DMA is on-going, the DMA registers are updated
932 * with the current working addresses and length.
934 s->regs[R_DMA_CHECKSUM] += data;
935 s->regs[R_DMA_FLASH_ADDR] += 4;
936 s->regs[R_DMA_LEN] -= 4;
939 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
940 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
945 static void aspeed_smc_dma_rw(AspeedSMCState *s)
947 MemTxResult result;
948 uint32_t data;
950 while (s->regs[R_DMA_LEN]) {
951 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
952 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
953 MEMTXATTRS_UNSPECIFIED, &result);
954 if (result != MEMTX_OK) {
955 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
956 __func__, s->regs[R_DMA_DRAM_ADDR]);
957 return;
960 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
961 data, MEMTXATTRS_UNSPECIFIED, &result);
962 if (result != MEMTX_OK) {
963 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
964 __func__, s->regs[R_DMA_FLASH_ADDR]);
965 return;
967 } else {
968 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
969 MEMTXATTRS_UNSPECIFIED, &result);
970 if (result != MEMTX_OK) {
971 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
972 __func__, s->regs[R_DMA_FLASH_ADDR]);
973 return;
976 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
977 data, MEMTXATTRS_UNSPECIFIED, &result);
978 if (result != MEMTX_OK) {
979 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
980 __func__, s->regs[R_DMA_DRAM_ADDR]);
981 return;
986 * When the DMA is on-going, the DMA registers are updated
987 * with the current working addresses and length.
989 s->regs[R_DMA_FLASH_ADDR] += 4;
990 s->regs[R_DMA_DRAM_ADDR] += 4;
991 s->regs[R_DMA_LEN] -= 4;
992 s->regs[R_DMA_CHECKSUM] += data;
996 static void aspeed_smc_dma_stop(AspeedSMCState *s)
999 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1000 * engine is idle
1002 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1003 s->regs[R_DMA_CHECKSUM] = 0;
1006 * Lower the DMA irq in any case. The IRQ control register could
1007 * have been cleared before disabling the DMA.
1009 qemu_irq_lower(s->irq);
1013 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1014 * can start even if the result of the previous was not collected.
1016 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1018 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1019 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1022 static void aspeed_smc_dma_done(AspeedSMCState *s)
1024 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1025 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1026 qemu_irq_raise(s->irq);
1030 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1032 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1033 s->regs[R_DMA_CTRL] = dma_ctrl;
1035 aspeed_smc_dma_stop(s);
1036 return;
1039 if (aspeed_smc_dma_in_progress(s)) {
1040 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
1041 return;
1044 s->regs[R_DMA_CTRL] = dma_ctrl;
1046 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1047 aspeed_smc_dma_checksum(s);
1048 } else {
1049 aspeed_smc_dma_rw(s);
1052 aspeed_smc_dma_done(s);
1055 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1056 unsigned int size)
1058 AspeedSMCState *s = ASPEED_SMC(opaque);
1059 uint32_t value = data;
1061 addr >>= 2;
1063 if (addr == s->r_conf ||
1064 addr == s->r_timings ||
1065 addr == s->r_ce_ctrl) {
1066 s->regs[addr] = value;
1067 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1068 int cs = addr - s->r_ctrl0;
1069 s->regs[addr] = value;
1070 aspeed_smc_flash_update_cs(&s->flashes[cs]);
1071 } else if (addr >= R_SEG_ADDR0 &&
1072 addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1073 int cs = addr - R_SEG_ADDR0;
1075 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1076 aspeed_smc_flash_set_segment(s, cs, value);
1078 } else if (addr == R_DUMMY_DATA) {
1079 s->regs[addr] = value & 0xff;
1080 } else if (addr == R_INTR_CTRL) {
1081 s->regs[addr] = value;
1082 } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1083 aspeed_smc_dma_ctrl(s, value);
1084 } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1085 s->regs[addr] = DMA_DRAM_ADDR(s, value);
1086 } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1087 s->regs[addr] = DMA_FLASH_ADDR(s, value);
1088 } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1089 s->regs[addr] = DMA_LENGTH(value);
1090 } else {
1091 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1092 __func__, addr);
1093 return;
1097 static const MemoryRegionOps aspeed_smc_ops = {
1098 .read = aspeed_smc_read,
1099 .write = aspeed_smc_write,
1100 .endianness = DEVICE_LITTLE_ENDIAN,
1101 .valid.unaligned = true,
1106 * Initialize the custom address spaces for DMAs
1108 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1110 char *name;
1112 if (!s->dram_mr) {
1113 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1114 return;
1117 name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1118 address_space_init(&s->flash_as, &s->mmio_flash, name);
1119 g_free(name);
1121 name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1122 address_space_init(&s->dram_as, s->dram_mr, name);
1123 g_free(name);
1126 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1128 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1129 AspeedSMCState *s = ASPEED_SMC(dev);
1130 AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1131 int i;
1132 char name[32];
1133 hwaddr offset = 0;
1135 s->ctrl = mc->ctrl;
1137 /* keep a copy under AspeedSMCState to speed up accesses */
1138 s->r_conf = s->ctrl->r_conf;
1139 s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1140 s->r_ctrl0 = s->ctrl->r_ctrl0;
1141 s->r_timings = s->ctrl->r_timings;
1142 s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1144 /* Enforce some real HW limits */
1145 if (s->num_cs > s->ctrl->max_slaves) {
1146 qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1147 __func__, s->ctrl->max_slaves);
1148 s->num_cs = s->ctrl->max_slaves;
1151 /* DMA irq. Keep it first for the initialization in the SoC */
1152 sysbus_init_irq(sbd, &s->irq);
1154 s->spi = ssi_create_bus(dev, "spi");
1156 /* Setup cs_lines for slaves */
1157 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1158 ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1160 for (i = 0; i < s->num_cs; ++i) {
1161 sysbus_init_irq(sbd, &s->cs_lines[i]);
1164 /* The memory region for the controller registers */
1165 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1166 s->ctrl->name, s->ctrl->nregs * 4);
1167 sysbus_init_mmio(sbd, &s->mmio);
1170 * The container memory region representing the address space
1171 * window in which the flash modules are mapped. The size and
1172 * address depends on the SoC model and controller type.
1174 snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1176 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1177 &aspeed_smc_flash_default_ops, s, name,
1178 s->ctrl->flash_window_size);
1179 sysbus_init_mmio(sbd, &s->mmio_flash);
1181 s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1184 * Let's create a sub memory region for each possible slave. All
1185 * have a configurable memory segment in the overall flash mapping
1186 * window of the controller but, there is not necessarily a flash
1187 * module behind to handle the memory accesses. This depends on
1188 * the board configuration.
1190 for (i = 0; i < s->ctrl->max_slaves; ++i) {
1191 AspeedSMCFlash *fl = &s->flashes[i];
1193 snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1195 fl->id = i;
1196 fl->controller = s;
1197 fl->size = s->ctrl->segments[i].size;
1198 memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1199 fl, name, fl->size);
1200 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1201 offset += fl->size;
1204 /* DMA support */
1205 if (s->ctrl->has_dma) {
1206 aspeed_smc_dma_setup(s, errp);
1210 static const VMStateDescription vmstate_aspeed_smc = {
1211 .name = "aspeed.smc",
1212 .version_id = 2,
1213 .minimum_version_id = 2,
1214 .fields = (VMStateField[]) {
1215 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1216 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1217 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1218 VMSTATE_END_OF_LIST()
1222 static Property aspeed_smc_properties[] = {
1223 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1224 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1225 DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1226 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1227 TYPE_MEMORY_REGION, MemoryRegion *),
1228 DEFINE_PROP_END_OF_LIST(),
1231 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1233 DeviceClass *dc = DEVICE_CLASS(klass);
1234 AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1236 dc->realize = aspeed_smc_realize;
1237 dc->reset = aspeed_smc_reset;
1238 dc->props = aspeed_smc_properties;
1239 dc->vmsd = &vmstate_aspeed_smc;
1240 mc->ctrl = data;
1243 static const TypeInfo aspeed_smc_info = {
1244 .name = TYPE_ASPEED_SMC,
1245 .parent = TYPE_SYS_BUS_DEVICE,
1246 .instance_size = sizeof(AspeedSMCState),
1247 .class_size = sizeof(AspeedSMCClass),
1248 .abstract = true,
1251 static void aspeed_smc_register_types(void)
1253 int i;
1255 type_register_static(&aspeed_smc_info);
1256 for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1257 TypeInfo ti = {
1258 .name = controllers[i].name,
1259 .parent = TYPE_ASPEED_SMC,
1260 .class_init = aspeed_smc_class_init,
1261 .class_data = (void *)&controllers[i],
1263 type_register(&ti);
1267 type_init(aspeed_smc_register_types)