monitor: Fix command completion vs. boolean switches
[qemu/ar7.git] / target-ppc / kvm.c
blob1079ce1e61c7e9cccb20b23e84062efbe1cfa676
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
6 * Authors:
7 * Jerone Young <jyoung5@us.ibm.com>
8 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
9 * Hollis Blanchard <hollisb@us.ibm.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "qemu-timer.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_ppc.h"
27 #include "cpu.h"
28 #include "device_tree.h"
30 //#define DEBUG_KVM
32 #ifdef DEBUG_KVM
33 #define dprintf(fmt, ...) \
34 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35 #else
36 #define dprintf(fmt, ...) \
37 do { } while (0)
38 #endif
40 /* XXX We have a race condition where we actually have a level triggered
41 * interrupt, but the infrastructure can't expose that yet, so the guest
42 * takes but ignores it, goes to sleep and never gets notified that there's
43 * still an interrupt pending.
45 * As a quick workaround, let's just wake up again 20 ms after we injected
46 * an interrupt. That way we can assure that we're always reinjecting
47 * interrupts in case the guest swallowed them.
49 static QEMUTimer *idle_timer;
51 static void kvm_kick_env(void *env)
53 qemu_cpu_kick(env);
56 int kvm_arch_init(KVMState *s, int smp_cpus)
58 return 0;
61 int kvm_arch_init_vcpu(CPUState *cenv)
63 int ret = 0;
64 struct kvm_sregs sregs;
66 sregs.pvr = cenv->spr[SPR_PVR];
67 ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
69 idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
71 return ret;
74 void kvm_arch_reset_vcpu(CPUState *env)
78 int kvm_arch_put_registers(CPUState *env, int level)
80 struct kvm_regs regs;
81 int ret;
82 int i;
84 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
85 if (ret < 0)
86 return ret;
88 regs.ctr = env->ctr;
89 regs.lr = env->lr;
90 regs.xer = env->xer;
91 regs.msr = env->msr;
92 regs.pc = env->nip;
94 regs.srr0 = env->spr[SPR_SRR0];
95 regs.srr1 = env->spr[SPR_SRR1];
97 regs.sprg0 = env->spr[SPR_SPRG0];
98 regs.sprg1 = env->spr[SPR_SPRG1];
99 regs.sprg2 = env->spr[SPR_SPRG2];
100 regs.sprg3 = env->spr[SPR_SPRG3];
101 regs.sprg4 = env->spr[SPR_SPRG4];
102 regs.sprg5 = env->spr[SPR_SPRG5];
103 regs.sprg6 = env->spr[SPR_SPRG6];
104 regs.sprg7 = env->spr[SPR_SPRG7];
106 for (i = 0;i < 32; i++)
107 regs.gpr[i] = env->gpr[i];
109 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
110 if (ret < 0)
111 return ret;
113 return ret;
116 int kvm_arch_get_registers(CPUState *env)
118 struct kvm_regs regs;
119 struct kvm_sregs sregs;
120 uint32_t i, ret;
122 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
123 if (ret < 0)
124 return ret;
126 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
127 if (ret < 0)
128 return ret;
130 env->ctr = regs.ctr;
131 env->lr = regs.lr;
132 env->xer = regs.xer;
133 env->msr = regs.msr;
134 env->nip = regs.pc;
136 env->spr[SPR_SRR0] = regs.srr0;
137 env->spr[SPR_SRR1] = regs.srr1;
139 env->spr[SPR_SPRG0] = regs.sprg0;
140 env->spr[SPR_SPRG1] = regs.sprg1;
141 env->spr[SPR_SPRG2] = regs.sprg2;
142 env->spr[SPR_SPRG3] = regs.sprg3;
143 env->spr[SPR_SPRG4] = regs.sprg4;
144 env->spr[SPR_SPRG5] = regs.sprg5;
145 env->spr[SPR_SPRG6] = regs.sprg6;
146 env->spr[SPR_SPRG7] = regs.sprg7;
148 for (i = 0;i < 32; i++)
149 env->gpr[i] = regs.gpr[i];
151 #ifdef KVM_CAP_PPC_SEGSTATE
152 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
153 env->sdr1 = sregs.u.s.sdr1;
155 /* Sync SLB */
156 #ifdef TARGET_PPC64
157 for (i = 0; i < 64; i++) {
158 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
159 sregs.u.s.ppc64.slb[i].slbv);
161 #endif
163 /* Sync SRs */
164 for (i = 0; i < 16; i++) {
165 env->sr[i] = sregs.u.s.ppc32.sr[i];
168 /* Sync BATs */
169 for (i = 0; i < 8; i++) {
170 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
171 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
172 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
173 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
176 #endif
178 return 0;
181 #if defined(TARGET_PPCEMB)
182 #define PPC_INPUT_INT PPC40x_INPUT_INT
183 #elif defined(TARGET_PPC64)
184 #define PPC_INPUT_INT PPC970_INPUT_INT
185 #else
186 #define PPC_INPUT_INT PPC6xx_INPUT_INT
187 #endif
189 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
191 int r;
192 unsigned irq;
194 /* PowerPC Qemu tracks the various core input pins (interrupt, critical
195 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
196 if (run->ready_for_interrupt_injection &&
197 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
198 (env->irq_input_state & (1<<PPC_INPUT_INT)))
200 /* For now KVM disregards the 'irq' argument. However, in the
201 * future KVM could cache it in-kernel to avoid a heavyweight exit
202 * when reading the UIC.
204 irq = -1U;
206 dprintf("injected interrupt %d\n", irq);
207 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
208 if (r < 0)
209 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
211 /* Always wake up soon in case the interrupt was level based */
212 qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
213 (get_ticks_per_sec() / 50));
216 /* We don't know if there are more interrupts pending after this. However,
217 * the guest will return to userspace in the course of handling this one
218 * anyways, so we will get a chance to deliver the rest. */
219 return 0;
222 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
224 return 0;
227 int kvm_arch_process_irqchip_events(CPUState *env)
229 return 0;
232 static int kvmppc_handle_halt(CPUState *env)
234 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
235 env->halted = 1;
236 env->exception_index = EXCP_HLT;
239 return 1;
242 /* map dcr access to existing qemu dcr emulation */
243 static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
245 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
246 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
248 return 1;
251 static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
253 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
254 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
256 return 1;
259 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
261 int ret = 0;
263 switch (run->exit_reason) {
264 case KVM_EXIT_DCR:
265 if (run->dcr.is_write) {
266 dprintf("handle dcr write\n");
267 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
268 } else {
269 dprintf("handle dcr read\n");
270 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
272 break;
273 case KVM_EXIT_HLT:
274 dprintf("handle halt\n");
275 ret = kvmppc_handle_halt(env);
276 break;
279 return ret;
282 static int read_cpuinfo(const char *field, char *value, int len)
284 FILE *f;
285 int ret = -1;
286 int field_len = strlen(field);
287 char line[512];
289 f = fopen("/proc/cpuinfo", "r");
290 if (!f) {
291 return -1;
294 do {
295 if(!fgets(line, sizeof(line), f)) {
296 break;
298 if (!strncmp(line, field, field_len)) {
299 strncpy(value, line, len);
300 ret = 0;
301 break;
303 } while(*line);
305 fclose(f);
307 return ret;
310 uint32_t kvmppc_get_tbfreq(void)
312 char line[512];
313 char *ns;
314 uint32_t retval = get_ticks_per_sec();
316 if (read_cpuinfo("timebase", line, sizeof(line))) {
317 return retval;
320 if (!(ns = strchr(line, ':'))) {
321 return retval;
324 ns++;
326 retval = atoi(ns);
327 return retval;
330 bool kvm_arch_stop_on_emulation_error(CPUState *env)
332 return true;