4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
54 #include "exec/memory-internal.h"
55 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 #include "qemu/mmap-alloc.h"
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
70 static MemoryRegion
*system_memory
;
71 static MemoryRegion
*system_io
;
73 AddressSpace address_space_io
;
74 AddressSpace address_space_memory
;
76 MemoryRegion io_mem_rom
, io_mem_notdirty
;
77 static MemoryRegion io_mem_unassigned
;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
90 /* RAM is backed by an mmapped file.
92 #define RAM_FILE (1 << 3)
95 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
96 /* current CPU in the current thread. It is only valid inside
98 __thread CPUState
*current_cpu
;
99 /* 0 = Do not count executed instructions.
100 1 = Precise instruction counting.
101 2 = Adaptive rate instruction counting. */
104 #if !defined(CONFIG_USER_ONLY)
106 typedef struct PhysPageEntry PhysPageEntry
;
108 struct PhysPageEntry
{
109 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
115 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117 /* Size of the L2 (and L3, etc) page tables. */
118 #define ADDR_SPACE_BITS 64
121 #define P_L2_SIZE (1 << P_L2_BITS)
123 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125 typedef PhysPageEntry Node
[P_L2_SIZE
];
127 typedef struct PhysPageMap
{
130 unsigned sections_nb
;
131 unsigned sections_nb_alloc
;
133 unsigned nodes_nb_alloc
;
135 MemoryRegionSection
*sections
;
138 struct AddressSpaceDispatch
{
141 /* This is a multi-level map on the physical address space.
142 * The bottom level has pointers to MemoryRegionSections.
144 PhysPageEntry phys_map
;
149 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
150 typedef struct subpage_t
{
154 uint16_t sub_section
[TARGET_PAGE_SIZE
];
157 #define PHYS_SECTION_UNASSIGNED 0
158 #define PHYS_SECTION_NOTDIRTY 1
159 #define PHYS_SECTION_ROM 2
160 #define PHYS_SECTION_WATCH 3
162 static void io_mem_init(void);
163 static void memory_map_init(void);
164 static void tcg_commit(MemoryListener
*listener
);
166 static MemoryRegion io_mem_watch
;
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace
{
178 struct AddressSpaceDispatch
*memory_dispatch
;
179 MemoryListener tcg_as_listener
;
184 #if !defined(CONFIG_USER_ONLY)
186 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
188 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
189 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
190 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
191 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
195 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
202 ret
= map
->nodes_nb
++;
204 assert(ret
!= PHYS_MAP_NODE_NIL
);
205 assert(ret
!= map
->nodes_nb_alloc
);
207 e
.skip
= leaf
? 0 : 1;
208 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
209 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
210 memcpy(&p
[i
], &e
, sizeof(e
));
215 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
216 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
220 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
222 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
223 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
225 p
= map
->nodes
[lp
->ptr
];
226 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
228 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
229 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
235 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
241 static void phys_page_set(AddressSpaceDispatch
*d
,
242 hwaddr index
, hwaddr nb
,
245 /* Wildly overreserve - it doesn't matter much. */
246 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
248 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
251 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
252 * and update our entry so we can skip it and go directly to the destination.
254 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
256 unsigned valid_ptr
= P_L2_SIZE
;
261 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
266 for (i
= 0; i
< P_L2_SIZE
; i
++) {
267 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
274 phys_page_compact(&p
[i
], nodes
, compacted
);
278 /* We can only compress if there's only one child. */
283 assert(valid_ptr
< P_L2_SIZE
);
285 /* Don't compress if it won't fit in the # of bits we have. */
286 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
290 lp
->ptr
= p
[valid_ptr
].ptr
;
291 if (!p
[valid_ptr
].skip
) {
292 /* If our only child is a leaf, make this a leaf. */
293 /* By design, we should have made this node a leaf to begin with so we
294 * should never reach here.
295 * But since it's so simple to handle this, let's do it just in case we
300 lp
->skip
+= p
[valid_ptr
].skip
;
304 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
306 DECLARE_BITMAP(compacted
, nodes_nb
);
308 if (d
->phys_map
.skip
) {
309 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
313 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
314 Node
*nodes
, MemoryRegionSection
*sections
)
317 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
320 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
321 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
322 return §ions
[PHYS_SECTION_UNASSIGNED
];
325 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
328 if (sections
[lp
.ptr
].size
.hi
||
329 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
330 sections
[lp
.ptr
].size
.lo
, addr
)) {
331 return §ions
[lp
.ptr
];
333 return §ions
[PHYS_SECTION_UNASSIGNED
];
337 bool memory_region_is_unassigned(MemoryRegion
*mr
)
339 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
340 && mr
!= &io_mem_watch
;
343 /* Called from RCU critical section */
344 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
346 bool resolve_subpage
)
348 MemoryRegionSection
*section
;
351 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
352 if (resolve_subpage
&& section
->mr
->subpage
) {
353 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
354 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
359 /* Called from RCU critical section */
360 static MemoryRegionSection
*
361 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
362 hwaddr
*plen
, bool resolve_subpage
)
364 MemoryRegionSection
*section
;
368 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
369 /* Compute offset within MemoryRegionSection */
370 addr
-= section
->offset_within_address_space
;
372 /* Compute offset within MemoryRegion */
373 *xlat
= addr
+ section
->offset_within_region
;
377 /* MMIO registers can be expected to perform full-width accesses based only
378 * on their address, without considering adjacent registers that could
379 * decode to completely different MemoryRegions. When such registers
380 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
381 * regions overlap wildly. For this reason we cannot clamp the accesses
384 * If the length is small (as is the case for address_space_ldl/stl),
385 * everything works fine. If the incoming length is large, however,
386 * the caller really has to do the clamping through memory_access_size.
388 if (memory_region_is_ram(mr
)) {
389 diff
= int128_sub(section
->size
, int128_make64(addr
));
390 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
395 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
397 if (memory_region_is_ram(mr
)) {
398 return !(is_write
&& mr
->readonly
);
400 if (memory_region_is_romd(mr
)) {
407 /* Called from RCU critical section */
408 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
409 hwaddr
*xlat
, hwaddr
*plen
,
413 MemoryRegionSection
*section
;
417 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
418 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
421 if (!mr
->iommu_ops
) {
425 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
426 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
427 | (addr
& iotlb
.addr_mask
));
428 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
429 if (!(iotlb
.perm
& (1 << is_write
))) {
430 mr
= &io_mem_unassigned
;
434 as
= iotlb
.target_as
;
437 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
438 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
439 *plen
= MIN(page
, *plen
);
446 /* Called from RCU critical section */
447 MemoryRegionSection
*
448 address_space_translate_for_iotlb(CPUState
*cpu
, hwaddr addr
,
449 hwaddr
*xlat
, hwaddr
*plen
)
451 MemoryRegionSection
*section
;
452 section
= address_space_translate_internal(cpu
->cpu_ases
[0].memory_dispatch
,
453 addr
, xlat
, plen
, false);
455 assert(!section
->mr
->iommu_ops
);
460 #if !defined(CONFIG_USER_ONLY)
462 static int cpu_common_post_load(void *opaque
, int version_id
)
464 CPUState
*cpu
= opaque
;
466 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
467 version_id is increased. */
468 cpu
->interrupt_request
&= ~0x01;
474 static int cpu_common_pre_load(void *opaque
)
476 CPUState
*cpu
= opaque
;
478 cpu
->exception_index
= -1;
483 static bool cpu_common_exception_index_needed(void *opaque
)
485 CPUState
*cpu
= opaque
;
487 return tcg_enabled() && cpu
->exception_index
!= -1;
490 static const VMStateDescription vmstate_cpu_common_exception_index
= {
491 .name
= "cpu_common/exception_index",
493 .minimum_version_id
= 1,
494 .needed
= cpu_common_exception_index_needed
,
495 .fields
= (VMStateField
[]) {
496 VMSTATE_INT32(exception_index
, CPUState
),
497 VMSTATE_END_OF_LIST()
501 static bool cpu_common_crash_occurred_needed(void *opaque
)
503 CPUState
*cpu
= opaque
;
505 return cpu
->crash_occurred
;
508 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
509 .name
= "cpu_common/crash_occurred",
511 .minimum_version_id
= 1,
512 .needed
= cpu_common_crash_occurred_needed
,
513 .fields
= (VMStateField
[]) {
514 VMSTATE_BOOL(crash_occurred
, CPUState
),
515 VMSTATE_END_OF_LIST()
519 const VMStateDescription vmstate_cpu_common
= {
520 .name
= "cpu_common",
522 .minimum_version_id
= 1,
523 .pre_load
= cpu_common_pre_load
,
524 .post_load
= cpu_common_post_load
,
525 .fields
= (VMStateField
[]) {
526 VMSTATE_UINT32(halted
, CPUState
),
527 VMSTATE_UINT32(interrupt_request
, CPUState
),
528 VMSTATE_END_OF_LIST()
530 .subsections
= (const VMStateDescription
*[]) {
531 &vmstate_cpu_common_exception_index
,
532 &vmstate_cpu_common_crash_occurred
,
539 CPUState
*qemu_get_cpu(int index
)
544 if (cpu
->cpu_index
== index
) {
552 #if !defined(CONFIG_USER_ONLY)
553 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
555 /* We only support one address space per cpu at the moment. */
556 assert(cpu
->as
== as
);
559 /* We've already registered the listener for our only AS */
563 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, 1);
564 cpu
->cpu_ases
[0].cpu
= cpu
;
565 cpu
->cpu_ases
[0].as
= as
;
566 cpu
->cpu_ases
[0].tcg_as_listener
.commit
= tcg_commit
;
567 memory_listener_register(&cpu
->cpu_ases
[0].tcg_as_listener
, as
);
571 #ifndef CONFIG_USER_ONLY
572 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
574 static int cpu_get_free_index(Error
**errp
)
576 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
578 if (cpu
>= MAX_CPUMASK_BITS
) {
579 error_setg(errp
, "Trying to use more CPUs than max of %d",
584 bitmap_set(cpu_index_map
, cpu
, 1);
588 void cpu_exec_exit(CPUState
*cpu
)
590 if (cpu
->cpu_index
== -1) {
591 /* cpu_index was never allocated by this @cpu or was already freed. */
595 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
600 static int cpu_get_free_index(Error
**errp
)
605 CPU_FOREACH(some_cpu
) {
611 void cpu_exec_exit(CPUState
*cpu
)
616 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
618 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
620 Error
*local_err
= NULL
;
622 #ifndef CONFIG_USER_ONLY
623 cpu
->as
= &address_space_memory
;
624 cpu
->thread_id
= qemu_get_thread_id();
627 #if defined(CONFIG_USER_ONLY)
630 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
632 error_propagate(errp
, local_err
);
633 #if defined(CONFIG_USER_ONLY)
638 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
639 #if defined(CONFIG_USER_ONLY)
642 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
643 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
645 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
646 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
647 cpu_save
, cpu_load
, cpu
->env_ptr
);
648 assert(cc
->vmsd
== NULL
);
649 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
651 if (cc
->vmsd
!= NULL
) {
652 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
656 #if defined(CONFIG_USER_ONLY)
657 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
659 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
662 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
664 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
666 tb_invalidate_phys_addr(cpu
->as
,
667 phys
| (pc
& ~TARGET_PAGE_MASK
));
672 #if defined(CONFIG_USER_ONLY)
673 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
678 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
684 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
688 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
689 int flags
, CPUWatchpoint
**watchpoint
)
694 /* Add a watchpoint. */
695 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
696 int flags
, CPUWatchpoint
**watchpoint
)
700 /* forbid ranges which are empty or run off the end of the address space */
701 if (len
== 0 || (addr
+ len
- 1) < addr
) {
702 error_report("tried to set invalid watchpoint at %"
703 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
706 wp
= g_malloc(sizeof(*wp
));
712 /* keep all GDB-injected watchpoints in front */
713 if (flags
& BP_GDB
) {
714 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
716 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
719 tlb_flush_page(cpu
, addr
);
726 /* Remove a specific watchpoint. */
727 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
732 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
733 if (addr
== wp
->vaddr
&& len
== wp
->len
734 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
735 cpu_watchpoint_remove_by_ref(cpu
, wp
);
742 /* Remove a specific watchpoint by reference. */
743 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
745 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
747 tlb_flush_page(cpu
, watchpoint
->vaddr
);
752 /* Remove all matching watchpoints. */
753 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
755 CPUWatchpoint
*wp
, *next
;
757 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
758 if (wp
->flags
& mask
) {
759 cpu_watchpoint_remove_by_ref(cpu
, wp
);
764 /* Return true if this watchpoint address matches the specified
765 * access (ie the address range covered by the watchpoint overlaps
766 * partially or completely with the address range covered by the
769 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
773 /* We know the lengths are non-zero, but a little caution is
774 * required to avoid errors in the case where the range ends
775 * exactly at the top of the address space and so addr + len
776 * wraps round to zero.
778 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
779 vaddr addrend
= addr
+ len
- 1;
781 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
786 /* Add a breakpoint. */
787 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
788 CPUBreakpoint
**breakpoint
)
792 bp
= g_malloc(sizeof(*bp
));
797 /* keep all GDB-injected breakpoints in front */
798 if (flags
& BP_GDB
) {
799 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
801 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
804 breakpoint_invalidate(cpu
, pc
);
812 /* Remove a specific breakpoint. */
813 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
817 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
818 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
819 cpu_breakpoint_remove_by_ref(cpu
, bp
);
826 /* Remove a specific breakpoint by reference. */
827 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
829 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
831 breakpoint_invalidate(cpu
, breakpoint
->pc
);
836 /* Remove all matching breakpoints. */
837 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
839 CPUBreakpoint
*bp
, *next
;
841 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
842 if (bp
->flags
& mask
) {
843 cpu_breakpoint_remove_by_ref(cpu
, bp
);
848 /* enable or disable single step mode. EXCP_DEBUG is returned by the
849 CPU loop after each instruction */
850 void cpu_single_step(CPUState
*cpu
, int enabled
)
852 if (cpu
->singlestep_enabled
!= enabled
) {
853 cpu
->singlestep_enabled
= enabled
;
855 kvm_update_guest_debug(cpu
, 0);
857 /* must flush all the translated code to avoid inconsistencies */
858 /* XXX: only flush what is necessary */
864 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
871 fprintf(stderr
, "qemu: fatal: ");
872 vfprintf(stderr
, fmt
, ap
);
873 fprintf(stderr
, "\n");
874 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
875 if (qemu_log_enabled()) {
876 qemu_log("qemu: fatal: ");
877 qemu_log_vprintf(fmt
, ap2
);
879 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
885 #if defined(CONFIG_USER_ONLY)
887 struct sigaction act
;
888 sigfillset(&act
.sa_mask
);
889 act
.sa_handler
= SIG_DFL
;
890 sigaction(SIGABRT
, &act
, NULL
);
896 #if !defined(CONFIG_USER_ONLY)
897 /* Called from RCU critical section */
898 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
902 block
= atomic_rcu_read(&ram_list
.mru_block
);
903 if (block
&& addr
- block
->offset
< block
->max_length
) {
906 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
907 if (addr
- block
->offset
< block
->max_length
) {
912 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
916 /* It is safe to write mru_block outside the iothread lock. This
921 * xxx removed from list
925 * call_rcu(reclaim_ramblock, xxx);
928 * atomic_rcu_set is not needed here. The block was already published
929 * when it was placed into the list. Here we're just making an extra
930 * copy of the pointer.
932 ram_list
.mru_block
= block
;
936 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
943 end
= TARGET_PAGE_ALIGN(start
+ length
);
944 start
&= TARGET_PAGE_MASK
;
947 block
= qemu_get_ram_block(start
);
948 assert(block
== qemu_get_ram_block(end
- 1));
949 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
951 tlb_reset_dirty(cpu
, start1
, length
);
956 /* Note: start and end must be within the same ram block. */
957 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
961 unsigned long end
, page
;
968 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
969 page
= start
>> TARGET_PAGE_BITS
;
970 dirty
= bitmap_test_and_clear_atomic(ram_list
.dirty_memory
[client
],
973 if (dirty
&& tcg_enabled()) {
974 tlb_reset_dirty_range_all(start
, length
);
980 /* Called from RCU critical section */
981 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
982 MemoryRegionSection
*section
,
984 hwaddr paddr
, hwaddr xlat
,
986 target_ulong
*address
)
991 if (memory_region_is_ram(section
->mr
)) {
993 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
995 if (!section
->readonly
) {
996 iotlb
|= PHYS_SECTION_NOTDIRTY
;
998 iotlb
|= PHYS_SECTION_ROM
;
1001 AddressSpaceDispatch
*d
;
1003 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1004 iotlb
= section
- d
->map
.sections
;
1008 /* Make accesses to pages with watchpoints go via the
1009 watchpoint trap routines. */
1010 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1011 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1012 /* Avoid trapping reads of pages with a write breakpoint. */
1013 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1014 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1015 *address
|= TLB_MMIO
;
1023 #endif /* defined(CONFIG_USER_ONLY) */
1025 #if !defined(CONFIG_USER_ONLY)
1027 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1029 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1031 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1032 qemu_anon_ram_alloc
;
1035 * Set a custom physical guest memory alloator.
1036 * Accelerators with unusual needs may need this. Hopefully, we can
1037 * get rid of it eventually.
1039 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1041 phys_mem_alloc
= alloc
;
1044 static uint16_t phys_section_add(PhysPageMap
*map
,
1045 MemoryRegionSection
*section
)
1047 /* The physical section number is ORed with a page-aligned
1048 * pointer to produce the iotlb entries. Thus it should
1049 * never overflow into the page-aligned value.
1051 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1053 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1054 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1055 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1056 map
->sections_nb_alloc
);
1058 map
->sections
[map
->sections_nb
] = *section
;
1059 memory_region_ref(section
->mr
);
1060 return map
->sections_nb
++;
1063 static void phys_section_destroy(MemoryRegion
*mr
)
1065 memory_region_unref(mr
);
1068 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1069 object_unref(OBJECT(&subpage
->iomem
));
1074 static void phys_sections_free(PhysPageMap
*map
)
1076 while (map
->sections_nb
> 0) {
1077 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1078 phys_section_destroy(section
->mr
);
1080 g_free(map
->sections
);
1084 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1087 hwaddr base
= section
->offset_within_address_space
1089 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1090 d
->map
.nodes
, d
->map
.sections
);
1091 MemoryRegionSection subsection
= {
1092 .offset_within_address_space
= base
,
1093 .size
= int128_make64(TARGET_PAGE_SIZE
),
1097 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1099 if (!(existing
->mr
->subpage
)) {
1100 subpage
= subpage_init(d
->as
, base
);
1101 subsection
.address_space
= d
->as
;
1102 subsection
.mr
= &subpage
->iomem
;
1103 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1104 phys_section_add(&d
->map
, &subsection
));
1106 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1108 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1109 end
= start
+ int128_get64(section
->size
) - 1;
1110 subpage_register(subpage
, start
, end
,
1111 phys_section_add(&d
->map
, section
));
1115 static void register_multipage(AddressSpaceDispatch
*d
,
1116 MemoryRegionSection
*section
)
1118 hwaddr start_addr
= section
->offset_within_address_space
;
1119 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1120 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1124 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1127 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1129 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1130 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1131 MemoryRegionSection now
= *section
, remain
= *section
;
1132 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1134 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1135 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1136 - now
.offset_within_address_space
;
1138 now
.size
= int128_min(int128_make64(left
), now
.size
);
1139 register_subpage(d
, &now
);
1141 now
.size
= int128_zero();
1143 while (int128_ne(remain
.size
, now
.size
)) {
1144 remain
.size
= int128_sub(remain
.size
, now
.size
);
1145 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1146 remain
.offset_within_region
+= int128_get64(now
.size
);
1148 if (int128_lt(remain
.size
, page_size
)) {
1149 register_subpage(d
, &now
);
1150 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1151 now
.size
= page_size
;
1152 register_subpage(d
, &now
);
1154 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1155 register_multipage(d
, &now
);
1160 void qemu_flush_coalesced_mmio_buffer(void)
1163 kvm_flush_coalesced_mmio_buffer();
1166 void qemu_mutex_lock_ramlist(void)
1168 qemu_mutex_lock(&ram_list
.mutex
);
1171 void qemu_mutex_unlock_ramlist(void)
1173 qemu_mutex_unlock(&ram_list
.mutex
);
1178 #include <sys/vfs.h>
1180 #define HUGETLBFS_MAGIC 0x958458f6
1182 static long gethugepagesize(const char *path
, Error
**errp
)
1188 ret
= statfs(path
, &fs
);
1189 } while (ret
!= 0 && errno
== EINTR
);
1192 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1197 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1198 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1203 static void *file_ram_alloc(RAMBlock
*block
,
1210 char *sanitized_name
;
1215 Error
*local_err
= NULL
;
1217 hpagesize
= gethugepagesize(path
, &local_err
);
1219 error_propagate(errp
, local_err
);
1222 block
->mr
->align
= hpagesize
;
1224 if (memory
< hpagesize
) {
1225 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1226 "or larger than huge page size 0x%" PRIx64
,
1231 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1233 "host lacks kvm mmu notifiers, -mem-path unsupported");
1237 if (!stat(path
, &st
) && S_ISDIR(st
.st_mode
)) {
1238 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1239 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1240 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1246 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1248 g_free(sanitized_name
);
1250 fd
= mkstemp(filename
);
1256 fd
= open(path
, O_RDWR
| O_CREAT
, 0644);
1260 error_setg_errno(errp
, errno
,
1261 "unable to create backing store for hugepages");
1265 memory
= ROUND_UP(memory
, hpagesize
);
1268 * ftruncate is not supported by hugetlbfs in older
1269 * hosts, so don't bother bailing out on errors.
1270 * If anything goes wrong with it under other filesystems,
1273 if (ftruncate(fd
, memory
)) {
1274 perror("ftruncate");
1277 area
= qemu_ram_mmap(fd
, memory
, hpagesize
, block
->flags
& RAM_SHARED
);
1278 if (area
== MAP_FAILED
) {
1279 error_setg_errno(errp
, errno
,
1280 "unable to map backing store for hugepages");
1286 os_mem_prealloc(fd
, area
, memory
);
1297 /* Called with the ramlist lock held. */
1298 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1300 RAMBlock
*block
, *next_block
;
1301 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1303 assert(size
!= 0); /* it would hand out same offset multiple times */
1305 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1309 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1310 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1312 end
= block
->offset
+ block
->max_length
;
1314 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1315 if (next_block
->offset
>= end
) {
1316 next
= MIN(next
, next_block
->offset
);
1319 if (next
- end
>= size
&& next
- end
< mingap
) {
1321 mingap
= next
- end
;
1325 if (offset
== RAM_ADDR_MAX
) {
1326 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1334 ram_addr_t
last_ram_offset(void)
1337 ram_addr_t last
= 0;
1340 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1341 last
= MAX(last
, block
->offset
+ block
->max_length
);
1347 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1351 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1352 if (!machine_dump_guest_core(current_machine
)) {
1353 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1355 perror("qemu_madvise");
1356 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1357 "but dump_guest_core=off specified\n");
1362 /* Called within an RCU critical section, or while the ramlist lock
1365 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1369 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1370 if (block
->offset
== addr
) {
1378 /* Called with iothread lock held. */
1379 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1381 RAMBlock
*new_block
, *block
;
1384 new_block
= find_ram_block(addr
);
1386 assert(!new_block
->idstr
[0]);
1389 char *id
= qdev_get_dev_path(dev
);
1391 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1395 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1397 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1398 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1399 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1407 /* Called with iothread lock held. */
1408 void qemu_ram_unset_idstr(ram_addr_t addr
)
1412 /* FIXME: arch_init.c assumes that this is not called throughout
1413 * migration. Ignore the problem since hot-unplug during migration
1414 * does not work anyway.
1418 block
= find_ram_block(addr
);
1420 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1425 static int memory_try_enable_merging(void *addr
, size_t len
)
1427 if (!machine_mem_merge(current_machine
)) {
1428 /* disabled by the user */
1432 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1435 /* Only legal before guest might have detected the memory size: e.g. on
1436 * incoming migration, or right after reset.
1438 * As memory core doesn't know how is memory accessed, it is up to
1439 * resize callback to update device state and/or add assertions to detect
1440 * misuse, if necessary.
1442 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1444 RAMBlock
*block
= find_ram_block(base
);
1448 newsize
= TARGET_PAGE_ALIGN(newsize
);
1450 if (block
->used_length
== newsize
) {
1454 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1455 error_setg_errno(errp
, EINVAL
,
1456 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1457 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1458 newsize
, block
->used_length
);
1462 if (block
->max_length
< newsize
) {
1463 error_setg_errno(errp
, EINVAL
,
1464 "Length too large: %s: 0x" RAM_ADDR_FMT
1465 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1466 newsize
, block
->max_length
);
1470 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1471 block
->used_length
= newsize
;
1472 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1474 memory_region_set_size(block
->mr
, newsize
);
1475 if (block
->resized
) {
1476 block
->resized(block
->idstr
, newsize
, block
->host
);
1481 static ram_addr_t
ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1484 RAMBlock
*last_block
= NULL
;
1485 ram_addr_t old_ram_size
, new_ram_size
;
1487 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1489 qemu_mutex_lock_ramlist();
1490 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1492 if (!new_block
->host
) {
1493 if (xen_enabled()) {
1494 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1497 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1498 &new_block
->mr
->align
);
1499 if (!new_block
->host
) {
1500 error_setg_errno(errp
, errno
,
1501 "cannot set up guest memory '%s'",
1502 memory_region_name(new_block
->mr
));
1503 qemu_mutex_unlock_ramlist();
1506 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1510 new_ram_size
= MAX(old_ram_size
,
1511 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1512 if (new_ram_size
> old_ram_size
) {
1513 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1515 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1516 * QLIST (which has an RCU-friendly variant) does not have insertion at
1517 * tail, so save the last element in last_block.
1519 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1521 if (block
->max_length
< new_block
->max_length
) {
1526 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1527 } else if (last_block
) {
1528 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1529 } else { /* list is empty */
1530 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1532 ram_list
.mru_block
= NULL
;
1534 /* Write list before version */
1537 qemu_mutex_unlock_ramlist();
1539 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1541 if (new_ram_size
> old_ram_size
) {
1544 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1545 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1546 ram_list
.dirty_memory
[i
] =
1547 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1548 old_ram_size
, new_ram_size
);
1551 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1552 new_block
->used_length
,
1555 if (new_block
->host
) {
1556 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1557 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1558 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1559 if (kvm_enabled()) {
1560 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1564 return new_block
->offset
;
1568 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1569 bool share
, const char *mem_path
,
1572 RAMBlock
*new_block
;
1574 Error
*local_err
= NULL
;
1576 if (xen_enabled()) {
1577 error_setg(errp
, "-mem-path not supported with Xen");
1581 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1583 * file_ram_alloc() needs to allocate just like
1584 * phys_mem_alloc, but we haven't bothered to provide
1588 "-mem-path not supported with this accelerator");
1592 size
= TARGET_PAGE_ALIGN(size
);
1593 new_block
= g_malloc0(sizeof(*new_block
));
1595 new_block
->used_length
= size
;
1596 new_block
->max_length
= size
;
1597 new_block
->flags
= share
? RAM_SHARED
: 0;
1598 new_block
->flags
|= RAM_FILE
;
1599 new_block
->host
= file_ram_alloc(new_block
, size
,
1601 if (!new_block
->host
) {
1606 addr
= ram_block_add(new_block
, &local_err
);
1609 error_propagate(errp
, local_err
);
1617 ram_addr_t
qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1618 void (*resized
)(const char*,
1621 void *host
, bool resizeable
,
1622 MemoryRegion
*mr
, Error
**errp
)
1624 RAMBlock
*new_block
;
1626 Error
*local_err
= NULL
;
1628 size
= TARGET_PAGE_ALIGN(size
);
1629 max_size
= TARGET_PAGE_ALIGN(max_size
);
1630 new_block
= g_malloc0(sizeof(*new_block
));
1632 new_block
->resized
= resized
;
1633 new_block
->used_length
= size
;
1634 new_block
->max_length
= max_size
;
1635 assert(max_size
>= size
);
1637 new_block
->host
= host
;
1639 new_block
->flags
|= RAM_PREALLOC
;
1642 new_block
->flags
|= RAM_RESIZEABLE
;
1644 addr
= ram_block_add(new_block
, &local_err
);
1647 error_propagate(errp
, local_err
);
1653 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1654 MemoryRegion
*mr
, Error
**errp
)
1656 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1659 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1661 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1664 ram_addr_t
qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1665 void (*resized
)(const char*,
1668 MemoryRegion
*mr
, Error
**errp
)
1670 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1673 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1677 qemu_mutex_lock_ramlist();
1678 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1679 if (addr
== block
->offset
) {
1680 QLIST_REMOVE_RCU(block
, next
);
1681 ram_list
.mru_block
= NULL
;
1682 /* Write list before version */
1685 g_free_rcu(block
, rcu
);
1689 qemu_mutex_unlock_ramlist();
1692 static void reclaim_ramblock(RAMBlock
*block
)
1694 if (block
->flags
& RAM_PREALLOC
) {
1696 } else if (xen_enabled()) {
1697 xen_invalidate_map_cache_entry(block
->host
);
1699 } else if (block
->fd
>= 0) {
1700 if (block
->flags
& RAM_FILE
) {
1701 qemu_ram_munmap(block
->host
, block
->max_length
);
1703 munmap(block
->host
, block
->max_length
);
1708 qemu_anon_ram_free(block
->host
, block
->max_length
);
1713 void qemu_ram_free(ram_addr_t addr
)
1717 qemu_mutex_lock_ramlist();
1718 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1719 if (addr
== block
->offset
) {
1720 QLIST_REMOVE_RCU(block
, next
);
1721 ram_list
.mru_block
= NULL
;
1722 /* Write list before version */
1725 call_rcu(block
, reclaim_ramblock
, rcu
);
1729 qemu_mutex_unlock_ramlist();
1733 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1740 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1741 offset
= addr
- block
->offset
;
1742 if (offset
< block
->max_length
) {
1743 vaddr
= ramblock_ptr(block
, offset
);
1744 if (block
->flags
& RAM_PREALLOC
) {
1746 } else if (xen_enabled()) {
1750 if (block
->fd
>= 0) {
1751 flags
|= (block
->flags
& RAM_SHARED
?
1752 MAP_SHARED
: MAP_PRIVATE
);
1753 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1754 flags
, block
->fd
, offset
);
1757 * Remap needs to match alloc. Accelerators that
1758 * set phys_mem_alloc never remap. If they did,
1759 * we'd need a remap hook here.
1761 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1763 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1764 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1767 if (area
!= vaddr
) {
1768 fprintf(stderr
, "Could not remap addr: "
1769 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1773 memory_try_enable_merging(vaddr
, length
);
1774 qemu_ram_setup_dump(vaddr
, length
);
1779 #endif /* !_WIN32 */
1781 int qemu_get_ram_fd(ram_addr_t addr
)
1787 block
= qemu_get_ram_block(addr
);
1793 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1799 block
= qemu_get_ram_block(addr
);
1800 ptr
= ramblock_ptr(block
, 0);
1805 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1806 * This should not be used for general purpose DMA. Use address_space_map
1807 * or address_space_rw instead. For local memory (e.g. video ram) that the
1808 * device owns, use memory_region_get_ram_ptr.
1810 * By the time this function returns, the returned pointer is not protected
1811 * by RCU anymore. If the caller is not within an RCU critical section and
1812 * does not hold the iothread lock, it must have other means of protecting the
1813 * pointer, such as a reference to the region that includes the incoming
1816 void *qemu_get_ram_ptr(ram_addr_t addr
)
1822 block
= qemu_get_ram_block(addr
);
1824 if (xen_enabled() && block
->host
== NULL
) {
1825 /* We need to check if the requested address is in the RAM
1826 * because we don't want to map the entire memory in QEMU.
1827 * In that case just map until the end of the page.
1829 if (block
->offset
== 0) {
1830 ptr
= xen_map_cache(addr
, 0, 0);
1834 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1836 ptr
= ramblock_ptr(block
, addr
- block
->offset
);
1843 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1844 * but takes a size argument.
1846 * By the time this function returns, the returned pointer is not protected
1847 * by RCU anymore. If the caller is not within an RCU critical section and
1848 * does not hold the iothread lock, it must have other means of protecting the
1849 * pointer, such as a reference to the region that includes the incoming
1852 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1858 if (xen_enabled()) {
1859 return xen_map_cache(addr
, *size
, 1);
1863 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1864 if (addr
- block
->offset
< block
->max_length
) {
1865 if (addr
- block
->offset
+ *size
> block
->max_length
)
1866 *size
= block
->max_length
- addr
+ block
->offset
;
1867 ptr
= ramblock_ptr(block
, addr
- block
->offset
);
1873 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1878 /* Some of the softmmu routines need to translate from a host pointer
1879 * (typically a TLB entry) back to a ram offset.
1881 * By the time this function returns, the returned pointer is not protected
1882 * by RCU anymore. If the caller is not within an RCU critical section and
1883 * does not hold the iothread lock, it must have other means of protecting the
1884 * pointer, such as a reference to the region that includes the incoming
1887 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1890 uint8_t *host
= ptr
;
1893 if (xen_enabled()) {
1895 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1896 mr
= qemu_get_ram_block(*ram_addr
)->mr
;
1902 block
= atomic_rcu_read(&ram_list
.mru_block
);
1903 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1907 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1908 /* This case append when the block is not mapped. */
1909 if (block
->host
== NULL
) {
1912 if (host
- block
->host
< block
->max_length
) {
1921 *ram_addr
= block
->offset
+ (host
- block
->host
);
1927 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1928 uint64_t val
, unsigned size
)
1930 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1931 tb_invalidate_phys_page_fast(ram_addr
, size
);
1935 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1938 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1941 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1946 /* Set both VGA and migration bits for simplicity and to remove
1947 * the notdirty callback faster.
1949 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
1950 DIRTY_CLIENTS_NOCODE
);
1951 /* we remove the notdirty callback only if the code has been
1953 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1954 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
1958 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1959 unsigned size
, bool is_write
)
1964 static const MemoryRegionOps notdirty_mem_ops
= {
1965 .write
= notdirty_mem_write
,
1966 .valid
.accepts
= notdirty_mem_accepts
,
1967 .endianness
= DEVICE_NATIVE_ENDIAN
,
1970 /* Generate a debug exception if a watchpoint has been hit. */
1971 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
1973 CPUState
*cpu
= current_cpu
;
1974 CPUArchState
*env
= cpu
->env_ptr
;
1975 target_ulong pc
, cs_base
;
1980 if (cpu
->watchpoint_hit
) {
1981 /* We re-entered the check after replacing the TB. Now raise
1982 * the debug interrupt so that is will trigger after the
1983 * current instruction. */
1984 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1987 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1988 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1989 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
1990 && (wp
->flags
& flags
)) {
1991 if (flags
== BP_MEM_READ
) {
1992 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
1994 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
1996 wp
->hitaddr
= vaddr
;
1997 wp
->hitattrs
= attrs
;
1998 if (!cpu
->watchpoint_hit
) {
1999 cpu
->watchpoint_hit
= wp
;
2000 tb_check_watchpoint(cpu
);
2001 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2002 cpu
->exception_index
= EXCP_DEBUG
;
2005 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2006 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2007 cpu_resume_from_signal(cpu
, NULL
);
2011 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2016 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2017 so these check for a hit then pass through to the normal out-of-line
2019 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2020 unsigned size
, MemTxAttrs attrs
)
2025 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2028 data
= address_space_ldub(&address_space_memory
, addr
, attrs
, &res
);
2031 data
= address_space_lduw(&address_space_memory
, addr
, attrs
, &res
);
2034 data
= address_space_ldl(&address_space_memory
, addr
, attrs
, &res
);
2042 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2043 uint64_t val
, unsigned size
,
2048 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2051 address_space_stb(&address_space_memory
, addr
, val
, attrs
, &res
);
2054 address_space_stw(&address_space_memory
, addr
, val
, attrs
, &res
);
2057 address_space_stl(&address_space_memory
, addr
, val
, attrs
, &res
);
2064 static const MemoryRegionOps watch_mem_ops
= {
2065 .read_with_attrs
= watch_mem_read
,
2066 .write_with_attrs
= watch_mem_write
,
2067 .endianness
= DEVICE_NATIVE_ENDIAN
,
2070 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2071 unsigned len
, MemTxAttrs attrs
)
2073 subpage_t
*subpage
= opaque
;
2077 #if defined(DEBUG_SUBPAGE)
2078 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2079 subpage
, len
, addr
);
2081 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2088 *data
= ldub_p(buf
);
2091 *data
= lduw_p(buf
);
2104 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2105 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2107 subpage_t
*subpage
= opaque
;
2110 #if defined(DEBUG_SUBPAGE)
2111 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2112 " value %"PRIx64
"\n",
2113 __func__
, subpage
, len
, addr
, value
);
2131 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2135 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2136 unsigned len
, bool is_write
)
2138 subpage_t
*subpage
= opaque
;
2139 #if defined(DEBUG_SUBPAGE)
2140 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2141 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2144 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2148 static const MemoryRegionOps subpage_ops
= {
2149 .read_with_attrs
= subpage_read
,
2150 .write_with_attrs
= subpage_write
,
2151 .impl
.min_access_size
= 1,
2152 .impl
.max_access_size
= 8,
2153 .valid
.min_access_size
= 1,
2154 .valid
.max_access_size
= 8,
2155 .valid
.accepts
= subpage_accepts
,
2156 .endianness
= DEVICE_NATIVE_ENDIAN
,
2159 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2164 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2166 idx
= SUBPAGE_IDX(start
);
2167 eidx
= SUBPAGE_IDX(end
);
2168 #if defined(DEBUG_SUBPAGE)
2169 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2170 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2172 for (; idx
<= eidx
; idx
++) {
2173 mmio
->sub_section
[idx
] = section
;
2179 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2183 mmio
= g_malloc0(sizeof(subpage_t
));
2187 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2188 NULL
, TARGET_PAGE_SIZE
);
2189 mmio
->iomem
.subpage
= true;
2190 #if defined(DEBUG_SUBPAGE)
2191 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2192 mmio
, base
, TARGET_PAGE_SIZE
);
2194 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2199 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2203 MemoryRegionSection section
= {
2204 .address_space
= as
,
2206 .offset_within_address_space
= 0,
2207 .offset_within_region
= 0,
2208 .size
= int128_2_64(),
2211 return phys_section_add(map
, §ion
);
2214 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
)
2216 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[0];
2217 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2218 MemoryRegionSection
*sections
= d
->map
.sections
;
2220 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2223 static void io_mem_init(void)
2225 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2226 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2228 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2230 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2234 static void mem_begin(MemoryListener
*listener
)
2236 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2237 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2240 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2241 assert(n
== PHYS_SECTION_UNASSIGNED
);
2242 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2243 assert(n
== PHYS_SECTION_NOTDIRTY
);
2244 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2245 assert(n
== PHYS_SECTION_ROM
);
2246 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2247 assert(n
== PHYS_SECTION_WATCH
);
2249 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2251 as
->next_dispatch
= d
;
2254 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2256 phys_sections_free(&d
->map
);
2260 static void mem_commit(MemoryListener
*listener
)
2262 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2263 AddressSpaceDispatch
*cur
= as
->dispatch
;
2264 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2266 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2268 atomic_rcu_set(&as
->dispatch
, next
);
2270 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2274 static void tcg_commit(MemoryListener
*listener
)
2276 CPUAddressSpace
*cpuas
;
2277 AddressSpaceDispatch
*d
;
2279 /* since each CPU stores ram addresses in its TLB cache, we must
2280 reset the modified entries */
2281 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2282 cpu_reloading_memory_map();
2283 /* The CPU and TLB are protected by the iothread lock.
2284 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2285 * may have split the RCU critical section.
2287 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2288 cpuas
->memory_dispatch
= d
;
2289 tlb_flush(cpuas
->cpu
, 1);
2292 void address_space_init_dispatch(AddressSpace
*as
)
2294 as
->dispatch
= NULL
;
2295 as
->dispatch_listener
= (MemoryListener
) {
2297 .commit
= mem_commit
,
2298 .region_add
= mem_add
,
2299 .region_nop
= mem_add
,
2302 memory_listener_register(&as
->dispatch_listener
, as
);
2305 void address_space_unregister(AddressSpace
*as
)
2307 memory_listener_unregister(&as
->dispatch_listener
);
2310 void address_space_destroy_dispatch(AddressSpace
*as
)
2312 AddressSpaceDispatch
*d
= as
->dispatch
;
2314 atomic_rcu_set(&as
->dispatch
, NULL
);
2316 call_rcu(d
, address_space_dispatch_free
, rcu
);
2320 static void memory_map_init(void)
2322 system_memory
= g_malloc(sizeof(*system_memory
));
2324 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2325 address_space_init(&address_space_memory
, system_memory
, "memory");
2327 system_io
= g_malloc(sizeof(*system_io
));
2328 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2330 address_space_init(&address_space_io
, system_io
, "I/O");
2333 MemoryRegion
*get_system_memory(void)
2335 return system_memory
;
2338 MemoryRegion
*get_system_io(void)
2343 #endif /* !defined(CONFIG_USER_ONLY) */
2345 /* physical memory access (slow version, mainly for debug) */
2346 #if defined(CONFIG_USER_ONLY)
2347 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2348 uint8_t *buf
, int len
, int is_write
)
2355 page
= addr
& TARGET_PAGE_MASK
;
2356 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2359 flags
= page_get_flags(page
);
2360 if (!(flags
& PAGE_VALID
))
2363 if (!(flags
& PAGE_WRITE
))
2365 /* XXX: this code should not depend on lock_user */
2366 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2369 unlock_user(p
, addr
, l
);
2371 if (!(flags
& PAGE_READ
))
2373 /* XXX: this code should not depend on lock_user */
2374 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2377 unlock_user(p
, addr
, 0);
2388 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2391 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2392 /* No early return if dirty_log_mask is or becomes 0, because
2393 * cpu_physical_memory_set_dirty_range will still call
2394 * xen_modified_memory.
2396 if (dirty_log_mask
) {
2398 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2400 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2401 tb_invalidate_phys_range(addr
, addr
+ length
);
2402 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2404 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2407 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2409 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2411 /* Regions are assumed to support 1-4 byte accesses unless
2412 otherwise specified. */
2413 if (access_size_max
== 0) {
2414 access_size_max
= 4;
2417 /* Bound the maximum access by the alignment of the address. */
2418 if (!mr
->ops
->impl
.unaligned
) {
2419 unsigned align_size_max
= addr
& -addr
;
2420 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2421 access_size_max
= align_size_max
;
2425 /* Don't attempt accesses larger than the maximum. */
2426 if (l
> access_size_max
) {
2427 l
= access_size_max
;
2434 static bool prepare_mmio_access(MemoryRegion
*mr
)
2436 bool unlocked
= !qemu_mutex_iothread_locked();
2437 bool release_lock
= false;
2439 if (unlocked
&& mr
->global_locking
) {
2440 qemu_mutex_lock_iothread();
2442 release_lock
= true;
2444 if (mr
->flush_coalesced_mmio
) {
2446 qemu_mutex_lock_iothread();
2448 qemu_flush_coalesced_mmio_buffer();
2450 qemu_mutex_unlock_iothread();
2454 return release_lock
;
2457 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2458 uint8_t *buf
, int len
, bool is_write
)
2465 MemTxResult result
= MEMTX_OK
;
2466 bool release_lock
= false;
2471 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2474 if (!memory_access_is_direct(mr
, is_write
)) {
2475 release_lock
|= prepare_mmio_access(mr
);
2476 l
= memory_access_size(mr
, l
, addr1
);
2477 /* XXX: could force current_cpu to NULL to avoid
2481 /* 64 bit write access */
2483 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2487 /* 32 bit write access */
2489 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2493 /* 16 bit write access */
2495 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2499 /* 8 bit write access */
2501 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2508 addr1
+= memory_region_get_ram_addr(mr
);
2510 ptr
= qemu_get_ram_ptr(addr1
);
2511 memcpy(ptr
, buf
, l
);
2512 invalidate_and_set_dirty(mr
, addr1
, l
);
2515 if (!memory_access_is_direct(mr
, is_write
)) {
2517 release_lock
|= prepare_mmio_access(mr
);
2518 l
= memory_access_size(mr
, l
, addr1
);
2521 /* 64 bit read access */
2522 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2527 /* 32 bit read access */
2528 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2533 /* 16 bit read access */
2534 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2539 /* 8 bit read access */
2540 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2549 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2550 memcpy(buf
, ptr
, l
);
2555 qemu_mutex_unlock_iothread();
2556 release_lock
= false;
2568 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2569 const uint8_t *buf
, int len
)
2571 return address_space_rw(as
, addr
, attrs
, (uint8_t *)buf
, len
, true);
2574 MemTxResult
address_space_read(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2575 uint8_t *buf
, int len
)
2577 return address_space_rw(as
, addr
, attrs
, buf
, len
, false);
2581 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2582 int len
, int is_write
)
2584 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2585 buf
, len
, is_write
);
2588 enum write_rom_type
{
2593 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2594 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2604 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2606 if (!(memory_region_is_ram(mr
) ||
2607 memory_region_is_romd(mr
))) {
2608 l
= memory_access_size(mr
, l
, addr1
);
2610 addr1
+= memory_region_get_ram_addr(mr
);
2612 ptr
= qemu_get_ram_ptr(addr1
);
2615 memcpy(ptr
, buf
, l
);
2616 invalidate_and_set_dirty(mr
, addr1
, l
);
2619 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2630 /* used for ROM loading : can write in RAM and ROM */
2631 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2632 const uint8_t *buf
, int len
)
2634 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2637 void cpu_flush_icache_range(hwaddr start
, int len
)
2640 * This function should do the same thing as an icache flush that was
2641 * triggered from within the guest. For TCG we are always cache coherent,
2642 * so there is no need to flush anything. For KVM / Xen we need to flush
2643 * the host's instruction cache at least.
2645 if (tcg_enabled()) {
2649 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2650 start
, NULL
, len
, FLUSH_CACHE
);
2661 static BounceBuffer bounce
;
2663 typedef struct MapClient
{
2665 QLIST_ENTRY(MapClient
) link
;
2668 QemuMutex map_client_list_lock
;
2669 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2670 = QLIST_HEAD_INITIALIZER(map_client_list
);
2672 static void cpu_unregister_map_client_do(MapClient
*client
)
2674 QLIST_REMOVE(client
, link
);
2678 static void cpu_notify_map_clients_locked(void)
2682 while (!QLIST_EMPTY(&map_client_list
)) {
2683 client
= QLIST_FIRST(&map_client_list
);
2684 qemu_bh_schedule(client
->bh
);
2685 cpu_unregister_map_client_do(client
);
2689 void cpu_register_map_client(QEMUBH
*bh
)
2691 MapClient
*client
= g_malloc(sizeof(*client
));
2693 qemu_mutex_lock(&map_client_list_lock
);
2695 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2696 if (!atomic_read(&bounce
.in_use
)) {
2697 cpu_notify_map_clients_locked();
2699 qemu_mutex_unlock(&map_client_list_lock
);
2702 void cpu_exec_init_all(void)
2704 qemu_mutex_init(&ram_list
.mutex
);
2707 qemu_mutex_init(&map_client_list_lock
);
2710 void cpu_unregister_map_client(QEMUBH
*bh
)
2714 qemu_mutex_lock(&map_client_list_lock
);
2715 QLIST_FOREACH(client
, &map_client_list
, link
) {
2716 if (client
->bh
== bh
) {
2717 cpu_unregister_map_client_do(client
);
2721 qemu_mutex_unlock(&map_client_list_lock
);
2724 static void cpu_notify_map_clients(void)
2726 qemu_mutex_lock(&map_client_list_lock
);
2727 cpu_notify_map_clients_locked();
2728 qemu_mutex_unlock(&map_client_list_lock
);
2731 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2739 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2740 if (!memory_access_is_direct(mr
, is_write
)) {
2741 l
= memory_access_size(mr
, l
, addr
);
2742 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2754 /* Map a physical memory region into a host virtual address.
2755 * May map a subset of the requested range, given by and returned in *plen.
2756 * May return NULL if resources needed to perform the mapping are exhausted.
2757 * Use only for reads OR writes - not for read-modify-write operations.
2758 * Use cpu_register_map_client() to know when retrying the map operation is
2759 * likely to succeed.
2761 void *address_space_map(AddressSpace
*as
,
2768 hwaddr l
, xlat
, base
;
2769 MemoryRegion
*mr
, *this_mr
;
2778 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2780 if (!memory_access_is_direct(mr
, is_write
)) {
2781 if (atomic_xchg(&bounce
.in_use
, true)) {
2785 /* Avoid unbounded allocations */
2786 l
= MIN(l
, TARGET_PAGE_SIZE
);
2787 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2791 memory_region_ref(mr
);
2794 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2800 return bounce
.buffer
;
2804 raddr
= memory_region_get_ram_addr(mr
);
2815 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2816 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2821 memory_region_ref(mr
);
2824 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2827 /* Unmaps a memory region previously mapped by address_space_map().
2828 * Will also mark the memory as dirty if is_write == 1. access_len gives
2829 * the amount of memory that was actually read or written by the caller.
2831 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2832 int is_write
, hwaddr access_len
)
2834 if (buffer
!= bounce
.buffer
) {
2838 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2841 invalidate_and_set_dirty(mr
, addr1
, access_len
);
2843 if (xen_enabled()) {
2844 xen_invalidate_map_cache_entry(buffer
);
2846 memory_region_unref(mr
);
2850 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
2851 bounce
.buffer
, access_len
);
2853 qemu_vfree(bounce
.buffer
);
2854 bounce
.buffer
= NULL
;
2855 memory_region_unref(bounce
.mr
);
2856 atomic_mb_set(&bounce
.in_use
, false);
2857 cpu_notify_map_clients();
2860 void *cpu_physical_memory_map(hwaddr addr
,
2864 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2867 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2868 int is_write
, hwaddr access_len
)
2870 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2873 /* warning: addr must be aligned */
2874 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
2876 MemTxResult
*result
,
2877 enum device_endian endian
)
2885 bool release_lock
= false;
2888 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2889 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2890 release_lock
|= prepare_mmio_access(mr
);
2893 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
2894 #if defined(TARGET_WORDS_BIGENDIAN)
2895 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2899 if (endian
== DEVICE_BIG_ENDIAN
) {
2905 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2909 case DEVICE_LITTLE_ENDIAN
:
2910 val
= ldl_le_p(ptr
);
2912 case DEVICE_BIG_ENDIAN
:
2913 val
= ldl_be_p(ptr
);
2925 qemu_mutex_unlock_iothread();
2931 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
2932 MemTxAttrs attrs
, MemTxResult
*result
)
2934 return address_space_ldl_internal(as
, addr
, attrs
, result
,
2935 DEVICE_NATIVE_ENDIAN
);
2938 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
2939 MemTxAttrs attrs
, MemTxResult
*result
)
2941 return address_space_ldl_internal(as
, addr
, attrs
, result
,
2942 DEVICE_LITTLE_ENDIAN
);
2945 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
2946 MemTxAttrs attrs
, MemTxResult
*result
)
2948 return address_space_ldl_internal(as
, addr
, attrs
, result
,
2952 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2954 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
2957 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2959 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
2962 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2964 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
2967 /* warning: addr must be aligned */
2968 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
2970 MemTxResult
*result
,
2971 enum device_endian endian
)
2979 bool release_lock
= false;
2982 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2984 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2985 release_lock
|= prepare_mmio_access(mr
);
2988 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
2989 #if defined(TARGET_WORDS_BIGENDIAN)
2990 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2994 if (endian
== DEVICE_BIG_ENDIAN
) {
3000 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
3004 case DEVICE_LITTLE_ENDIAN
:
3005 val
= ldq_le_p(ptr
);
3007 case DEVICE_BIG_ENDIAN
:
3008 val
= ldq_be_p(ptr
);
3020 qemu_mutex_unlock_iothread();
3026 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3027 MemTxAttrs attrs
, MemTxResult
*result
)
3029 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3030 DEVICE_NATIVE_ENDIAN
);
3033 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3034 MemTxAttrs attrs
, MemTxResult
*result
)
3036 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3037 DEVICE_LITTLE_ENDIAN
);
3040 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3041 MemTxAttrs attrs
, MemTxResult
*result
)
3043 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3047 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3049 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3052 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3054 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3057 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3059 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3063 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3064 MemTxAttrs attrs
, MemTxResult
*result
)
3069 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3076 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3078 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3081 /* warning: addr must be aligned */
3082 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3085 MemTxResult
*result
,
3086 enum device_endian endian
)
3094 bool release_lock
= false;
3097 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3099 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3100 release_lock
|= prepare_mmio_access(mr
);
3103 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3104 #if defined(TARGET_WORDS_BIGENDIAN)
3105 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3109 if (endian
== DEVICE_BIG_ENDIAN
) {
3115 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
3119 case DEVICE_LITTLE_ENDIAN
:
3120 val
= lduw_le_p(ptr
);
3122 case DEVICE_BIG_ENDIAN
:
3123 val
= lduw_be_p(ptr
);
3135 qemu_mutex_unlock_iothread();
3141 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3142 MemTxAttrs attrs
, MemTxResult
*result
)
3144 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3145 DEVICE_NATIVE_ENDIAN
);
3148 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3149 MemTxAttrs attrs
, MemTxResult
*result
)
3151 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3152 DEVICE_LITTLE_ENDIAN
);
3155 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3156 MemTxAttrs attrs
, MemTxResult
*result
)
3158 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3162 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3164 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3167 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3169 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3172 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3174 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3177 /* warning: addr must be aligned. The ram page is not masked as dirty
3178 and the code inside is not invalidated. It is useful if the dirty
3179 bits are used to track modified PTEs */
3180 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3181 MemTxAttrs attrs
, MemTxResult
*result
)
3188 uint8_t dirty_log_mask
;
3189 bool release_lock
= false;
3192 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3194 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3195 release_lock
|= prepare_mmio_access(mr
);
3197 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3199 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3200 ptr
= qemu_get_ram_ptr(addr1
);
3203 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3204 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3205 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3212 qemu_mutex_unlock_iothread();
3217 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3219 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3222 /* warning: addr must be aligned */
3223 static inline void address_space_stl_internal(AddressSpace
*as
,
3224 hwaddr addr
, uint32_t val
,
3226 MemTxResult
*result
,
3227 enum device_endian endian
)
3234 bool release_lock
= false;
3237 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3239 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3240 release_lock
|= prepare_mmio_access(mr
);
3242 #if defined(TARGET_WORDS_BIGENDIAN)
3243 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3247 if (endian
== DEVICE_BIG_ENDIAN
) {
3251 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3254 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3255 ptr
= qemu_get_ram_ptr(addr1
);
3257 case DEVICE_LITTLE_ENDIAN
:
3260 case DEVICE_BIG_ENDIAN
:
3267 invalidate_and_set_dirty(mr
, addr1
, 4);
3274 qemu_mutex_unlock_iothread();
3279 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3280 MemTxAttrs attrs
, MemTxResult
*result
)
3282 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3283 DEVICE_NATIVE_ENDIAN
);
3286 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3287 MemTxAttrs attrs
, MemTxResult
*result
)
3289 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3290 DEVICE_LITTLE_ENDIAN
);
3293 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3294 MemTxAttrs attrs
, MemTxResult
*result
)
3296 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3300 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3302 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3305 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3307 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3310 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3312 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3316 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3317 MemTxAttrs attrs
, MemTxResult
*result
)
3322 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3328 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3330 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3333 /* warning: addr must be aligned */
3334 static inline void address_space_stw_internal(AddressSpace
*as
,
3335 hwaddr addr
, uint32_t val
,
3337 MemTxResult
*result
,
3338 enum device_endian endian
)
3345 bool release_lock
= false;
3348 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3349 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3350 release_lock
|= prepare_mmio_access(mr
);
3352 #if defined(TARGET_WORDS_BIGENDIAN)
3353 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3357 if (endian
== DEVICE_BIG_ENDIAN
) {
3361 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3364 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3365 ptr
= qemu_get_ram_ptr(addr1
);
3367 case DEVICE_LITTLE_ENDIAN
:
3370 case DEVICE_BIG_ENDIAN
:
3377 invalidate_and_set_dirty(mr
, addr1
, 2);
3384 qemu_mutex_unlock_iothread();
3389 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3390 MemTxAttrs attrs
, MemTxResult
*result
)
3392 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3393 DEVICE_NATIVE_ENDIAN
);
3396 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3397 MemTxAttrs attrs
, MemTxResult
*result
)
3399 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3400 DEVICE_LITTLE_ENDIAN
);
3403 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3404 MemTxAttrs attrs
, MemTxResult
*result
)
3406 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3410 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3412 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3415 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3417 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3420 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3422 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3426 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3427 MemTxAttrs attrs
, MemTxResult
*result
)
3431 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3437 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3438 MemTxAttrs attrs
, MemTxResult
*result
)
3441 val
= cpu_to_le64(val
);
3442 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3447 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3448 MemTxAttrs attrs
, MemTxResult
*result
)
3451 val
= cpu_to_be64(val
);
3452 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3458 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3460 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3463 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3465 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3468 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3470 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3473 /* virtual memory access for debug (includes writing to ROM) */
3474 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3475 uint8_t *buf
, int len
, int is_write
)
3482 page
= addr
& TARGET_PAGE_MASK
;
3483 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
3484 /* if no physical page mapped, return an error */
3485 if (phys_addr
== -1)
3487 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3490 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3492 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
3494 address_space_rw(cpu
->as
, phys_addr
, MEMTXATTRS_UNSPECIFIED
,
3506 * A helper function for the _utterly broken_ virtio device model to find out if
3507 * it's running on a big endian machine. Don't do this at home kids!
3509 bool target_words_bigendian(void);
3510 bool target_words_bigendian(void)
3512 #if defined(TARGET_WORDS_BIGENDIAN)
3519 #ifndef CONFIG_USER_ONLY
3520 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3527 mr
= address_space_translate(&address_space_memory
,
3528 phys_addr
, &phys_addr
, &l
, false);
3530 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3535 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3541 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3542 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3543 block
->used_length
, opaque
);