2 * Copyright (C) 2016 Veertu Inc,
3 * Copyright (C) 2017 Google Inc,
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
19 /////////////////////////////////////////////////////////////////////////
21 // Copyright (C) 2001-2012 The Bochs Project
23 // This library is free software; you can redistribute it and/or
24 // modify it under the terms of the GNU Lesser General Public
25 // License as published by the Free Software Foundation; either
26 // version 2.1 of the License, or (at your option) any later version.
28 // This library is distributed in the hope that it will be useful,
29 // but WITHOUT ANY WARRANTY; without even the implied warranty of
30 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
31 // Lesser General Public License for more details.
33 // You should have received a copy of the GNU Lesser General Public
34 // License along with this library; if not, write to the Free Software
35 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
36 /////////////////////////////////////////////////////////////////////////
38 #include "qemu/osdep.h"
40 #include "qemu-common.h"
41 #include "x86_decode.h"
45 #include "x86_flags.h"
49 void hvf_handle_io(struct CPUState
*cpu
, uint16_t port
, void *data
,
50 int direction
, int size
, uint32_t count
);
52 #define EXEC_2OP_FLAGS_CMD(env, decode, cmd, FLAGS_FUNC, save_res) \
54 fetch_operands(env, decode, 2, true, true, false); \
55 switch (decode->operand_size) { \
58 uint8_t v1 = (uint8_t)decode->op[0].val; \
59 uint8_t v2 = (uint8_t)decode->op[1].val; \
60 uint8_t diff = v1 cmd v2; \
62 write_val_ext(env, decode->op[0].ptr, diff, 1); \
64 FLAGS_FUNC##8(env, v1, v2, diff); \
69 uint16_t v1 = (uint16_t)decode->op[0].val; \
70 uint16_t v2 = (uint16_t)decode->op[1].val; \
71 uint16_t diff = v1 cmd v2; \
73 write_val_ext(env, decode->op[0].ptr, diff, 2); \
75 FLAGS_FUNC##16(env, v1, v2, diff); \
80 uint32_t v1 = (uint32_t)decode->op[0].val; \
81 uint32_t v2 = (uint32_t)decode->op[1].val; \
82 uint32_t diff = v1 cmd v2; \
84 write_val_ext(env, decode->op[0].ptr, diff, 4); \
86 FLAGS_FUNC##32(env, v1, v2, diff); \
90 VM_PANIC("bad size\n"); \
94 target_ulong read_reg(CPUX86State *env, int reg, int size)
98 return x86_reg(env
, reg
)->lx
;
100 return x86_reg(env
, reg
)->rx
;
102 return x86_reg(env
, reg
)->erx
;
104 return x86_reg(env
, reg
)->rrx
;
111 void write_reg(CPUX86State
*env
, int reg
, target_ulong val
, int size
)
115 x86_reg(env
, reg
)->lx
= val
;
118 x86_reg(env
, reg
)->rx
= val
;
121 x86_reg(env
, reg
)->rrx
= (uint32_t)val
;
124 x86_reg(env
, reg
)->rrx
= val
;
131 target_ulong
read_val_from_reg(target_ulong reg_ptr
, int size
)
137 val
= *(uint8_t *)reg_ptr
;
140 val
= *(uint16_t *)reg_ptr
;
143 val
= *(uint32_t *)reg_ptr
;
146 val
= *(uint64_t *)reg_ptr
;
154 void write_val_to_reg(target_ulong reg_ptr
, target_ulong val
, int size
)
158 *(uint8_t *)reg_ptr
= val
;
161 *(uint16_t *)reg_ptr
= val
;
164 *(uint64_t *)reg_ptr
= (uint32_t)val
;
167 *(uint64_t *)reg_ptr
= val
;
174 static bool is_host_reg(struct CPUX86State
*env
, target_ulong ptr
)
176 return (ptr
- (target_ulong
)&env
->regs
[0]) < sizeof(env
->regs
);
179 void write_val_ext(struct CPUX86State
*env
, target_ulong ptr
, target_ulong val
, int size
)
181 if (is_host_reg(env
, ptr
)) {
182 write_val_to_reg(ptr
, val
, size
);
185 vmx_write_mem(env_cpu(env
), ptr
, &val
, size
);
188 uint8_t *read_mmio(struct CPUX86State
*env
, target_ulong ptr
, int bytes
)
190 vmx_read_mem(env_cpu(env
), env
->hvf_mmio_buf
, ptr
, bytes
);
191 return env
->hvf_mmio_buf
;
195 target_ulong
read_val_ext(struct CPUX86State
*env
, target_ulong ptr
, int size
)
200 if (is_host_reg(env
, ptr
)) {
201 return read_val_from_reg(ptr
, size
);
204 mmio_ptr
= read_mmio(env
, ptr
, size
);
207 val
= *(uint8_t *)mmio_ptr
;
210 val
= *(uint16_t *)mmio_ptr
;
213 val
= *(uint32_t *)mmio_ptr
;
216 val
= *(uint64_t *)mmio_ptr
;
219 VM_PANIC("bad size\n");
225 static void fetch_operands(struct CPUX86State
*env
, struct x86_decode
*decode
,
226 int n
, bool val_op0
, bool val_op1
, bool val_op2
)
229 bool calc_val
[3] = {val_op0
, val_op1
, val_op2
};
231 for (i
= 0; i
< n
; i
++) {
232 switch (decode
->op
[i
].type
) {
233 case X86_VAR_IMMEDIATE
:
236 VM_PANIC_ON(!decode
->op
[i
].ptr
);
238 decode
->op
[i
].val
= read_val_from_reg(decode
->op
[i
].ptr
,
239 decode
->operand_size
);
243 calc_modrm_operand(env
, decode
, &decode
->op
[i
]);
245 decode
->op
[i
].val
= read_val_ext(env
, decode
->op
[i
].ptr
,
246 decode
->operand_size
);
250 decode
->op
[i
].ptr
= decode_linear_addr(env
, decode
,
254 decode
->op
[i
].val
= read_val_ext(env
, decode
->op
[i
].ptr
,
255 decode
->operand_size
);
264 static void exec_mov(struct CPUX86State
*env
, struct x86_decode
*decode
)
266 fetch_operands(env
, decode
, 2, false, true, false);
267 write_val_ext(env
, decode
->op
[0].ptr
, decode
->op
[1].val
,
268 decode
->operand_size
);
270 env
->eip
+= decode
->len
;
273 static void exec_add(struct CPUX86State
*env
, struct x86_decode
*decode
)
275 EXEC_2OP_FLAGS_CMD(env
, decode
, +, SET_FLAGS_OSZAPC_ADD
, true);
276 env
->eip
+= decode
->len
;
279 static void exec_or(struct CPUX86State
*env
, struct x86_decode
*decode
)
281 EXEC_2OP_FLAGS_CMD(env
, decode
, |, SET_FLAGS_OSZAPC_LOGIC
, true);
282 env
->eip
+= decode
->len
;
285 static void exec_adc(struct CPUX86State
*env
, struct x86_decode
*decode
)
287 EXEC_2OP_FLAGS_CMD(env
, decode
, +get_CF(env
)+, SET_FLAGS_OSZAPC_ADD
, true);
288 env
->eip
+= decode
->len
;
291 static void exec_sbb(struct CPUX86State
*env
, struct x86_decode
*decode
)
293 EXEC_2OP_FLAGS_CMD(env
, decode
, -get_CF(env
)-, SET_FLAGS_OSZAPC_SUB
, true);
294 env
->eip
+= decode
->len
;
297 static void exec_and(struct CPUX86State
*env
, struct x86_decode
*decode
)
299 EXEC_2OP_FLAGS_CMD(env
, decode
, &, SET_FLAGS_OSZAPC_LOGIC
, true);
300 env
->eip
+= decode
->len
;
303 static void exec_sub(struct CPUX86State
*env
, struct x86_decode
*decode
)
305 EXEC_2OP_FLAGS_CMD(env
, decode
, -, SET_FLAGS_OSZAPC_SUB
, true);
306 env
->eip
+= decode
->len
;
309 static void exec_xor(struct CPUX86State
*env
, struct x86_decode
*decode
)
311 EXEC_2OP_FLAGS_CMD(env
, decode
, ^, SET_FLAGS_OSZAPC_LOGIC
, true);
312 env
->eip
+= decode
->len
;
315 static void exec_neg(struct CPUX86State
*env
, struct x86_decode
*decode
)
317 /*EXEC_2OP_FLAGS_CMD(env, decode, -, SET_FLAGS_OSZAPC_SUB, false);*/
319 fetch_operands(env
, decode
, 2, true, true, false);
321 val
= 0 - sign(decode
->op
[1].val
, decode
->operand_size
);
322 write_val_ext(env
, decode
->op
[1].ptr
, val
, decode
->operand_size
);
324 if (4 == decode
->operand_size
) {
325 SET_FLAGS_OSZAPC_SUB32(env
, 0, 0 - val
, val
);
326 } else if (2 == decode
->operand_size
) {
327 SET_FLAGS_OSZAPC_SUB16(env
, 0, 0 - val
, val
);
328 } else if (1 == decode
->operand_size
) {
329 SET_FLAGS_OSZAPC_SUB8(env
, 0, 0 - val
, val
);
331 VM_PANIC("bad op size\n");
334 /*lflags_to_rflags(env);*/
335 env
->eip
+= decode
->len
;
338 static void exec_cmp(struct CPUX86State
*env
, struct x86_decode
*decode
)
340 EXEC_2OP_FLAGS_CMD(env
, decode
, -, SET_FLAGS_OSZAPC_SUB
, false);
341 env
->eip
+= decode
->len
;
344 static void exec_inc(struct CPUX86State
*env
, struct x86_decode
*decode
)
346 decode
->op
[1].type
= X86_VAR_IMMEDIATE
;
347 decode
->op
[1].val
= 0;
349 EXEC_2OP_FLAGS_CMD(env
, decode
, +1+, SET_FLAGS_OSZAP_ADD
, true);
351 env
->eip
+= decode
->len
;
354 static void exec_dec(struct CPUX86State
*env
, struct x86_decode
*decode
)
356 decode
->op
[1].type
= X86_VAR_IMMEDIATE
;
357 decode
->op
[1].val
= 0;
359 EXEC_2OP_FLAGS_CMD(env
, decode
, -1-, SET_FLAGS_OSZAP_SUB
, true);
360 env
->eip
+= decode
->len
;
363 static void exec_tst(struct CPUX86State
*env
, struct x86_decode
*decode
)
365 EXEC_2OP_FLAGS_CMD(env
, decode
, &, SET_FLAGS_OSZAPC_LOGIC
, false);
366 env
->eip
+= decode
->len
;
369 static void exec_not(struct CPUX86State
*env
, struct x86_decode
*decode
)
371 fetch_operands(env
, decode
, 1, true, false, false);
373 write_val_ext(env
, decode
->op
[0].ptr
, ~decode
->op
[0].val
,
374 decode
->operand_size
);
375 env
->eip
+= decode
->len
;
378 void exec_movzx(struct CPUX86State
*env
, struct x86_decode
*decode
)
381 int op_size
= decode
->operand_size
;
383 fetch_operands(env
, decode
, 1, false, false, false);
385 if (0xb6 == decode
->opcode
[1]) {
390 decode
->operand_size
= src_op_size
;
391 calc_modrm_operand(env
, decode
, &decode
->op
[1]);
392 decode
->op
[1].val
= read_val_ext(env
, decode
->op
[1].ptr
, src_op_size
);
393 write_val_ext(env
, decode
->op
[0].ptr
, decode
->op
[1].val
, op_size
);
395 env
->eip
+= decode
->len
;
398 static void exec_out(struct CPUX86State
*env
, struct x86_decode
*decode
)
400 switch (decode
->opcode
[0]) {
402 hvf_handle_io(env_cpu(env
), decode
->op
[0].val
, &AL(env
), 1, 1, 1);
405 hvf_handle_io(env_cpu(env
), decode
->op
[0].val
, &RAX(env
), 1,
406 decode
->operand_size
, 1);
409 hvf_handle_io(env_cpu(env
), DX(env
), &AL(env
), 1, 1, 1);
412 hvf_handle_io(env_cpu(env
), DX(env
), &RAX(env
), 1,
413 decode
->operand_size
, 1);
416 VM_PANIC("Bad out opcode\n");
419 env
->eip
+= decode
->len
;
422 static void exec_in(struct CPUX86State
*env
, struct x86_decode
*decode
)
424 target_ulong val
= 0;
425 switch (decode
->opcode
[0]) {
427 hvf_handle_io(env_cpu(env
), decode
->op
[0].val
, &AL(env
), 0, 1, 1);
430 hvf_handle_io(env_cpu(env
), decode
->op
[0].val
, &val
, 0,
431 decode
->operand_size
, 1);
432 if (decode
->operand_size
== 2) {
435 RAX(env
) = (uint32_t)val
;
439 hvf_handle_io(env_cpu(env
), DX(env
), &AL(env
), 0, 1, 1);
442 hvf_handle_io(env_cpu(env
), DX(env
), &val
, 0, decode
->operand_size
, 1);
443 if (decode
->operand_size
== 2) {
446 RAX(env
) = (uint32_t)val
;
451 VM_PANIC("Bad in opcode\n");
455 env
->eip
+= decode
->len
;
458 static inline void string_increment_reg(struct CPUX86State
*env
, int reg
,
459 struct x86_decode
*decode
)
461 target_ulong val
= read_reg(env
, reg
, decode
->addressing_size
);
462 if (env
->eflags
& DF_MASK
) {
463 val
-= decode
->operand_size
;
465 val
+= decode
->operand_size
;
467 write_reg(env
, reg
, val
, decode
->addressing_size
);
470 static inline void string_rep(struct CPUX86State
*env
, struct x86_decode
*decode
,
471 void (*func
)(struct CPUX86State
*env
,
472 struct x86_decode
*ins
), int rep
)
474 target_ulong rcx
= read_reg(env
, R_ECX
, decode
->addressing_size
);
477 write_reg(env
, R_ECX
, rcx
, decode
->addressing_size
);
478 if ((PREFIX_REP
== rep
) && !get_ZF(env
)) {
481 if ((PREFIX_REPN
== rep
) && get_ZF(env
)) {
487 static void exec_ins_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
489 target_ulong addr
= linear_addr_size(env_cpu(env
), RDI(env
),
490 decode
->addressing_size
, R_ES
);
492 hvf_handle_io(env_cpu(env
), DX(env
), env
->hvf_mmio_buf
, 0,
493 decode
->operand_size
, 1);
494 vmx_write_mem(env_cpu(env
), addr
, env
->hvf_mmio_buf
,
495 decode
->operand_size
);
497 string_increment_reg(env
, R_EDI
, decode
);
500 static void exec_ins(struct CPUX86State
*env
, struct x86_decode
*decode
)
503 string_rep(env
, decode
, exec_ins_single
, 0);
505 exec_ins_single(env
, decode
);
508 env
->eip
+= decode
->len
;
511 static void exec_outs_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
513 target_ulong addr
= decode_linear_addr(env
, decode
, RSI(env
), R_DS
);
515 vmx_read_mem(env_cpu(env
), env
->hvf_mmio_buf
, addr
,
516 decode
->operand_size
);
517 hvf_handle_io(env_cpu(env
), DX(env
), env
->hvf_mmio_buf
, 1,
518 decode
->operand_size
, 1);
520 string_increment_reg(env
, R_ESI
, decode
);
523 static void exec_outs(struct CPUX86State
*env
, struct x86_decode
*decode
)
526 string_rep(env
, decode
, exec_outs_single
, 0);
528 exec_outs_single(env
, decode
);
531 env
->eip
+= decode
->len
;
534 static void exec_movs_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
536 target_ulong src_addr
;
537 target_ulong dst_addr
;
540 src_addr
= decode_linear_addr(env
, decode
, RSI(env
), R_DS
);
541 dst_addr
= linear_addr_size(env_cpu(env
), RDI(env
),
542 decode
->addressing_size
, R_ES
);
544 val
= read_val_ext(env
, src_addr
, decode
->operand_size
);
545 write_val_ext(env
, dst_addr
, val
, decode
->operand_size
);
547 string_increment_reg(env
, R_ESI
, decode
);
548 string_increment_reg(env
, R_EDI
, decode
);
551 static void exec_movs(struct CPUX86State
*env
, struct x86_decode
*decode
)
554 string_rep(env
, decode
, exec_movs_single
, 0);
556 exec_movs_single(env
, decode
);
559 env
->eip
+= decode
->len
;
562 static void exec_cmps_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
564 target_ulong src_addr
;
565 target_ulong dst_addr
;
567 src_addr
= decode_linear_addr(env
, decode
, RSI(env
), R_DS
);
568 dst_addr
= linear_addr_size(env_cpu(env
), RDI(env
),
569 decode
->addressing_size
, R_ES
);
571 decode
->op
[0].type
= X86_VAR_IMMEDIATE
;
572 decode
->op
[0].val
= read_val_ext(env
, src_addr
, decode
->operand_size
);
573 decode
->op
[1].type
= X86_VAR_IMMEDIATE
;
574 decode
->op
[1].val
= read_val_ext(env
, dst_addr
, decode
->operand_size
);
576 EXEC_2OP_FLAGS_CMD(env
, decode
, -, SET_FLAGS_OSZAPC_SUB
, false);
578 string_increment_reg(env
, R_ESI
, decode
);
579 string_increment_reg(env
, R_EDI
, decode
);
582 static void exec_cmps(struct CPUX86State
*env
, struct x86_decode
*decode
)
585 string_rep(env
, decode
, exec_cmps_single
, decode
->rep
);
587 exec_cmps_single(env
, decode
);
589 env
->eip
+= decode
->len
;
593 static void exec_stos_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
598 addr
= linear_addr_size(env_cpu(env
), RDI(env
),
599 decode
->addressing_size
, R_ES
);
600 val
= read_reg(env
, R_EAX
, decode
->operand_size
);
601 vmx_write_mem(env_cpu(env
), addr
, &val
, decode
->operand_size
);
603 string_increment_reg(env
, R_EDI
, decode
);
607 static void exec_stos(struct CPUX86State
*env
, struct x86_decode
*decode
)
610 string_rep(env
, decode
, exec_stos_single
, 0);
612 exec_stos_single(env
, decode
);
615 env
->eip
+= decode
->len
;
618 static void exec_scas_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
622 addr
= linear_addr_size(env_cpu(env
), RDI(env
),
623 decode
->addressing_size
, R_ES
);
624 decode
->op
[1].type
= X86_VAR_IMMEDIATE
;
625 vmx_read_mem(env_cpu(env
), &decode
->op
[1].val
, addr
, decode
->operand_size
);
627 EXEC_2OP_FLAGS_CMD(env
, decode
, -, SET_FLAGS_OSZAPC_SUB
, false);
628 string_increment_reg(env
, R_EDI
, decode
);
631 static void exec_scas(struct CPUX86State
*env
, struct x86_decode
*decode
)
633 decode
->op
[0].type
= X86_VAR_REG
;
634 decode
->op
[0].reg
= R_EAX
;
636 string_rep(env
, decode
, exec_scas_single
, decode
->rep
);
638 exec_scas_single(env
, decode
);
641 env
->eip
+= decode
->len
;
644 static void exec_lods_single(struct CPUX86State
*env
, struct x86_decode
*decode
)
647 target_ulong val
= 0;
649 addr
= decode_linear_addr(env
, decode
, RSI(env
), R_DS
);
650 vmx_read_mem(env_cpu(env
), &val
, addr
, decode
->operand_size
);
651 write_reg(env
, R_EAX
, val
, decode
->operand_size
);
653 string_increment_reg(env
, R_ESI
, decode
);
656 static void exec_lods(struct CPUX86State
*env
, struct x86_decode
*decode
)
659 string_rep(env
, decode
, exec_lods_single
, 0);
661 exec_lods_single(env
, decode
);
664 env
->eip
+= decode
->len
;
667 void simulate_rdmsr(struct CPUState
*cpu
)
669 X86CPU
*x86_cpu
= X86_CPU(cpu
);
670 CPUX86State
*env
= &x86_cpu
->env
;
671 uint32_t msr
= ECX(env
);
676 val
= rdtscp() + rvmcs(cpu
->hvf_fd
, VMCS_TSC_OFFSET
);
678 case MSR_IA32_APICBASE
:
679 val
= cpu_get_apic_base(X86_CPU(cpu
)->apic_state
);
681 case MSR_IA32_UCODE_REV
:
682 val
= x86_cpu
->ucode_rev
;
685 val
= rvmcs(cpu
->hvf_fd
, VMCS_GUEST_IA32_EFER
);
688 val
= rvmcs(cpu
->hvf_fd
, VMCS_GUEST_FS_BASE
);
691 val
= rvmcs(cpu
->hvf_fd
, VMCS_GUEST_GS_BASE
);
693 case MSR_KERNELGSBASE
:
694 val
= rvmcs(cpu
->hvf_fd
, VMCS_HOST_FS_BASE
);
705 case MSR_IA32_MISC_ENABLE
:
706 val
= env
->msr_ia32_misc_enable
;
708 case MSR_MTRRphysBase(0):
709 case MSR_MTRRphysBase(1):
710 case MSR_MTRRphysBase(2):
711 case MSR_MTRRphysBase(3):
712 case MSR_MTRRphysBase(4):
713 case MSR_MTRRphysBase(5):
714 case MSR_MTRRphysBase(6):
715 case MSR_MTRRphysBase(7):
716 val
= env
->mtrr_var
[(ECX(env
) - MSR_MTRRphysBase(0)) / 2].base
;
718 case MSR_MTRRphysMask(0):
719 case MSR_MTRRphysMask(1):
720 case MSR_MTRRphysMask(2):
721 case MSR_MTRRphysMask(3):
722 case MSR_MTRRphysMask(4):
723 case MSR_MTRRphysMask(5):
724 case MSR_MTRRphysMask(6):
725 case MSR_MTRRphysMask(7):
726 val
= env
->mtrr_var
[(ECX(env
) - MSR_MTRRphysMask(0)) / 2].mask
;
728 case MSR_MTRRfix64K_00000
:
729 val
= env
->mtrr_fixed
[0];
731 case MSR_MTRRfix16K_80000
:
732 case MSR_MTRRfix16K_A0000
:
733 val
= env
->mtrr_fixed
[ECX(env
) - MSR_MTRRfix16K_80000
+ 1];
735 case MSR_MTRRfix4K_C0000
:
736 case MSR_MTRRfix4K_C8000
:
737 case MSR_MTRRfix4K_D0000
:
738 case MSR_MTRRfix4K_D8000
:
739 case MSR_MTRRfix4K_E0000
:
740 case MSR_MTRRfix4K_E8000
:
741 case MSR_MTRRfix4K_F0000
:
742 case MSR_MTRRfix4K_F8000
:
743 val
= env
->mtrr_fixed
[ECX(env
) - MSR_MTRRfix4K_C0000
+ 3];
745 case MSR_MTRRdefType
:
746 val
= env
->mtrr_deftype
;
749 /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
754 RAX(env
) = (uint32_t)val
;
755 RDX(env
) = (uint32_t)(val
>> 32);
758 static void exec_rdmsr(struct CPUX86State
*env
, struct x86_decode
*decode
)
760 simulate_rdmsr(env_cpu(env
));
761 env
->eip
+= decode
->len
;
764 void simulate_wrmsr(struct CPUState
*cpu
)
766 X86CPU
*x86_cpu
= X86_CPU(cpu
);
767 CPUX86State
*env
= &x86_cpu
->env
;
768 uint32_t msr
= ECX(env
);
769 uint64_t data
= ((uint64_t)EDX(env
) << 32) | EAX(env
);
774 case MSR_IA32_APICBASE
:
775 cpu_set_apic_base(X86_CPU(cpu
)->apic_state
, data
);
778 wvmcs(cpu
->hvf_fd
, VMCS_GUEST_FS_BASE
, data
);
781 wvmcs(cpu
->hvf_fd
, VMCS_GUEST_GS_BASE
, data
);
783 case MSR_KERNELGSBASE
:
784 wvmcs(cpu
->hvf_fd
, VMCS_HOST_FS_BASE
, data
);
796 /*printf("new efer %llx\n", EFER(cpu));*/
797 wvmcs(cpu
->hvf_fd
, VMCS_GUEST_IA32_EFER
, data
);
798 if (data
& MSR_EFER_NXE
) {
799 hv_vcpu_invalidate_tlb(cpu
->hvf_fd
);
802 case MSR_MTRRphysBase(0):
803 case MSR_MTRRphysBase(1):
804 case MSR_MTRRphysBase(2):
805 case MSR_MTRRphysBase(3):
806 case MSR_MTRRphysBase(4):
807 case MSR_MTRRphysBase(5):
808 case MSR_MTRRphysBase(6):
809 case MSR_MTRRphysBase(7):
810 env
->mtrr_var
[(ECX(env
) - MSR_MTRRphysBase(0)) / 2].base
= data
;
812 case MSR_MTRRphysMask(0):
813 case MSR_MTRRphysMask(1):
814 case MSR_MTRRphysMask(2):
815 case MSR_MTRRphysMask(3):
816 case MSR_MTRRphysMask(4):
817 case MSR_MTRRphysMask(5):
818 case MSR_MTRRphysMask(6):
819 case MSR_MTRRphysMask(7):
820 env
->mtrr_var
[(ECX(env
) - MSR_MTRRphysMask(0)) / 2].mask
= data
;
822 case MSR_MTRRfix64K_00000
:
823 env
->mtrr_fixed
[ECX(env
) - MSR_MTRRfix64K_00000
] = data
;
825 case MSR_MTRRfix16K_80000
:
826 case MSR_MTRRfix16K_A0000
:
827 env
->mtrr_fixed
[ECX(env
) - MSR_MTRRfix16K_80000
+ 1] = data
;
829 case MSR_MTRRfix4K_C0000
:
830 case MSR_MTRRfix4K_C8000
:
831 case MSR_MTRRfix4K_D0000
:
832 case MSR_MTRRfix4K_D8000
:
833 case MSR_MTRRfix4K_E0000
:
834 case MSR_MTRRfix4K_E8000
:
835 case MSR_MTRRfix4K_F0000
:
836 case MSR_MTRRfix4K_F8000
:
837 env
->mtrr_fixed
[ECX(env
) - MSR_MTRRfix4K_C0000
+ 3] = data
;
839 case MSR_MTRRdefType
:
840 env
->mtrr_deftype
= data
;
846 /* Related to support known hypervisor interface */
847 /* if (g_hypervisor_iface)
848 g_hypervisor_iface->wrmsr_handler(cpu, msr, data);
850 printf("write msr %llx\n", RCX(cpu));*/
853 static void exec_wrmsr(struct CPUX86State
*env
, struct x86_decode
*decode
)
855 simulate_wrmsr(env_cpu(env
));
856 env
->eip
+= decode
->len
;
861 * 0 - bt, 1 - btc, 2 - bts, 3 - btr
863 static void do_bt(struct CPUX86State
*env
, struct x86_decode
*decode
, int flag
)
865 int32_t displacement
;
868 int mask
= (4 == decode
->operand_size
) ? 0x1f : 0xf;
870 VM_PANIC_ON(decode
->rex
.rex
);
872 fetch_operands(env
, decode
, 2, false, true, false);
873 index
= decode
->op
[1].val
& mask
;
875 if (decode
->op
[0].type
!= X86_VAR_REG
) {
876 if (4 == decode
->operand_size
) {
877 displacement
= ((int32_t) (decode
->op
[1].val
& 0xffffffe0)) / 32;
878 decode
->op
[0].ptr
+= 4 * displacement
;
879 } else if (2 == decode
->operand_size
) {
880 displacement
= ((int16_t) (decode
->op
[1].val
& 0xfff0)) / 16;
881 decode
->op
[0].ptr
+= 2 * displacement
;
883 VM_PANIC("bt 64bit\n");
886 decode
->op
[0].val
= read_val_ext(env
, decode
->op
[0].ptr
,
887 decode
->operand_size
);
888 cf
= (decode
->op
[0].val
>> index
) & 0x01;
895 decode
->op
[0].val
^= (1u << index
);
898 decode
->op
[0].val
|= (1u << index
);
901 decode
->op
[0].val
&= ~(1u << index
);
904 write_val_ext(env
, decode
->op
[0].ptr
, decode
->op
[0].val
,
905 decode
->operand_size
);
909 static void exec_bt(struct CPUX86State
*env
, struct x86_decode
*decode
)
911 do_bt(env
, decode
, 0);
912 env
->eip
+= decode
->len
;
915 static void exec_btc(struct CPUX86State
*env
, struct x86_decode
*decode
)
917 do_bt(env
, decode
, 1);
918 env
->eip
+= decode
->len
;
921 static void exec_btr(struct CPUX86State
*env
, struct x86_decode
*decode
)
923 do_bt(env
, decode
, 3);
924 env
->eip
+= decode
->len
;
927 static void exec_bts(struct CPUX86State
*env
, struct x86_decode
*decode
)
929 do_bt(env
, decode
, 2);
930 env
->eip
+= decode
->len
;
933 void exec_shl(struct CPUX86State
*env
, struct x86_decode
*decode
)
938 fetch_operands(env
, decode
, 2, true, true, false);
940 count
= decode
->op
[1].val
;
941 count
&= 0x1f; /* count is masked to 5 bits*/
946 switch (decode
->operand_size
) {
951 res
= (decode
->op
[0].val
<< count
);
952 cf
= (decode
->op
[0].val
>> (8 - count
)) & 0x1;
953 of
= cf
^ (res
>> 7);
956 write_val_ext(env
, decode
->op
[0].ptr
, res
, 1);
957 SET_FLAGS_OSZAPC_LOGIC8(env
, 0, 0, res
);
958 SET_FLAGS_OxxxxC(env
, of
, cf
);
967 res
= (decode
->op
[0].val
<< count
);
968 cf
= (decode
->op
[0].val
>> (16 - count
)) & 0x1;
969 of
= cf
^ (res
>> 15); /* of = cf ^ result15 */
972 write_val_ext(env
, decode
->op
[0].ptr
, res
, 2);
973 SET_FLAGS_OSZAPC_LOGIC16(env
, 0, 0, res
);
974 SET_FLAGS_OxxxxC(env
, of
, cf
);
979 uint32_t res
= decode
->op
[0].val
<< count
;
981 write_val_ext(env
, decode
->op
[0].ptr
, res
, 4);
982 SET_FLAGS_OSZAPC_LOGIC32(env
, 0, 0, res
);
983 cf
= (decode
->op
[0].val
>> (32 - count
)) & 0x1;
984 of
= cf
^ (res
>> 31); /* of = cf ^ result31 */
985 SET_FLAGS_OxxxxC(env
, of
, cf
);
993 /* lflags_to_rflags(env); */
994 env
->eip
+= decode
->len
;
997 void exec_movsx(CPUX86State
*env
, struct x86_decode
*decode
)
1000 int op_size
= decode
->operand_size
;
1002 fetch_operands(env
, decode
, 2, false, false, false);
1004 if (0xbe == decode
->opcode
[1]) {
1010 decode
->operand_size
= src_op_size
;
1011 calc_modrm_operand(env
, decode
, &decode
->op
[1]);
1012 decode
->op
[1].val
= sign(read_val_ext(env
, decode
->op
[1].ptr
, src_op_size
),
1015 write_val_ext(env
, decode
->op
[0].ptr
, decode
->op
[1].val
, op_size
);
1017 env
->eip
+= decode
->len
;
1020 void exec_ror(struct CPUX86State
*env
, struct x86_decode
*decode
)
1024 fetch_operands(env
, decode
, 2, true, true, false);
1025 count
= decode
->op
[1].val
;
1027 switch (decode
->operand_size
) {
1030 uint32_t bit6
, bit7
;
1033 if ((count
& 0x07) == 0) {
1035 bit6
= ((uint8_t)decode
->op
[0].val
>> 6) & 1;
1036 bit7
= ((uint8_t)decode
->op
[0].val
>> 7) & 1;
1037 SET_FLAGS_OxxxxC(env
, bit6
^ bit7
, bit7
);
1040 count
&= 0x7; /* use only bottom 3 bits */
1041 res
= ((uint8_t)decode
->op
[0].val
>> count
) |
1042 ((uint8_t)decode
->op
[0].val
<< (8 - count
));
1043 write_val_ext(env
, decode
->op
[0].ptr
, res
, 1);
1044 bit6
= (res
>> 6) & 1;
1045 bit7
= (res
>> 7) & 1;
1046 /* set eflags: ROR count affects the following flags: C, O */
1047 SET_FLAGS_OxxxxC(env
, bit6
^ bit7
, bit7
);
1053 uint32_t bit14
, bit15
;
1056 if ((count
& 0x0f) == 0) {
1058 bit14
= ((uint16_t)decode
->op
[0].val
>> 14) & 1;
1059 bit15
= ((uint16_t)decode
->op
[0].val
>> 15) & 1;
1060 /* of = result14 ^ result15 */
1061 SET_FLAGS_OxxxxC(env
, bit14
^ bit15
, bit15
);
1064 count
&= 0x0f; /* use only 4 LSB's */
1065 res
= ((uint16_t)decode
->op
[0].val
>> count
) |
1066 ((uint16_t)decode
->op
[0].val
<< (16 - count
));
1067 write_val_ext(env
, decode
->op
[0].ptr
, res
, 2);
1069 bit14
= (res
>> 14) & 1;
1070 bit15
= (res
>> 15) & 1;
1071 /* of = result14 ^ result15 */
1072 SET_FLAGS_OxxxxC(env
, bit14
^ bit15
, bit15
);
1078 uint32_t bit31
, bit30
;
1083 res
= ((uint32_t)decode
->op
[0].val
>> count
) |
1084 ((uint32_t)decode
->op
[0].val
<< (32 - count
));
1085 write_val_ext(env
, decode
->op
[0].ptr
, res
, 4);
1087 bit31
= (res
>> 31) & 1;
1088 bit30
= (res
>> 30) & 1;
1089 /* of = result30 ^ result31 */
1090 SET_FLAGS_OxxxxC(env
, bit30
^ bit31
, bit31
);
1095 env
->eip
+= decode
->len
;
1098 void exec_rol(struct CPUX86State
*env
, struct x86_decode
*decode
)
1102 fetch_operands(env
, decode
, 2, true, true, false);
1103 count
= decode
->op
[1].val
;
1105 switch (decode
->operand_size
) {
1108 uint32_t bit0
, bit7
;
1111 if ((count
& 0x07) == 0) {
1113 bit0
= ((uint8_t)decode
->op
[0].val
& 1);
1114 bit7
= ((uint8_t)decode
->op
[0].val
>> 7);
1115 SET_FLAGS_OxxxxC(env
, bit0
^ bit7
, bit0
);
1118 count
&= 0x7; /* use only lowest 3 bits */
1119 res
= ((uint8_t)decode
->op
[0].val
<< count
) |
1120 ((uint8_t)decode
->op
[0].val
>> (8 - count
));
1122 write_val_ext(env
, decode
->op
[0].ptr
, res
, 1);
1124 * ROL count affects the following flags: C, O
1128 SET_FLAGS_OxxxxC(env
, bit0
^ bit7
, bit0
);
1134 uint32_t bit0
, bit15
;
1137 if ((count
& 0x0f) == 0) {
1139 bit0
= ((uint16_t)decode
->op
[0].val
& 0x1);
1140 bit15
= ((uint16_t)decode
->op
[0].val
>> 15);
1141 /* of = cf ^ result15 */
1142 SET_FLAGS_OxxxxC(env
, bit0
^ bit15
, bit0
);
1145 count
&= 0x0f; /* only use bottom 4 bits */
1146 res
= ((uint16_t)decode
->op
[0].val
<< count
) |
1147 ((uint16_t)decode
->op
[0].val
>> (16 - count
));
1149 write_val_ext(env
, decode
->op
[0].ptr
, res
, 2);
1151 bit15
= (res
>> 15);
1152 /* of = cf ^ result15 */
1153 SET_FLAGS_OxxxxC(env
, bit0
^ bit15
, bit0
);
1159 uint32_t bit0
, bit31
;
1164 res
= ((uint32_t)decode
->op
[0].val
<< count
) |
1165 ((uint32_t)decode
->op
[0].val
>> (32 - count
));
1167 write_val_ext(env
, decode
->op
[0].ptr
, res
, 4);
1169 bit31
= (res
>> 31);
1170 /* of = cf ^ result31 */
1171 SET_FLAGS_OxxxxC(env
, bit0
^ bit31
, bit0
);
1176 env
->eip
+= decode
->len
;
1180 void exec_rcl(struct CPUX86State
*env
, struct x86_decode
*decode
)
1185 fetch_operands(env
, decode
, 2, true, true, false);
1186 count
= decode
->op
[1].val
& 0x1f;
1188 switch (decode
->operand_size
) {
1191 uint8_t op1_8
= decode
->op
[0].val
;
1199 res
= (op1_8
<< 1) | get_CF(env
);
1201 res
= (op1_8
<< count
) | (get_CF(env
) << (count
- 1)) |
1202 (op1_8
>> (9 - count
));
1205 write_val_ext(env
, decode
->op
[0].ptr
, res
, 1);
1207 cf
= (op1_8
>> (8 - count
)) & 0x01;
1208 of
= cf
^ (res
>> 7); /* of = cf ^ result7 */
1209 SET_FLAGS_OxxxxC(env
, of
, cf
);
1215 uint16_t op1_16
= decode
->op
[0].val
;
1223 res
= (op1_16
<< 1) | get_CF(env
);
1224 } else if (count
== 16) {
1225 res
= (get_CF(env
) << 15) | (op1_16
>> 1);
1226 } else { /* 2..15 */
1227 res
= (op1_16
<< count
) | (get_CF(env
) << (count
- 1)) |
1228 (op1_16
>> (17 - count
));
1231 write_val_ext(env
, decode
->op
[0].ptr
, res
, 2);
1233 cf
= (op1_16
>> (16 - count
)) & 0x1;
1234 of
= cf
^ (res
>> 15); /* of = cf ^ result15 */
1235 SET_FLAGS_OxxxxC(env
, of
, cf
);
1241 uint32_t op1_32
= decode
->op
[0].val
;
1248 res
= (op1_32
<< 1) | get_CF(env
);
1250 res
= (op1_32
<< count
) | (get_CF(env
) << (count
- 1)) |
1251 (op1_32
>> (33 - count
));
1254 write_val_ext(env
, decode
->op
[0].ptr
, res
, 4);
1256 cf
= (op1_32
>> (32 - count
)) & 0x1;
1257 of
= cf
^ (res
>> 31); /* of = cf ^ result31 */
1258 SET_FLAGS_OxxxxC(env
, of
, cf
);
1262 env
->eip
+= decode
->len
;
1265 void exec_rcr(struct CPUX86State
*env
, struct x86_decode
*decode
)
1270 fetch_operands(env
, decode
, 2, true, true, false);
1271 count
= decode
->op
[1].val
& 0x1f;
1273 switch (decode
->operand_size
) {
1276 uint8_t op1_8
= decode
->op
[0].val
;
1283 res
= (op1_8
>> count
) | (get_CF(env
) << (8 - count
)) |
1284 (op1_8
<< (9 - count
));
1286 write_val_ext(env
, decode
->op
[0].ptr
, res
, 1);
1288 cf
= (op1_8
>> (count
- 1)) & 0x1;
1289 of
= (((res
<< 1) ^ res
) >> 7) & 0x1; /* of = result6 ^ result7 */
1290 SET_FLAGS_OxxxxC(env
, of
, cf
);
1295 uint16_t op1_16
= decode
->op
[0].val
;
1302 res
= (op1_16
>> count
) | (get_CF(env
) << (16 - count
)) |
1303 (op1_16
<< (17 - count
));
1305 write_val_ext(env
, decode
->op
[0].ptr
, res
, 2);
1307 cf
= (op1_16
>> (count
- 1)) & 0x1;
1308 of
= ((uint16_t)((res
<< 1) ^ res
) >> 15) & 0x1; /* of = result15 ^
1310 SET_FLAGS_OxxxxC(env
, of
, cf
);
1316 uint32_t op1_32
= decode
->op
[0].val
;
1323 res
= (op1_32
>> 1) | (get_CF(env
) << 31);
1325 res
= (op1_32
>> count
) | (get_CF(env
) << (32 - count
)) |
1326 (op1_32
<< (33 - count
));
1329 write_val_ext(env
, decode
->op
[0].ptr
, res
, 4);
1331 cf
= (op1_32
>> (count
- 1)) & 0x1;
1332 of
= ((res
<< 1) ^ res
) >> 31; /* of = result30 ^ result31 */
1333 SET_FLAGS_OxxxxC(env
, of
, cf
);
1337 env
->eip
+= decode
->len
;
1340 static void exec_xchg(struct CPUX86State
*env
, struct x86_decode
*decode
)
1342 fetch_operands(env
, decode
, 2, true, true, false);
1344 write_val_ext(env
, decode
->op
[0].ptr
, decode
->op
[1].val
,
1345 decode
->operand_size
);
1346 write_val_ext(env
, decode
->op
[1].ptr
, decode
->op
[0].val
,
1347 decode
->operand_size
);
1349 env
->eip
+= decode
->len
;
1352 static void exec_xadd(struct CPUX86State
*env
, struct x86_decode
*decode
)
1354 EXEC_2OP_FLAGS_CMD(env
, decode
, +, SET_FLAGS_OSZAPC_ADD
, true);
1355 write_val_ext(env
, decode
->op
[1].ptr
, decode
->op
[0].val
,
1356 decode
->operand_size
);
1358 env
->eip
+= decode
->len
;
1361 static struct cmd_handler
{
1362 enum x86_decode_cmd cmd
;
1363 void (*handler
)(struct CPUX86State
*env
, struct x86_decode
*ins
);
1365 {X86_DECODE_CMD_INVL
, NULL
,},
1366 {X86_DECODE_CMD_MOV
, exec_mov
},
1367 {X86_DECODE_CMD_ADD
, exec_add
},
1368 {X86_DECODE_CMD_OR
, exec_or
},
1369 {X86_DECODE_CMD_ADC
, exec_adc
},
1370 {X86_DECODE_CMD_SBB
, exec_sbb
},
1371 {X86_DECODE_CMD_AND
, exec_and
},
1372 {X86_DECODE_CMD_SUB
, exec_sub
},
1373 {X86_DECODE_CMD_NEG
, exec_neg
},
1374 {X86_DECODE_CMD_XOR
, exec_xor
},
1375 {X86_DECODE_CMD_CMP
, exec_cmp
},
1376 {X86_DECODE_CMD_INC
, exec_inc
},
1377 {X86_DECODE_CMD_DEC
, exec_dec
},
1378 {X86_DECODE_CMD_TST
, exec_tst
},
1379 {X86_DECODE_CMD_NOT
, exec_not
},
1380 {X86_DECODE_CMD_MOVZX
, exec_movzx
},
1381 {X86_DECODE_CMD_OUT
, exec_out
},
1382 {X86_DECODE_CMD_IN
, exec_in
},
1383 {X86_DECODE_CMD_INS
, exec_ins
},
1384 {X86_DECODE_CMD_OUTS
, exec_outs
},
1385 {X86_DECODE_CMD_RDMSR
, exec_rdmsr
},
1386 {X86_DECODE_CMD_WRMSR
, exec_wrmsr
},
1387 {X86_DECODE_CMD_BT
, exec_bt
},
1388 {X86_DECODE_CMD_BTR
, exec_btr
},
1389 {X86_DECODE_CMD_BTC
, exec_btc
},
1390 {X86_DECODE_CMD_BTS
, exec_bts
},
1391 {X86_DECODE_CMD_SHL
, exec_shl
},
1392 {X86_DECODE_CMD_ROL
, exec_rol
},
1393 {X86_DECODE_CMD_ROR
, exec_ror
},
1394 {X86_DECODE_CMD_RCR
, exec_rcr
},
1395 {X86_DECODE_CMD_RCL
, exec_rcl
},
1396 /*{X86_DECODE_CMD_CPUID, exec_cpuid},*/
1397 {X86_DECODE_CMD_MOVS
, exec_movs
},
1398 {X86_DECODE_CMD_CMPS
, exec_cmps
},
1399 {X86_DECODE_CMD_STOS
, exec_stos
},
1400 {X86_DECODE_CMD_SCAS
, exec_scas
},
1401 {X86_DECODE_CMD_LODS
, exec_lods
},
1402 {X86_DECODE_CMD_MOVSX
, exec_movsx
},
1403 {X86_DECODE_CMD_XCHG
, exec_xchg
},
1404 {X86_DECODE_CMD_XADD
, exec_xadd
},
1407 static struct cmd_handler _cmd_handler
[X86_DECODE_CMD_LAST
];
1409 static void init_cmd_handler()
1412 for (i
= 0; i
< ARRAY_SIZE(handlers
); i
++) {
1413 _cmd_handler
[handlers
[i
].cmd
] = handlers
[i
];
1417 void load_regs(struct CPUState
*cpu
)
1419 X86CPU
*x86_cpu
= X86_CPU(cpu
);
1420 CPUX86State
*env
= &x86_cpu
->env
;
1423 RRX(env
, R_EAX
) = rreg(cpu
->hvf_fd
, HV_X86_RAX
);
1424 RRX(env
, R_EBX
) = rreg(cpu
->hvf_fd
, HV_X86_RBX
);
1425 RRX(env
, R_ECX
) = rreg(cpu
->hvf_fd
, HV_X86_RCX
);
1426 RRX(env
, R_EDX
) = rreg(cpu
->hvf_fd
, HV_X86_RDX
);
1427 RRX(env
, R_ESI
) = rreg(cpu
->hvf_fd
, HV_X86_RSI
);
1428 RRX(env
, R_EDI
) = rreg(cpu
->hvf_fd
, HV_X86_RDI
);
1429 RRX(env
, R_ESP
) = rreg(cpu
->hvf_fd
, HV_X86_RSP
);
1430 RRX(env
, R_EBP
) = rreg(cpu
->hvf_fd
, HV_X86_RBP
);
1431 for (i
= 8; i
< 16; i
++) {
1432 RRX(env
, i
) = rreg(cpu
->hvf_fd
, HV_X86_RAX
+ i
);
1435 env
->eflags
= rreg(cpu
->hvf_fd
, HV_X86_RFLAGS
);
1436 rflags_to_lflags(env
);
1437 env
->eip
= rreg(cpu
->hvf_fd
, HV_X86_RIP
);
1440 void store_regs(struct CPUState
*cpu
)
1442 X86CPU
*x86_cpu
= X86_CPU(cpu
);
1443 CPUX86State
*env
= &x86_cpu
->env
;
1446 wreg(cpu
->hvf_fd
, HV_X86_RAX
, RAX(env
));
1447 wreg(cpu
->hvf_fd
, HV_X86_RBX
, RBX(env
));
1448 wreg(cpu
->hvf_fd
, HV_X86_RCX
, RCX(env
));
1449 wreg(cpu
->hvf_fd
, HV_X86_RDX
, RDX(env
));
1450 wreg(cpu
->hvf_fd
, HV_X86_RSI
, RSI(env
));
1451 wreg(cpu
->hvf_fd
, HV_X86_RDI
, RDI(env
));
1452 wreg(cpu
->hvf_fd
, HV_X86_RBP
, RBP(env
));
1453 wreg(cpu
->hvf_fd
, HV_X86_RSP
, RSP(env
));
1454 for (i
= 8; i
< 16; i
++) {
1455 wreg(cpu
->hvf_fd
, HV_X86_RAX
+ i
, RRX(env
, i
));
1458 lflags_to_rflags(env
);
1459 wreg(cpu
->hvf_fd
, HV_X86_RFLAGS
, env
->eflags
);
1460 macvm_set_rip(cpu
, env
->eip
);
1463 bool exec_instruction(struct CPUX86State
*env
, struct x86_decode
*ins
)
1465 /*if (hvf_vcpu_id(cpu))
1466 printf("%d, %llx: exec_instruction %s\n", hvf_vcpu_id(cpu), env->eip,
1467 decode_cmd_to_string(ins->cmd));*/
1469 if (!_cmd_handler
[ins
->cmd
].handler
) {
1470 printf("Unimplemented handler (%llx) for %d (%x %x) \n", env
->eip
,
1471 ins
->cmd
, ins
->opcode
[0],
1472 ins
->opcode_len
> 1 ? ins
->opcode
[1] : 0);
1473 env
->eip
+= ins
->len
;
1477 _cmd_handler
[ins
->cmd
].handler(env
, ins
);