accel/kvm/kvm-all: Fix wrong return code handling in dirty log code
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob47516913b728c9970b1e3ffe35a964c068ff99c0
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47 #include "qemu/guest-random.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm-cpus.h"
51 #include "hw/boards.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size
66 //#define DEBUG_KVM
68 #ifdef DEBUG_KVM
69 #define DPRINTF(fmt, ...) \
70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...) \
73 do { } while (0)
74 #endif
76 #define KVM_MSI_HASHTAB_SIZE 256
78 struct KVMParkedVcpu {
79 unsigned long vcpu_id;
80 int kvm_fd;
81 QLIST_ENTRY(KVMParkedVcpu) node;
84 struct KVMState
86 AccelState parent_obj;
88 int nr_slots;
89 int fd;
90 int vmfd;
91 int coalesced_mmio;
92 int coalesced_pio;
93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
94 bool coalesced_flush_in_progress;
95 int vcpu_events;
96 int robust_singlestep;
97 int debugregs;
98 #ifdef KVM_CAP_SET_GUEST_DEBUG
99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
100 #endif
101 int max_nested_state_len;
102 int many_ioeventfds;
103 int intx_set_mask;
104 int kvm_shadow_mem;
105 bool kernel_irqchip_allowed;
106 bool kernel_irqchip_required;
107 OnOffAuto kernel_irqchip_split;
108 bool sync_mmu;
109 uint64_t manual_dirty_log_protect;
110 /* The man page (and posix) say ioctl numbers are signed int, but
111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
112 * unsigned, and treating them as signed here can break things */
113 unsigned irq_set_ioctl;
114 unsigned int sigmask_len;
115 GHashTable *gsimap;
116 #ifdef KVM_CAP_IRQ_ROUTING
117 struct kvm_irq_routing *irq_routes;
118 int nr_allocated_irq_routes;
119 unsigned long *used_gsi_bitmap;
120 unsigned int gsi_count;
121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
122 #endif
123 KVMMemoryListener memory_listener;
124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
126 /* For "info mtree -f" to tell if an MR is registered in KVM */
127 int nr_as;
128 struct KVMAs {
129 KVMMemoryListener *ml;
130 AddressSpace *as;
131 } *as;
134 KVMState *kvm_state;
135 bool kvm_kernel_irqchip;
136 bool kvm_split_irqchip;
137 bool kvm_async_interrupts_allowed;
138 bool kvm_halt_in_kernel_allowed;
139 bool kvm_eventfds_allowed;
140 bool kvm_irqfds_allowed;
141 bool kvm_resamplefds_allowed;
142 bool kvm_msi_via_irqfd_allowed;
143 bool kvm_gsi_routing_allowed;
144 bool kvm_gsi_direct_mapping;
145 bool kvm_allowed;
146 bool kvm_readonly_mem_allowed;
147 bool kvm_vm_attributes_allowed;
148 bool kvm_direct_msi_allowed;
149 bool kvm_ioeventfd_any_length_allowed;
150 bool kvm_msi_use_devid;
151 static bool kvm_immediate_exit;
152 static hwaddr kvm_max_slot_size = ~0;
154 static const KVMCapabilityInfo kvm_required_capabilites[] = {
155 KVM_CAP_INFO(USER_MEMORY),
156 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
157 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
158 KVM_CAP_LAST_INFO
161 static NotifierList kvm_irqchip_change_notifiers =
162 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
164 struct KVMResampleFd {
165 int gsi;
166 EventNotifier *resample_event;
167 QLIST_ENTRY(KVMResampleFd) node;
169 typedef struct KVMResampleFd KVMResampleFd;
172 * Only used with split irqchip where we need to do the resample fd
173 * kick for the kernel from userspace.
175 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
176 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
178 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
179 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
181 static inline void kvm_resample_fd_remove(int gsi)
183 KVMResampleFd *rfd;
185 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
186 if (rfd->gsi == gsi) {
187 QLIST_REMOVE(rfd, node);
188 g_free(rfd);
189 break;
194 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
196 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
198 rfd->gsi = gsi;
199 rfd->resample_event = event;
201 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
204 void kvm_resample_fd_notify(int gsi)
206 KVMResampleFd *rfd;
208 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
209 if (rfd->gsi == gsi) {
210 event_notifier_set(rfd->resample_event);
211 trace_kvm_resample_fd_notify(gsi);
212 return;
217 int kvm_get_max_memslots(void)
219 KVMState *s = KVM_STATE(current_accel());
221 return s->nr_slots;
224 /* Called with KVMMemoryListener.slots_lock held */
225 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
227 KVMState *s = kvm_state;
228 int i;
230 for (i = 0; i < s->nr_slots; i++) {
231 if (kml->slots[i].memory_size == 0) {
232 return &kml->slots[i];
236 return NULL;
239 bool kvm_has_free_slot(MachineState *ms)
241 KVMState *s = KVM_STATE(ms->accelerator);
242 bool result;
243 KVMMemoryListener *kml = &s->memory_listener;
245 kvm_slots_lock(kml);
246 result = !!kvm_get_free_slot(kml);
247 kvm_slots_unlock(kml);
249 return result;
252 /* Called with KVMMemoryListener.slots_lock held */
253 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
255 KVMSlot *slot = kvm_get_free_slot(kml);
257 if (slot) {
258 return slot;
261 fprintf(stderr, "%s: no free slot available\n", __func__);
262 abort();
265 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
266 hwaddr start_addr,
267 hwaddr size)
269 KVMState *s = kvm_state;
270 int i;
272 for (i = 0; i < s->nr_slots; i++) {
273 KVMSlot *mem = &kml->slots[i];
275 if (start_addr == mem->start_addr && size == mem->memory_size) {
276 return mem;
280 return NULL;
284 * Calculate and align the start address and the size of the section.
285 * Return the size. If the size is 0, the aligned section is empty.
287 static hwaddr kvm_align_section(MemoryRegionSection *section,
288 hwaddr *start)
290 hwaddr size = int128_get64(section->size);
291 hwaddr delta, aligned;
293 /* kvm works in page size chunks, but the function may be called
294 with sub-page size and unaligned start address. Pad the start
295 address to next and truncate size to previous page boundary. */
296 aligned = ROUND_UP(section->offset_within_address_space,
297 qemu_real_host_page_size);
298 delta = aligned - section->offset_within_address_space;
299 *start = aligned;
300 if (delta > size) {
301 return 0;
304 return (size - delta) & qemu_real_host_page_mask;
307 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
308 hwaddr *phys_addr)
310 KVMMemoryListener *kml = &s->memory_listener;
311 int i, ret = 0;
313 kvm_slots_lock(kml);
314 for (i = 0; i < s->nr_slots; i++) {
315 KVMSlot *mem = &kml->slots[i];
317 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
318 *phys_addr = mem->start_addr + (ram - mem->ram);
319 ret = 1;
320 break;
323 kvm_slots_unlock(kml);
325 return ret;
328 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
330 KVMState *s = kvm_state;
331 struct kvm_userspace_memory_region mem;
332 int ret;
334 mem.slot = slot->slot | (kml->as_id << 16);
335 mem.guest_phys_addr = slot->start_addr;
336 mem.userspace_addr = (unsigned long)slot->ram;
337 mem.flags = slot->flags;
339 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
340 /* Set the slot size to 0 before setting the slot to the desired
341 * value. This is needed based on KVM commit 75d61fbc. */
342 mem.memory_size = 0;
343 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
344 if (ret < 0) {
345 goto err;
348 mem.memory_size = slot->memory_size;
349 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
350 slot->old_flags = mem.flags;
351 err:
352 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
353 mem.memory_size, mem.userspace_addr, ret);
354 if (ret < 0) {
355 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
356 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
357 __func__, mem.slot, slot->start_addr,
358 (uint64_t)mem.memory_size, strerror(errno));
360 return ret;
363 static int do_kvm_destroy_vcpu(CPUState *cpu)
365 KVMState *s = kvm_state;
366 long mmap_size;
367 struct KVMParkedVcpu *vcpu = NULL;
368 int ret = 0;
370 DPRINTF("kvm_destroy_vcpu\n");
372 ret = kvm_arch_destroy_vcpu(cpu);
373 if (ret < 0) {
374 goto err;
377 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
378 if (mmap_size < 0) {
379 ret = mmap_size;
380 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
381 goto err;
384 ret = munmap(cpu->kvm_run, mmap_size);
385 if (ret < 0) {
386 goto err;
389 vcpu = g_malloc0(sizeof(*vcpu));
390 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
391 vcpu->kvm_fd = cpu->kvm_fd;
392 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
393 err:
394 return ret;
397 void kvm_destroy_vcpu(CPUState *cpu)
399 if (do_kvm_destroy_vcpu(cpu) < 0) {
400 error_report("kvm_destroy_vcpu failed");
401 exit(EXIT_FAILURE);
405 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
407 struct KVMParkedVcpu *cpu;
409 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
410 if (cpu->vcpu_id == vcpu_id) {
411 int kvm_fd;
413 QLIST_REMOVE(cpu, node);
414 kvm_fd = cpu->kvm_fd;
415 g_free(cpu);
416 return kvm_fd;
420 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
423 int kvm_init_vcpu(CPUState *cpu, Error **errp)
425 KVMState *s = kvm_state;
426 long mmap_size;
427 int ret;
429 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
431 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
432 if (ret < 0) {
433 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
434 kvm_arch_vcpu_id(cpu));
435 goto err;
438 cpu->kvm_fd = ret;
439 cpu->kvm_state = s;
440 cpu->vcpu_dirty = true;
442 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
443 if (mmap_size < 0) {
444 ret = mmap_size;
445 error_setg_errno(errp, -mmap_size,
446 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
447 goto err;
450 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
451 cpu->kvm_fd, 0);
452 if (cpu->kvm_run == MAP_FAILED) {
453 ret = -errno;
454 error_setg_errno(errp, ret,
455 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
456 kvm_arch_vcpu_id(cpu));
457 goto err;
460 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
461 s->coalesced_mmio_ring =
462 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
465 ret = kvm_arch_init_vcpu(cpu);
466 if (ret < 0) {
467 error_setg_errno(errp, -ret,
468 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
469 kvm_arch_vcpu_id(cpu));
471 err:
472 return ret;
476 * dirty pages logging control
479 static int kvm_mem_flags(MemoryRegion *mr)
481 bool readonly = mr->readonly || memory_region_is_romd(mr);
482 int flags = 0;
484 if (memory_region_get_dirty_log_mask(mr) != 0) {
485 flags |= KVM_MEM_LOG_DIRTY_PAGES;
487 if (readonly && kvm_readonly_mem_allowed) {
488 flags |= KVM_MEM_READONLY;
490 return flags;
493 /* Called with KVMMemoryListener.slots_lock held */
494 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
495 MemoryRegion *mr)
497 mem->flags = kvm_mem_flags(mr);
499 /* If nothing changed effectively, no need to issue ioctl */
500 if (mem->flags == mem->old_flags) {
501 return 0;
504 return kvm_set_user_memory_region(kml, mem, false);
507 static int kvm_section_update_flags(KVMMemoryListener *kml,
508 MemoryRegionSection *section)
510 hwaddr start_addr, size, slot_size;
511 KVMSlot *mem;
512 int ret = 0;
514 size = kvm_align_section(section, &start_addr);
515 if (!size) {
516 return 0;
519 kvm_slots_lock(kml);
521 while (size && !ret) {
522 slot_size = MIN(kvm_max_slot_size, size);
523 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
524 if (!mem) {
525 /* We don't have a slot if we want to trap every access. */
526 goto out;
529 ret = kvm_slot_update_flags(kml, mem, section->mr);
530 start_addr += slot_size;
531 size -= slot_size;
534 out:
535 kvm_slots_unlock(kml);
536 return ret;
539 static void kvm_log_start(MemoryListener *listener,
540 MemoryRegionSection *section,
541 int old, int new)
543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
544 int r;
546 if (old != 0) {
547 return;
550 r = kvm_section_update_flags(kml, section);
551 if (r < 0) {
552 abort();
556 static void kvm_log_stop(MemoryListener *listener,
557 MemoryRegionSection *section,
558 int old, int new)
560 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
561 int r;
563 if (new != 0) {
564 return;
567 r = kvm_section_update_flags(kml, section);
568 if (r < 0) {
569 abort();
573 /* get kvm's dirty pages bitmap and update qemu's */
574 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
575 unsigned long *bitmap)
577 ram_addr_t start = section->offset_within_region +
578 memory_region_get_ram_addr(section->mr);
579 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
581 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
582 return 0;
585 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
587 /* Allocate the dirty bitmap for a slot */
588 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
591 * XXX bad kernel interface alert
592 * For dirty bitmap, kernel allocates array of size aligned to
593 * bits-per-long. But for case when the kernel is 64bits and
594 * the userspace is 32bits, userspace can't align to the same
595 * bits-per-long, since sizeof(long) is different between kernel
596 * and user space. This way, userspace will provide buffer which
597 * may be 4 bytes less than the kernel will use, resulting in
598 * userspace memory corruption (which is not detectable by valgrind
599 * too, in most cases).
600 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
601 * a hope that sizeof(long) won't become >8 any time soon.
603 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
604 /*HOST_LONG_BITS*/ 64) / 8;
605 mem->dirty_bmap = g_malloc0(bitmap_size);
609 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
611 * This function will first try to fetch dirty bitmap from the kernel,
612 * and then updates qemu's dirty bitmap.
614 * NOTE: caller must be with kml->slots_lock held.
616 * @kml: the KVM memory listener object
617 * @section: the memory section to sync the dirty bitmap with
619 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
620 MemoryRegionSection *section)
622 KVMState *s = kvm_state;
623 struct kvm_dirty_log d = {};
624 KVMSlot *mem;
625 hwaddr start_addr, size;
626 hwaddr slot_size, slot_offset = 0;
627 int ret = 0;
629 size = kvm_align_section(section, &start_addr);
630 while (size) {
631 MemoryRegionSection subsection = *section;
633 slot_size = MIN(kvm_max_slot_size, size);
634 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
635 if (!mem) {
636 /* We don't have a slot if we want to trap every access. */
637 goto out;
640 if (!mem->dirty_bmap) {
641 /* Allocate on the first log_sync, once and for all */
642 kvm_memslot_init_dirty_bitmap(mem);
645 d.dirty_bitmap = mem->dirty_bmap;
646 d.slot = mem->slot | (kml->as_id << 16);
647 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
648 if (ret == -ENOENT) {
649 /* kernel does not have dirty bitmap in this slot */
650 ret = 0;
651 } else if (ret < 0) {
652 error_report("ioctl KVM_GET_DIRTY_LOG failed: %d", errno);
653 goto out;
654 } else {
655 subsection.offset_within_region += slot_offset;
656 subsection.size = int128_make64(slot_size);
657 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
660 slot_offset += slot_size;
661 start_addr += slot_size;
662 size -= slot_size;
664 out:
665 return ret;
668 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
669 #define KVM_CLEAR_LOG_SHIFT 6
670 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
671 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
673 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
674 uint64_t size)
676 KVMState *s = kvm_state;
677 uint64_t end, bmap_start, start_delta, bmap_npages;
678 struct kvm_clear_dirty_log d;
679 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
680 int ret;
683 * We need to extend either the start or the size or both to
684 * satisfy the KVM interface requirement. Firstly, do the start
685 * page alignment on 64 host pages
687 bmap_start = start & KVM_CLEAR_LOG_MASK;
688 start_delta = start - bmap_start;
689 bmap_start /= psize;
692 * The kernel interface has restriction on the size too, that either:
694 * (1) the size is 64 host pages aligned (just like the start), or
695 * (2) the size fills up until the end of the KVM memslot.
697 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
698 << KVM_CLEAR_LOG_SHIFT;
699 end = mem->memory_size / psize;
700 if (bmap_npages > end - bmap_start) {
701 bmap_npages = end - bmap_start;
703 start_delta /= psize;
706 * Prepare the bitmap to clear dirty bits. Here we must guarantee
707 * that we won't clear any unknown dirty bits otherwise we might
708 * accidentally clear some set bits which are not yet synced from
709 * the kernel into QEMU's bitmap, then we'll lose track of the
710 * guest modifications upon those pages (which can directly lead
711 * to guest data loss or panic after migration).
713 * Layout of the KVMSlot.dirty_bmap:
715 * |<-------- bmap_npages -----------..>|
716 * [1]
717 * start_delta size
718 * |----------------|-------------|------------------|------------|
719 * ^ ^ ^ ^
720 * | | | |
721 * start bmap_start (start) end
722 * of memslot of memslot
724 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
727 assert(bmap_start % BITS_PER_LONG == 0);
728 /* We should never do log_clear before log_sync */
729 assert(mem->dirty_bmap);
730 if (start_delta || bmap_npages - size / psize) {
731 /* Slow path - we need to manipulate a temp bitmap */
732 bmap_clear = bitmap_new(bmap_npages);
733 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
734 bmap_start, start_delta + size / psize);
736 * We need to fill the holes at start because that was not
737 * specified by the caller and we extended the bitmap only for
738 * 64 pages alignment
740 bitmap_clear(bmap_clear, 0, start_delta);
741 d.dirty_bitmap = bmap_clear;
742 } else {
744 * Fast path - both start and size align well with BITS_PER_LONG
745 * (or the end of memory slot)
747 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
750 d.first_page = bmap_start;
751 /* It should never overflow. If it happens, say something */
752 assert(bmap_npages <= UINT32_MAX);
753 d.num_pages = bmap_npages;
754 d.slot = mem->slot | (as_id << 16);
756 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
757 if (ret < 0 && ret != -ENOENT) {
758 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
759 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
760 __func__, d.slot, (uint64_t)d.first_page,
761 (uint32_t)d.num_pages, ret);
762 } else {
763 ret = 0;
764 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
768 * After we have updated the remote dirty bitmap, we update the
769 * cached bitmap as well for the memslot, then if another user
770 * clears the same region we know we shouldn't clear it again on
771 * the remote otherwise it's data loss as well.
773 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
774 size / psize);
775 /* This handles the NULL case well */
776 g_free(bmap_clear);
777 return ret;
782 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
784 * NOTE: this will be a no-op if we haven't enabled manual dirty log
785 * protection in the host kernel because in that case this operation
786 * will be done within log_sync().
788 * @kml: the kvm memory listener
789 * @section: the memory range to clear dirty bitmap
791 static int kvm_physical_log_clear(KVMMemoryListener *kml,
792 MemoryRegionSection *section)
794 KVMState *s = kvm_state;
795 uint64_t start, size, offset, count;
796 KVMSlot *mem;
797 int ret = 0, i;
799 if (!s->manual_dirty_log_protect) {
800 /* No need to do explicit clear */
801 return ret;
804 start = section->offset_within_address_space;
805 size = int128_get64(section->size);
807 if (!size) {
808 /* Nothing more we can do... */
809 return ret;
812 kvm_slots_lock(kml);
814 for (i = 0; i < s->nr_slots; i++) {
815 mem = &kml->slots[i];
816 /* Discard slots that are empty or do not overlap the section */
817 if (!mem->memory_size ||
818 mem->start_addr > start + size - 1 ||
819 start > mem->start_addr + mem->memory_size - 1) {
820 continue;
823 if (start >= mem->start_addr) {
824 /* The slot starts before section or is aligned to it. */
825 offset = start - mem->start_addr;
826 count = MIN(mem->memory_size - offset, size);
827 } else {
828 /* The slot starts after section. */
829 offset = 0;
830 count = MIN(mem->memory_size, size - (mem->start_addr - start));
832 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
833 if (ret < 0) {
834 break;
838 kvm_slots_unlock(kml);
840 return ret;
843 static void kvm_coalesce_mmio_region(MemoryListener *listener,
844 MemoryRegionSection *secion,
845 hwaddr start, hwaddr size)
847 KVMState *s = kvm_state;
849 if (s->coalesced_mmio) {
850 struct kvm_coalesced_mmio_zone zone;
852 zone.addr = start;
853 zone.size = size;
854 zone.pad = 0;
856 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
860 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
861 MemoryRegionSection *secion,
862 hwaddr start, hwaddr size)
864 KVMState *s = kvm_state;
866 if (s->coalesced_mmio) {
867 struct kvm_coalesced_mmio_zone zone;
869 zone.addr = start;
870 zone.size = size;
871 zone.pad = 0;
873 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
877 static void kvm_coalesce_pio_add(MemoryListener *listener,
878 MemoryRegionSection *section,
879 hwaddr start, hwaddr size)
881 KVMState *s = kvm_state;
883 if (s->coalesced_pio) {
884 struct kvm_coalesced_mmio_zone zone;
886 zone.addr = start;
887 zone.size = size;
888 zone.pio = 1;
890 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
894 static void kvm_coalesce_pio_del(MemoryListener *listener,
895 MemoryRegionSection *section,
896 hwaddr start, hwaddr size)
898 KVMState *s = kvm_state;
900 if (s->coalesced_pio) {
901 struct kvm_coalesced_mmio_zone zone;
903 zone.addr = start;
904 zone.size = size;
905 zone.pio = 1;
907 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
911 static MemoryListener kvm_coalesced_pio_listener = {
912 .coalesced_io_add = kvm_coalesce_pio_add,
913 .coalesced_io_del = kvm_coalesce_pio_del,
916 int kvm_check_extension(KVMState *s, unsigned int extension)
918 int ret;
920 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
921 if (ret < 0) {
922 ret = 0;
925 return ret;
928 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
930 int ret;
932 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
933 if (ret < 0) {
934 /* VM wide version not implemented, use global one instead */
935 ret = kvm_check_extension(s, extension);
938 return ret;
941 typedef struct HWPoisonPage {
942 ram_addr_t ram_addr;
943 QLIST_ENTRY(HWPoisonPage) list;
944 } HWPoisonPage;
946 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
947 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
949 static void kvm_unpoison_all(void *param)
951 HWPoisonPage *page, *next_page;
953 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
954 QLIST_REMOVE(page, list);
955 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
956 g_free(page);
960 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
962 HWPoisonPage *page;
964 QLIST_FOREACH(page, &hwpoison_page_list, list) {
965 if (page->ram_addr == ram_addr) {
966 return;
969 page = g_new(HWPoisonPage, 1);
970 page->ram_addr = ram_addr;
971 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
974 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
976 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
977 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
978 * endianness, but the memory core hands them in target endianness.
979 * For example, PPC is always treated as big-endian even if running
980 * on KVM and on PPC64LE. Correct here.
982 switch (size) {
983 case 2:
984 val = bswap16(val);
985 break;
986 case 4:
987 val = bswap32(val);
988 break;
990 #endif
991 return val;
994 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
995 bool assign, uint32_t size, bool datamatch)
997 int ret;
998 struct kvm_ioeventfd iofd = {
999 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1000 .addr = addr,
1001 .len = size,
1002 .flags = 0,
1003 .fd = fd,
1006 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1007 datamatch);
1008 if (!kvm_enabled()) {
1009 return -ENOSYS;
1012 if (datamatch) {
1013 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1015 if (!assign) {
1016 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1019 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1021 if (ret < 0) {
1022 return -errno;
1025 return 0;
1028 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1029 bool assign, uint32_t size, bool datamatch)
1031 struct kvm_ioeventfd kick = {
1032 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1033 .addr = addr,
1034 .flags = KVM_IOEVENTFD_FLAG_PIO,
1035 .len = size,
1036 .fd = fd,
1038 int r;
1039 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1040 if (!kvm_enabled()) {
1041 return -ENOSYS;
1043 if (datamatch) {
1044 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1046 if (!assign) {
1047 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1049 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1050 if (r < 0) {
1051 return r;
1053 return 0;
1057 static int kvm_check_many_ioeventfds(void)
1059 /* Userspace can use ioeventfd for io notification. This requires a host
1060 * that supports eventfd(2) and an I/O thread; since eventfd does not
1061 * support SIGIO it cannot interrupt the vcpu.
1063 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1064 * can avoid creating too many ioeventfds.
1066 #if defined(CONFIG_EVENTFD)
1067 int ioeventfds[7];
1068 int i, ret = 0;
1069 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1070 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1071 if (ioeventfds[i] < 0) {
1072 break;
1074 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1075 if (ret < 0) {
1076 close(ioeventfds[i]);
1077 break;
1081 /* Decide whether many devices are supported or not */
1082 ret = i == ARRAY_SIZE(ioeventfds);
1084 while (i-- > 0) {
1085 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1086 close(ioeventfds[i]);
1088 return ret;
1089 #else
1090 return 0;
1091 #endif
1094 static const KVMCapabilityInfo *
1095 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1097 while (list->name) {
1098 if (!kvm_check_extension(s, list->value)) {
1099 return list;
1101 list++;
1103 return NULL;
1106 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1108 g_assert(
1109 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1111 kvm_max_slot_size = max_slot_size;
1114 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1115 MemoryRegionSection *section, bool add)
1117 KVMSlot *mem;
1118 int err;
1119 MemoryRegion *mr = section->mr;
1120 bool writeable = !mr->readonly && !mr->rom_device;
1121 hwaddr start_addr, size, slot_size;
1122 void *ram;
1124 if (!memory_region_is_ram(mr)) {
1125 if (writeable || !kvm_readonly_mem_allowed) {
1126 return;
1127 } else if (!mr->romd_mode) {
1128 /* If the memory device is not in romd_mode, then we actually want
1129 * to remove the kvm memory slot so all accesses will trap. */
1130 add = false;
1134 size = kvm_align_section(section, &start_addr);
1135 if (!size) {
1136 return;
1139 /* use aligned delta to align the ram address */
1140 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1141 (start_addr - section->offset_within_address_space);
1143 kvm_slots_lock(kml);
1145 if (!add) {
1146 do {
1147 slot_size = MIN(kvm_max_slot_size, size);
1148 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1149 if (!mem) {
1150 goto out;
1152 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1153 kvm_physical_sync_dirty_bitmap(kml, section);
1156 /* unregister the slot */
1157 g_free(mem->dirty_bmap);
1158 mem->dirty_bmap = NULL;
1159 mem->memory_size = 0;
1160 mem->flags = 0;
1161 err = kvm_set_user_memory_region(kml, mem, false);
1162 if (err) {
1163 fprintf(stderr, "%s: error unregistering slot: %s\n",
1164 __func__, strerror(-err));
1165 abort();
1167 start_addr += slot_size;
1168 size -= slot_size;
1169 } while (size);
1170 goto out;
1173 /* register the new slot */
1174 do {
1175 slot_size = MIN(kvm_max_slot_size, size);
1176 mem = kvm_alloc_slot(kml);
1177 mem->memory_size = slot_size;
1178 mem->start_addr = start_addr;
1179 mem->ram = ram;
1180 mem->flags = kvm_mem_flags(mr);
1182 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1184 * Reallocate the bmap; it means it doesn't disappear in
1185 * middle of a migrate.
1187 kvm_memslot_init_dirty_bitmap(mem);
1189 err = kvm_set_user_memory_region(kml, mem, true);
1190 if (err) {
1191 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1192 strerror(-err));
1193 abort();
1195 start_addr += slot_size;
1196 ram += slot_size;
1197 size -= slot_size;
1198 } while (size);
1200 out:
1201 kvm_slots_unlock(kml);
1204 static void kvm_region_add(MemoryListener *listener,
1205 MemoryRegionSection *section)
1207 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1209 memory_region_ref(section->mr);
1210 kvm_set_phys_mem(kml, section, true);
1213 static void kvm_region_del(MemoryListener *listener,
1214 MemoryRegionSection *section)
1216 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1218 kvm_set_phys_mem(kml, section, false);
1219 memory_region_unref(section->mr);
1222 static void kvm_log_sync(MemoryListener *listener,
1223 MemoryRegionSection *section)
1225 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1226 int r;
1228 kvm_slots_lock(kml);
1229 r = kvm_physical_sync_dirty_bitmap(kml, section);
1230 kvm_slots_unlock(kml);
1231 if (r < 0) {
1232 abort();
1236 static void kvm_log_clear(MemoryListener *listener,
1237 MemoryRegionSection *section)
1239 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1240 int r;
1242 r = kvm_physical_log_clear(kml, section);
1243 if (r < 0) {
1244 error_report_once("%s: kvm log clear failed: mr=%s "
1245 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1246 section->mr->name, section->offset_within_region,
1247 int128_get64(section->size));
1248 abort();
1252 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1253 MemoryRegionSection *section,
1254 bool match_data, uint64_t data,
1255 EventNotifier *e)
1257 int fd = event_notifier_get_fd(e);
1258 int r;
1260 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1261 data, true, int128_get64(section->size),
1262 match_data);
1263 if (r < 0) {
1264 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1265 __func__, strerror(-r), -r);
1266 abort();
1270 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1271 MemoryRegionSection *section,
1272 bool match_data, uint64_t data,
1273 EventNotifier *e)
1275 int fd = event_notifier_get_fd(e);
1276 int r;
1278 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1279 data, false, int128_get64(section->size),
1280 match_data);
1281 if (r < 0) {
1282 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1283 __func__, strerror(-r), -r);
1284 abort();
1288 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1289 MemoryRegionSection *section,
1290 bool match_data, uint64_t data,
1291 EventNotifier *e)
1293 int fd = event_notifier_get_fd(e);
1294 int r;
1296 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1297 data, true, int128_get64(section->size),
1298 match_data);
1299 if (r < 0) {
1300 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1301 __func__, strerror(-r), -r);
1302 abort();
1306 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1307 MemoryRegionSection *section,
1308 bool match_data, uint64_t data,
1309 EventNotifier *e)
1312 int fd = event_notifier_get_fd(e);
1313 int r;
1315 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1316 data, false, int128_get64(section->size),
1317 match_data);
1318 if (r < 0) {
1319 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1320 __func__, strerror(-r), -r);
1321 abort();
1325 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1326 AddressSpace *as, int as_id)
1328 int i;
1330 qemu_mutex_init(&kml->slots_lock);
1331 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1332 kml->as_id = as_id;
1334 for (i = 0; i < s->nr_slots; i++) {
1335 kml->slots[i].slot = i;
1338 kml->listener.region_add = kvm_region_add;
1339 kml->listener.region_del = kvm_region_del;
1340 kml->listener.log_start = kvm_log_start;
1341 kml->listener.log_stop = kvm_log_stop;
1342 kml->listener.log_sync = kvm_log_sync;
1343 kml->listener.log_clear = kvm_log_clear;
1344 kml->listener.priority = 10;
1346 memory_listener_register(&kml->listener, as);
1348 for (i = 0; i < s->nr_as; ++i) {
1349 if (!s->as[i].as) {
1350 s->as[i].as = as;
1351 s->as[i].ml = kml;
1352 break;
1357 static MemoryListener kvm_io_listener = {
1358 .eventfd_add = kvm_io_ioeventfd_add,
1359 .eventfd_del = kvm_io_ioeventfd_del,
1360 .priority = 10,
1363 int kvm_set_irq(KVMState *s, int irq, int level)
1365 struct kvm_irq_level event;
1366 int ret;
1368 assert(kvm_async_interrupts_enabled());
1370 event.level = level;
1371 event.irq = irq;
1372 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1373 if (ret < 0) {
1374 perror("kvm_set_irq");
1375 abort();
1378 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1381 #ifdef KVM_CAP_IRQ_ROUTING
1382 typedef struct KVMMSIRoute {
1383 struct kvm_irq_routing_entry kroute;
1384 QTAILQ_ENTRY(KVMMSIRoute) entry;
1385 } KVMMSIRoute;
1387 static void set_gsi(KVMState *s, unsigned int gsi)
1389 set_bit(gsi, s->used_gsi_bitmap);
1392 static void clear_gsi(KVMState *s, unsigned int gsi)
1394 clear_bit(gsi, s->used_gsi_bitmap);
1397 void kvm_init_irq_routing(KVMState *s)
1399 int gsi_count, i;
1401 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1402 if (gsi_count > 0) {
1403 /* Round up so we can search ints using ffs */
1404 s->used_gsi_bitmap = bitmap_new(gsi_count);
1405 s->gsi_count = gsi_count;
1408 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1409 s->nr_allocated_irq_routes = 0;
1411 if (!kvm_direct_msi_allowed) {
1412 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1413 QTAILQ_INIT(&s->msi_hashtab[i]);
1417 kvm_arch_init_irq_routing(s);
1420 void kvm_irqchip_commit_routes(KVMState *s)
1422 int ret;
1424 if (kvm_gsi_direct_mapping()) {
1425 return;
1428 if (!kvm_gsi_routing_enabled()) {
1429 return;
1432 s->irq_routes->flags = 0;
1433 trace_kvm_irqchip_commit_routes();
1434 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1435 assert(ret == 0);
1438 static void kvm_add_routing_entry(KVMState *s,
1439 struct kvm_irq_routing_entry *entry)
1441 struct kvm_irq_routing_entry *new;
1442 int n, size;
1444 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1445 n = s->nr_allocated_irq_routes * 2;
1446 if (n < 64) {
1447 n = 64;
1449 size = sizeof(struct kvm_irq_routing);
1450 size += n * sizeof(*new);
1451 s->irq_routes = g_realloc(s->irq_routes, size);
1452 s->nr_allocated_irq_routes = n;
1454 n = s->irq_routes->nr++;
1455 new = &s->irq_routes->entries[n];
1457 *new = *entry;
1459 set_gsi(s, entry->gsi);
1462 static int kvm_update_routing_entry(KVMState *s,
1463 struct kvm_irq_routing_entry *new_entry)
1465 struct kvm_irq_routing_entry *entry;
1466 int n;
1468 for (n = 0; n < s->irq_routes->nr; n++) {
1469 entry = &s->irq_routes->entries[n];
1470 if (entry->gsi != new_entry->gsi) {
1471 continue;
1474 if(!memcmp(entry, new_entry, sizeof *entry)) {
1475 return 0;
1478 *entry = *new_entry;
1480 return 0;
1483 return -ESRCH;
1486 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1488 struct kvm_irq_routing_entry e = {};
1490 assert(pin < s->gsi_count);
1492 e.gsi = irq;
1493 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1494 e.flags = 0;
1495 e.u.irqchip.irqchip = irqchip;
1496 e.u.irqchip.pin = pin;
1497 kvm_add_routing_entry(s, &e);
1500 void kvm_irqchip_release_virq(KVMState *s, int virq)
1502 struct kvm_irq_routing_entry *e;
1503 int i;
1505 if (kvm_gsi_direct_mapping()) {
1506 return;
1509 for (i = 0; i < s->irq_routes->nr; i++) {
1510 e = &s->irq_routes->entries[i];
1511 if (e->gsi == virq) {
1512 s->irq_routes->nr--;
1513 *e = s->irq_routes->entries[s->irq_routes->nr];
1516 clear_gsi(s, virq);
1517 kvm_arch_release_virq_post(virq);
1518 trace_kvm_irqchip_release_virq(virq);
1521 void kvm_irqchip_add_change_notifier(Notifier *n)
1523 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1526 void kvm_irqchip_remove_change_notifier(Notifier *n)
1528 notifier_remove(n);
1531 void kvm_irqchip_change_notify(void)
1533 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1536 static unsigned int kvm_hash_msi(uint32_t data)
1538 /* This is optimized for IA32 MSI layout. However, no other arch shall
1539 * repeat the mistake of not providing a direct MSI injection API. */
1540 return data & 0xff;
1543 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1545 KVMMSIRoute *route, *next;
1546 unsigned int hash;
1548 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1549 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1550 kvm_irqchip_release_virq(s, route->kroute.gsi);
1551 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1552 g_free(route);
1557 static int kvm_irqchip_get_virq(KVMState *s)
1559 int next_virq;
1562 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1563 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1564 * number can succeed even though a new route entry cannot be added.
1565 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1567 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1568 kvm_flush_dynamic_msi_routes(s);
1571 /* Return the lowest unused GSI in the bitmap */
1572 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1573 if (next_virq >= s->gsi_count) {
1574 return -ENOSPC;
1575 } else {
1576 return next_virq;
1580 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1582 unsigned int hash = kvm_hash_msi(msg.data);
1583 KVMMSIRoute *route;
1585 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1586 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1587 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1588 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1589 return route;
1592 return NULL;
1595 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1597 struct kvm_msi msi;
1598 KVMMSIRoute *route;
1600 if (kvm_direct_msi_allowed) {
1601 msi.address_lo = (uint32_t)msg.address;
1602 msi.address_hi = msg.address >> 32;
1603 msi.data = le32_to_cpu(msg.data);
1604 msi.flags = 0;
1605 memset(msi.pad, 0, sizeof(msi.pad));
1607 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1610 route = kvm_lookup_msi_route(s, msg);
1611 if (!route) {
1612 int virq;
1614 virq = kvm_irqchip_get_virq(s);
1615 if (virq < 0) {
1616 return virq;
1619 route = g_malloc0(sizeof(KVMMSIRoute));
1620 route->kroute.gsi = virq;
1621 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1622 route->kroute.flags = 0;
1623 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1624 route->kroute.u.msi.address_hi = msg.address >> 32;
1625 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1627 kvm_add_routing_entry(s, &route->kroute);
1628 kvm_irqchip_commit_routes(s);
1630 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1631 entry);
1634 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1636 return kvm_set_irq(s, route->kroute.gsi, 1);
1639 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1641 struct kvm_irq_routing_entry kroute = {};
1642 int virq;
1643 MSIMessage msg = {0, 0};
1645 if (pci_available && dev) {
1646 msg = pci_get_msi_message(dev, vector);
1649 if (kvm_gsi_direct_mapping()) {
1650 return kvm_arch_msi_data_to_gsi(msg.data);
1653 if (!kvm_gsi_routing_enabled()) {
1654 return -ENOSYS;
1657 virq = kvm_irqchip_get_virq(s);
1658 if (virq < 0) {
1659 return virq;
1662 kroute.gsi = virq;
1663 kroute.type = KVM_IRQ_ROUTING_MSI;
1664 kroute.flags = 0;
1665 kroute.u.msi.address_lo = (uint32_t)msg.address;
1666 kroute.u.msi.address_hi = msg.address >> 32;
1667 kroute.u.msi.data = le32_to_cpu(msg.data);
1668 if (pci_available && kvm_msi_devid_required()) {
1669 kroute.flags = KVM_MSI_VALID_DEVID;
1670 kroute.u.msi.devid = pci_requester_id(dev);
1672 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1673 kvm_irqchip_release_virq(s, virq);
1674 return -EINVAL;
1677 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1678 vector, virq);
1680 kvm_add_routing_entry(s, &kroute);
1681 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1682 kvm_irqchip_commit_routes(s);
1684 return virq;
1687 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1688 PCIDevice *dev)
1690 struct kvm_irq_routing_entry kroute = {};
1692 if (kvm_gsi_direct_mapping()) {
1693 return 0;
1696 if (!kvm_irqchip_in_kernel()) {
1697 return -ENOSYS;
1700 kroute.gsi = virq;
1701 kroute.type = KVM_IRQ_ROUTING_MSI;
1702 kroute.flags = 0;
1703 kroute.u.msi.address_lo = (uint32_t)msg.address;
1704 kroute.u.msi.address_hi = msg.address >> 32;
1705 kroute.u.msi.data = le32_to_cpu(msg.data);
1706 if (pci_available && kvm_msi_devid_required()) {
1707 kroute.flags = KVM_MSI_VALID_DEVID;
1708 kroute.u.msi.devid = pci_requester_id(dev);
1710 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1711 return -EINVAL;
1714 trace_kvm_irqchip_update_msi_route(virq);
1716 return kvm_update_routing_entry(s, &kroute);
1719 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1720 EventNotifier *resample, int virq,
1721 bool assign)
1723 int fd = event_notifier_get_fd(event);
1724 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1726 struct kvm_irqfd irqfd = {
1727 .fd = fd,
1728 .gsi = virq,
1729 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1732 if (rfd != -1) {
1733 assert(assign);
1734 if (kvm_irqchip_is_split()) {
1736 * When the slow irqchip (e.g. IOAPIC) is in the
1737 * userspace, KVM kernel resamplefd will not work because
1738 * the EOI of the interrupt will be delivered to userspace
1739 * instead, so the KVM kernel resamplefd kick will be
1740 * skipped. The userspace here mimics what the kernel
1741 * provides with resamplefd, remember the resamplefd and
1742 * kick it when we receive EOI of this IRQ.
1744 * This is hackery because IOAPIC is mostly bypassed
1745 * (except EOI broadcasts) when irqfd is used. However
1746 * this can bring much performance back for split irqchip
1747 * with INTx IRQs (for VFIO, this gives 93% perf of the
1748 * full fast path, which is 46% perf boost comparing to
1749 * the INTx slow path).
1751 kvm_resample_fd_insert(virq, resample);
1752 } else {
1753 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1754 irqfd.resamplefd = rfd;
1756 } else if (!assign) {
1757 if (kvm_irqchip_is_split()) {
1758 kvm_resample_fd_remove(virq);
1762 if (!kvm_irqfds_enabled()) {
1763 return -ENOSYS;
1766 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1769 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1771 struct kvm_irq_routing_entry kroute = {};
1772 int virq;
1774 if (!kvm_gsi_routing_enabled()) {
1775 return -ENOSYS;
1778 virq = kvm_irqchip_get_virq(s);
1779 if (virq < 0) {
1780 return virq;
1783 kroute.gsi = virq;
1784 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1785 kroute.flags = 0;
1786 kroute.u.adapter.summary_addr = adapter->summary_addr;
1787 kroute.u.adapter.ind_addr = adapter->ind_addr;
1788 kroute.u.adapter.summary_offset = adapter->summary_offset;
1789 kroute.u.adapter.ind_offset = adapter->ind_offset;
1790 kroute.u.adapter.adapter_id = adapter->adapter_id;
1792 kvm_add_routing_entry(s, &kroute);
1794 return virq;
1797 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1799 struct kvm_irq_routing_entry kroute = {};
1800 int virq;
1802 if (!kvm_gsi_routing_enabled()) {
1803 return -ENOSYS;
1805 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1806 return -ENOSYS;
1808 virq = kvm_irqchip_get_virq(s);
1809 if (virq < 0) {
1810 return virq;
1813 kroute.gsi = virq;
1814 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1815 kroute.flags = 0;
1816 kroute.u.hv_sint.vcpu = vcpu;
1817 kroute.u.hv_sint.sint = sint;
1819 kvm_add_routing_entry(s, &kroute);
1820 kvm_irqchip_commit_routes(s);
1822 return virq;
1825 #else /* !KVM_CAP_IRQ_ROUTING */
1827 void kvm_init_irq_routing(KVMState *s)
1831 void kvm_irqchip_release_virq(KVMState *s, int virq)
1835 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1837 abort();
1840 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1842 return -ENOSYS;
1845 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1847 return -ENOSYS;
1850 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1852 return -ENOSYS;
1855 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1856 EventNotifier *resample, int virq,
1857 bool assign)
1859 abort();
1862 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1864 return -ENOSYS;
1866 #endif /* !KVM_CAP_IRQ_ROUTING */
1868 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1869 EventNotifier *rn, int virq)
1871 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1874 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1875 int virq)
1877 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1880 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1881 EventNotifier *rn, qemu_irq irq)
1883 gpointer key, gsi;
1884 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1886 if (!found) {
1887 return -ENXIO;
1889 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1892 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1893 qemu_irq irq)
1895 gpointer key, gsi;
1896 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1898 if (!found) {
1899 return -ENXIO;
1901 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1904 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1906 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1909 static void kvm_irqchip_create(KVMState *s)
1911 int ret;
1913 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1914 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1916 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1917 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1918 if (ret < 0) {
1919 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1920 exit(1);
1922 } else {
1923 return;
1926 /* First probe and see if there's a arch-specific hook to create the
1927 * in-kernel irqchip for us */
1928 ret = kvm_arch_irqchip_create(s);
1929 if (ret == 0) {
1930 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1931 perror("Split IRQ chip mode not supported.");
1932 exit(1);
1933 } else {
1934 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1937 if (ret < 0) {
1938 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1939 exit(1);
1942 kvm_kernel_irqchip = true;
1943 /* If we have an in-kernel IRQ chip then we must have asynchronous
1944 * interrupt delivery (though the reverse is not necessarily true)
1946 kvm_async_interrupts_allowed = true;
1947 kvm_halt_in_kernel_allowed = true;
1949 kvm_init_irq_routing(s);
1951 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1954 /* Find number of supported CPUs using the recommended
1955 * procedure from the kernel API documentation to cope with
1956 * older kernels that may be missing capabilities.
1958 static int kvm_recommended_vcpus(KVMState *s)
1960 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1961 return (ret) ? ret : 4;
1964 static int kvm_max_vcpus(KVMState *s)
1966 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1967 return (ret) ? ret : kvm_recommended_vcpus(s);
1970 static int kvm_max_vcpu_id(KVMState *s)
1972 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1973 return (ret) ? ret : kvm_max_vcpus(s);
1976 bool kvm_vcpu_id_is_valid(int vcpu_id)
1978 KVMState *s = KVM_STATE(current_accel());
1979 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1982 static int kvm_init(MachineState *ms)
1984 MachineClass *mc = MACHINE_GET_CLASS(ms);
1985 static const char upgrade_note[] =
1986 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1987 "(see http://sourceforge.net/projects/kvm).\n";
1988 struct {
1989 const char *name;
1990 int num;
1991 } num_cpus[] = {
1992 { "SMP", ms->smp.cpus },
1993 { "hotpluggable", ms->smp.max_cpus },
1994 { NULL, }
1995 }, *nc = num_cpus;
1996 int soft_vcpus_limit, hard_vcpus_limit;
1997 KVMState *s;
1998 const KVMCapabilityInfo *missing_cap;
1999 int ret;
2000 int type = 0;
2001 uint64_t dirty_log_manual_caps;
2003 s = KVM_STATE(ms->accelerator);
2006 * On systems where the kernel can support different base page
2007 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2008 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2009 * page size for the system though.
2011 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2013 s->sigmask_len = 8;
2015 #ifdef KVM_CAP_SET_GUEST_DEBUG
2016 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2017 #endif
2018 QLIST_INIT(&s->kvm_parked_vcpus);
2019 s->vmfd = -1;
2020 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2021 if (s->fd == -1) {
2022 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2023 ret = -errno;
2024 goto err;
2027 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2028 if (ret < KVM_API_VERSION) {
2029 if (ret >= 0) {
2030 ret = -EINVAL;
2032 fprintf(stderr, "kvm version too old\n");
2033 goto err;
2036 if (ret > KVM_API_VERSION) {
2037 ret = -EINVAL;
2038 fprintf(stderr, "kvm version not supported\n");
2039 goto err;
2042 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2043 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2045 /* If unspecified, use the default value */
2046 if (!s->nr_slots) {
2047 s->nr_slots = 32;
2050 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2051 if (s->nr_as <= 1) {
2052 s->nr_as = 1;
2054 s->as = g_new0(struct KVMAs, s->nr_as);
2056 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2057 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2058 "kvm-type",
2059 &error_abort);
2060 type = mc->kvm_type(ms, kvm_type);
2063 do {
2064 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2065 } while (ret == -EINTR);
2067 if (ret < 0) {
2068 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2069 strerror(-ret));
2071 #ifdef TARGET_S390X
2072 if (ret == -EINVAL) {
2073 fprintf(stderr,
2074 "Host kernel setup problem detected. Please verify:\n");
2075 fprintf(stderr, "- for kernels supporting the switch_amode or"
2076 " user_mode parameters, whether\n");
2077 fprintf(stderr,
2078 " user space is running in primary address space\n");
2079 fprintf(stderr,
2080 "- for kernels supporting the vm.allocate_pgste sysctl, "
2081 "whether it is enabled\n");
2083 #endif
2084 goto err;
2087 s->vmfd = ret;
2089 /* check the vcpu limits */
2090 soft_vcpus_limit = kvm_recommended_vcpus(s);
2091 hard_vcpus_limit = kvm_max_vcpus(s);
2093 while (nc->name) {
2094 if (nc->num > soft_vcpus_limit) {
2095 warn_report("Number of %s cpus requested (%d) exceeds "
2096 "the recommended cpus supported by KVM (%d)",
2097 nc->name, nc->num, soft_vcpus_limit);
2099 if (nc->num > hard_vcpus_limit) {
2100 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2101 "the maximum cpus supported by KVM (%d)\n",
2102 nc->name, nc->num, hard_vcpus_limit);
2103 exit(1);
2106 nc++;
2109 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2110 if (!missing_cap) {
2111 missing_cap =
2112 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2114 if (missing_cap) {
2115 ret = -EINVAL;
2116 fprintf(stderr, "kvm does not support %s\n%s",
2117 missing_cap->name, upgrade_note);
2118 goto err;
2121 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2122 s->coalesced_pio = s->coalesced_mmio &&
2123 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2125 dirty_log_manual_caps =
2126 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2127 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2128 KVM_DIRTY_LOG_INITIALLY_SET);
2129 s->manual_dirty_log_protect = dirty_log_manual_caps;
2130 if (dirty_log_manual_caps) {
2131 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2132 dirty_log_manual_caps);
2133 if (ret) {
2134 warn_report("Trying to enable capability %"PRIu64" of "
2135 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2136 "Falling back to the legacy mode. ",
2137 dirty_log_manual_caps);
2138 s->manual_dirty_log_protect = 0;
2142 #ifdef KVM_CAP_VCPU_EVENTS
2143 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2144 #endif
2146 s->robust_singlestep =
2147 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2149 #ifdef KVM_CAP_DEBUGREGS
2150 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2151 #endif
2153 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2155 #ifdef KVM_CAP_IRQ_ROUTING
2156 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2157 #endif
2159 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2161 s->irq_set_ioctl = KVM_IRQ_LINE;
2162 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2163 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2166 kvm_readonly_mem_allowed =
2167 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2169 kvm_eventfds_allowed =
2170 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2172 kvm_irqfds_allowed =
2173 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2175 kvm_resamplefds_allowed =
2176 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2178 kvm_vm_attributes_allowed =
2179 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2181 kvm_ioeventfd_any_length_allowed =
2182 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2184 kvm_state = s;
2186 ret = kvm_arch_init(ms, s);
2187 if (ret < 0) {
2188 goto err;
2191 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2192 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2195 qemu_register_reset(kvm_unpoison_all, NULL);
2197 if (s->kernel_irqchip_allowed) {
2198 kvm_irqchip_create(s);
2201 if (kvm_eventfds_allowed) {
2202 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2203 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2205 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2206 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2208 kvm_memory_listener_register(s, &s->memory_listener,
2209 &address_space_memory, 0);
2210 if (kvm_eventfds_allowed) {
2211 memory_listener_register(&kvm_io_listener,
2212 &address_space_io);
2214 memory_listener_register(&kvm_coalesced_pio_listener,
2215 &address_space_io);
2217 s->many_ioeventfds = kvm_check_many_ioeventfds();
2219 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2220 if (!s->sync_mmu) {
2221 ret = ram_block_discard_disable(true);
2222 assert(!ret);
2224 return 0;
2226 err:
2227 assert(ret < 0);
2228 if (s->vmfd >= 0) {
2229 close(s->vmfd);
2231 if (s->fd != -1) {
2232 close(s->fd);
2234 g_free(s->memory_listener.slots);
2236 return ret;
2239 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2241 s->sigmask_len = sigmask_len;
2244 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2245 int size, uint32_t count)
2247 int i;
2248 uint8_t *ptr = data;
2250 for (i = 0; i < count; i++) {
2251 address_space_rw(&address_space_io, port, attrs,
2252 ptr, size,
2253 direction == KVM_EXIT_IO_OUT);
2254 ptr += size;
2258 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2260 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2261 run->internal.suberror);
2263 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2264 int i;
2266 for (i = 0; i < run->internal.ndata; ++i) {
2267 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2268 i, (uint64_t)run->internal.data[i]);
2271 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2272 fprintf(stderr, "emulation failure\n");
2273 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2274 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2275 return EXCP_INTERRUPT;
2278 /* FIXME: Should trigger a qmp message to let management know
2279 * something went wrong.
2281 return -1;
2284 void kvm_flush_coalesced_mmio_buffer(void)
2286 KVMState *s = kvm_state;
2288 if (s->coalesced_flush_in_progress) {
2289 return;
2292 s->coalesced_flush_in_progress = true;
2294 if (s->coalesced_mmio_ring) {
2295 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2296 while (ring->first != ring->last) {
2297 struct kvm_coalesced_mmio *ent;
2299 ent = &ring->coalesced_mmio[ring->first];
2301 if (ent->pio == 1) {
2302 address_space_write(&address_space_io, ent->phys_addr,
2303 MEMTXATTRS_UNSPECIFIED, ent->data,
2304 ent->len);
2305 } else {
2306 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2308 smp_wmb();
2309 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2313 s->coalesced_flush_in_progress = false;
2316 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2318 if (!cpu->vcpu_dirty) {
2319 kvm_arch_get_registers(cpu);
2320 cpu->vcpu_dirty = true;
2324 void kvm_cpu_synchronize_state(CPUState *cpu)
2326 if (!cpu->vcpu_dirty) {
2327 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2331 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2333 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2334 cpu->vcpu_dirty = false;
2337 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2339 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2342 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2344 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2345 cpu->vcpu_dirty = false;
2348 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2350 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2353 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2355 cpu->vcpu_dirty = true;
2358 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2360 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2363 #ifdef KVM_HAVE_MCE_INJECTION
2364 static __thread void *pending_sigbus_addr;
2365 static __thread int pending_sigbus_code;
2366 static __thread bool have_sigbus_pending;
2367 #endif
2369 static void kvm_cpu_kick(CPUState *cpu)
2371 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2374 static void kvm_cpu_kick_self(void)
2376 if (kvm_immediate_exit) {
2377 kvm_cpu_kick(current_cpu);
2378 } else {
2379 qemu_cpu_kick_self();
2383 static void kvm_eat_signals(CPUState *cpu)
2385 struct timespec ts = { 0, 0 };
2386 siginfo_t siginfo;
2387 sigset_t waitset;
2388 sigset_t chkset;
2389 int r;
2391 if (kvm_immediate_exit) {
2392 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2393 /* Write kvm_run->immediate_exit before the cpu->exit_request
2394 * write in kvm_cpu_exec.
2396 smp_wmb();
2397 return;
2400 sigemptyset(&waitset);
2401 sigaddset(&waitset, SIG_IPI);
2403 do {
2404 r = sigtimedwait(&waitset, &siginfo, &ts);
2405 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2406 perror("sigtimedwait");
2407 exit(1);
2410 r = sigpending(&chkset);
2411 if (r == -1) {
2412 perror("sigpending");
2413 exit(1);
2415 } while (sigismember(&chkset, SIG_IPI));
2418 int kvm_cpu_exec(CPUState *cpu)
2420 struct kvm_run *run = cpu->kvm_run;
2421 int ret, run_ret;
2423 DPRINTF("kvm_cpu_exec()\n");
2425 if (kvm_arch_process_async_events(cpu)) {
2426 qatomic_set(&cpu->exit_request, 0);
2427 return EXCP_HLT;
2430 qemu_mutex_unlock_iothread();
2431 cpu_exec_start(cpu);
2433 do {
2434 MemTxAttrs attrs;
2436 if (cpu->vcpu_dirty) {
2437 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2438 cpu->vcpu_dirty = false;
2441 kvm_arch_pre_run(cpu, run);
2442 if (qatomic_read(&cpu->exit_request)) {
2443 DPRINTF("interrupt exit requested\n");
2445 * KVM requires us to reenter the kernel after IO exits to complete
2446 * instruction emulation. This self-signal will ensure that we
2447 * leave ASAP again.
2449 kvm_cpu_kick_self();
2452 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2453 * Matching barrier in kvm_eat_signals.
2455 smp_rmb();
2457 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2459 attrs = kvm_arch_post_run(cpu, run);
2461 #ifdef KVM_HAVE_MCE_INJECTION
2462 if (unlikely(have_sigbus_pending)) {
2463 qemu_mutex_lock_iothread();
2464 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2465 pending_sigbus_addr);
2466 have_sigbus_pending = false;
2467 qemu_mutex_unlock_iothread();
2469 #endif
2471 if (run_ret < 0) {
2472 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2473 DPRINTF("io window exit\n");
2474 kvm_eat_signals(cpu);
2475 ret = EXCP_INTERRUPT;
2476 break;
2478 fprintf(stderr, "error: kvm run failed %s\n",
2479 strerror(-run_ret));
2480 #ifdef TARGET_PPC
2481 if (run_ret == -EBUSY) {
2482 fprintf(stderr,
2483 "This is probably because your SMT is enabled.\n"
2484 "VCPU can only run on primary threads with all "
2485 "secondary threads offline.\n");
2487 #endif
2488 ret = -1;
2489 break;
2492 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2493 switch (run->exit_reason) {
2494 case KVM_EXIT_IO:
2495 DPRINTF("handle_io\n");
2496 /* Called outside BQL */
2497 kvm_handle_io(run->io.port, attrs,
2498 (uint8_t *)run + run->io.data_offset,
2499 run->io.direction,
2500 run->io.size,
2501 run->io.count);
2502 ret = 0;
2503 break;
2504 case KVM_EXIT_MMIO:
2505 DPRINTF("handle_mmio\n");
2506 /* Called outside BQL */
2507 address_space_rw(&address_space_memory,
2508 run->mmio.phys_addr, attrs,
2509 run->mmio.data,
2510 run->mmio.len,
2511 run->mmio.is_write);
2512 ret = 0;
2513 break;
2514 case KVM_EXIT_IRQ_WINDOW_OPEN:
2515 DPRINTF("irq_window_open\n");
2516 ret = EXCP_INTERRUPT;
2517 break;
2518 case KVM_EXIT_SHUTDOWN:
2519 DPRINTF("shutdown\n");
2520 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2521 ret = EXCP_INTERRUPT;
2522 break;
2523 case KVM_EXIT_UNKNOWN:
2524 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2525 (uint64_t)run->hw.hardware_exit_reason);
2526 ret = -1;
2527 break;
2528 case KVM_EXIT_INTERNAL_ERROR:
2529 ret = kvm_handle_internal_error(cpu, run);
2530 break;
2531 case KVM_EXIT_SYSTEM_EVENT:
2532 switch (run->system_event.type) {
2533 case KVM_SYSTEM_EVENT_SHUTDOWN:
2534 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2535 ret = EXCP_INTERRUPT;
2536 break;
2537 case KVM_SYSTEM_EVENT_RESET:
2538 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2539 ret = EXCP_INTERRUPT;
2540 break;
2541 case KVM_SYSTEM_EVENT_CRASH:
2542 kvm_cpu_synchronize_state(cpu);
2543 qemu_mutex_lock_iothread();
2544 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2545 qemu_mutex_unlock_iothread();
2546 ret = 0;
2547 break;
2548 default:
2549 DPRINTF("kvm_arch_handle_exit\n");
2550 ret = kvm_arch_handle_exit(cpu, run);
2551 break;
2553 break;
2554 default:
2555 DPRINTF("kvm_arch_handle_exit\n");
2556 ret = kvm_arch_handle_exit(cpu, run);
2557 break;
2559 } while (ret == 0);
2561 cpu_exec_end(cpu);
2562 qemu_mutex_lock_iothread();
2564 if (ret < 0) {
2565 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2566 vm_stop(RUN_STATE_INTERNAL_ERROR);
2569 qatomic_set(&cpu->exit_request, 0);
2570 return ret;
2573 int kvm_ioctl(KVMState *s, int type, ...)
2575 int ret;
2576 void *arg;
2577 va_list ap;
2579 va_start(ap, type);
2580 arg = va_arg(ap, void *);
2581 va_end(ap);
2583 trace_kvm_ioctl(type, arg);
2584 ret = ioctl(s->fd, type, arg);
2585 if (ret == -1) {
2586 ret = -errno;
2588 return ret;
2591 int kvm_vm_ioctl(KVMState *s, int type, ...)
2593 int ret;
2594 void *arg;
2595 va_list ap;
2597 va_start(ap, type);
2598 arg = va_arg(ap, void *);
2599 va_end(ap);
2601 trace_kvm_vm_ioctl(type, arg);
2602 ret = ioctl(s->vmfd, type, arg);
2603 if (ret == -1) {
2604 ret = -errno;
2606 return ret;
2609 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2611 int ret;
2612 void *arg;
2613 va_list ap;
2615 va_start(ap, type);
2616 arg = va_arg(ap, void *);
2617 va_end(ap);
2619 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2620 ret = ioctl(cpu->kvm_fd, type, arg);
2621 if (ret == -1) {
2622 ret = -errno;
2624 return ret;
2627 int kvm_device_ioctl(int fd, int type, ...)
2629 int ret;
2630 void *arg;
2631 va_list ap;
2633 va_start(ap, type);
2634 arg = va_arg(ap, void *);
2635 va_end(ap);
2637 trace_kvm_device_ioctl(fd, type, arg);
2638 ret = ioctl(fd, type, arg);
2639 if (ret == -1) {
2640 ret = -errno;
2642 return ret;
2645 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2647 int ret;
2648 struct kvm_device_attr attribute = {
2649 .group = group,
2650 .attr = attr,
2653 if (!kvm_vm_attributes_allowed) {
2654 return 0;
2657 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2658 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2659 return ret ? 0 : 1;
2662 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2664 struct kvm_device_attr attribute = {
2665 .group = group,
2666 .attr = attr,
2667 .flags = 0,
2670 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2673 int kvm_device_access(int fd, int group, uint64_t attr,
2674 void *val, bool write, Error **errp)
2676 struct kvm_device_attr kvmattr;
2677 int err;
2679 kvmattr.flags = 0;
2680 kvmattr.group = group;
2681 kvmattr.attr = attr;
2682 kvmattr.addr = (uintptr_t)val;
2684 err = kvm_device_ioctl(fd,
2685 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2686 &kvmattr);
2687 if (err < 0) {
2688 error_setg_errno(errp, -err,
2689 "KVM_%s_DEVICE_ATTR failed: Group %d "
2690 "attr 0x%016" PRIx64,
2691 write ? "SET" : "GET", group, attr);
2693 return err;
2696 bool kvm_has_sync_mmu(void)
2698 return kvm_state->sync_mmu;
2701 int kvm_has_vcpu_events(void)
2703 return kvm_state->vcpu_events;
2706 int kvm_has_robust_singlestep(void)
2708 return kvm_state->robust_singlestep;
2711 int kvm_has_debugregs(void)
2713 return kvm_state->debugregs;
2716 int kvm_max_nested_state_length(void)
2718 return kvm_state->max_nested_state_len;
2721 int kvm_has_many_ioeventfds(void)
2723 if (!kvm_enabled()) {
2724 return 0;
2726 return kvm_state->many_ioeventfds;
2729 int kvm_has_gsi_routing(void)
2731 #ifdef KVM_CAP_IRQ_ROUTING
2732 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2733 #else
2734 return false;
2735 #endif
2738 int kvm_has_intx_set_mask(void)
2740 return kvm_state->intx_set_mask;
2743 bool kvm_arm_supports_user_irq(void)
2745 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2748 #ifdef KVM_CAP_SET_GUEST_DEBUG
2749 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2750 target_ulong pc)
2752 struct kvm_sw_breakpoint *bp;
2754 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2755 if (bp->pc == pc) {
2756 return bp;
2759 return NULL;
2762 int kvm_sw_breakpoints_active(CPUState *cpu)
2764 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2767 struct kvm_set_guest_debug_data {
2768 struct kvm_guest_debug dbg;
2769 int err;
2772 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2774 struct kvm_set_guest_debug_data *dbg_data =
2775 (struct kvm_set_guest_debug_data *) data.host_ptr;
2777 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2778 &dbg_data->dbg);
2781 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2783 struct kvm_set_guest_debug_data data;
2785 data.dbg.control = reinject_trap;
2787 if (cpu->singlestep_enabled) {
2788 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2790 kvm_arch_update_guest_debug(cpu, &data.dbg);
2792 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2793 RUN_ON_CPU_HOST_PTR(&data));
2794 return data.err;
2797 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2798 target_ulong len, int type)
2800 struct kvm_sw_breakpoint *bp;
2801 int err;
2803 if (type == GDB_BREAKPOINT_SW) {
2804 bp = kvm_find_sw_breakpoint(cpu, addr);
2805 if (bp) {
2806 bp->use_count++;
2807 return 0;
2810 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2811 bp->pc = addr;
2812 bp->use_count = 1;
2813 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2814 if (err) {
2815 g_free(bp);
2816 return err;
2819 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2820 } else {
2821 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2822 if (err) {
2823 return err;
2827 CPU_FOREACH(cpu) {
2828 err = kvm_update_guest_debug(cpu, 0);
2829 if (err) {
2830 return err;
2833 return 0;
2836 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2837 target_ulong len, int type)
2839 struct kvm_sw_breakpoint *bp;
2840 int err;
2842 if (type == GDB_BREAKPOINT_SW) {
2843 bp = kvm_find_sw_breakpoint(cpu, addr);
2844 if (!bp) {
2845 return -ENOENT;
2848 if (bp->use_count > 1) {
2849 bp->use_count--;
2850 return 0;
2853 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2854 if (err) {
2855 return err;
2858 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2859 g_free(bp);
2860 } else {
2861 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2862 if (err) {
2863 return err;
2867 CPU_FOREACH(cpu) {
2868 err = kvm_update_guest_debug(cpu, 0);
2869 if (err) {
2870 return err;
2873 return 0;
2876 void kvm_remove_all_breakpoints(CPUState *cpu)
2878 struct kvm_sw_breakpoint *bp, *next;
2879 KVMState *s = cpu->kvm_state;
2880 CPUState *tmpcpu;
2882 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2883 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2884 /* Try harder to find a CPU that currently sees the breakpoint. */
2885 CPU_FOREACH(tmpcpu) {
2886 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2887 break;
2891 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2892 g_free(bp);
2894 kvm_arch_remove_all_hw_breakpoints();
2896 CPU_FOREACH(cpu) {
2897 kvm_update_guest_debug(cpu, 0);
2901 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2903 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2905 return -EINVAL;
2908 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2909 target_ulong len, int type)
2911 return -EINVAL;
2914 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2915 target_ulong len, int type)
2917 return -EINVAL;
2920 void kvm_remove_all_breakpoints(CPUState *cpu)
2923 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2925 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2927 KVMState *s = kvm_state;
2928 struct kvm_signal_mask *sigmask;
2929 int r;
2931 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2933 sigmask->len = s->sigmask_len;
2934 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2935 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2936 g_free(sigmask);
2938 return r;
2941 static void kvm_ipi_signal(int sig)
2943 if (current_cpu) {
2944 assert(kvm_immediate_exit);
2945 kvm_cpu_kick(current_cpu);
2949 void kvm_init_cpu_signals(CPUState *cpu)
2951 int r;
2952 sigset_t set;
2953 struct sigaction sigact;
2955 memset(&sigact, 0, sizeof(sigact));
2956 sigact.sa_handler = kvm_ipi_signal;
2957 sigaction(SIG_IPI, &sigact, NULL);
2959 pthread_sigmask(SIG_BLOCK, NULL, &set);
2960 #if defined KVM_HAVE_MCE_INJECTION
2961 sigdelset(&set, SIGBUS);
2962 pthread_sigmask(SIG_SETMASK, &set, NULL);
2963 #endif
2964 sigdelset(&set, SIG_IPI);
2965 if (kvm_immediate_exit) {
2966 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2967 } else {
2968 r = kvm_set_signal_mask(cpu, &set);
2970 if (r) {
2971 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2972 exit(1);
2976 /* Called asynchronously in VCPU thread. */
2977 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2979 #ifdef KVM_HAVE_MCE_INJECTION
2980 if (have_sigbus_pending) {
2981 return 1;
2983 have_sigbus_pending = true;
2984 pending_sigbus_addr = addr;
2985 pending_sigbus_code = code;
2986 qatomic_set(&cpu->exit_request, 1);
2987 return 0;
2988 #else
2989 return 1;
2990 #endif
2993 /* Called synchronously (via signalfd) in main thread. */
2994 int kvm_on_sigbus(int code, void *addr)
2996 #ifdef KVM_HAVE_MCE_INJECTION
2997 /* Action required MCE kills the process if SIGBUS is blocked. Because
2998 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2999 * we can only get action optional here.
3001 assert(code != BUS_MCEERR_AR);
3002 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3003 return 0;
3004 #else
3005 return 1;
3006 #endif
3009 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3011 int ret;
3012 struct kvm_create_device create_dev;
3014 create_dev.type = type;
3015 create_dev.fd = -1;
3016 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3018 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3019 return -ENOTSUP;
3022 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3023 if (ret) {
3024 return ret;
3027 return test ? 0 : create_dev.fd;
3030 bool kvm_device_supported(int vmfd, uint64_t type)
3032 struct kvm_create_device create_dev = {
3033 .type = type,
3034 .fd = -1,
3035 .flags = KVM_CREATE_DEVICE_TEST,
3038 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3039 return false;
3042 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3045 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3047 struct kvm_one_reg reg;
3048 int r;
3050 reg.id = id;
3051 reg.addr = (uintptr_t) source;
3052 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3053 if (r) {
3054 trace_kvm_failed_reg_set(id, strerror(-r));
3056 return r;
3059 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3061 struct kvm_one_reg reg;
3062 int r;
3064 reg.id = id;
3065 reg.addr = (uintptr_t) target;
3066 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3067 if (r) {
3068 trace_kvm_failed_reg_get(id, strerror(-r));
3070 return r;
3073 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3074 hwaddr start_addr, hwaddr size)
3076 KVMState *kvm = KVM_STATE(ms->accelerator);
3077 int i;
3079 for (i = 0; i < kvm->nr_as; ++i) {
3080 if (kvm->as[i].as == as && kvm->as[i].ml) {
3081 size = MIN(kvm_max_slot_size, size);
3082 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3083 start_addr, size);
3087 return false;
3090 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3091 const char *name, void *opaque,
3092 Error **errp)
3094 KVMState *s = KVM_STATE(obj);
3095 int64_t value = s->kvm_shadow_mem;
3097 visit_type_int(v, name, &value, errp);
3100 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3101 const char *name, void *opaque,
3102 Error **errp)
3104 KVMState *s = KVM_STATE(obj);
3105 int64_t value;
3107 if (!visit_type_int(v, name, &value, errp)) {
3108 return;
3111 s->kvm_shadow_mem = value;
3114 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3115 const char *name, void *opaque,
3116 Error **errp)
3118 KVMState *s = KVM_STATE(obj);
3119 OnOffSplit mode;
3121 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3122 return;
3124 switch (mode) {
3125 case ON_OFF_SPLIT_ON:
3126 s->kernel_irqchip_allowed = true;
3127 s->kernel_irqchip_required = true;
3128 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3129 break;
3130 case ON_OFF_SPLIT_OFF:
3131 s->kernel_irqchip_allowed = false;
3132 s->kernel_irqchip_required = false;
3133 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3134 break;
3135 case ON_OFF_SPLIT_SPLIT:
3136 s->kernel_irqchip_allowed = true;
3137 s->kernel_irqchip_required = true;
3138 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3139 break;
3140 default:
3141 /* The value was checked in visit_type_OnOffSplit() above. If
3142 * we get here, then something is wrong in QEMU.
3144 abort();
3148 bool kvm_kernel_irqchip_allowed(void)
3150 return kvm_state->kernel_irqchip_allowed;
3153 bool kvm_kernel_irqchip_required(void)
3155 return kvm_state->kernel_irqchip_required;
3158 bool kvm_kernel_irqchip_split(void)
3160 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3163 static void kvm_accel_instance_init(Object *obj)
3165 KVMState *s = KVM_STATE(obj);
3167 s->kvm_shadow_mem = -1;
3168 s->kernel_irqchip_allowed = true;
3169 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3172 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3174 AccelClass *ac = ACCEL_CLASS(oc);
3175 ac->name = "KVM";
3176 ac->init_machine = kvm_init;
3177 ac->has_memory = kvm_accel_has_memory;
3178 ac->allowed = &kvm_allowed;
3180 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3181 NULL, kvm_set_kernel_irqchip,
3182 NULL, NULL);
3183 object_class_property_set_description(oc, "kernel-irqchip",
3184 "Configure KVM in-kernel irqchip");
3186 object_class_property_add(oc, "kvm-shadow-mem", "int",
3187 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3188 NULL, NULL);
3189 object_class_property_set_description(oc, "kvm-shadow-mem",
3190 "KVM shadow MMU size");
3193 static const TypeInfo kvm_accel_type = {
3194 .name = TYPE_KVM_ACCEL,
3195 .parent = TYPE_ACCEL,
3196 .instance_init = kvm_accel_instance_init,
3197 .class_init = kvm_accel_class_init,
3198 .instance_size = sizeof(KVMState),
3201 static void kvm_type_init(void)
3203 type_register_static(&kvm_accel_type);
3206 type_init(kvm_type_init);