spapr/xive: add KVM support
[qemu/ar7.git] / target / ppc / kvm.c
blob3bf0a46c3352f15c8a15f999d14eea1c58906838
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/hw_accel.h"
32 #include "kvm_ppc.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/device_tree.h"
35 #include "mmu-hash64.h"
37 #include "hw/sysbus.h"
38 #include "hw/ppc/spapr.h"
39 #include "hw/ppc/spapr_cpu_core.h"
40 #include "hw/ppc/ppc.h"
41 #include "sysemu/watchdog.h"
42 #include "trace.h"
43 #include "exec/gdbstub.h"
44 #include "exec/memattrs.h"
45 #include "exec/ram_addr.h"
46 #include "sysemu/hostmem.h"
47 #include "qemu/cutils.h"
48 #include "qemu/mmap-alloc.h"
49 #include "elf.h"
50 #include "sysemu/kvm_int.h"
52 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
54 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_LAST_INFO
58 static int cap_interrupt_unset;
59 static int cap_interrupt_level;
60 static int cap_segstate;
61 static int cap_booke_sregs;
62 static int cap_ppc_smt;
63 static int cap_ppc_smt_possible;
64 static int cap_spapr_tce;
65 static int cap_spapr_tce_64;
66 static int cap_spapr_multitce;
67 static int cap_spapr_vfio;
68 static int cap_hior;
69 static int cap_one_reg;
70 static int cap_epr;
71 static int cap_ppc_watchdog;
72 static int cap_papr;
73 static int cap_htab_fd;
74 static int cap_fixup_hcalls;
75 static int cap_htm; /* Hardware transactional memory support */
76 static int cap_mmu_radix;
77 static int cap_mmu_hash_v3;
78 static int cap_xive;
79 static int cap_resize_hpt;
80 static int cap_ppc_pvr_compat;
81 static int cap_ppc_safe_cache;
82 static int cap_ppc_safe_bounds_check;
83 static int cap_ppc_safe_indirect_branch;
84 static int cap_ppc_count_cache_flush_assist;
85 static int cap_ppc_nested_kvm_hv;
86 static int cap_large_decr;
88 static uint32_t debug_inst_opcode;
91 * XXX We have a race condition where we actually have a level triggered
92 * interrupt, but the infrastructure can't expose that yet, so the guest
93 * takes but ignores it, goes to sleep and never gets notified that there's
94 * still an interrupt pending.
96 * As a quick workaround, let's just wake up again 20 ms after we injected
97 * an interrupt. That way we can assure that we're always reinjecting
98 * interrupts in case the guest swallowed them.
100 static QEMUTimer *idle_timer;
102 static void kvm_kick_cpu(void *opaque)
104 PowerPCCPU *cpu = opaque;
106 qemu_cpu_kick(CPU(cpu));
110 * Check whether we are running with KVM-PR (instead of KVM-HV). This
111 * should only be used for fallback tests - generally we should use
112 * explicit capabilities for the features we want, rather than
113 * assuming what is/isn't available depending on the KVM variant.
115 static bool kvmppc_is_pr(KVMState *ks)
117 /* Assume KVM-PR if the GET_PVINFO capability is available */
118 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
121 static int kvm_ppc_register_host_cpu_type(MachineState *ms);
122 static void kvmppc_get_cpu_characteristics(KVMState *s);
123 static int kvmppc_get_dec_bits(void);
125 int kvm_arch_init(MachineState *ms, KVMState *s)
127 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
128 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
129 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
130 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
131 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
132 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
136 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
139 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
141 * Note: we don't set cap_papr here, because this capability is
142 * only activated after this by kvmppc_set_papr()
144 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
145 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
146 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
147 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
148 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
149 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
150 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
151 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
152 kvmppc_get_cpu_characteristics(s);
153 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
154 cap_large_decr = kvmppc_get_dec_bits();
156 * Note: setting it to false because there is not such capability
157 * in KVM at this moment.
159 * TODO: call kvm_vm_check_extension() with the right capability
160 * after the kernel starts implementing it.
162 cap_ppc_pvr_compat = false;
164 if (!cap_interrupt_level) {
165 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
166 "VM to stall at times!\n");
169 kvm_ppc_register_host_cpu_type(ms);
171 return 0;
174 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
176 return 0;
179 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
181 CPUPPCState *cenv = &cpu->env;
182 CPUState *cs = CPU(cpu);
183 struct kvm_sregs sregs;
184 int ret;
186 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
188 * What we're really trying to say is "if we're on BookE, we
189 * use the native PVR for now". This is the only sane way to
190 * check it though, so we potentially confuse users that they
191 * can run BookE guests on BookS. Let's hope nobody dares
192 * enough :)
194 return 0;
195 } else {
196 if (!cap_segstate) {
197 fprintf(stderr, "kvm error: missing PVR setting capability\n");
198 return -ENOSYS;
202 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
203 if (ret) {
204 return ret;
207 sregs.pvr = cenv->spr[SPR_PVR];
208 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
211 /* Set up a shared TLB array with KVM */
212 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
214 CPUPPCState *env = &cpu->env;
215 CPUState *cs = CPU(cpu);
216 struct kvm_book3e_206_tlb_params params = {};
217 struct kvm_config_tlb cfg = {};
218 unsigned int entries = 0;
219 int ret, i;
221 if (!kvm_enabled() ||
222 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
223 return 0;
226 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
228 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
229 params.tlb_sizes[i] = booke206_tlb_size(env, i);
230 params.tlb_ways[i] = booke206_tlb_ways(env, i);
231 entries += params.tlb_sizes[i];
234 assert(entries == env->nb_tlb);
235 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
237 env->tlb_dirty = true;
239 cfg.array = (uintptr_t)env->tlb.tlbm;
240 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
241 cfg.params = (uintptr_t)&params;
242 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
244 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
245 if (ret < 0) {
246 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
247 __func__, strerror(-ret));
248 return ret;
251 env->kvm_sw_tlb = true;
252 return 0;
256 #if defined(TARGET_PPC64)
257 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
259 int ret;
261 assert(kvm_state != NULL);
263 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
264 error_setg(errp, "KVM doesn't expose the MMU features it supports");
265 error_append_hint(errp, "Consider switching to a newer KVM\n");
266 return;
269 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
270 if (ret == 0) {
271 return;
274 error_setg_errno(errp, -ret,
275 "KVM failed to provide the MMU features it supports");
278 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
280 KVMState *s = KVM_STATE(current_machine->accelerator);
281 struct ppc_radix_page_info *radix_page_info;
282 struct kvm_ppc_rmmu_info rmmu_info;
283 int i;
285 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
286 return NULL;
288 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
289 return NULL;
291 radix_page_info = g_malloc0(sizeof(*radix_page_info));
292 radix_page_info->count = 0;
293 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
294 if (rmmu_info.ap_encodings[i]) {
295 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
296 radix_page_info->count++;
299 return radix_page_info;
302 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
303 bool radix, bool gtse,
304 uint64_t proc_tbl)
306 CPUState *cs = CPU(cpu);
307 int ret;
308 uint64_t flags = 0;
309 struct kvm_ppc_mmuv3_cfg cfg = {
310 .process_table = proc_tbl,
313 if (radix) {
314 flags |= KVM_PPC_MMUV3_RADIX;
316 if (gtse) {
317 flags |= KVM_PPC_MMUV3_GTSE;
319 cfg.flags = flags;
320 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
321 switch (ret) {
322 case 0:
323 return H_SUCCESS;
324 case -EINVAL:
325 return H_PARAMETER;
326 case -ENODEV:
327 return H_NOT_AVAILABLE;
328 default:
329 return H_HARDWARE;
333 bool kvmppc_hpt_needs_host_contiguous_pages(void)
335 static struct kvm_ppc_smmu_info smmu_info;
337 if (!kvm_enabled()) {
338 return false;
341 kvm_get_smmu_info(&smmu_info, &error_fatal);
342 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
345 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
347 struct kvm_ppc_smmu_info smmu_info;
348 int iq, ik, jq, jk;
349 Error *local_err = NULL;
351 /* For now, we only have anything to check on hash64 MMUs */
352 if (!cpu->hash64_opts || !kvm_enabled()) {
353 return;
356 kvm_get_smmu_info(&smmu_info, &local_err);
357 if (local_err) {
358 error_propagate(errp, local_err);
359 return;
362 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
363 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
364 error_setg(errp,
365 "KVM does not support 1TiB segments which guest expects");
366 return;
369 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
370 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
371 smmu_info.slb_size, cpu->hash64_opts->slb_size);
372 return;
376 * Verify that every pagesize supported by the cpu model is
377 * supported by KVM with the same encodings
379 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
380 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
381 struct kvm_ppc_one_seg_page_size *ksps;
383 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
384 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
385 break;
388 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
389 error_setg(errp, "KVM doesn't support for base page shift %u",
390 qsps->page_shift);
391 return;
394 ksps = &smmu_info.sps[ik];
395 if (ksps->slb_enc != qsps->slb_enc) {
396 error_setg(errp,
397 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
398 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
399 return;
402 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
403 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
404 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
405 break;
409 if (jk >= ARRAY_SIZE(ksps->enc)) {
410 error_setg(errp, "KVM doesn't support page shift %u/%u",
411 qsps->enc[jq].page_shift, qsps->page_shift);
412 return;
414 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
415 error_setg(errp,
416 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
417 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
418 qsps->page_shift, qsps->enc[jq].pte_enc);
419 return;
424 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
426 * Mostly what guest pagesizes we can use are related to the
427 * host pages used to map guest RAM, which is handled in the
428 * platform code. Cache-Inhibited largepages (64k) however are
429 * used for I/O, so if they're mapped to the host at all it
430 * will be a normal mapping, not a special hugepage one used
431 * for RAM.
433 if (getpagesize() < 0x10000) {
434 error_setg(errp,
435 "KVM can't supply 64kiB CI pages, which guest expects");
439 #endif /* !defined (TARGET_PPC64) */
441 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
443 return POWERPC_CPU(cpu)->vcpu_id;
447 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
448 * only 1 watchpoint, so array size of 4 is sufficient for now.
450 #define MAX_HW_BKPTS 4
452 static struct HWBreakpoint {
453 target_ulong addr;
454 int type;
455 } hw_debug_points[MAX_HW_BKPTS];
457 static CPUWatchpoint hw_watchpoint;
459 /* Default there is no breakpoint and watchpoint supported */
460 static int max_hw_breakpoint;
461 static int max_hw_watchpoint;
462 static int nb_hw_breakpoint;
463 static int nb_hw_watchpoint;
465 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
467 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
468 max_hw_breakpoint = 2;
469 max_hw_watchpoint = 2;
472 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
473 fprintf(stderr, "Error initializing h/w breakpoints\n");
474 return;
478 int kvm_arch_init_vcpu(CPUState *cs)
480 PowerPCCPU *cpu = POWERPC_CPU(cs);
481 CPUPPCState *cenv = &cpu->env;
482 int ret;
484 /* Synchronize sregs with kvm */
485 ret = kvm_arch_sync_sregs(cpu);
486 if (ret) {
487 if (ret == -EINVAL) {
488 error_report("Register sync failed... If you're using kvm-hv.ko,"
489 " only \"-cpu host\" is possible");
491 return ret;
494 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
496 switch (cenv->mmu_model) {
497 case POWERPC_MMU_BOOKE206:
498 /* This target supports access to KVM's guest TLB */
499 ret = kvm_booke206_tlb_init(cpu);
500 break;
501 case POWERPC_MMU_2_07:
502 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
504 * KVM-HV has transactional memory on POWER8 also without
505 * the KVM_CAP_PPC_HTM extension, so enable it here
506 * instead as long as it's availble to userspace on the
507 * host.
509 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
510 cap_htm = true;
513 break;
514 default:
515 break;
518 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
519 kvmppc_hw_debug_points_init(cenv);
521 return ret;
524 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
526 CPUPPCState *env = &cpu->env;
527 CPUState *cs = CPU(cpu);
528 struct kvm_dirty_tlb dirty_tlb;
529 unsigned char *bitmap;
530 int ret;
532 if (!env->kvm_sw_tlb) {
533 return;
536 bitmap = g_malloc((env->nb_tlb + 7) / 8);
537 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
539 dirty_tlb.bitmap = (uintptr_t)bitmap;
540 dirty_tlb.num_dirty = env->nb_tlb;
542 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
543 if (ret) {
544 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
545 __func__, strerror(-ret));
548 g_free(bitmap);
551 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
553 PowerPCCPU *cpu = POWERPC_CPU(cs);
554 CPUPPCState *env = &cpu->env;
555 union {
556 uint32_t u32;
557 uint64_t u64;
558 } val;
559 struct kvm_one_reg reg = {
560 .id = id,
561 .addr = (uintptr_t) &val,
563 int ret;
565 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
566 if (ret != 0) {
567 trace_kvm_failed_spr_get(spr, strerror(errno));
568 } else {
569 switch (id & KVM_REG_SIZE_MASK) {
570 case KVM_REG_SIZE_U32:
571 env->spr[spr] = val.u32;
572 break;
574 case KVM_REG_SIZE_U64:
575 env->spr[spr] = val.u64;
576 break;
578 default:
579 /* Don't handle this size yet */
580 abort();
585 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
587 PowerPCCPU *cpu = POWERPC_CPU(cs);
588 CPUPPCState *env = &cpu->env;
589 union {
590 uint32_t u32;
591 uint64_t u64;
592 } val;
593 struct kvm_one_reg reg = {
594 .id = id,
595 .addr = (uintptr_t) &val,
597 int ret;
599 switch (id & KVM_REG_SIZE_MASK) {
600 case KVM_REG_SIZE_U32:
601 val.u32 = env->spr[spr];
602 break;
604 case KVM_REG_SIZE_U64:
605 val.u64 = env->spr[spr];
606 break;
608 default:
609 /* Don't handle this size yet */
610 abort();
613 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
614 if (ret != 0) {
615 trace_kvm_failed_spr_set(spr, strerror(errno));
619 static int kvm_put_fp(CPUState *cs)
621 PowerPCCPU *cpu = POWERPC_CPU(cs);
622 CPUPPCState *env = &cpu->env;
623 struct kvm_one_reg reg;
624 int i;
625 int ret;
627 if (env->insns_flags & PPC_FLOAT) {
628 uint64_t fpscr = env->fpscr;
629 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
631 reg.id = KVM_REG_PPC_FPSCR;
632 reg.addr = (uintptr_t)&fpscr;
633 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
634 if (ret < 0) {
635 trace_kvm_failed_fpscr_set(strerror(errno));
636 return ret;
639 for (i = 0; i < 32; i++) {
640 uint64_t vsr[2];
641 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
642 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
644 #ifdef HOST_WORDS_BIGENDIAN
645 vsr[0] = float64_val(*fpr);
646 vsr[1] = *vsrl;
647 #else
648 vsr[0] = *vsrl;
649 vsr[1] = float64_val(*fpr);
650 #endif
651 reg.addr = (uintptr_t) &vsr;
652 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
654 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
655 if (ret < 0) {
656 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
657 strerror(errno));
658 return ret;
663 if (env->insns_flags & PPC_ALTIVEC) {
664 reg.id = KVM_REG_PPC_VSCR;
665 reg.addr = (uintptr_t)&env->vscr;
666 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
667 if (ret < 0) {
668 trace_kvm_failed_vscr_set(strerror(errno));
669 return ret;
672 for (i = 0; i < 32; i++) {
673 reg.id = KVM_REG_PPC_VR(i);
674 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
675 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
676 if (ret < 0) {
677 trace_kvm_failed_vr_set(i, strerror(errno));
678 return ret;
683 return 0;
686 static int kvm_get_fp(CPUState *cs)
688 PowerPCCPU *cpu = POWERPC_CPU(cs);
689 CPUPPCState *env = &cpu->env;
690 struct kvm_one_reg reg;
691 int i;
692 int ret;
694 if (env->insns_flags & PPC_FLOAT) {
695 uint64_t fpscr;
696 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
698 reg.id = KVM_REG_PPC_FPSCR;
699 reg.addr = (uintptr_t)&fpscr;
700 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701 if (ret < 0) {
702 trace_kvm_failed_fpscr_get(strerror(errno));
703 return ret;
704 } else {
705 env->fpscr = fpscr;
708 for (i = 0; i < 32; i++) {
709 uint64_t vsr[2];
710 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
711 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
713 reg.addr = (uintptr_t) &vsr;
714 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
716 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
717 if (ret < 0) {
718 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
719 strerror(errno));
720 return ret;
721 } else {
722 #ifdef HOST_WORDS_BIGENDIAN
723 *fpr = vsr[0];
724 if (vsx) {
725 *vsrl = vsr[1];
727 #else
728 *fpr = vsr[1];
729 if (vsx) {
730 *vsrl = vsr[0];
732 #endif
737 if (env->insns_flags & PPC_ALTIVEC) {
738 reg.id = KVM_REG_PPC_VSCR;
739 reg.addr = (uintptr_t)&env->vscr;
740 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
741 if (ret < 0) {
742 trace_kvm_failed_vscr_get(strerror(errno));
743 return ret;
746 for (i = 0; i < 32; i++) {
747 reg.id = KVM_REG_PPC_VR(i);
748 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
749 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
750 if (ret < 0) {
751 trace_kvm_failed_vr_get(i, strerror(errno));
752 return ret;
757 return 0;
760 #if defined(TARGET_PPC64)
761 static int kvm_get_vpa(CPUState *cs)
763 PowerPCCPU *cpu = POWERPC_CPU(cs);
764 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
765 struct kvm_one_reg reg;
766 int ret;
768 reg.id = KVM_REG_PPC_VPA_ADDR;
769 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
770 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
771 if (ret < 0) {
772 trace_kvm_failed_vpa_addr_get(strerror(errno));
773 return ret;
776 assert((uintptr_t)&spapr_cpu->slb_shadow_size
777 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
778 reg.id = KVM_REG_PPC_VPA_SLB;
779 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
780 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
781 if (ret < 0) {
782 trace_kvm_failed_slb_get(strerror(errno));
783 return ret;
786 assert((uintptr_t)&spapr_cpu->dtl_size
787 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
788 reg.id = KVM_REG_PPC_VPA_DTL;
789 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
790 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
791 if (ret < 0) {
792 trace_kvm_failed_dtl_get(strerror(errno));
793 return ret;
796 return 0;
799 static int kvm_put_vpa(CPUState *cs)
801 PowerPCCPU *cpu = POWERPC_CPU(cs);
802 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
803 struct kvm_one_reg reg;
804 int ret;
807 * SLB shadow or DTL can't be registered unless a master VPA is
808 * registered. That means when restoring state, if a VPA *is*
809 * registered, we need to set that up first. If not, we need to
810 * deregister the others before deregistering the master VPA
812 assert(spapr_cpu->vpa_addr
813 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
815 if (spapr_cpu->vpa_addr) {
816 reg.id = KVM_REG_PPC_VPA_ADDR;
817 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
818 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
819 if (ret < 0) {
820 trace_kvm_failed_vpa_addr_set(strerror(errno));
821 return ret;
825 assert((uintptr_t)&spapr_cpu->slb_shadow_size
826 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
827 reg.id = KVM_REG_PPC_VPA_SLB;
828 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
829 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
830 if (ret < 0) {
831 trace_kvm_failed_slb_set(strerror(errno));
832 return ret;
835 assert((uintptr_t)&spapr_cpu->dtl_size
836 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
837 reg.id = KVM_REG_PPC_VPA_DTL;
838 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
839 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
840 if (ret < 0) {
841 trace_kvm_failed_dtl_set(strerror(errno));
842 return ret;
845 if (!spapr_cpu->vpa_addr) {
846 reg.id = KVM_REG_PPC_VPA_ADDR;
847 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
848 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
849 if (ret < 0) {
850 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
851 return ret;
855 return 0;
857 #endif /* TARGET_PPC64 */
859 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
861 CPUPPCState *env = &cpu->env;
862 struct kvm_sregs sregs;
863 int i;
865 sregs.pvr = env->spr[SPR_PVR];
867 if (cpu->vhyp) {
868 PPCVirtualHypervisorClass *vhc =
869 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
870 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
871 } else {
872 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
875 /* Sync SLB */
876 #ifdef TARGET_PPC64
877 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
878 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
879 if (env->slb[i].esid & SLB_ESID_V) {
880 sregs.u.s.ppc64.slb[i].slbe |= i;
882 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
884 #endif
886 /* Sync SRs */
887 for (i = 0; i < 16; i++) {
888 sregs.u.s.ppc32.sr[i] = env->sr[i];
891 /* Sync BATs */
892 for (i = 0; i < 8; i++) {
893 /* Beware. We have to swap upper and lower bits here */
894 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
895 | env->DBAT[1][i];
896 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
897 | env->IBAT[1][i];
900 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
903 int kvm_arch_put_registers(CPUState *cs, int level)
905 PowerPCCPU *cpu = POWERPC_CPU(cs);
906 CPUPPCState *env = &cpu->env;
907 struct kvm_regs regs;
908 int ret;
909 int i;
911 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
912 if (ret < 0) {
913 return ret;
916 regs.ctr = env->ctr;
917 regs.lr = env->lr;
918 regs.xer = cpu_read_xer(env);
919 regs.msr = env->msr;
920 regs.pc = env->nip;
922 regs.srr0 = env->spr[SPR_SRR0];
923 regs.srr1 = env->spr[SPR_SRR1];
925 regs.sprg0 = env->spr[SPR_SPRG0];
926 regs.sprg1 = env->spr[SPR_SPRG1];
927 regs.sprg2 = env->spr[SPR_SPRG2];
928 regs.sprg3 = env->spr[SPR_SPRG3];
929 regs.sprg4 = env->spr[SPR_SPRG4];
930 regs.sprg5 = env->spr[SPR_SPRG5];
931 regs.sprg6 = env->spr[SPR_SPRG6];
932 regs.sprg7 = env->spr[SPR_SPRG7];
934 regs.pid = env->spr[SPR_BOOKE_PID];
936 for (i = 0; i < 32; i++) {
937 regs.gpr[i] = env->gpr[i];
940 regs.cr = 0;
941 for (i = 0; i < 8; i++) {
942 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
945 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
946 if (ret < 0) {
947 return ret;
950 kvm_put_fp(cs);
952 if (env->tlb_dirty) {
953 kvm_sw_tlb_put(cpu);
954 env->tlb_dirty = false;
957 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
958 ret = kvmppc_put_books_sregs(cpu);
959 if (ret < 0) {
960 return ret;
964 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
965 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
968 if (cap_one_reg) {
969 int i;
972 * We deliberately ignore errors here, for kernels which have
973 * the ONE_REG calls, but don't support the specific
974 * registers, there's a reasonable chance things will still
975 * work, at least until we try to migrate.
977 for (i = 0; i < 1024; i++) {
978 uint64_t id = env->spr_cb[i].one_reg_id;
980 if (id != 0) {
981 kvm_put_one_spr(cs, id, i);
985 #ifdef TARGET_PPC64
986 if (msr_ts) {
987 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
990 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
994 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
995 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
996 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
997 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
998 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
999 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1000 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1001 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1002 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1005 if (cap_papr) {
1006 if (kvm_put_vpa(cs) < 0) {
1007 trace_kvm_failed_put_vpa();
1011 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1012 #endif /* TARGET_PPC64 */
1015 return ret;
1018 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1020 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1023 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1025 CPUPPCState *env = &cpu->env;
1026 struct kvm_sregs sregs;
1027 int ret;
1029 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1030 if (ret < 0) {
1031 return ret;
1034 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1035 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1036 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1037 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1038 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1039 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1040 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1041 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1042 env->spr[SPR_DECR] = sregs.u.e.dec;
1043 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1044 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1045 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1048 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1049 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1050 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1051 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1052 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1053 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1056 if (sregs.u.e.features & KVM_SREGS_E_64) {
1057 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1060 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1061 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1064 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1065 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1066 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1067 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1068 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1069 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1070 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1071 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1072 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1073 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1074 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1075 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1076 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1077 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1078 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1079 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1080 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1081 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1082 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1083 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1084 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1085 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1086 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1087 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1088 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1089 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1090 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1091 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1092 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1093 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1094 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1095 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1096 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1098 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1099 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1100 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1101 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1102 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1103 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1104 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1107 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1108 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1109 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1112 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1113 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1114 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1115 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1116 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1120 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1121 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1122 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1123 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1124 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1125 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1126 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1127 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1128 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1129 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1130 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1133 if (sregs.u.e.features & KVM_SREGS_EXP) {
1134 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1137 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1138 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1139 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1142 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1143 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1144 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1145 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1147 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1148 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1149 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1153 return 0;
1156 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1158 CPUPPCState *env = &cpu->env;
1159 struct kvm_sregs sregs;
1160 int ret;
1161 int i;
1163 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1164 if (ret < 0) {
1165 return ret;
1168 if (!cpu->vhyp) {
1169 ppc_store_sdr1(env, sregs.u.s.sdr1);
1172 /* Sync SLB */
1173 #ifdef TARGET_PPC64
1175 * The packed SLB array we get from KVM_GET_SREGS only contains
1176 * information about valid entries. So we flush our internal copy
1177 * to get rid of stale ones, then put all valid SLB entries back
1178 * in.
1180 memset(env->slb, 0, sizeof(env->slb));
1181 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1182 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1183 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1185 * Only restore valid entries
1187 if (rb & SLB_ESID_V) {
1188 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1191 #endif
1193 /* Sync SRs */
1194 for (i = 0; i < 16; i++) {
1195 env->sr[i] = sregs.u.s.ppc32.sr[i];
1198 /* Sync BATs */
1199 for (i = 0; i < 8; i++) {
1200 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1201 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1202 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1203 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1206 return 0;
1209 int kvm_arch_get_registers(CPUState *cs)
1211 PowerPCCPU *cpu = POWERPC_CPU(cs);
1212 CPUPPCState *env = &cpu->env;
1213 struct kvm_regs regs;
1214 uint32_t cr;
1215 int i, ret;
1217 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1218 if (ret < 0) {
1219 return ret;
1222 cr = regs.cr;
1223 for (i = 7; i >= 0; i--) {
1224 env->crf[i] = cr & 15;
1225 cr >>= 4;
1228 env->ctr = regs.ctr;
1229 env->lr = regs.lr;
1230 cpu_write_xer(env, regs.xer);
1231 env->msr = regs.msr;
1232 env->nip = regs.pc;
1234 env->spr[SPR_SRR0] = regs.srr0;
1235 env->spr[SPR_SRR1] = regs.srr1;
1237 env->spr[SPR_SPRG0] = regs.sprg0;
1238 env->spr[SPR_SPRG1] = regs.sprg1;
1239 env->spr[SPR_SPRG2] = regs.sprg2;
1240 env->spr[SPR_SPRG3] = regs.sprg3;
1241 env->spr[SPR_SPRG4] = regs.sprg4;
1242 env->spr[SPR_SPRG5] = regs.sprg5;
1243 env->spr[SPR_SPRG6] = regs.sprg6;
1244 env->spr[SPR_SPRG7] = regs.sprg7;
1246 env->spr[SPR_BOOKE_PID] = regs.pid;
1248 for (i = 0; i < 32; i++) {
1249 env->gpr[i] = regs.gpr[i];
1252 kvm_get_fp(cs);
1254 if (cap_booke_sregs) {
1255 ret = kvmppc_get_booke_sregs(cpu);
1256 if (ret < 0) {
1257 return ret;
1261 if (cap_segstate) {
1262 ret = kvmppc_get_books_sregs(cpu);
1263 if (ret < 0) {
1264 return ret;
1268 if (cap_hior) {
1269 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1272 if (cap_one_reg) {
1273 int i;
1276 * We deliberately ignore errors here, for kernels which have
1277 * the ONE_REG calls, but don't support the specific
1278 * registers, there's a reasonable chance things will still
1279 * work, at least until we try to migrate.
1281 for (i = 0; i < 1024; i++) {
1282 uint64_t id = env->spr_cb[i].one_reg_id;
1284 if (id != 0) {
1285 kvm_get_one_spr(cs, id, i);
1289 #ifdef TARGET_PPC64
1290 if (msr_ts) {
1291 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1294 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1299 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1300 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1301 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1302 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1303 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1304 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1305 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1306 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1309 if (cap_papr) {
1310 if (kvm_get_vpa(cs) < 0) {
1311 trace_kvm_failed_get_vpa();
1315 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1316 #endif
1319 return 0;
1322 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1324 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1326 if (irq != PPC_INTERRUPT_EXT) {
1327 return 0;
1330 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1331 return 0;
1334 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1336 return 0;
1339 #if defined(TARGET_PPC64)
1340 #define PPC_INPUT_INT PPC970_INPUT_INT
1341 #else
1342 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1343 #endif
1345 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1347 PowerPCCPU *cpu = POWERPC_CPU(cs);
1348 CPUPPCState *env = &cpu->env;
1349 int r;
1350 unsigned irq;
1352 qemu_mutex_lock_iothread();
1355 * PowerPC QEMU tracks the various core input pins (interrupt,
1356 * critical interrupt, reset, etc) in PPC-specific
1357 * env->irq_input_state.
1359 if (!cap_interrupt_level &&
1360 run->ready_for_interrupt_injection &&
1361 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1362 (env->irq_input_state & (1 << PPC_INPUT_INT)))
1365 * For now KVM disregards the 'irq' argument. However, in the
1366 * future KVM could cache it in-kernel to avoid a heavyweight
1367 * exit when reading the UIC.
1369 irq = KVM_INTERRUPT_SET;
1371 trace_kvm_injected_interrupt(irq);
1372 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1373 if (r < 0) {
1374 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1377 /* Always wake up soon in case the interrupt was level based */
1378 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1379 (NANOSECONDS_PER_SECOND / 50));
1383 * We don't know if there are more interrupts pending after
1384 * this. However, the guest will return to userspace in the course
1385 * of handling this one anyways, so we will get a chance to
1386 * deliver the rest.
1389 qemu_mutex_unlock_iothread();
1392 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1394 return MEMTXATTRS_UNSPECIFIED;
1397 int kvm_arch_process_async_events(CPUState *cs)
1399 return cs->halted;
1402 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1404 CPUState *cs = CPU(cpu);
1405 CPUPPCState *env = &cpu->env;
1407 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1408 cs->halted = 1;
1409 cs->exception_index = EXCP_HLT;
1412 return 0;
1415 /* map dcr access to existing qemu dcr emulation */
1416 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1417 uint32_t dcrn, uint32_t *data)
1419 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1420 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1423 return 0;
1426 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1427 uint32_t dcrn, uint32_t data)
1429 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1430 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1433 return 0;
1436 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1438 /* Mixed endian case is not handled */
1439 uint32_t sc = debug_inst_opcode;
1441 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1442 sizeof(sc), 0) ||
1443 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1444 return -EINVAL;
1447 return 0;
1450 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1452 uint32_t sc;
1454 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1455 sc != debug_inst_opcode ||
1456 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1457 sizeof(sc), 1)) {
1458 return -EINVAL;
1461 return 0;
1464 static int find_hw_breakpoint(target_ulong addr, int type)
1466 int n;
1468 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1469 <= ARRAY_SIZE(hw_debug_points));
1471 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1472 if (hw_debug_points[n].addr == addr &&
1473 hw_debug_points[n].type == type) {
1474 return n;
1478 return -1;
1481 static int find_hw_watchpoint(target_ulong addr, int *flag)
1483 int n;
1485 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1486 if (n >= 0) {
1487 *flag = BP_MEM_ACCESS;
1488 return n;
1491 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1492 if (n >= 0) {
1493 *flag = BP_MEM_WRITE;
1494 return n;
1497 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1498 if (n >= 0) {
1499 *flag = BP_MEM_READ;
1500 return n;
1503 return -1;
1506 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1507 target_ulong len, int type)
1509 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1510 return -ENOBUFS;
1513 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1514 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1516 switch (type) {
1517 case GDB_BREAKPOINT_HW:
1518 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1519 return -ENOBUFS;
1522 if (find_hw_breakpoint(addr, type) >= 0) {
1523 return -EEXIST;
1526 nb_hw_breakpoint++;
1527 break;
1529 case GDB_WATCHPOINT_WRITE:
1530 case GDB_WATCHPOINT_READ:
1531 case GDB_WATCHPOINT_ACCESS:
1532 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1533 return -ENOBUFS;
1536 if (find_hw_breakpoint(addr, type) >= 0) {
1537 return -EEXIST;
1540 nb_hw_watchpoint++;
1541 break;
1543 default:
1544 return -ENOSYS;
1547 return 0;
1550 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1551 target_ulong len, int type)
1553 int n;
1555 n = find_hw_breakpoint(addr, type);
1556 if (n < 0) {
1557 return -ENOENT;
1560 switch (type) {
1561 case GDB_BREAKPOINT_HW:
1562 nb_hw_breakpoint--;
1563 break;
1565 case GDB_WATCHPOINT_WRITE:
1566 case GDB_WATCHPOINT_READ:
1567 case GDB_WATCHPOINT_ACCESS:
1568 nb_hw_watchpoint--;
1569 break;
1571 default:
1572 return -ENOSYS;
1574 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1576 return 0;
1579 void kvm_arch_remove_all_hw_breakpoints(void)
1581 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1584 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1586 int n;
1588 /* Software Breakpoint updates */
1589 if (kvm_sw_breakpoints_active(cs)) {
1590 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1593 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1594 <= ARRAY_SIZE(hw_debug_points));
1595 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1597 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1598 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1599 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1600 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1601 switch (hw_debug_points[n].type) {
1602 case GDB_BREAKPOINT_HW:
1603 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1604 break;
1605 case GDB_WATCHPOINT_WRITE:
1606 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1607 break;
1608 case GDB_WATCHPOINT_READ:
1609 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1610 break;
1611 case GDB_WATCHPOINT_ACCESS:
1612 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1613 KVMPPC_DEBUG_WATCH_READ;
1614 break;
1615 default:
1616 cpu_abort(cs, "Unsupported breakpoint type\n");
1618 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1623 static int kvm_handle_hw_breakpoint(CPUState *cs,
1624 struct kvm_debug_exit_arch *arch_info)
1626 int handle = 0;
1627 int n;
1628 int flag = 0;
1630 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1631 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1632 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1633 if (n >= 0) {
1634 handle = 1;
1636 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1637 KVMPPC_DEBUG_WATCH_WRITE)) {
1638 n = find_hw_watchpoint(arch_info->address, &flag);
1639 if (n >= 0) {
1640 handle = 1;
1641 cs->watchpoint_hit = &hw_watchpoint;
1642 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1643 hw_watchpoint.flags = flag;
1647 return handle;
1650 static int kvm_handle_singlestep(void)
1652 return 1;
1655 static int kvm_handle_sw_breakpoint(void)
1657 return 1;
1660 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1662 CPUState *cs = CPU(cpu);
1663 CPUPPCState *env = &cpu->env;
1664 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1666 if (cs->singlestep_enabled) {
1667 return kvm_handle_singlestep();
1670 if (arch_info->status) {
1671 return kvm_handle_hw_breakpoint(cs, arch_info);
1674 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1675 return kvm_handle_sw_breakpoint();
1679 * QEMU is not able to handle debug exception, so inject
1680 * program exception to guest;
1681 * Yes program exception NOT debug exception !!
1682 * When QEMU is using debug resources then debug exception must
1683 * be always set. To achieve this we set MSR_DE and also set
1684 * MSRP_DEP so guest cannot change MSR_DE.
1685 * When emulating debug resource for guest we want guest
1686 * to control MSR_DE (enable/disable debug interrupt on need).
1687 * Supporting both configurations are NOT possible.
1688 * So the result is that we cannot share debug resources
1689 * between QEMU and Guest on BOOKE architecture.
1690 * In the current design QEMU gets the priority over guest,
1691 * this means that if QEMU is using debug resources then guest
1692 * cannot use them;
1693 * For software breakpoint QEMU uses a privileged instruction;
1694 * So there cannot be any reason that we are here for guest
1695 * set debug exception, only possibility is guest executed a
1696 * privileged / illegal instruction and that's why we are
1697 * injecting a program interrupt.
1699 cpu_synchronize_state(cs);
1701 * env->nip is PC, so increment this by 4 to use
1702 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1704 env->nip += 4;
1705 cs->exception_index = POWERPC_EXCP_PROGRAM;
1706 env->error_code = POWERPC_EXCP_INVAL;
1707 ppc_cpu_do_interrupt(cs);
1709 return 0;
1712 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1714 PowerPCCPU *cpu = POWERPC_CPU(cs);
1715 CPUPPCState *env = &cpu->env;
1716 int ret;
1718 qemu_mutex_lock_iothread();
1720 switch (run->exit_reason) {
1721 case KVM_EXIT_DCR:
1722 if (run->dcr.is_write) {
1723 trace_kvm_handle_dcr_write();
1724 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1725 } else {
1726 trace_kvm_handle_dcr_read();
1727 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1729 break;
1730 case KVM_EXIT_HLT:
1731 trace_kvm_handle_halt();
1732 ret = kvmppc_handle_halt(cpu);
1733 break;
1734 #if defined(TARGET_PPC64)
1735 case KVM_EXIT_PAPR_HCALL:
1736 trace_kvm_handle_papr_hcall();
1737 run->papr_hcall.ret = spapr_hypercall(cpu,
1738 run->papr_hcall.nr,
1739 run->papr_hcall.args);
1740 ret = 0;
1741 break;
1742 #endif
1743 case KVM_EXIT_EPR:
1744 trace_kvm_handle_epr();
1745 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1746 ret = 0;
1747 break;
1748 case KVM_EXIT_WATCHDOG:
1749 trace_kvm_handle_watchdog_expiry();
1750 watchdog_perform_action();
1751 ret = 0;
1752 break;
1754 case KVM_EXIT_DEBUG:
1755 trace_kvm_handle_debug_exception();
1756 if (kvm_handle_debug(cpu, run)) {
1757 ret = EXCP_DEBUG;
1758 break;
1760 /* re-enter, this exception was guest-internal */
1761 ret = 0;
1762 break;
1764 default:
1765 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1766 ret = -1;
1767 break;
1770 qemu_mutex_unlock_iothread();
1771 return ret;
1774 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1776 CPUState *cs = CPU(cpu);
1777 uint32_t bits = tsr_bits;
1778 struct kvm_one_reg reg = {
1779 .id = KVM_REG_PPC_OR_TSR,
1780 .addr = (uintptr_t) &bits,
1783 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1786 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1789 CPUState *cs = CPU(cpu);
1790 uint32_t bits = tsr_bits;
1791 struct kvm_one_reg reg = {
1792 .id = KVM_REG_PPC_CLEAR_TSR,
1793 .addr = (uintptr_t) &bits,
1796 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1799 int kvmppc_set_tcr(PowerPCCPU *cpu)
1801 CPUState *cs = CPU(cpu);
1802 CPUPPCState *env = &cpu->env;
1803 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1805 struct kvm_one_reg reg = {
1806 .id = KVM_REG_PPC_TCR,
1807 .addr = (uintptr_t) &tcr,
1810 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1813 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1815 CPUState *cs = CPU(cpu);
1816 int ret;
1818 if (!kvm_enabled()) {
1819 return -1;
1822 if (!cap_ppc_watchdog) {
1823 printf("warning: KVM does not support watchdog");
1824 return -1;
1827 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1828 if (ret < 0) {
1829 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1830 __func__, strerror(-ret));
1831 return ret;
1834 return ret;
1837 static int read_cpuinfo(const char *field, char *value, int len)
1839 FILE *f;
1840 int ret = -1;
1841 int field_len = strlen(field);
1842 char line[512];
1844 f = fopen("/proc/cpuinfo", "r");
1845 if (!f) {
1846 return -1;
1849 do {
1850 if (!fgets(line, sizeof(line), f)) {
1851 break;
1853 if (!strncmp(line, field, field_len)) {
1854 pstrcpy(value, len, line);
1855 ret = 0;
1856 break;
1858 } while (*line);
1860 fclose(f);
1862 return ret;
1865 uint32_t kvmppc_get_tbfreq(void)
1867 char line[512];
1868 char *ns;
1869 uint32_t retval = NANOSECONDS_PER_SECOND;
1871 if (read_cpuinfo("timebase", line, sizeof(line))) {
1872 return retval;
1875 ns = strchr(line, ':');
1876 if (!ns) {
1877 return retval;
1880 ns++;
1882 return atoi(ns);
1885 bool kvmppc_get_host_serial(char **value)
1887 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1888 NULL);
1891 bool kvmppc_get_host_model(char **value)
1893 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1896 /* Try to find a device tree node for a CPU with clock-frequency property */
1897 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1899 struct dirent *dirp;
1900 DIR *dp;
1902 dp = opendir(PROC_DEVTREE_CPU);
1903 if (!dp) {
1904 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1905 return -1;
1908 buf[0] = '\0';
1909 while ((dirp = readdir(dp)) != NULL) {
1910 FILE *f;
1911 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1912 dirp->d_name);
1913 f = fopen(buf, "r");
1914 if (f) {
1915 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1916 fclose(f);
1917 break;
1919 buf[0] = '\0';
1921 closedir(dp);
1922 if (buf[0] == '\0') {
1923 printf("Unknown host!\n");
1924 return -1;
1927 return 0;
1930 static uint64_t kvmppc_read_int_dt(const char *filename)
1932 union {
1933 uint32_t v32;
1934 uint64_t v64;
1935 } u;
1936 FILE *f;
1937 int len;
1939 f = fopen(filename, "rb");
1940 if (!f) {
1941 return -1;
1944 len = fread(&u, 1, sizeof(u), f);
1945 fclose(f);
1946 switch (len) {
1947 case 4:
1948 /* property is a 32-bit quantity */
1949 return be32_to_cpu(u.v32);
1950 case 8:
1951 return be64_to_cpu(u.v64);
1954 return 0;
1958 * Read a CPU node property from the host device tree that's a single
1959 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1960 * (can't find or open the property, or doesn't understand the format)
1962 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1964 char buf[PATH_MAX], *tmp;
1965 uint64_t val;
1967 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1968 return -1;
1971 tmp = g_strdup_printf("%s/%s", buf, propname);
1972 val = kvmppc_read_int_dt(tmp);
1973 g_free(tmp);
1975 return val;
1978 uint64_t kvmppc_get_clockfreq(void)
1980 return kvmppc_read_int_cpu_dt("clock-frequency");
1983 static int kvmppc_get_dec_bits(void)
1985 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1987 if (nr_bits > 0) {
1988 return nr_bits;
1990 return 0;
1993 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1995 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1996 CPUState *cs = CPU(cpu);
1998 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1999 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
2000 return 0;
2003 return 1;
2006 int kvmppc_get_hasidle(CPUPPCState *env)
2008 struct kvm_ppc_pvinfo pvinfo;
2010 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
2011 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
2012 return 1;
2015 return 0;
2018 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2020 uint32_t *hc = (uint32_t *)buf;
2021 struct kvm_ppc_pvinfo pvinfo;
2023 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2024 memcpy(buf, pvinfo.hcall, buf_len);
2025 return 0;
2029 * Fallback to always fail hypercalls regardless of endianness:
2031 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2032 * li r3, -1
2033 * b .+8 (becomes nop in wrong endian)
2034 * bswap32(li r3, -1)
2037 hc[0] = cpu_to_be32(0x08000048);
2038 hc[1] = cpu_to_be32(0x3860ffff);
2039 hc[2] = cpu_to_be32(0x48000008);
2040 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2042 return 1;
2045 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2047 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2050 void kvmppc_enable_logical_ci_hcalls(void)
2053 * FIXME: it would be nice if we could detect the cases where
2054 * we're using a device which requires the in kernel
2055 * implementation of these hcalls, but the kernel lacks them and
2056 * produce a warning.
2058 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2059 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2062 void kvmppc_enable_set_mode_hcall(void)
2064 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2067 void kvmppc_enable_clear_ref_mod_hcalls(void)
2069 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2070 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2073 void kvmppc_enable_h_page_init(void)
2075 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2078 void kvmppc_set_papr(PowerPCCPU *cpu)
2080 CPUState *cs = CPU(cpu);
2081 int ret;
2083 if (!kvm_enabled()) {
2084 return;
2087 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2088 if (ret) {
2089 error_report("This vCPU type or KVM version does not support PAPR");
2090 exit(1);
2094 * Update the capability flag so we sync the right information
2095 * with kvm
2097 cap_papr = 1;
2100 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2102 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2105 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2107 CPUState *cs = CPU(cpu);
2108 int ret;
2110 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2111 if (ret && mpic_proxy) {
2112 error_report("This KVM version does not support EPR");
2113 exit(1);
2117 int kvmppc_smt_threads(void)
2119 return cap_ppc_smt ? cap_ppc_smt : 1;
2122 int kvmppc_set_smt_threads(int smt)
2124 int ret;
2126 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2127 if (!ret) {
2128 cap_ppc_smt = smt;
2130 return ret;
2133 void kvmppc_hint_smt_possible(Error **errp)
2135 int i;
2136 GString *g;
2137 char *s;
2139 assert(kvm_enabled());
2140 if (cap_ppc_smt_possible) {
2141 g = g_string_new("Available VSMT modes:");
2142 for (i = 63; i >= 0; i--) {
2143 if ((1UL << i) & cap_ppc_smt_possible) {
2144 g_string_append_printf(g, " %lu", (1UL << i));
2147 s = g_string_free(g, false);
2148 error_append_hint(errp, "%s.\n", s);
2149 g_free(s);
2150 } else {
2151 error_append_hint(errp,
2152 "This KVM seems to be too old to support VSMT.\n");
2157 #ifdef TARGET_PPC64
2158 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2160 struct kvm_ppc_smmu_info info;
2161 long rampagesize, best_page_shift;
2162 int i;
2165 * Find the largest hardware supported page size that's less than
2166 * or equal to the (logical) backing page size of guest RAM
2168 kvm_get_smmu_info(&info, &error_fatal);
2169 rampagesize = qemu_minrampagesize();
2170 best_page_shift = 0;
2172 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2173 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2175 if (!sps->page_shift) {
2176 continue;
2179 if ((sps->page_shift > best_page_shift)
2180 && ((1UL << sps->page_shift) <= rampagesize)) {
2181 best_page_shift = sps->page_shift;
2185 return MIN(current_size,
2186 1ULL << (best_page_shift + hash_shift - 7));
2188 #endif
2190 bool kvmppc_spapr_use_multitce(void)
2192 return cap_spapr_multitce;
2195 int kvmppc_spapr_enable_inkernel_multitce(void)
2197 int ret;
2199 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2200 H_PUT_TCE_INDIRECT, 1);
2201 if (!ret) {
2202 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2203 H_STUFF_TCE, 1);
2206 return ret;
2209 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2210 uint64_t bus_offset, uint32_t nb_table,
2211 int *pfd, bool need_vfio)
2213 long len;
2214 int fd;
2215 void *table;
2218 * Must set fd to -1 so we don't try to munmap when called for
2219 * destroying the table, which the upper layers -will- do
2221 *pfd = -1;
2222 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2223 return NULL;
2226 if (cap_spapr_tce_64) {
2227 struct kvm_create_spapr_tce_64 args = {
2228 .liobn = liobn,
2229 .page_shift = page_shift,
2230 .offset = bus_offset >> page_shift,
2231 .size = nb_table,
2232 .flags = 0
2234 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2235 if (fd < 0) {
2236 fprintf(stderr,
2237 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2238 liobn);
2239 return NULL;
2241 } else if (cap_spapr_tce) {
2242 uint64_t window_size = (uint64_t) nb_table << page_shift;
2243 struct kvm_create_spapr_tce args = {
2244 .liobn = liobn,
2245 .window_size = window_size,
2247 if ((window_size != args.window_size) || bus_offset) {
2248 return NULL;
2250 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2251 if (fd < 0) {
2252 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2253 liobn);
2254 return NULL;
2256 } else {
2257 return NULL;
2260 len = nb_table * sizeof(uint64_t);
2261 /* FIXME: round this up to page size */
2263 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2264 if (table == MAP_FAILED) {
2265 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2266 liobn);
2267 close(fd);
2268 return NULL;
2271 *pfd = fd;
2272 return table;
2275 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2277 long len;
2279 if (fd < 0) {
2280 return -1;
2283 len = nb_table * sizeof(uint64_t);
2284 if ((munmap(table, len) < 0) ||
2285 (close(fd) < 0)) {
2286 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2287 strerror(errno));
2288 /* Leak the table */
2291 return 0;
2294 int kvmppc_reset_htab(int shift_hint)
2296 uint32_t shift = shift_hint;
2298 if (!kvm_enabled()) {
2299 /* Full emulation, tell caller to allocate htab itself */
2300 return 0;
2302 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2303 int ret;
2304 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2305 if (ret == -ENOTTY) {
2307 * At least some versions of PR KVM advertise the
2308 * capability, but don't implement the ioctl(). Oops.
2309 * Return 0 so that we allocate the htab in qemu, as is
2310 * correct for PR.
2312 return 0;
2313 } else if (ret < 0) {
2314 return ret;
2316 return shift;
2320 * We have a kernel that predates the htab reset calls. For PR
2321 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2322 * this era, it has allocated a 16MB fixed size hash table
2323 * already.
2325 if (kvmppc_is_pr(kvm_state)) {
2326 /* PR - tell caller to allocate htab */
2327 return 0;
2328 } else {
2329 /* HV - assume 16MB kernel allocated htab */
2330 return 24;
2334 static inline uint32_t mfpvr(void)
2336 uint32_t pvr;
2338 asm ("mfpvr %0"
2339 : "=r"(pvr));
2340 return pvr;
2343 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2345 if (on) {
2346 *word |= flags;
2347 } else {
2348 *word &= ~flags;
2352 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2354 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2355 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2356 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2358 /* Now fix up the class with information we can query from the host */
2359 pcc->pvr = mfpvr();
2361 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2362 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2363 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2364 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2365 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2366 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2368 if (dcache_size != -1) {
2369 pcc->l1_dcache_size = dcache_size;
2372 if (icache_size != -1) {
2373 pcc->l1_icache_size = icache_size;
2376 #if defined(TARGET_PPC64)
2377 pcc->radix_page_info = kvm_get_radix_page_info();
2379 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2381 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2382 * compliant. More importantly, advertising ISA 3.00
2383 * architected mode may prevent guests from activating
2384 * necessary DD1 workarounds.
2386 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2387 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2389 #endif /* defined(TARGET_PPC64) */
2392 bool kvmppc_has_cap_epr(void)
2394 return cap_epr;
2397 bool kvmppc_has_cap_fixup_hcalls(void)
2399 return cap_fixup_hcalls;
2402 bool kvmppc_has_cap_htm(void)
2404 return cap_htm;
2407 bool kvmppc_has_cap_mmu_radix(void)
2409 return cap_mmu_radix;
2412 bool kvmppc_has_cap_mmu_hash_v3(void)
2414 return cap_mmu_hash_v3;
2417 static bool kvmppc_power8_host(void)
2419 bool ret = false;
2420 #ifdef TARGET_PPC64
2422 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2423 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2424 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2425 (base_pvr == CPU_POWERPC_POWER8_BASE);
2427 #endif /* TARGET_PPC64 */
2428 return ret;
2431 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2433 bool l1d_thread_priv_req = !kvmppc_power8_host();
2435 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2436 return 2;
2437 } else if ((!l1d_thread_priv_req ||
2438 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2439 (c.character & c.character_mask
2440 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2441 return 1;
2444 return 0;
2447 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2449 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2450 return 2;
2451 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2452 return 1;
2455 return 0;
2458 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2460 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2461 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2462 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2463 return SPAPR_CAP_FIXED_NA;
2464 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2465 return SPAPR_CAP_WORKAROUND;
2466 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2467 return SPAPR_CAP_FIXED_CCD;
2468 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2469 return SPAPR_CAP_FIXED_IBS;
2472 return 0;
2475 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2477 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2478 return 1;
2480 return 0;
2483 bool kvmppc_has_cap_xive(void)
2485 return cap_xive;
2488 static void kvmppc_get_cpu_characteristics(KVMState *s)
2490 struct kvm_ppc_cpu_char c;
2491 int ret;
2493 /* Assume broken */
2494 cap_ppc_safe_cache = 0;
2495 cap_ppc_safe_bounds_check = 0;
2496 cap_ppc_safe_indirect_branch = 0;
2498 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2499 if (!ret) {
2500 return;
2502 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2503 if (ret < 0) {
2504 return;
2507 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2508 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2509 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2510 cap_ppc_count_cache_flush_assist =
2511 parse_cap_ppc_count_cache_flush_assist(c);
2514 int kvmppc_get_cap_safe_cache(void)
2516 return cap_ppc_safe_cache;
2519 int kvmppc_get_cap_safe_bounds_check(void)
2521 return cap_ppc_safe_bounds_check;
2524 int kvmppc_get_cap_safe_indirect_branch(void)
2526 return cap_ppc_safe_indirect_branch;
2529 int kvmppc_get_cap_count_cache_flush_assist(void)
2531 return cap_ppc_count_cache_flush_assist;
2534 bool kvmppc_has_cap_nested_kvm_hv(void)
2536 return !!cap_ppc_nested_kvm_hv;
2539 int kvmppc_set_cap_nested_kvm_hv(int enable)
2541 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2544 bool kvmppc_has_cap_spapr_vfio(void)
2546 return cap_spapr_vfio;
2549 int kvmppc_get_cap_large_decr(void)
2551 return cap_large_decr;
2554 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2556 CPUState *cs = CPU(cpu);
2557 uint64_t lpcr;
2559 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2560 /* Do we need to modify the LPCR? */
2561 if (!!(lpcr & LPCR_LD) != !!enable) {
2562 if (enable) {
2563 lpcr |= LPCR_LD;
2564 } else {
2565 lpcr &= ~LPCR_LD;
2567 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2568 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2570 if (!!(lpcr & LPCR_LD) != !!enable) {
2571 return -1;
2575 return 0;
2578 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2580 uint32_t host_pvr = mfpvr();
2581 PowerPCCPUClass *pvr_pcc;
2583 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2584 if (pvr_pcc == NULL) {
2585 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2588 return pvr_pcc;
2591 static int kvm_ppc_register_host_cpu_type(MachineState *ms)
2593 TypeInfo type_info = {
2594 .name = TYPE_HOST_POWERPC_CPU,
2595 .class_init = kvmppc_host_cpu_class_init,
2597 MachineClass *mc = MACHINE_GET_CLASS(ms);
2598 PowerPCCPUClass *pvr_pcc;
2599 ObjectClass *oc;
2600 DeviceClass *dc;
2601 int i;
2603 pvr_pcc = kvm_ppc_get_host_cpu_class();
2604 if (pvr_pcc == NULL) {
2605 return -1;
2607 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2608 type_register(&type_info);
2609 if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2610 /* override TCG default cpu type with 'host' cpu model */
2611 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2614 oc = object_class_by_name(type_info.name);
2615 g_assert(oc);
2618 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2619 * we want "POWER8" to be a "family" alias that points to the current
2620 * host CPU type, too)
2622 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2623 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2624 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2625 char *suffix;
2627 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2628 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2629 if (suffix) {
2630 *suffix = 0;
2632 break;
2636 return 0;
2639 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2641 struct kvm_rtas_token_args args = {
2642 .token = token,
2645 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2646 return -ENOENT;
2649 strncpy(args.name, function, sizeof(args.name));
2651 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2654 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2656 struct kvm_get_htab_fd s = {
2657 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2658 .start_index = index,
2660 int ret;
2662 if (!cap_htab_fd) {
2663 error_setg(errp, "KVM version doesn't support %s the HPT",
2664 write ? "writing" : "reading");
2665 return -ENOTSUP;
2668 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2669 if (ret < 0) {
2670 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2671 write ? "writing" : "reading", write ? "to" : "from",
2672 strerror(errno));
2673 return -errno;
2676 return ret;
2679 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2681 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2682 uint8_t buf[bufsize];
2683 ssize_t rc;
2685 do {
2686 rc = read(fd, buf, bufsize);
2687 if (rc < 0) {
2688 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2689 strerror(errno));
2690 return rc;
2691 } else if (rc) {
2692 uint8_t *buffer = buf;
2693 ssize_t n = rc;
2694 while (n) {
2695 struct kvm_get_htab_header *head =
2696 (struct kvm_get_htab_header *) buffer;
2697 size_t chunksize = sizeof(*head) +
2698 HASH_PTE_SIZE_64 * head->n_valid;
2700 qemu_put_be32(f, head->index);
2701 qemu_put_be16(f, head->n_valid);
2702 qemu_put_be16(f, head->n_invalid);
2703 qemu_put_buffer(f, (void *)(head + 1),
2704 HASH_PTE_SIZE_64 * head->n_valid);
2706 buffer += chunksize;
2707 n -= chunksize;
2710 } while ((rc != 0)
2711 && ((max_ns < 0) ||
2712 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2714 return (rc == 0) ? 1 : 0;
2717 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2718 uint16_t n_valid, uint16_t n_invalid)
2720 struct kvm_get_htab_header *buf;
2721 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2722 ssize_t rc;
2724 buf = alloca(chunksize);
2725 buf->index = index;
2726 buf->n_valid = n_valid;
2727 buf->n_invalid = n_invalid;
2729 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2731 rc = write(fd, buf, chunksize);
2732 if (rc < 0) {
2733 fprintf(stderr, "Error writing KVM hash table: %s\n",
2734 strerror(errno));
2735 return rc;
2737 if (rc != chunksize) {
2738 /* We should never get a short write on a single chunk */
2739 fprintf(stderr, "Short write, restoring KVM hash table\n");
2740 return -1;
2742 return 0;
2745 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2747 return true;
2750 void kvm_arch_init_irq_routing(KVMState *s)
2754 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2756 int fd, rc;
2757 int i;
2759 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2761 i = 0;
2762 while (i < n) {
2763 struct kvm_get_htab_header *hdr;
2764 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2765 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2767 rc = read(fd, buf, sizeof(buf));
2768 if (rc < 0) {
2769 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2772 hdr = (struct kvm_get_htab_header *)buf;
2773 while ((i < n) && ((char *)hdr < (buf + rc))) {
2774 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2776 if (hdr->index != (ptex + i)) {
2777 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2778 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2781 if (n - i < valid) {
2782 valid = n - i;
2784 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2785 i += valid;
2787 if ((n - i) < invalid) {
2788 invalid = n - i;
2790 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2791 i += invalid;
2793 hdr = (struct kvm_get_htab_header *)
2794 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2798 close(fd);
2801 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2803 int fd, rc;
2804 struct {
2805 struct kvm_get_htab_header hdr;
2806 uint64_t pte0;
2807 uint64_t pte1;
2808 } buf;
2810 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2812 buf.hdr.n_valid = 1;
2813 buf.hdr.n_invalid = 0;
2814 buf.hdr.index = ptex;
2815 buf.pte0 = cpu_to_be64(pte0);
2816 buf.pte1 = cpu_to_be64(pte1);
2818 rc = write(fd, &buf, sizeof(buf));
2819 if (rc != sizeof(buf)) {
2820 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2822 close(fd);
2825 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2826 uint64_t address, uint32_t data, PCIDevice *dev)
2828 return 0;
2831 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2832 int vector, PCIDevice *dev)
2834 return 0;
2837 int kvm_arch_release_virq_post(int virq)
2839 return 0;
2842 int kvm_arch_msi_data_to_gsi(uint32_t data)
2844 return data & 0xffff;
2847 int kvmppc_enable_hwrng(void)
2849 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2850 return -1;
2853 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2856 void kvmppc_check_papr_resize_hpt(Error **errp)
2858 if (!kvm_enabled()) {
2859 return; /* No KVM, we're good */
2862 if (cap_resize_hpt) {
2863 return; /* Kernel has explicit support, we're good */
2866 /* Otherwise fallback on looking for PR KVM */
2867 if (kvmppc_is_pr(kvm_state)) {
2868 return;
2871 error_setg(errp,
2872 "Hash page table resizing not available with this KVM version");
2875 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2877 CPUState *cs = CPU(cpu);
2878 struct kvm_ppc_resize_hpt rhpt = {
2879 .flags = flags,
2880 .shift = shift,
2883 if (!cap_resize_hpt) {
2884 return -ENOSYS;
2887 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2890 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2892 CPUState *cs = CPU(cpu);
2893 struct kvm_ppc_resize_hpt rhpt = {
2894 .flags = flags,
2895 .shift = shift,
2898 if (!cap_resize_hpt) {
2899 return -ENOSYS;
2902 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2906 * This is a helper function to detect a post migration scenario
2907 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2908 * the guest kernel can't handle a PVR value other than the actual host
2909 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2911 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2912 * (so, we're HV), return true. The workaround itself is done in
2913 * cpu_post_load.
2915 * The order here is important: we'll only check for KVM PR as a
2916 * fallback if the guest kernel can't handle the situation itself.
2917 * We need to avoid as much as possible querying the running KVM type
2918 * in QEMU level.
2920 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2922 CPUState *cs = CPU(cpu);
2924 if (!kvm_enabled()) {
2925 return false;
2928 if (cap_ppc_pvr_compat) {
2929 return false;
2932 return !kvmppc_is_pr(cs->kvm_state);
2935 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2937 CPUState *cs = CPU(cpu);
2939 if (kvm_enabled()) {
2940 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);