1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
6 #include "qemu/error-report.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "hw/ppc/spapr_cpu_core.h"
12 #include "mmu-hash64.h"
13 #include "cpu-models.h"
16 #include "hw/ppc/spapr_ovec.h"
17 #include "mmu-book3s-v3.h"
18 #include "hw/mem/memory-device.h"
20 struct LPCRSyncState
{
25 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
27 struct LPCRSyncState
*s
= arg
.host_ptr
;
28 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
29 CPUPPCState
*env
= &cpu
->env
;
32 cpu_synchronize_state(cs
);
33 lpcr
= env
->spr
[SPR_LPCR
];
36 ppc_store_lpcr(cpu
, lpcr
);
39 static void set_all_lpcrs(target_ulong value
, target_ulong mask
)
42 struct LPCRSyncState s
= {
47 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
51 static bool has_spr(PowerPCCPU
*cpu
, int spr
)
53 /* We can test whether the SPR is defined by checking for a valid name */
54 return cpu
->env
.spr_cb
[spr
].name
!= NULL
;
57 static inline bool valid_ptex(PowerPCCPU
*cpu
, target_ulong ptex
)
60 * hash value/pteg group index is normalized by HPT mask
62 if (((ptex
& ~7ULL) / HPTES_PER_GROUP
) & ~ppc_hash64_hpt_mask(cpu
)) {
68 static bool is_ram_address(sPAPRMachineState
*spapr
, hwaddr addr
)
70 MachineState
*machine
= MACHINE(spapr
);
71 DeviceMemoryState
*dms
= machine
->device_memory
;
73 if (addr
< machine
->ram_size
) {
76 if ((addr
>= dms
->base
)
77 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
84 static target_ulong
h_enter(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
85 target_ulong opcode
, target_ulong
*args
)
87 target_ulong flags
= args
[0];
88 target_ulong ptex
= args
[1];
89 target_ulong pteh
= args
[2];
90 target_ulong ptel
= args
[3];
94 const ppc_hash_pte64_t
*hptes
;
96 apshift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pteh
, ptel
);
98 /* Bad page size encoding */
102 raddr
= (ptel
& HPTE64_R_RPN
) & ~((1ULL << apshift
) - 1);
104 if (is_ram_address(spapr
, raddr
)) {
105 /* Regular RAM - should have WIMG=0010 */
106 if ((ptel
& HPTE64_R_WIMG
) != HPTE64_R_M
) {
110 target_ulong wimg_flags
;
111 /* Looks like an IO address */
112 /* FIXME: What WIMG combinations could be sensible for IO?
113 * For now we allow WIMG=010x, but are there others? */
114 /* FIXME: Should we check against registered IO addresses? */
115 wimg_flags
= (ptel
& (HPTE64_R_W
| HPTE64_R_I
| HPTE64_R_M
));
117 if (wimg_flags
!= HPTE64_R_I
&&
118 wimg_flags
!= (HPTE64_R_I
| HPTE64_R_M
)) {
125 if (!valid_ptex(cpu
, ptex
)) {
132 if (likely((flags
& H_EXACT
) == 0)) {
133 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
134 for (slot
= 0; slot
< 8; slot
++) {
135 if (!(ppc_hash64_hpte0(cpu
, hptes
, slot
) & HPTE64_V_VALID
)) {
139 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
144 hptes
= ppc_hash64_map_hptes(cpu
, ptex
+ slot
, 1);
145 if (ppc_hash64_hpte0(cpu
, hptes
, 0) & HPTE64_V_VALID
) {
146 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
+ slot
, 1);
149 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
152 ppc_hash64_store_hpte(cpu
, ptex
+ slot
, pteh
| HPTE64_V_HPTE_DIRTY
, ptel
);
154 args
[0] = ptex
+ slot
;
160 REMOVE_NOT_FOUND
= 1,
165 static RemoveResult
remove_hpte(PowerPCCPU
*cpu
, target_ulong ptex
,
168 target_ulong
*vp
, target_ulong
*rp
)
170 const ppc_hash_pte64_t
*hptes
;
173 if (!valid_ptex(cpu
, ptex
)) {
177 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
178 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
179 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
180 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
182 if ((v
& HPTE64_V_VALID
) == 0 ||
183 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
) ||
184 ((flags
& H_ANDCOND
) && (v
& avpn
) != 0)) {
185 return REMOVE_NOT_FOUND
;
189 ppc_hash64_store_hpte(cpu
, ptex
, HPTE64_V_HPTE_DIRTY
, 0);
190 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
191 return REMOVE_SUCCESS
;
194 static target_ulong
h_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
195 target_ulong opcode
, target_ulong
*args
)
197 CPUPPCState
*env
= &cpu
->env
;
198 target_ulong flags
= args
[0];
199 target_ulong ptex
= args
[1];
200 target_ulong avpn
= args
[2];
203 ret
= remove_hpte(cpu
, ptex
, avpn
, flags
,
208 check_tlb_flush(env
, true);
211 case REMOVE_NOT_FOUND
:
221 g_assert_not_reached();
224 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
225 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
226 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
227 #define H_BULK_REMOVE_END 0xc000000000000000ULL
228 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
229 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
230 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
231 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
232 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
233 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
234 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
235 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
236 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
237 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
238 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
240 #define H_BULK_REMOVE_MAX_BATCH 4
242 static target_ulong
h_bulk_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
243 target_ulong opcode
, target_ulong
*args
)
245 CPUPPCState
*env
= &cpu
->env
;
247 target_ulong rc
= H_SUCCESS
;
249 for (i
= 0; i
< H_BULK_REMOVE_MAX_BATCH
; i
++) {
250 target_ulong
*tsh
= &args
[i
*2];
251 target_ulong tsl
= args
[i
*2 + 1];
252 target_ulong v
, r
, ret
;
254 if ((*tsh
& H_BULK_REMOVE_TYPE
) == H_BULK_REMOVE_END
) {
256 } else if ((*tsh
& H_BULK_REMOVE_TYPE
) != H_BULK_REMOVE_REQUEST
) {
260 *tsh
&= H_BULK_REMOVE_PTEX
| H_BULK_REMOVE_FLAGS
;
261 *tsh
|= H_BULK_REMOVE_RESPONSE
;
263 if ((*tsh
& H_BULK_REMOVE_ANDCOND
) && (*tsh
& H_BULK_REMOVE_AVPN
)) {
264 *tsh
|= H_BULK_REMOVE_PARM
;
268 ret
= remove_hpte(cpu
, *tsh
& H_BULK_REMOVE_PTEX
, tsl
,
269 (*tsh
& H_BULK_REMOVE_FLAGS
) >> 26,
276 *tsh
|= (r
& (HPTE64_R_C
| HPTE64_R_R
)) << 43;
289 check_tlb_flush(env
, true);
294 static target_ulong
h_protect(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
295 target_ulong opcode
, target_ulong
*args
)
297 CPUPPCState
*env
= &cpu
->env
;
298 target_ulong flags
= args
[0];
299 target_ulong ptex
= args
[1];
300 target_ulong avpn
= args
[2];
301 const ppc_hash_pte64_t
*hptes
;
304 if (!valid_ptex(cpu
, ptex
)) {
308 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
309 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
310 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
311 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
313 if ((v
& HPTE64_V_VALID
) == 0 ||
314 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
)) {
318 r
&= ~(HPTE64_R_PP0
| HPTE64_R_PP
| HPTE64_R_N
|
319 HPTE64_R_KEY_HI
| HPTE64_R_KEY_LO
);
320 r
|= (flags
<< 55) & HPTE64_R_PP0
;
321 r
|= (flags
<< 48) & HPTE64_R_KEY_HI
;
322 r
|= flags
& (HPTE64_R_PP
| HPTE64_R_N
| HPTE64_R_KEY_LO
);
323 ppc_hash64_store_hpte(cpu
, ptex
,
324 (v
& ~HPTE64_V_VALID
) | HPTE64_V_HPTE_DIRTY
, 0);
325 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
327 check_tlb_flush(env
, true);
328 /* Don't need a memory barrier, due to qemu's global lock */
329 ppc_hash64_store_hpte(cpu
, ptex
, v
| HPTE64_V_HPTE_DIRTY
, r
);
333 static target_ulong
h_read(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
334 target_ulong opcode
, target_ulong
*args
)
336 target_ulong flags
= args
[0];
337 target_ulong ptex
= args
[1];
339 int i
, ridx
, n_entries
= 1;
341 if (!valid_ptex(cpu
, ptex
)) {
345 if (flags
& H_READ_4
) {
346 /* Clear the two low order bits */
351 hpte
= spapr
->htab
+ (ptex
* HASH_PTE_SIZE_64
);
353 for (i
= 0, ridx
= 0; i
< n_entries
; i
++) {
354 args
[ridx
++] = ldq_p(hpte
);
355 args
[ridx
++] = ldq_p(hpte
+ (HASH_PTE_SIZE_64
/2));
356 hpte
+= HASH_PTE_SIZE_64
;
362 struct sPAPRPendingHPT
{
363 /* These fields are read-only after initialization */
367 /* These fields are protected by the BQL */
370 /* These fields are private to the preparation thread if
371 * !complete, otherwise protected by the BQL */
376 static void free_pending_hpt(sPAPRPendingHPT
*pending
)
379 qemu_vfree(pending
->hpt
);
385 static void *hpt_prepare_thread(void *opaque
)
387 sPAPRPendingHPT
*pending
= opaque
;
388 size_t size
= 1ULL << pending
->shift
;
390 pending
->hpt
= qemu_memalign(size
, size
);
392 memset(pending
->hpt
, 0, size
);
393 pending
->ret
= H_SUCCESS
;
395 pending
->ret
= H_NO_MEM
;
398 qemu_mutex_lock_iothread();
400 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt
== pending
) {
402 pending
->complete
= true;
404 /* We've been cancelled, clean ourselves up */
405 free_pending_hpt(pending
);
408 qemu_mutex_unlock_iothread();
412 /* Must be called with BQL held */
413 static void cancel_hpt_prepare(sPAPRMachineState
*spapr
)
415 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
417 /* Let the thread know it's cancelled */
418 spapr
->pending_hpt
= NULL
;
425 if (!pending
->complete
) {
426 /* thread will clean itself up */
430 free_pending_hpt(pending
);
433 /* Convert a return code from the KVM ioctl()s implementing resize HPT
434 * into a PAPR hypercall return code */
435 static target_ulong
resize_hpt_convert_rc(int ret
)
438 return H_LONG_BUSY_ORDER_100_SEC
;
439 } else if (ret
>= 10000) {
440 return H_LONG_BUSY_ORDER_10_SEC
;
441 } else if (ret
>= 1000) {
442 return H_LONG_BUSY_ORDER_1_SEC
;
443 } else if (ret
>= 100) {
444 return H_LONG_BUSY_ORDER_100_MSEC
;
445 } else if (ret
>= 10) {
446 return H_LONG_BUSY_ORDER_10_MSEC
;
447 } else if (ret
> 0) {
448 return H_LONG_BUSY_ORDER_1_MSEC
;
471 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
472 sPAPRMachineState
*spapr
,
476 target_ulong flags
= args
[0];
478 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
479 uint64_t current_ram_size
;
482 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
486 if (!spapr
->htab_shift
) {
487 /* Radix guest, no HPT */
488 return H_NOT_AVAILABLE
;
491 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
497 if (shift
&& ((shift
< 18) || (shift
> 46))) {
501 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
503 /* We only allow the guest to allocate an HPT one order above what
504 * we'd normally give them (to stop a small guest claiming a huge
505 * chunk of resources in the HPT */
506 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
510 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
512 return resize_hpt_convert_rc(rc
);
516 /* something already in progress */
517 if (pending
->shift
== shift
) {
518 /* and it's suitable */
519 if (pending
->complete
) {
522 return H_LONG_BUSY_ORDER_100_MSEC
;
526 /* not suitable, cancel and replace */
527 cancel_hpt_prepare(spapr
);
535 /* start new prepare */
537 pending
= g_new0(sPAPRPendingHPT
, 1);
538 pending
->shift
= shift
;
539 pending
->ret
= H_HARDWARE
;
541 qemu_thread_create(&pending
->thread
, "sPAPR HPT prepare",
542 hpt_prepare_thread
, pending
, QEMU_THREAD_DETACHED
);
544 spapr
->pending_hpt
= pending
;
546 /* In theory we could estimate the time more accurately based on
547 * the new size, but there's not much point */
548 return H_LONG_BUSY_ORDER_100_MSEC
;
551 static uint64_t new_hpte_load0(void *htab
, uint64_t pteg
, int slot
)
553 uint8_t *addr
= htab
;
555 addr
+= pteg
* HASH_PTEG_SIZE_64
;
556 addr
+= slot
* HASH_PTE_SIZE_64
;
560 static void new_hpte_store(void *htab
, uint64_t pteg
, int slot
,
561 uint64_t pte0
, uint64_t pte1
)
563 uint8_t *addr
= htab
;
565 addr
+= pteg
* HASH_PTEG_SIZE_64
;
566 addr
+= slot
* HASH_PTE_SIZE_64
;
569 stq_p(addr
+ HASH_PTE_SIZE_64
/ 2, pte1
);
572 static int rehash_hpte(PowerPCCPU
*cpu
,
573 const ppc_hash_pte64_t
*hptes
,
574 void *old_hpt
, uint64_t oldsize
,
575 void *new_hpt
, uint64_t newsize
,
576 uint64_t pteg
, int slot
)
578 uint64_t old_hash_mask
= (oldsize
>> 7) - 1;
579 uint64_t new_hash_mask
= (newsize
>> 7) - 1;
580 target_ulong pte0
= ppc_hash64_hpte0(cpu
, hptes
, slot
);
583 unsigned base_pg_shift
;
584 uint64_t hash
, new_pteg
, replace_pte0
;
586 if (!(pte0
& HPTE64_V_VALID
) || !(pte0
& HPTE64_V_BOLTED
)) {
590 pte1
= ppc_hash64_hpte1(cpu
, hptes
, slot
);
592 base_pg_shift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pte0
, pte1
);
593 assert(base_pg_shift
); /* H_ENTER shouldn't allow a bad encoding */
594 avpn
= HPTE64_V_AVPN_VAL(pte0
) & ~(((1ULL << base_pg_shift
) - 1) >> 23);
596 if (pte0
& HPTE64_V_SECONDARY
) {
600 if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_256M
) {
601 uint64_t offset
, vsid
;
603 /* We only have 28 - 23 bits of offset in avpn */
604 offset
= (avpn
& 0x1f) << 23;
606 /* We can find more bits from the pteg value */
607 if (base_pg_shift
< 23) {
608 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << base_pg_shift
;
611 hash
= vsid
^ (offset
>> base_pg_shift
);
612 } else if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_1T
) {
613 uint64_t offset
, vsid
;
615 /* We only have 40 - 23 bits of seg_off in avpn */
616 offset
= (avpn
& 0x1ffff) << 23;
618 if (base_pg_shift
< 23) {
619 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
)
623 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> base_pg_shift
);
625 error_report("rehash_pte: Bad segment size in HPTE");
629 new_pteg
= hash
& new_hash_mask
;
630 if (pte0
& HPTE64_V_SECONDARY
) {
631 assert(~pteg
== (hash
& old_hash_mask
));
632 new_pteg
= ~new_pteg
;
634 assert(pteg
== (hash
& old_hash_mask
));
636 assert((oldsize
!= newsize
) || (pteg
== new_pteg
));
637 replace_pte0
= new_hpte_load0(new_hpt
, new_pteg
, slot
);
639 * Strictly speaking, we don't need all these tests, since we only
640 * ever rehash bolted HPTEs. We might in future handle non-bolted
641 * HPTEs, though so make the logic correct for those cases as
644 if (replace_pte0
& HPTE64_V_VALID
) {
645 assert(newsize
< oldsize
);
646 if (replace_pte0
& HPTE64_V_BOLTED
) {
647 if (pte0
& HPTE64_V_BOLTED
) {
648 /* Bolted collision, nothing we can do */
651 /* Discard this hpte */
657 new_hpte_store(new_hpt
, new_pteg
, slot
, pte0
, pte1
);
661 static int rehash_hpt(PowerPCCPU
*cpu
,
662 void *old_hpt
, uint64_t oldsize
,
663 void *new_hpt
, uint64_t newsize
)
665 uint64_t n_ptegs
= oldsize
>> 7;
670 for (pteg
= 0; pteg
< n_ptegs
; pteg
++) {
671 hwaddr ptex
= pteg
* HPTES_PER_GROUP
;
672 const ppc_hash_pte64_t
*hptes
673 = ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
679 for (slot
= 0; slot
< HPTES_PER_GROUP
; slot
++) {
680 rc
= rehash_hpte(cpu
, hptes
, old_hpt
, oldsize
, new_hpt
, newsize
,
682 if (rc
!= H_SUCCESS
) {
683 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
687 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
693 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
697 cpu_synchronize_state(cs
);
699 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
701 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
706 static void push_sregs_to_kvm_pr(sPAPRMachineState
*spapr
)
711 * This is a hack for the benefit of KVM PR - it abuses the SDR1
712 * slot in kvm_sregs to communicate the userspace address of the
715 if (!kvm_enabled() || !spapr
->htab
) {
720 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
724 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
725 sPAPRMachineState
*spapr
,
729 target_ulong flags
= args
[0];
730 target_ulong shift
= args
[1];
731 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
735 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
739 if (!spapr
->htab_shift
) {
740 /* Radix guest, no HPT */
741 return H_NOT_AVAILABLE
;
744 trace_spapr_h_resize_hpt_commit(flags
, shift
);
746 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
748 rc
= resize_hpt_convert_rc(rc
);
749 if (rc
== H_SUCCESS
) {
750 /* Need to set the new htab_shift in the machine state */
751 spapr
->htab_shift
= shift
;
760 if (!pending
|| (pending
->shift
!= shift
)) {
761 /* no matching prepare */
765 if (!pending
->complete
) {
766 /* prepare has not completed */
770 /* Shouldn't have got past PREPARE without an HPT */
771 g_assert(spapr
->htab_shift
);
773 newsize
= 1ULL << pending
->shift
;
774 rc
= rehash_hpt(cpu
, spapr
->htab
, HTAB_SIZE(spapr
),
775 pending
->hpt
, newsize
);
776 if (rc
== H_SUCCESS
) {
777 qemu_vfree(spapr
->htab
);
778 spapr
->htab
= pending
->hpt
;
779 spapr
->htab_shift
= pending
->shift
;
781 push_sregs_to_kvm_pr(spapr
);
783 pending
->hpt
= NULL
; /* so it's not free()d */
787 spapr
->pending_hpt
= NULL
;
788 free_pending_hpt(pending
);
793 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
794 target_ulong opcode
, target_ulong
*args
)
796 cpu_synchronize_state(CPU(cpu
));
797 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
802 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
803 target_ulong opcode
, target_ulong
*args
)
805 if (!has_spr(cpu
, SPR_DABR
)) {
806 return H_HARDWARE
; /* DABR register not available */
808 cpu_synchronize_state(CPU(cpu
));
810 if (has_spr(cpu
, SPR_DABRX
)) {
811 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
812 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
813 return H_RESERVED_DABR
;
816 cpu
->env
.spr
[SPR_DABR
] = args
[0];
820 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
821 target_ulong opcode
, target_ulong
*args
)
823 target_ulong dabrx
= args
[1];
825 if (!has_spr(cpu
, SPR_DABR
) || !has_spr(cpu
, SPR_DABRX
)) {
829 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
830 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
834 cpu_synchronize_state(CPU(cpu
));
835 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
836 cpu
->env
.spr
[SPR_DABR
] = args
[0];
841 static target_ulong
h_page_init(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
842 target_ulong opcode
, target_ulong
*args
)
844 target_ulong flags
= args
[0];
845 hwaddr dst
= args
[1];
846 hwaddr src
= args
[2];
847 hwaddr len
= TARGET_PAGE_SIZE
;
848 uint8_t *pdst
, *psrc
;
849 target_long ret
= H_SUCCESS
;
851 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
852 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
853 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
858 /* Map-in destination */
859 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
862 pdst
= cpu_physical_memory_map(dst
, &len
, 1);
863 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
867 if (flags
& H_COPY_PAGE
) {
868 /* Map-in source, copy to destination, and unmap source again */
869 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
873 psrc
= cpu_physical_memory_map(src
, &len
, 0);
874 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
878 memcpy(pdst
, psrc
, len
);
879 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
880 } else if (flags
& H_ZERO_PAGE
) {
881 memset(pdst
, 0, len
); /* Just clear the destination page */
884 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
885 kvmppc_dcbst_range(cpu
, pdst
, len
);
887 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
889 kvmppc_icbi_range(cpu
, pdst
, len
);
896 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
900 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
901 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
902 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
903 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
904 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
905 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
907 #define VPA_MIN_SIZE 640
908 #define VPA_SIZE_OFFSET 0x4
909 #define VPA_SHARED_PROC_OFFSET 0x9
910 #define VPA_SHARED_PROC_VAL 0x2
912 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
914 CPUState
*cs
= CPU(cpu
);
915 CPUPPCState
*env
= &cpu
->env
;
916 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
921 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
925 if (vpa
% env
->dcache_line_size
) {
928 /* FIXME: bounds check the address */
930 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
932 if (size
< VPA_MIN_SIZE
) {
936 /* VPA is not allowed to cross a page boundary */
937 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
941 spapr_cpu
->vpa_addr
= vpa
;
943 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
944 tmp
|= VPA_SHARED_PROC_VAL
;
945 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
950 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
952 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
954 if (spapr_cpu
->slb_shadow_addr
) {
958 if (spapr_cpu
->dtl_addr
) {
962 spapr_cpu
->vpa_addr
= 0;
966 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
968 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
972 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
976 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
981 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
985 if (!spapr_cpu
->vpa_addr
) {
989 spapr_cpu
->slb_shadow_addr
= addr
;
990 spapr_cpu
->slb_shadow_size
= size
;
995 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
997 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
999 spapr_cpu
->slb_shadow_addr
= 0;
1000 spapr_cpu
->slb_shadow_size
= 0;
1004 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
1006 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
1010 hcall_dprintf("Can't cope with DTL at logical 0\n");
1014 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
1020 if (!spapr_cpu
->vpa_addr
) {
1024 spapr_cpu
->dtl_addr
= addr
;
1025 spapr_cpu
->dtl_size
= size
;
1030 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
1032 sPAPRCPUState
*spapr_cpu
= spapr_cpu_state(cpu
);
1034 spapr_cpu
->dtl_addr
= 0;
1035 spapr_cpu
->dtl_size
= 0;
1040 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1041 target_ulong opcode
, target_ulong
*args
)
1043 target_ulong flags
= args
[0];
1044 target_ulong procno
= args
[1];
1045 target_ulong vpa
= args
[2];
1046 target_ulong ret
= H_PARAMETER
;
1049 tcpu
= spapr_find_cpu(procno
);
1055 case FLAGS_REGISTER_VPA
:
1056 ret
= register_vpa(tcpu
, vpa
);
1059 case FLAGS_DEREGISTER_VPA
:
1060 ret
= deregister_vpa(tcpu
, vpa
);
1063 case FLAGS_REGISTER_SLBSHADOW
:
1064 ret
= register_slb_shadow(tcpu
, vpa
);
1067 case FLAGS_DEREGISTER_SLBSHADOW
:
1068 ret
= deregister_slb_shadow(tcpu
, vpa
);
1071 case FLAGS_REGISTER_DTL
:
1072 ret
= register_dtl(tcpu
, vpa
);
1075 case FLAGS_DEREGISTER_DTL
:
1076 ret
= deregister_dtl(tcpu
, vpa
);
1083 static target_ulong
h_cede(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1084 target_ulong opcode
, target_ulong
*args
)
1086 CPUPPCState
*env
= &cpu
->env
;
1087 CPUState
*cs
= CPU(cpu
);
1089 env
->msr
|= (1ULL << MSR_EE
);
1090 hreg_compute_hflags(env
);
1091 if (!cpu_has_work(cs
)) {
1093 cs
->exception_index
= EXCP_HLT
;
1094 cs
->exit_request
= 1;
1099 static target_ulong
h_rtas(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1100 target_ulong opcode
, target_ulong
*args
)
1102 target_ulong rtas_r3
= args
[0];
1103 uint32_t token
= rtas_ld(rtas_r3
, 0);
1104 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
1105 uint32_t nret
= rtas_ld(rtas_r3
, 2);
1107 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
1108 nret
, rtas_r3
+ 12 + 4*nargs
);
1111 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1112 target_ulong opcode
, target_ulong
*args
)
1114 CPUState
*cs
= CPU(cpu
);
1115 target_ulong size
= args
[0];
1116 target_ulong addr
= args
[1];
1120 args
[0] = ldub_phys(cs
->as
, addr
);
1123 args
[0] = lduw_phys(cs
->as
, addr
);
1126 args
[0] = ldl_phys(cs
->as
, addr
);
1129 args
[0] = ldq_phys(cs
->as
, addr
);
1135 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1136 target_ulong opcode
, target_ulong
*args
)
1138 CPUState
*cs
= CPU(cpu
);
1140 target_ulong size
= args
[0];
1141 target_ulong addr
= args
[1];
1142 target_ulong val
= args
[2];
1146 stb_phys(cs
->as
, addr
, val
);
1149 stw_phys(cs
->as
, addr
, val
);
1152 stl_phys(cs
->as
, addr
, val
);
1155 stq_phys(cs
->as
, addr
, val
);
1161 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1162 target_ulong opcode
, target_ulong
*args
)
1164 CPUState
*cs
= CPU(cpu
);
1166 target_ulong dst
= args
[0]; /* Destination address */
1167 target_ulong src
= args
[1]; /* Source address */
1168 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
1169 target_ulong count
= args
[3]; /* Element count */
1170 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
1172 unsigned int mask
= (1 << esize
) - 1;
1173 int step
= 1 << esize
;
1175 if (count
> 0x80000000) {
1179 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
1183 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
1184 dst
= dst
+ ((count
- 1) << esize
);
1185 src
= src
+ ((count
- 1) << esize
);
1192 tmp
= ldub_phys(cs
->as
, src
);
1195 tmp
= lduw_phys(cs
->as
, src
);
1198 tmp
= ldl_phys(cs
->as
, src
);
1201 tmp
= ldq_phys(cs
->as
, src
);
1211 stb_phys(cs
->as
, dst
, tmp
);
1214 stw_phys(cs
->as
, dst
, tmp
);
1217 stl_phys(cs
->as
, dst
, tmp
);
1220 stq_phys(cs
->as
, dst
, tmp
);
1230 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1231 target_ulong opcode
, target_ulong
*args
)
1233 /* Nothing to do on emulation, KVM will trap this in the kernel */
1237 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1238 target_ulong opcode
, target_ulong
*args
)
1240 /* Nothing to do on emulation, KVM will trap this in the kernel */
1244 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
1245 target_ulong mflags
,
1246 target_ulong value1
,
1247 target_ulong value2
)
1257 case H_SET_MODE_ENDIAN_BIG
:
1258 set_all_lpcrs(0, LPCR_ILE
);
1259 spapr_pci_switch_vga(true);
1262 case H_SET_MODE_ENDIAN_LITTLE
:
1263 set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
1264 spapr_pci_switch_vga(false);
1268 return H_UNSUPPORTED_FLAG
;
1271 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
1272 target_ulong mflags
,
1273 target_ulong value1
,
1274 target_ulong value2
)
1276 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1278 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
1288 if (mflags
== AIL_RESERVED
) {
1289 return H_UNSUPPORTED_FLAG
;
1292 set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
1297 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1298 target_ulong opcode
, target_ulong
*args
)
1300 target_ulong resource
= args
[1];
1301 target_ulong ret
= H_P2
;
1304 case H_SET_MODE_RESOURCE_LE
:
1305 ret
= h_set_mode_resource_le(cpu
, args
[0], args
[2], args
[3]);
1307 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
1308 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
1316 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1317 target_ulong opcode
, target_ulong
*args
)
1319 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1320 opcode
, " (H_CLEAN_SLB)");
1324 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1325 target_ulong opcode
, target_ulong
*args
)
1327 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1328 opcode
, " (H_INVALIDATE_PID)");
1332 static void spapr_check_setup_free_hpt(sPAPRMachineState
*spapr
,
1333 uint64_t patbe_old
, uint64_t patbe_new
)
1336 * We have 4 Options:
1337 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1338 * HASH->RADIX : Free HPT
1339 * RADIX->HASH : Allocate HPT
1340 * NOTHING->HASH : Allocate HPT
1341 * Note: NOTHING implies the case where we said the guest could choose
1342 * later and so assumed radix and now it's called H_REG_PROC_TBL
1345 if ((patbe_old
& PATBE1_GR
) == (patbe_new
& PATBE1_GR
)) {
1346 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1347 } else if (!(patbe_old
& PATBE1_GR
)) {
1348 /* HASH->RADIX : Free HPT */
1349 spapr_free_hpt(spapr
);
1350 } else if (!(patbe_new
& PATBE1_GR
)) {
1351 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1352 spapr_setup_hpt_and_vrma(spapr
);
1357 #define FLAGS_MASK 0x01FULL
1358 #define FLAG_MODIFY 0x10
1359 #define FLAG_REGISTER 0x08
1360 #define FLAG_RADIX 0x04
1361 #define FLAG_HASH_PROC_TBL 0x02
1362 #define FLAG_GTSE 0x01
1364 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
1365 sPAPRMachineState
*spapr
,
1366 target_ulong opcode
,
1369 target_ulong flags
= args
[0];
1370 target_ulong proc_tbl
= args
[1];
1371 target_ulong page_size
= args
[2];
1372 target_ulong table_size
= args
[3];
1375 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
1378 if (flags
& FLAG_MODIFY
) {
1379 if (flags
& FLAG_REGISTER
) {
1380 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
1381 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
1383 } else if (page_size
) {
1385 } else if (table_size
> 24) {
1388 cproc
= PATBE1_GR
| proc_tbl
| table_size
;
1389 } else { /* Register new HPT process table */
1390 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
1391 /* TODO - Not Supported */
1392 /* Technically caused by flag bits => H_PARAMETER */
1394 } else { /* Hash with SLB */
1395 if (proc_tbl
>> 38) {
1397 } else if (page_size
& ~0x7) {
1399 } else if (table_size
> 24) {
1403 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
1406 } else { /* Deregister current process table */
1407 /* Set to benign value: (current GR) | 0. This allows
1408 * deregistration in KVM to succeed even if the radix bit in flags
1409 * doesn't match the radix bit in the old PATB. */
1410 cproc
= spapr
->patb_entry
& PATBE1_GR
;
1412 } else { /* Maintain current registration */
1413 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATBE1_GR
)) {
1414 /* Technically caused by flag bits => H_PARAMETER */
1415 return H_PARAMETER
; /* Existing Process Table Mismatch */
1417 cproc
= spapr
->patb_entry
;
1420 /* Check if we need to setup OR free the hpt */
1421 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
1423 spapr
->patb_entry
= cproc
; /* Save new process table */
1425 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1426 set_all_lpcrs(((flags
& (FLAG_RADIX
| FLAG_HASH_PROC_TBL
)) ? LPCR_UPRT
: 0) |
1427 ((flags
& FLAG_GTSE
) ? LPCR_GTSE
: 0),
1428 LPCR_UPRT
| LPCR_GTSE
);
1430 if (kvm_enabled()) {
1431 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1432 flags
& FLAG_GTSE
, cproc
);
1437 #define H_SIGNAL_SYS_RESET_ALL -1
1438 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1440 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1441 sPAPRMachineState
*spapr
,
1442 target_ulong opcode
, target_ulong
*args
)
1444 target_long target
= args
[0];
1449 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1454 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1456 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1461 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1467 cs
= CPU(spapr_find_cpu(target
));
1469 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1476 static uint32_t cas_check_pvr(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
,
1477 target_ulong
*addr
, bool *raw_mode_supported
,
1480 bool explicit_match
= false; /* Matched the CPU's real PVR */
1481 uint32_t max_compat
= spapr
->max_compat_pvr
;
1482 uint32_t best_compat
= 0;
1486 * We scan the supplied table of PVRs looking for two things
1487 * 1. Is our real CPU PVR in the list?
1488 * 2. What's the "best" listed logical PVR
1490 for (i
= 0; i
< 512; ++i
) {
1491 uint32_t pvr
, pvr_mask
;
1493 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1494 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1497 if (~pvr_mask
& pvr
) {
1498 break; /* Terminator record */
1501 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1502 explicit_match
= true;
1504 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1510 if ((best_compat
== 0) && (!explicit_match
|| max_compat
)) {
1511 /* We couldn't find a suitable compatibility mode, and either
1512 * the guest doesn't support "raw" mode for this CPU, or raw
1513 * mode is disabled because a maximum compat mode is set */
1514 error_setg(errp
, "Couldn't negotiate a suitable PVR during CAS");
1518 *raw_mode_supported
= explicit_match
;
1520 /* Parsing finished */
1521 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1526 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1527 sPAPRMachineState
*spapr
,
1528 target_ulong opcode
,
1531 /* Working address in data buffer */
1532 target_ulong addr
= ppc64_phys_to_real(args
[0]);
1533 target_ulong ov_table
;
1535 sPAPROptionVector
*ov1_guest
, *ov5_guest
, *ov5_cas_old
, *ov5_updates
;
1537 Error
*local_err
= NULL
;
1538 bool raw_mode_supported
= false;
1540 cas_pvr
= cas_check_pvr(spapr
, cpu
, &addr
, &raw_mode_supported
, &local_err
);
1542 error_report_err(local_err
);
1547 if (cpu
->compat_pvr
!= cas_pvr
) {
1548 ppc_set_compat_all(cas_pvr
, &local_err
);
1550 /* We fail to set compat mode (likely because running with KVM PR),
1551 * but maybe we can fallback to raw mode if the guest supports it.
1553 if (!raw_mode_supported
) {
1554 error_report_err(local_err
);
1557 error_free(local_err
);
1562 /* For the future use: here @ov_table points to the first option vector */
1565 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1566 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1567 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1568 error_report("guest requested hash and radix MMU, which is invalid.");
1571 /* The radix/hash bit in byte 24 requires special handling: */
1572 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1573 spapr_ovec_clear(ov5_guest
, OV5_MMU_RADIX_300
);
1576 * HPT resizing is a bit of a special case, because when enabled
1577 * we assume an HPT guest will support it until it says it
1578 * doesn't, instead of assuming it won't support it until it says
1579 * it does. Strictly speaking that approach could break for
1580 * guests which don't make a CAS call, but those are so old we
1581 * don't care about them. Without that assumption we'd have to
1582 * make at least a temporary allocation of an HPT sized for max
1583 * memory, which could be impossibly difficult under KVM HV if
1586 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1587 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1589 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1591 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1595 if (spapr
->htab_shift
< maxshift
) {
1596 /* Guest doesn't know about HPT resizing, so we
1597 * pre-emptively resize for the maximum permitted RAM. At
1598 * the point this is called, nothing should have been
1599 * entered into the existing HPT */
1600 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1601 push_sregs_to_kvm_pr(spapr
);
1605 /* NOTE: there are actually a number of ov5 bits where input from the
1606 * guest is always zero, and the platform/QEMU enables them independently
1607 * of guest input. To model these properly we'd want some sort of mask,
1608 * but since they only currently apply to memory migration as defined
1609 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1610 * to worry about this for now.
1612 ov5_cas_old
= spapr_ovec_clone(spapr
->ov5_cas
);
1614 /* also clear the radix/hash bit from the current ov5_cas bits to
1615 * be in sync with the newly ov5 bits. Else the radix bit will be
1616 * seen as being removed and this will generate a reset loop
1618 spapr_ovec_clear(ov5_cas_old
, OV5_MMU_RADIX_300
);
1620 /* full range of negotiated ov5 capabilities */
1621 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1622 spapr_ovec_cleanup(ov5_guest
);
1623 /* capabilities that have been added since CAS-generated guest reset.
1624 * if capabilities have since been removed, generate another reset
1626 ov5_updates
= spapr_ovec_new();
1627 spapr
->cas_reboot
= spapr_ovec_diff(ov5_updates
,
1628 ov5_cas_old
, spapr
->ov5_cas
);
1629 /* Now that processing is finished, set the radix/hash bit for the
1630 * guest if it requested a valid mode; otherwise terminate the boot. */
1632 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1633 error_report("Guest requested unavailable MMU mode (radix).");
1636 spapr_ovec_set(spapr
->ov5_cas
, OV5_MMU_RADIX_300
);
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1639 && !kvmppc_has_cap_mmu_hash_v3()) {
1640 error_report("Guest requested unavailable MMU mode (hash).");
1644 spapr
->cas_legacy_guest_workaround
= !spapr_ovec_test(ov1_guest
,
1646 if (!spapr
->cas_reboot
) {
1647 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1648 * (because the guest isn't going to use radix) then set it up here. */
1649 if ((spapr
->patb_entry
& PATBE1_GR
) && !guest_radix
) {
1650 /* legacy hash or new hash: */
1651 spapr_setup_hpt_and_vrma(spapr
);
1654 (spapr_h_cas_compose_response(spapr
, args
[1], args
[2],
1657 spapr_ovec_cleanup(ov5_updates
);
1659 if (spapr
->cas_reboot
) {
1660 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1666 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1667 sPAPRMachineState
*spapr
,
1668 target_ulong opcode
,
1671 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1672 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1673 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1674 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1675 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1676 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1678 switch (safe_cache
) {
1679 case SPAPR_CAP_WORKAROUND
:
1680 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1681 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1682 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1683 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1685 case SPAPR_CAP_FIXED
:
1687 default: /* broken */
1688 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1689 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1693 switch (safe_bounds_check
) {
1694 case SPAPR_CAP_WORKAROUND
:
1695 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1696 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1698 case SPAPR_CAP_FIXED
:
1700 default: /* broken */
1701 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1702 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1706 switch (safe_indirect_branch
) {
1707 case SPAPR_CAP_FIXED_CCD
:
1708 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1710 case SPAPR_CAP_FIXED_IBS
:
1711 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1713 default: /* broken */
1714 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1718 args
[0] = characteristics
;
1719 args
[1] = behaviour
;
1724 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1725 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1727 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1729 spapr_hcall_fn
*slot
;
1731 if (opcode
<= MAX_HCALL_OPCODE
) {
1732 assert((opcode
& 0x3) == 0);
1734 slot
= &papr_hypercall_table
[opcode
/ 4];
1736 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1738 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1745 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1748 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1750 if ((opcode
<= MAX_HCALL_OPCODE
)
1751 && ((opcode
& 0x3) == 0)) {
1752 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1755 return fn(cpu
, spapr
, opcode
, args
);
1757 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1758 (opcode
<= KVMPPC_HCALL_MAX
)) {
1759 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1762 return fn(cpu
, spapr
, opcode
, args
);
1766 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1771 static void hypercall_register_types(void)
1774 spapr_register_hypercall(H_ENTER
, h_enter
);
1775 spapr_register_hypercall(H_REMOVE
, h_remove
);
1776 spapr_register_hypercall(H_PROTECT
, h_protect
);
1777 spapr_register_hypercall(H_READ
, h_read
);
1780 spapr_register_hypercall(H_BULK_REMOVE
, h_bulk_remove
);
1782 /* hcall-hpt-resize */
1783 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1784 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1787 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1788 spapr_register_hypercall(H_CEDE
, h_cede
);
1789 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1791 /* processor register resource access h-calls */
1792 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1793 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1794 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1795 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1796 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1798 /* In Memory Table MMU h-calls */
1799 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1800 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1801 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1803 /* hcall-get-cpu-characteristics */
1804 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1805 h_get_cpu_characteristics
);
1807 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1808 * here between the "CI" and the "CACHE" variants, they will use whatever
1809 * mapping attributes qemu is using. When using KVM, the kernel will
1810 * enforce the attributes more strongly
1812 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1813 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1814 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1815 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1816 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1817 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1818 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1820 /* qemu/KVM-PPC specific hcalls */
1821 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1823 /* ibm,client-architecture-support support */
1824 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1827 type_init(hypercall_register_types
)