xics/kvm: Always set the MASKED bit if interrupt is masked
[qemu/ar7.git] / hw / i386 / kvmvapic.c
blob9c2ab4aac5ba7f3d87d2691bd00a5e2059136e76
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/module.h"
14 #include "cpu.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "hw/i386/apic_internal.h"
20 #include "hw/sysbus.h"
21 #include "hw/boards.h"
22 #include "tcg/tcg.h"
24 #define VAPIC_IO_PORT 0x7e
26 #define VAPIC_CPU_SHIFT 7
28 #define ROM_BLOCK_SIZE 512
29 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
31 typedef enum VAPICMode {
32 VAPIC_INACTIVE = 0,
33 VAPIC_ACTIVE = 1,
34 VAPIC_STANDBY = 2,
35 } VAPICMode;
37 typedef struct VAPICHandlers {
38 uint32_t set_tpr;
39 uint32_t set_tpr_eax;
40 uint32_t get_tpr[8];
41 uint32_t get_tpr_stack;
42 } QEMU_PACKED VAPICHandlers;
44 typedef struct GuestROMState {
45 char signature[8];
46 uint32_t vaddr;
47 uint32_t fixup_start;
48 uint32_t fixup_end;
49 uint32_t vapic_vaddr;
50 uint32_t vapic_size;
51 uint32_t vcpu_shift;
52 uint32_t real_tpr_addr;
53 VAPICHandlers up;
54 VAPICHandlers mp;
55 } QEMU_PACKED GuestROMState;
57 typedef struct VAPICROMState {
58 SysBusDevice busdev;
59 MemoryRegion io;
60 MemoryRegion rom;
61 uint32_t state;
62 uint32_t rom_state_paddr;
63 uint32_t rom_state_vaddr;
64 uint32_t vapic_paddr;
65 uint32_t real_tpr_addr;
66 GuestROMState rom_state;
67 size_t rom_size;
68 bool rom_mapped_writable;
69 VMChangeStateEntry *vmsentry;
70 } VAPICROMState;
72 #define TYPE_VAPIC "kvmvapic"
73 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
75 #define TPR_INSTR_ABS_MODRM 0x1
76 #define TPR_INSTR_MATCH_MODRM_REG 0x2
78 typedef struct TPRInstruction {
79 uint8_t opcode;
80 uint8_t modrm_reg;
81 unsigned int flags;
82 TPRAccess access;
83 size_t length;
84 off_t addr_offset;
85 } TPRInstruction;
87 /* must be sorted by length, shortest first */
88 static const TPRInstruction tpr_instr[] = {
89 { /* mov abs to eax */
90 .opcode = 0xa1,
91 .access = TPR_ACCESS_READ,
92 .length = 5,
93 .addr_offset = 1,
95 { /* mov eax to abs */
96 .opcode = 0xa3,
97 .access = TPR_ACCESS_WRITE,
98 .length = 5,
99 .addr_offset = 1,
101 { /* mov r32 to r/m32 */
102 .opcode = 0x89,
103 .flags = TPR_INSTR_ABS_MODRM,
104 .access = TPR_ACCESS_WRITE,
105 .length = 6,
106 .addr_offset = 2,
108 { /* mov r/m32 to r32 */
109 .opcode = 0x8b,
110 .flags = TPR_INSTR_ABS_MODRM,
111 .access = TPR_ACCESS_READ,
112 .length = 6,
113 .addr_offset = 2,
115 { /* push r/m32 */
116 .opcode = 0xff,
117 .modrm_reg = 6,
118 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
119 .access = TPR_ACCESS_READ,
120 .length = 6,
121 .addr_offset = 2,
123 { /* mov imm32, r/m32 (c7/0) */
124 .opcode = 0xc7,
125 .modrm_reg = 0,
126 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
127 .access = TPR_ACCESS_WRITE,
128 .length = 10,
129 .addr_offset = 2,
133 static void read_guest_rom_state(VAPICROMState *s)
135 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
136 sizeof(GuestROMState));
139 static void write_guest_rom_state(VAPICROMState *s)
141 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
142 sizeof(GuestROMState));
145 static void update_guest_rom_state(VAPICROMState *s)
147 read_guest_rom_state(s);
149 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
150 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
152 write_guest_rom_state(s);
155 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
157 CPUState *cs = env_cpu(env);
158 hwaddr paddr;
159 target_ulong addr;
161 if (s->state == VAPIC_ACTIVE) {
162 return 0;
165 * If there is no prior TPR access instruction we could analyze (which is
166 * the case after resume from hibernation), we need to scan the possible
167 * virtual address space for the APIC mapping.
169 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
170 paddr = cpu_get_phys_page_debug(cs, addr);
171 if (paddr != APIC_DEFAULT_ADDRESS) {
172 continue;
174 s->real_tpr_addr = addr + 0x80;
175 update_guest_rom_state(s);
176 return 0;
178 return -1;
181 static uint8_t modrm_reg(uint8_t modrm)
183 return (modrm >> 3) & 7;
186 static bool is_abs_modrm(uint8_t modrm)
188 return (modrm & 0xc7) == 0x05;
191 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
193 return opcode[0] == instr->opcode &&
194 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
195 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
196 modrm_reg(opcode[1]) == instr->modrm_reg);
199 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
200 target_ulong *pip, TPRAccess access)
202 CPUState *cs = CPU(cpu);
203 const TPRInstruction *instr;
204 target_ulong ip = *pip;
205 uint8_t opcode[2];
206 uint32_t real_tpr_addr;
207 int i;
209 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
210 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
211 return -1;
215 * Early Windows 2003 SMP initialization contains a
217 * mov imm32, r/m32
219 * instruction that is patched by TPR optimization. The problem is that
220 * RSP, used by the patched instruction, is zero, so the guest gets a
221 * double fault and dies.
223 if (cpu->env.regs[R_ESP] == 0) {
224 return -1;
227 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
229 * KVM without kernel-based TPR access reporting will pass an IP that
230 * points after the accessing instruction. So we need to look backward
231 * to find the reason.
233 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
234 instr = &tpr_instr[i];
235 if (instr->access != access) {
236 continue;
238 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
239 sizeof(opcode), 0) < 0) {
240 return -1;
242 if (opcode_matches(opcode, instr)) {
243 ip -= instr->length;
244 goto instruction_ok;
247 return -1;
248 } else {
249 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
250 return -1;
252 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
253 instr = &tpr_instr[i];
254 if (opcode_matches(opcode, instr)) {
255 goto instruction_ok;
258 return -1;
261 instruction_ok:
263 * Grab the virtual TPR address from the instruction
264 * and update the cached values.
266 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
267 (void *)&real_tpr_addr,
268 sizeof(real_tpr_addr), 0) < 0) {
269 return -1;
271 real_tpr_addr = le32_to_cpu(real_tpr_addr);
272 if ((real_tpr_addr & 0xfff) != 0x80) {
273 return -1;
275 s->real_tpr_addr = real_tpr_addr;
276 update_guest_rom_state(s);
278 *pip = ip;
279 return 0;
282 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
284 CPUState *cs = env_cpu(env);
285 hwaddr paddr;
286 uint32_t rom_state_vaddr;
287 uint32_t pos, patch, offset;
289 /* nothing to do if already activated */
290 if (s->state == VAPIC_ACTIVE) {
291 return 0;
294 /* bail out if ROM init code was not executed (missing ROM?) */
295 if (s->state == VAPIC_INACTIVE) {
296 return -1;
299 /* find out virtual address of the ROM */
300 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
301 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
302 if (paddr == -1) {
303 return -1;
305 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
306 if (paddr != s->rom_state_paddr) {
307 return -1;
309 read_guest_rom_state(s);
310 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
311 return -1;
313 s->rom_state_vaddr = rom_state_vaddr;
315 /* fixup addresses in ROM if needed */
316 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
317 return 0;
319 for (pos = le32_to_cpu(s->rom_state.fixup_start);
320 pos < le32_to_cpu(s->rom_state.fixup_end);
321 pos += 4) {
322 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
323 &offset, sizeof(offset));
324 offset = le32_to_cpu(offset);
325 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
326 patch = le32_to_cpu(patch);
327 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
328 patch = cpu_to_le32(patch);
329 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
331 read_guest_rom_state(s);
332 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
333 le32_to_cpu(s->rom_state.vaddr);
335 return 0;
339 * Tries to read the unique processor number from the Kernel Processor Control
340 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
341 * cannot be accessed or is considered invalid. This also ensures that we are
342 * not patching the wrong guest.
344 static int get_kpcr_number(X86CPU *cpu)
346 CPUX86State *env = &cpu->env;
347 struct kpcr {
348 uint8_t fill1[0x1c];
349 uint32_t self;
350 uint8_t fill2[0x31];
351 uint8_t number;
352 } QEMU_PACKED kpcr;
354 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
355 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
356 kpcr.self != env->segs[R_FS].base) {
357 return -1;
359 return kpcr.number;
362 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
364 int cpu_number = get_kpcr_number(cpu);
365 hwaddr vapic_paddr;
366 static const uint8_t enabled = 1;
368 if (cpu_number < 0) {
369 return -1;
371 vapic_paddr = s->vapic_paddr +
372 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
373 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
374 &enabled, sizeof(enabled));
375 apic_enable_vapic(cpu->apic_state, vapic_paddr);
377 s->state = VAPIC_ACTIVE;
379 return 0;
382 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
384 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
387 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
389 uint32_t offset;
391 offset = cpu_to_le32(target - ip - 5);
392 patch_byte(cpu, ip, 0xe8); /* call near */
393 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
396 typedef struct PatchInfo {
397 VAPICHandlers *handler;
398 target_ulong ip;
399 } PatchInfo;
401 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
403 X86CPU *x86_cpu = X86_CPU(cs);
404 PatchInfo *info = (PatchInfo *) data.host_ptr;
405 VAPICHandlers *handlers = info->handler;
406 target_ulong ip = info->ip;
407 uint8_t opcode[2];
408 uint32_t imm32 = 0;
410 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
412 switch (opcode[0]) {
413 case 0x89: /* mov r32 to r/m32 */
414 patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
415 patch_call(x86_cpu, ip + 1, handlers->set_tpr);
416 break;
417 case 0x8b: /* mov r/m32 to r32 */
418 patch_byte(x86_cpu, ip, 0x90);
419 patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
420 break;
421 case 0xa1: /* mov abs to eax */
422 patch_call(x86_cpu, ip, handlers->get_tpr[0]);
423 break;
424 case 0xa3: /* mov eax to abs */
425 patch_call(x86_cpu, ip, handlers->set_tpr_eax);
426 break;
427 case 0xc7: /* mov imm32, r/m32 (c7/0) */
428 patch_byte(x86_cpu, ip, 0x68); /* push imm32 */
429 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
430 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
431 patch_call(x86_cpu, ip + 5, handlers->set_tpr);
432 break;
433 case 0xff: /* push r/m32 */
434 patch_byte(x86_cpu, ip, 0x50); /* push eax */
435 patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
436 break;
437 default:
438 abort();
441 g_free(info);
444 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
446 MachineState *ms = MACHINE(qdev_get_machine());
447 CPUState *cs = CPU(cpu);
448 VAPICHandlers *handlers;
449 PatchInfo *info;
451 if (ms->smp.cpus == 1) {
452 handlers = &s->rom_state.up;
453 } else {
454 handlers = &s->rom_state.mp;
457 info = g_new(PatchInfo, 1);
458 info->handler = handlers;
459 info->ip = ip;
461 async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
464 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
465 TPRAccess access)
467 VAPICROMState *s = VAPIC(dev);
468 X86CPU *cpu = X86_CPU(cs);
469 CPUX86State *env = &cpu->env;
471 cpu_synchronize_state(cs);
473 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
474 if (s->state == VAPIC_ACTIVE) {
475 vapic_enable(s, cpu);
477 return;
479 if (update_rom_mapping(s, env, ip) < 0) {
480 return;
482 if (vapic_enable(s, cpu) < 0) {
483 return;
485 patch_instruction(s, cpu, ip);
488 typedef struct VAPICEnableTPRReporting {
489 DeviceState *apic;
490 bool enable;
491 } VAPICEnableTPRReporting;
493 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
495 VAPICEnableTPRReporting *info = data.host_ptr;
496 apic_enable_tpr_access_reporting(info->apic, info->enable);
499 static void vapic_enable_tpr_reporting(bool enable)
501 VAPICEnableTPRReporting info = {
502 .enable = enable,
504 CPUState *cs;
505 X86CPU *cpu;
507 CPU_FOREACH(cs) {
508 cpu = X86_CPU(cs);
509 info.apic = cpu->apic_state;
510 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
514 static void vapic_reset(DeviceState *dev)
516 VAPICROMState *s = VAPIC(dev);
518 s->state = VAPIC_INACTIVE;
519 s->rom_state_paddr = 0;
520 vapic_enable_tpr_reporting(false);
524 * Set the IRQ polling hypercalls to the supported variant:
525 * - vmcall if using KVM in-kernel irqchip
526 * - 32-bit VAPIC port write otherwise
528 static int patch_hypercalls(VAPICROMState *s)
530 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
531 static const uint8_t vmcall_pattern[] = { /* vmcall */
532 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
534 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
535 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
537 uint8_t alternates[2];
538 const uint8_t *pattern;
539 const uint8_t *patch;
540 off_t pos;
541 uint8_t *rom;
543 rom = g_malloc(s->rom_size);
544 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
546 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
547 if (kvm_irqchip_in_kernel()) {
548 pattern = outl_pattern;
549 alternates[0] = outl_pattern[7];
550 alternates[1] = outl_pattern[7];
551 patch = &vmcall_pattern[5];
552 } else {
553 pattern = vmcall_pattern;
554 alternates[0] = vmcall_pattern[7];
555 alternates[1] = 0xd9; /* AMD's VMMCALL */
556 patch = &outl_pattern[5];
558 if (memcmp(rom + pos, pattern, 7) == 0 &&
559 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
560 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
562 * Don't flush the tb here. Under ordinary conditions, the patched
563 * calls are miles away from the current IP. Under malicious
564 * conditions, the guest could trick us to crash.
569 g_free(rom);
570 return 0;
574 * For TCG mode or the time KVM honors read-only memory regions, we need to
575 * enable write access to the option ROM so that variables can be updated by
576 * the guest.
578 static int vapic_map_rom_writable(VAPICROMState *s)
580 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
581 MemoryRegionSection section;
582 MemoryRegion *as;
583 size_t rom_size;
584 uint8_t *ram;
586 as = sysbus_address_space(&s->busdev);
588 if (s->rom_mapped_writable) {
589 memory_region_del_subregion(as, &s->rom);
590 object_unparent(OBJECT(&s->rom));
593 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
594 section = memory_region_find(as, 0, 1);
596 /* read ROM size from RAM region */
597 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
598 return -1;
600 ram = memory_region_get_ram_ptr(section.mr);
601 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
602 if (rom_size == 0) {
603 return -1;
605 s->rom_size = rom_size;
607 /* We need to round to avoid creating subpages
608 * from which we cannot run code. */
609 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
610 rom_paddr &= TARGET_PAGE_MASK;
611 rom_size = TARGET_PAGE_ALIGN(rom_size);
613 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
614 rom_paddr, rom_size);
615 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
616 s->rom_mapped_writable = true;
617 memory_region_unref(section.mr);
619 return 0;
622 static int vapic_prepare(VAPICROMState *s)
624 if (vapic_map_rom_writable(s) < 0) {
625 return -1;
628 if (patch_hypercalls(s) < 0) {
629 return -1;
632 vapic_enable_tpr_reporting(true);
634 return 0;
637 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
638 unsigned int size)
640 VAPICROMState *s = opaque;
641 X86CPU *cpu;
642 CPUX86State *env;
643 hwaddr rom_paddr;
645 if (!current_cpu) {
646 return;
649 cpu_synchronize_state(current_cpu);
650 cpu = X86_CPU(current_cpu);
651 env = &cpu->env;
654 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
655 * o 16-bit write access:
656 * Reports the option ROM initialization to the hypervisor. Written
657 * value is the offset of the state structure in the ROM.
658 * o 8-bit write access:
659 * Reactivates the VAPIC after a guest hibernation, i.e. after the
660 * option ROM content has been re-initialized by a guest power cycle.
661 * o 32-bit write access:
662 * Poll for pending IRQs, considering the current VAPIC state.
664 switch (size) {
665 case 2:
666 if (s->state == VAPIC_INACTIVE) {
667 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
668 s->rom_state_paddr = rom_paddr + data;
670 s->state = VAPIC_STANDBY;
672 if (vapic_prepare(s) < 0) {
673 s->state = VAPIC_INACTIVE;
674 s->rom_state_paddr = 0;
675 break;
677 break;
678 case 1:
679 if (kvm_enabled()) {
681 * Disable triggering instruction in ROM by writing a NOP.
683 * We cannot do this in TCG mode as the reported IP is not
684 * accurate.
686 pause_all_vcpus();
687 patch_byte(cpu, env->eip - 2, 0x66);
688 patch_byte(cpu, env->eip - 1, 0x90);
689 resume_all_vcpus();
692 if (s->state == VAPIC_ACTIVE) {
693 break;
695 if (update_rom_mapping(s, env, env->eip) < 0) {
696 break;
698 if (find_real_tpr_addr(s, env) < 0) {
699 break;
701 vapic_enable(s, cpu);
702 break;
703 default:
704 case 4:
705 if (!kvm_irqchip_in_kernel()) {
706 apic_poll_irq(cpu->apic_state);
708 break;
712 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
714 return 0xffffffff;
717 static const MemoryRegionOps vapic_ops = {
718 .write = vapic_write,
719 .read = vapic_read,
720 .endianness = DEVICE_NATIVE_ENDIAN,
723 static void vapic_realize(DeviceState *dev, Error **errp)
725 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
726 VAPICROMState *s = VAPIC(dev);
728 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
729 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
730 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
732 option_rom[nb_option_roms].name = "kvmvapic.bin";
733 option_rom[nb_option_roms].bootindex = -1;
734 nb_option_roms++;
737 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
739 VAPICROMState *s = data.host_ptr;
740 X86CPU *cpu = X86_CPU(cs);
742 static const uint8_t enabled = 1;
743 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
744 &enabled, sizeof(enabled));
745 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
746 s->state = VAPIC_ACTIVE;
749 static void kvmvapic_vm_state_change(void *opaque, int running,
750 RunState state)
752 MachineState *ms = MACHINE(qdev_get_machine());
753 VAPICROMState *s = opaque;
754 uint8_t *zero;
756 if (!running) {
757 return;
760 if (s->state == VAPIC_ACTIVE) {
761 if (ms->smp.cpus == 1) {
762 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
763 } else {
764 zero = g_malloc0(s->rom_state.vapic_size);
765 cpu_physical_memory_write(s->vapic_paddr, zero,
766 s->rom_state.vapic_size);
767 g_free(zero);
771 qemu_del_vm_change_state_handler(s->vmsentry);
772 s->vmsentry = NULL;
775 static int vapic_post_load(void *opaque, int version_id)
777 VAPICROMState *s = opaque;
780 * The old implementation of qemu-kvm did not provide the state
781 * VAPIC_STANDBY. Reconstruct it.
783 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
784 s->state = VAPIC_STANDBY;
787 if (s->state != VAPIC_INACTIVE) {
788 if (vapic_prepare(s) < 0) {
789 return -1;
793 if (!s->vmsentry) {
794 s->vmsentry =
795 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
797 return 0;
800 static const VMStateDescription vmstate_handlers = {
801 .name = "kvmvapic-handlers",
802 .version_id = 1,
803 .minimum_version_id = 1,
804 .fields = (VMStateField[]) {
805 VMSTATE_UINT32(set_tpr, VAPICHandlers),
806 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
807 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
808 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
809 VMSTATE_END_OF_LIST()
813 static const VMStateDescription vmstate_guest_rom = {
814 .name = "kvmvapic-guest-rom",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .fields = (VMStateField[]) {
818 VMSTATE_UNUSED(8), /* signature */
819 VMSTATE_UINT32(vaddr, GuestROMState),
820 VMSTATE_UINT32(fixup_start, GuestROMState),
821 VMSTATE_UINT32(fixup_end, GuestROMState),
822 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
823 VMSTATE_UINT32(vapic_size, GuestROMState),
824 VMSTATE_UINT32(vcpu_shift, GuestROMState),
825 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
826 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
827 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
828 VMSTATE_END_OF_LIST()
832 static const VMStateDescription vmstate_vapic = {
833 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
834 .version_id = 1,
835 .minimum_version_id = 1,
836 .post_load = vapic_post_load,
837 .fields = (VMStateField[]) {
838 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
839 GuestROMState),
840 VMSTATE_UINT32(state, VAPICROMState),
841 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
842 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
843 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
844 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
845 VMSTATE_END_OF_LIST()
849 static void vapic_class_init(ObjectClass *klass, void *data)
851 DeviceClass *dc = DEVICE_CLASS(klass);
853 dc->reset = vapic_reset;
854 dc->vmsd = &vmstate_vapic;
855 dc->realize = vapic_realize;
858 static const TypeInfo vapic_type = {
859 .name = TYPE_VAPIC,
860 .parent = TYPE_SYS_BUS_DEVICE,
861 .instance_size = sizeof(VAPICROMState),
862 .class_init = vapic_class_init,
865 static void vapic_register(void)
867 type_register_static(&vapic_type);
870 type_init(vapic_register);