mac_via: move VIA1 portB write logic into mos6522_q800_via1_write()
[qemu/ar7.git] / block / io.c
blobdf8f2a98d4fd1113b64db186a8a6f7fd09b7e5b6
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "qemu/cutils.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/main-loop.h"
36 #include "sysemu/replay.h"
38 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
39 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
41 static void bdrv_parent_cb_resize(BlockDriverState *bs);
42 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
43 int64_t offset, int bytes, BdrvRequestFlags flags);
45 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
46 bool ignore_bds_parents)
48 BdrvChild *c, *next;
50 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
51 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
52 continue;
54 bdrv_parent_drained_begin_single(c, false);
58 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
59 int *drained_end_counter)
61 assert(c->parent_quiesce_counter > 0);
62 c->parent_quiesce_counter--;
63 if (c->klass->drained_end) {
64 c->klass->drained_end(c, drained_end_counter);
68 void bdrv_parent_drained_end_single(BdrvChild *c)
70 int drained_end_counter = 0;
71 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
72 BDRV_POLL_WHILE(c->bs, atomic_read(&drained_end_counter) > 0);
75 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
76 bool ignore_bds_parents,
77 int *drained_end_counter)
79 BdrvChild *c;
81 QLIST_FOREACH(c, &bs->parents, next_parent) {
82 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
83 continue;
85 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
89 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
91 if (c->klass->drained_poll) {
92 return c->klass->drained_poll(c);
94 return false;
97 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
98 bool ignore_bds_parents)
100 BdrvChild *c, *next;
101 bool busy = false;
103 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
104 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
105 continue;
107 busy |= bdrv_parent_drained_poll_single(c);
110 return busy;
113 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
115 c->parent_quiesce_counter++;
116 if (c->klass->drained_begin) {
117 c->klass->drained_begin(c);
119 if (poll) {
120 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
124 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
126 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
127 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
128 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
129 src->opt_mem_alignment);
130 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
131 src->min_mem_alignment);
132 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
135 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
137 BlockDriver *drv = bs->drv;
138 Error *local_err = NULL;
140 memset(&bs->bl, 0, sizeof(bs->bl));
142 if (!drv) {
143 return;
146 /* Default alignment based on whether driver has byte interface */
147 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
148 drv->bdrv_aio_preadv ||
149 drv->bdrv_co_preadv_part) ? 1 : 512;
151 /* Take some limits from the children as a default */
152 if (bs->file) {
153 bdrv_refresh_limits(bs->file->bs, &local_err);
154 if (local_err) {
155 error_propagate(errp, local_err);
156 return;
158 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
159 } else {
160 bs->bl.min_mem_alignment = 512;
161 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
163 /* Safe default since most protocols use readv()/writev()/etc */
164 bs->bl.max_iov = IOV_MAX;
167 if (bs->backing) {
168 bdrv_refresh_limits(bs->backing->bs, &local_err);
169 if (local_err) {
170 error_propagate(errp, local_err);
171 return;
173 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
176 /* Then let the driver override it */
177 if (drv->bdrv_refresh_limits) {
178 drv->bdrv_refresh_limits(bs, errp);
183 * The copy-on-read flag is actually a reference count so multiple users may
184 * use the feature without worrying about clobbering its previous state.
185 * Copy-on-read stays enabled until all users have called to disable it.
187 void bdrv_enable_copy_on_read(BlockDriverState *bs)
189 atomic_inc(&bs->copy_on_read);
192 void bdrv_disable_copy_on_read(BlockDriverState *bs)
194 int old = atomic_fetch_dec(&bs->copy_on_read);
195 assert(old >= 1);
198 typedef struct {
199 Coroutine *co;
200 BlockDriverState *bs;
201 bool done;
202 bool begin;
203 bool recursive;
204 bool poll;
205 BdrvChild *parent;
206 bool ignore_bds_parents;
207 int *drained_end_counter;
208 } BdrvCoDrainData;
210 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
212 BdrvCoDrainData *data = opaque;
213 BlockDriverState *bs = data->bs;
215 if (data->begin) {
216 bs->drv->bdrv_co_drain_begin(bs);
217 } else {
218 bs->drv->bdrv_co_drain_end(bs);
221 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
222 atomic_mb_set(&data->done, true);
223 if (!data->begin) {
224 atomic_dec(data->drained_end_counter);
226 bdrv_dec_in_flight(bs);
228 g_free(data);
231 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
232 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
233 int *drained_end_counter)
235 BdrvCoDrainData *data;
237 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
238 (!begin && !bs->drv->bdrv_co_drain_end)) {
239 return;
242 data = g_new(BdrvCoDrainData, 1);
243 *data = (BdrvCoDrainData) {
244 .bs = bs,
245 .done = false,
246 .begin = begin,
247 .drained_end_counter = drained_end_counter,
250 if (!begin) {
251 atomic_inc(drained_end_counter);
254 /* Make sure the driver callback completes during the polling phase for
255 * drain_begin. */
256 bdrv_inc_in_flight(bs);
257 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
258 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
261 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
262 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
263 BdrvChild *ignore_parent, bool ignore_bds_parents)
265 BdrvChild *child, *next;
267 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
268 return true;
271 if (atomic_read(&bs->in_flight)) {
272 return true;
275 if (recursive) {
276 assert(!ignore_bds_parents);
277 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
278 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
279 return true;
284 return false;
287 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
288 BdrvChild *ignore_parent)
290 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
293 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
294 BdrvChild *parent, bool ignore_bds_parents,
295 bool poll);
296 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
297 BdrvChild *parent, bool ignore_bds_parents,
298 int *drained_end_counter);
300 static void bdrv_co_drain_bh_cb(void *opaque)
302 BdrvCoDrainData *data = opaque;
303 Coroutine *co = data->co;
304 BlockDriverState *bs = data->bs;
306 if (bs) {
307 AioContext *ctx = bdrv_get_aio_context(bs);
308 AioContext *co_ctx = qemu_coroutine_get_aio_context(co);
311 * When the coroutine yielded, the lock for its home context was
312 * released, so we need to re-acquire it here. If it explicitly
313 * acquired a different context, the lock is still held and we don't
314 * want to lock it a second time (or AIO_WAIT_WHILE() would hang).
316 if (ctx == co_ctx) {
317 aio_context_acquire(ctx);
319 bdrv_dec_in_flight(bs);
320 if (data->begin) {
321 assert(!data->drained_end_counter);
322 bdrv_do_drained_begin(bs, data->recursive, data->parent,
323 data->ignore_bds_parents, data->poll);
324 } else {
325 assert(!data->poll);
326 bdrv_do_drained_end(bs, data->recursive, data->parent,
327 data->ignore_bds_parents,
328 data->drained_end_counter);
330 if (ctx == co_ctx) {
331 aio_context_release(ctx);
333 } else {
334 assert(data->begin);
335 bdrv_drain_all_begin();
338 data->done = true;
339 aio_co_wake(co);
342 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
343 bool begin, bool recursive,
344 BdrvChild *parent,
345 bool ignore_bds_parents,
346 bool poll,
347 int *drained_end_counter)
349 BdrvCoDrainData data;
351 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
352 * other coroutines run if they were queued by aio_co_enter(). */
354 assert(qemu_in_coroutine());
355 data = (BdrvCoDrainData) {
356 .co = qemu_coroutine_self(),
357 .bs = bs,
358 .done = false,
359 .begin = begin,
360 .recursive = recursive,
361 .parent = parent,
362 .ignore_bds_parents = ignore_bds_parents,
363 .poll = poll,
364 .drained_end_counter = drained_end_counter,
367 if (bs) {
368 bdrv_inc_in_flight(bs);
370 replay_bh_schedule_oneshot_event(bdrv_get_aio_context(bs),
371 bdrv_co_drain_bh_cb, &data);
373 qemu_coroutine_yield();
374 /* If we are resumed from some other event (such as an aio completion or a
375 * timer callback), it is a bug in the caller that should be fixed. */
376 assert(data.done);
379 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
380 BdrvChild *parent, bool ignore_bds_parents)
382 assert(!qemu_in_coroutine());
384 /* Stop things in parent-to-child order */
385 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
386 aio_disable_external(bdrv_get_aio_context(bs));
389 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
390 bdrv_drain_invoke(bs, true, NULL);
393 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
394 BdrvChild *parent, bool ignore_bds_parents,
395 bool poll)
397 BdrvChild *child, *next;
399 if (qemu_in_coroutine()) {
400 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
401 poll, NULL);
402 return;
405 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
407 if (recursive) {
408 assert(!ignore_bds_parents);
409 bs->recursive_quiesce_counter++;
410 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
411 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
412 false);
417 * Wait for drained requests to finish.
419 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
420 * call is needed so things in this AioContext can make progress even
421 * though we don't return to the main AioContext loop - this automatically
422 * includes other nodes in the same AioContext and therefore all child
423 * nodes.
425 if (poll) {
426 assert(!ignore_bds_parents);
427 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
431 void bdrv_drained_begin(BlockDriverState *bs)
433 bdrv_do_drained_begin(bs, false, NULL, false, true);
436 void bdrv_subtree_drained_begin(BlockDriverState *bs)
438 bdrv_do_drained_begin(bs, true, NULL, false, true);
442 * This function does not poll, nor must any of its recursively called
443 * functions. The *drained_end_counter pointee will be incremented
444 * once for every background operation scheduled, and decremented once
445 * the operation settles. Therefore, the pointer must remain valid
446 * until the pointee reaches 0. That implies that whoever sets up the
447 * pointee has to poll until it is 0.
449 * We use atomic operations to access *drained_end_counter, because
450 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
451 * @bs may contain nodes in different AioContexts,
452 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
453 * regardless of which AioContext they are in.
455 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
456 BdrvChild *parent, bool ignore_bds_parents,
457 int *drained_end_counter)
459 BdrvChild *child;
460 int old_quiesce_counter;
462 assert(drained_end_counter != NULL);
464 if (qemu_in_coroutine()) {
465 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
466 false, drained_end_counter);
467 return;
469 assert(bs->quiesce_counter > 0);
471 /* Re-enable things in child-to-parent order */
472 bdrv_drain_invoke(bs, false, drained_end_counter);
473 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
474 drained_end_counter);
476 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
477 if (old_quiesce_counter == 1) {
478 aio_enable_external(bdrv_get_aio_context(bs));
481 if (recursive) {
482 assert(!ignore_bds_parents);
483 bs->recursive_quiesce_counter--;
484 QLIST_FOREACH(child, &bs->children, next) {
485 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
486 drained_end_counter);
491 void bdrv_drained_end(BlockDriverState *bs)
493 int drained_end_counter = 0;
494 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
495 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
498 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
500 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
503 void bdrv_subtree_drained_end(BlockDriverState *bs)
505 int drained_end_counter = 0;
506 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
507 BDRV_POLL_WHILE(bs, atomic_read(&drained_end_counter) > 0);
510 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
512 int i;
514 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
515 bdrv_do_drained_begin(child->bs, true, child, false, true);
519 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
521 int drained_end_counter = 0;
522 int i;
524 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
525 bdrv_do_drained_end(child->bs, true, child, false,
526 &drained_end_counter);
529 BDRV_POLL_WHILE(child->bs, atomic_read(&drained_end_counter) > 0);
533 * Wait for pending requests to complete on a single BlockDriverState subtree,
534 * and suspend block driver's internal I/O until next request arrives.
536 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
537 * AioContext.
539 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
541 assert(qemu_in_coroutine());
542 bdrv_drained_begin(bs);
543 bdrv_drained_end(bs);
546 void bdrv_drain(BlockDriverState *bs)
548 bdrv_drained_begin(bs);
549 bdrv_drained_end(bs);
552 static void bdrv_drain_assert_idle(BlockDriverState *bs)
554 BdrvChild *child, *next;
556 assert(atomic_read(&bs->in_flight) == 0);
557 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
558 bdrv_drain_assert_idle(child->bs);
562 unsigned int bdrv_drain_all_count = 0;
564 static bool bdrv_drain_all_poll(void)
566 BlockDriverState *bs = NULL;
567 bool result = false;
569 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
570 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
571 while ((bs = bdrv_next_all_states(bs))) {
572 AioContext *aio_context = bdrv_get_aio_context(bs);
573 aio_context_acquire(aio_context);
574 result |= bdrv_drain_poll(bs, false, NULL, true);
575 aio_context_release(aio_context);
578 return result;
582 * Wait for pending requests to complete across all BlockDriverStates
584 * This function does not flush data to disk, use bdrv_flush_all() for that
585 * after calling this function.
587 * This pauses all block jobs and disables external clients. It must
588 * be paired with bdrv_drain_all_end().
590 * NOTE: no new block jobs or BlockDriverStates can be created between
591 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
593 void bdrv_drain_all_begin(void)
595 BlockDriverState *bs = NULL;
597 if (qemu_in_coroutine()) {
598 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
599 return;
603 * bdrv queue is managed by record/replay,
604 * waiting for finishing the I/O requests may
605 * be infinite
607 if (replay_events_enabled()) {
608 return;
611 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
612 * loop AioContext, so make sure we're in the main context. */
613 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
614 assert(bdrv_drain_all_count < INT_MAX);
615 bdrv_drain_all_count++;
617 /* Quiesce all nodes, without polling in-flight requests yet. The graph
618 * cannot change during this loop. */
619 while ((bs = bdrv_next_all_states(bs))) {
620 AioContext *aio_context = bdrv_get_aio_context(bs);
622 aio_context_acquire(aio_context);
623 bdrv_do_drained_begin(bs, false, NULL, true, false);
624 aio_context_release(aio_context);
627 /* Now poll the in-flight requests */
628 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
630 while ((bs = bdrv_next_all_states(bs))) {
631 bdrv_drain_assert_idle(bs);
635 void bdrv_drain_all_end(void)
637 BlockDriverState *bs = NULL;
638 int drained_end_counter = 0;
641 * bdrv queue is managed by record/replay,
642 * waiting for finishing the I/O requests may
643 * be endless
645 if (replay_events_enabled()) {
646 return;
649 while ((bs = bdrv_next_all_states(bs))) {
650 AioContext *aio_context = bdrv_get_aio_context(bs);
652 aio_context_acquire(aio_context);
653 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
654 aio_context_release(aio_context);
657 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
658 AIO_WAIT_WHILE(NULL, atomic_read(&drained_end_counter) > 0);
660 assert(bdrv_drain_all_count > 0);
661 bdrv_drain_all_count--;
664 void bdrv_drain_all(void)
666 bdrv_drain_all_begin();
667 bdrv_drain_all_end();
671 * Remove an active request from the tracked requests list
673 * This function should be called when a tracked request is completing.
675 static void tracked_request_end(BdrvTrackedRequest *req)
677 if (req->serialising) {
678 atomic_dec(&req->bs->serialising_in_flight);
681 qemu_co_mutex_lock(&req->bs->reqs_lock);
682 QLIST_REMOVE(req, list);
683 qemu_co_queue_restart_all(&req->wait_queue);
684 qemu_co_mutex_unlock(&req->bs->reqs_lock);
688 * Add an active request to the tracked requests list
690 static void tracked_request_begin(BdrvTrackedRequest *req,
691 BlockDriverState *bs,
692 int64_t offset,
693 uint64_t bytes,
694 enum BdrvTrackedRequestType type)
696 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
698 *req = (BdrvTrackedRequest){
699 .bs = bs,
700 .offset = offset,
701 .bytes = bytes,
702 .type = type,
703 .co = qemu_coroutine_self(),
704 .serialising = false,
705 .overlap_offset = offset,
706 .overlap_bytes = bytes,
709 qemu_co_queue_init(&req->wait_queue);
711 qemu_co_mutex_lock(&bs->reqs_lock);
712 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
713 qemu_co_mutex_unlock(&bs->reqs_lock);
716 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
717 int64_t offset, uint64_t bytes)
719 /* aaaa bbbb */
720 if (offset >= req->overlap_offset + req->overlap_bytes) {
721 return false;
723 /* bbbb aaaa */
724 if (req->overlap_offset >= offset + bytes) {
725 return false;
727 return true;
730 static bool coroutine_fn
731 bdrv_wait_serialising_requests_locked(BlockDriverState *bs,
732 BdrvTrackedRequest *self)
734 BdrvTrackedRequest *req;
735 bool retry;
736 bool waited = false;
738 do {
739 retry = false;
740 QLIST_FOREACH(req, &bs->tracked_requests, list) {
741 if (req == self || (!req->serialising && !self->serialising)) {
742 continue;
744 if (tracked_request_overlaps(req, self->overlap_offset,
745 self->overlap_bytes))
747 /* Hitting this means there was a reentrant request, for
748 * example, a block driver issuing nested requests. This must
749 * never happen since it means deadlock.
751 assert(qemu_coroutine_self() != req->co);
753 /* If the request is already (indirectly) waiting for us, or
754 * will wait for us as soon as it wakes up, then just go on
755 * (instead of producing a deadlock in the former case). */
756 if (!req->waiting_for) {
757 self->waiting_for = req;
758 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
759 self->waiting_for = NULL;
760 retry = true;
761 waited = true;
762 break;
766 } while (retry);
767 return waited;
770 bool bdrv_mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
772 BlockDriverState *bs = req->bs;
773 int64_t overlap_offset = req->offset & ~(align - 1);
774 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
775 - overlap_offset;
776 bool waited;
778 qemu_co_mutex_lock(&bs->reqs_lock);
779 if (!req->serialising) {
780 atomic_inc(&req->bs->serialising_in_flight);
781 req->serialising = true;
784 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
785 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
786 waited = bdrv_wait_serialising_requests_locked(bs, req);
787 qemu_co_mutex_unlock(&bs->reqs_lock);
788 return waited;
792 * Return the tracked request on @bs for the current coroutine, or
793 * NULL if there is none.
795 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
797 BdrvTrackedRequest *req;
798 Coroutine *self = qemu_coroutine_self();
800 QLIST_FOREACH(req, &bs->tracked_requests, list) {
801 if (req->co == self) {
802 return req;
806 return NULL;
810 * Round a region to cluster boundaries
812 void bdrv_round_to_clusters(BlockDriverState *bs,
813 int64_t offset, int64_t bytes,
814 int64_t *cluster_offset,
815 int64_t *cluster_bytes)
817 BlockDriverInfo bdi;
819 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
820 *cluster_offset = offset;
821 *cluster_bytes = bytes;
822 } else {
823 int64_t c = bdi.cluster_size;
824 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
825 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
829 static int bdrv_get_cluster_size(BlockDriverState *bs)
831 BlockDriverInfo bdi;
832 int ret;
834 ret = bdrv_get_info(bs, &bdi);
835 if (ret < 0 || bdi.cluster_size == 0) {
836 return bs->bl.request_alignment;
837 } else {
838 return bdi.cluster_size;
842 void bdrv_inc_in_flight(BlockDriverState *bs)
844 atomic_inc(&bs->in_flight);
847 void bdrv_wakeup(BlockDriverState *bs)
849 aio_wait_kick();
852 void bdrv_dec_in_flight(BlockDriverState *bs)
854 atomic_dec(&bs->in_flight);
855 bdrv_wakeup(bs);
858 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
860 BlockDriverState *bs = self->bs;
861 bool waited = false;
863 if (!atomic_read(&bs->serialising_in_flight)) {
864 return false;
867 qemu_co_mutex_lock(&bs->reqs_lock);
868 waited = bdrv_wait_serialising_requests_locked(bs, self);
869 qemu_co_mutex_unlock(&bs->reqs_lock);
871 return waited;
874 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
875 size_t size)
877 if (size > BDRV_REQUEST_MAX_BYTES) {
878 return -EIO;
881 if (!bdrv_is_inserted(bs)) {
882 return -ENOMEDIUM;
885 if (offset < 0) {
886 return -EIO;
889 return 0;
892 typedef int coroutine_fn BdrvRequestEntry(void *opaque);
893 typedef struct BdrvRunCo {
894 BdrvRequestEntry *entry;
895 void *opaque;
896 int ret;
897 bool done;
898 Coroutine *co; /* Coroutine, running bdrv_run_co_entry, for debugging */
899 } BdrvRunCo;
901 static void coroutine_fn bdrv_run_co_entry(void *opaque)
903 BdrvRunCo *arg = opaque;
905 arg->ret = arg->entry(arg->opaque);
906 arg->done = true;
907 aio_wait_kick();
910 static int bdrv_run_co(BlockDriverState *bs, BdrvRequestEntry *entry,
911 void *opaque)
913 if (qemu_in_coroutine()) {
914 /* Fast-path if already in coroutine context */
915 return entry(opaque);
916 } else {
917 BdrvRunCo s = { .entry = entry, .opaque = opaque };
919 s.co = qemu_coroutine_create(bdrv_run_co_entry, &s);
920 bdrv_coroutine_enter(bs, s.co);
922 BDRV_POLL_WHILE(bs, !s.done);
924 return s.ret;
928 typedef struct RwCo {
929 BdrvChild *child;
930 int64_t offset;
931 QEMUIOVector *qiov;
932 bool is_write;
933 BdrvRequestFlags flags;
934 } RwCo;
936 static int coroutine_fn bdrv_rw_co_entry(void *opaque)
938 RwCo *rwco = opaque;
940 if (!rwco->is_write) {
941 return bdrv_co_preadv(rwco->child, rwco->offset,
942 rwco->qiov->size, rwco->qiov,
943 rwco->flags);
944 } else {
945 return bdrv_co_pwritev(rwco->child, rwco->offset,
946 rwco->qiov->size, rwco->qiov,
947 rwco->flags);
952 * Process a vectored synchronous request using coroutines
954 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
955 QEMUIOVector *qiov, bool is_write,
956 BdrvRequestFlags flags)
958 RwCo rwco = {
959 .child = child,
960 .offset = offset,
961 .qiov = qiov,
962 .is_write = is_write,
963 .flags = flags,
966 return bdrv_run_co(child->bs, bdrv_rw_co_entry, &rwco);
969 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
970 int bytes, BdrvRequestFlags flags)
972 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
974 return bdrv_prwv_co(child, offset, &qiov, true,
975 BDRV_REQ_ZERO_WRITE | flags);
979 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
980 * The operation is sped up by checking the block status and only writing
981 * zeroes to the device if they currently do not return zeroes. Optional
982 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
983 * BDRV_REQ_FUA).
985 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
987 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
989 int ret;
990 int64_t target_size, bytes, offset = 0;
991 BlockDriverState *bs = child->bs;
993 target_size = bdrv_getlength(bs);
994 if (target_size < 0) {
995 return target_size;
998 for (;;) {
999 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
1000 if (bytes <= 0) {
1001 return 0;
1003 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
1004 if (ret < 0) {
1005 return ret;
1007 if (ret & BDRV_BLOCK_ZERO) {
1008 offset += bytes;
1009 continue;
1011 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
1012 if (ret < 0) {
1013 return ret;
1015 offset += bytes;
1019 /* return < 0 if error. See bdrv_pwrite() for the return codes */
1020 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1022 int ret;
1024 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
1025 if (ret < 0) {
1026 return ret;
1029 return qiov->size;
1032 /* See bdrv_pwrite() for the return codes */
1033 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1035 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1037 if (bytes < 0) {
1038 return -EINVAL;
1041 return bdrv_preadv(child, offset, &qiov);
1044 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
1046 int ret;
1048 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
1049 if (ret < 0) {
1050 return ret;
1053 return qiov->size;
1056 /* Return no. of bytes on success or < 0 on error. Important errors are:
1057 -EIO generic I/O error (may happen for all errors)
1058 -ENOMEDIUM No media inserted.
1059 -EINVAL Invalid offset or number of bytes
1060 -EACCES Trying to write a read-only device
1062 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1064 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1066 if (bytes < 0) {
1067 return -EINVAL;
1070 return bdrv_pwritev(child, offset, &qiov);
1074 * Writes to the file and ensures that no writes are reordered across this
1075 * request (acts as a barrier)
1077 * Returns 0 on success, -errno in error cases.
1079 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1080 const void *buf, int count)
1082 int ret;
1084 ret = bdrv_pwrite(child, offset, buf, count);
1085 if (ret < 0) {
1086 return ret;
1089 ret = bdrv_flush(child->bs);
1090 if (ret < 0) {
1091 return ret;
1094 return 0;
1097 typedef struct CoroutineIOCompletion {
1098 Coroutine *coroutine;
1099 int ret;
1100 } CoroutineIOCompletion;
1102 static void bdrv_co_io_em_complete(void *opaque, int ret)
1104 CoroutineIOCompletion *co = opaque;
1106 co->ret = ret;
1107 aio_co_wake(co->coroutine);
1110 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1111 uint64_t offset, uint64_t bytes,
1112 QEMUIOVector *qiov,
1113 size_t qiov_offset, int flags)
1115 BlockDriver *drv = bs->drv;
1116 int64_t sector_num;
1117 unsigned int nb_sectors;
1118 QEMUIOVector local_qiov;
1119 int ret;
1121 assert(!(flags & ~BDRV_REQ_MASK));
1122 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1124 if (!drv) {
1125 return -ENOMEDIUM;
1128 if (drv->bdrv_co_preadv_part) {
1129 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1130 flags);
1133 if (qiov_offset > 0 || bytes != qiov->size) {
1134 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1135 qiov = &local_qiov;
1138 if (drv->bdrv_co_preadv) {
1139 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1140 goto out;
1143 if (drv->bdrv_aio_preadv) {
1144 BlockAIOCB *acb;
1145 CoroutineIOCompletion co = {
1146 .coroutine = qemu_coroutine_self(),
1149 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1150 bdrv_co_io_em_complete, &co);
1151 if (acb == NULL) {
1152 ret = -EIO;
1153 goto out;
1154 } else {
1155 qemu_coroutine_yield();
1156 ret = co.ret;
1157 goto out;
1161 sector_num = offset >> BDRV_SECTOR_BITS;
1162 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1164 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1165 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1166 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1167 assert(drv->bdrv_co_readv);
1169 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1171 out:
1172 if (qiov == &local_qiov) {
1173 qemu_iovec_destroy(&local_qiov);
1176 return ret;
1179 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1180 uint64_t offset, uint64_t bytes,
1181 QEMUIOVector *qiov,
1182 size_t qiov_offset, int flags)
1184 BlockDriver *drv = bs->drv;
1185 int64_t sector_num;
1186 unsigned int nb_sectors;
1187 QEMUIOVector local_qiov;
1188 int ret;
1190 assert(!(flags & ~BDRV_REQ_MASK));
1191 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1193 if (!drv) {
1194 return -ENOMEDIUM;
1197 if (drv->bdrv_co_pwritev_part) {
1198 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1199 flags & bs->supported_write_flags);
1200 flags &= ~bs->supported_write_flags;
1201 goto emulate_flags;
1204 if (qiov_offset > 0 || bytes != qiov->size) {
1205 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1206 qiov = &local_qiov;
1209 if (drv->bdrv_co_pwritev) {
1210 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1211 flags & bs->supported_write_flags);
1212 flags &= ~bs->supported_write_flags;
1213 goto emulate_flags;
1216 if (drv->bdrv_aio_pwritev) {
1217 BlockAIOCB *acb;
1218 CoroutineIOCompletion co = {
1219 .coroutine = qemu_coroutine_self(),
1222 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1223 flags & bs->supported_write_flags,
1224 bdrv_co_io_em_complete, &co);
1225 flags &= ~bs->supported_write_flags;
1226 if (acb == NULL) {
1227 ret = -EIO;
1228 } else {
1229 qemu_coroutine_yield();
1230 ret = co.ret;
1232 goto emulate_flags;
1235 sector_num = offset >> BDRV_SECTOR_BITS;
1236 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1238 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1239 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1240 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1242 assert(drv->bdrv_co_writev);
1243 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1244 flags & bs->supported_write_flags);
1245 flags &= ~bs->supported_write_flags;
1247 emulate_flags:
1248 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1249 ret = bdrv_co_flush(bs);
1252 if (qiov == &local_qiov) {
1253 qemu_iovec_destroy(&local_qiov);
1256 return ret;
1259 static int coroutine_fn
1260 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1261 uint64_t bytes, QEMUIOVector *qiov,
1262 size_t qiov_offset)
1264 BlockDriver *drv = bs->drv;
1265 QEMUIOVector local_qiov;
1266 int ret;
1268 if (!drv) {
1269 return -ENOMEDIUM;
1272 if (!block_driver_can_compress(drv)) {
1273 return -ENOTSUP;
1276 if (drv->bdrv_co_pwritev_compressed_part) {
1277 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1278 qiov, qiov_offset);
1281 if (qiov_offset == 0) {
1282 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1285 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1286 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1287 qemu_iovec_destroy(&local_qiov);
1289 return ret;
1292 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1293 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1294 size_t qiov_offset, int flags)
1296 BlockDriverState *bs = child->bs;
1298 /* Perform I/O through a temporary buffer so that users who scribble over
1299 * their read buffer while the operation is in progress do not end up
1300 * modifying the image file. This is critical for zero-copy guest I/O
1301 * where anything might happen inside guest memory.
1303 void *bounce_buffer = NULL;
1305 BlockDriver *drv = bs->drv;
1306 int64_t cluster_offset;
1307 int64_t cluster_bytes;
1308 size_t skip_bytes;
1309 int ret;
1310 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1311 BDRV_REQUEST_MAX_BYTES);
1312 unsigned int progress = 0;
1313 bool skip_write;
1315 if (!drv) {
1316 return -ENOMEDIUM;
1320 * Do not write anything when the BDS is inactive. That is not
1321 * allowed, and it would not help.
1323 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1325 /* FIXME We cannot require callers to have write permissions when all they
1326 * are doing is a read request. If we did things right, write permissions
1327 * would be obtained anyway, but internally by the copy-on-read code. As
1328 * long as it is implemented here rather than in a separate filter driver,
1329 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1330 * it could request permissions. Therefore we have to bypass the permission
1331 * system for the moment. */
1332 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1334 /* Cover entire cluster so no additional backing file I/O is required when
1335 * allocating cluster in the image file. Note that this value may exceed
1336 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1337 * is one reason we loop rather than doing it all at once.
1339 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1340 skip_bytes = offset - cluster_offset;
1342 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1343 cluster_offset, cluster_bytes);
1345 while (cluster_bytes) {
1346 int64_t pnum;
1348 if (skip_write) {
1349 ret = 1; /* "already allocated", so nothing will be copied */
1350 pnum = MIN(cluster_bytes, max_transfer);
1351 } else {
1352 ret = bdrv_is_allocated(bs, cluster_offset,
1353 MIN(cluster_bytes, max_transfer), &pnum);
1354 if (ret < 0) {
1356 * Safe to treat errors in querying allocation as if
1357 * unallocated; we'll probably fail again soon on the
1358 * read, but at least that will set a decent errno.
1360 pnum = MIN(cluster_bytes, max_transfer);
1363 /* Stop at EOF if the image ends in the middle of the cluster */
1364 if (ret == 0 && pnum == 0) {
1365 assert(progress >= bytes);
1366 break;
1369 assert(skip_bytes < pnum);
1372 if (ret <= 0) {
1373 QEMUIOVector local_qiov;
1375 /* Must copy-on-read; use the bounce buffer */
1376 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1377 if (!bounce_buffer) {
1378 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1379 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1380 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1382 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1383 if (!bounce_buffer) {
1384 ret = -ENOMEM;
1385 goto err;
1388 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1390 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1391 &local_qiov, 0, 0);
1392 if (ret < 0) {
1393 goto err;
1396 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1397 if (drv->bdrv_co_pwrite_zeroes &&
1398 buffer_is_zero(bounce_buffer, pnum)) {
1399 /* FIXME: Should we (perhaps conditionally) be setting
1400 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1401 * that still correctly reads as zero? */
1402 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1403 BDRV_REQ_WRITE_UNCHANGED);
1404 } else {
1405 /* This does not change the data on the disk, it is not
1406 * necessary to flush even in cache=writethrough mode.
1408 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1409 &local_qiov, 0,
1410 BDRV_REQ_WRITE_UNCHANGED);
1413 if (ret < 0) {
1414 /* It might be okay to ignore write errors for guest
1415 * requests. If this is a deliberate copy-on-read
1416 * then we don't want to ignore the error. Simply
1417 * report it in all cases.
1419 goto err;
1422 if (!(flags & BDRV_REQ_PREFETCH)) {
1423 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1424 bounce_buffer + skip_bytes,
1425 MIN(pnum - skip_bytes, bytes - progress));
1427 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1428 /* Read directly into the destination */
1429 ret = bdrv_driver_preadv(bs, offset + progress,
1430 MIN(pnum - skip_bytes, bytes - progress),
1431 qiov, qiov_offset + progress, 0);
1432 if (ret < 0) {
1433 goto err;
1437 cluster_offset += pnum;
1438 cluster_bytes -= pnum;
1439 progress += pnum - skip_bytes;
1440 skip_bytes = 0;
1442 ret = 0;
1444 err:
1445 qemu_vfree(bounce_buffer);
1446 return ret;
1450 * Forwards an already correctly aligned request to the BlockDriver. This
1451 * handles copy on read, zeroing after EOF, and fragmentation of large
1452 * reads; any other features must be implemented by the caller.
1454 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1455 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1456 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1458 BlockDriverState *bs = child->bs;
1459 int64_t total_bytes, max_bytes;
1460 int ret = 0;
1461 uint64_t bytes_remaining = bytes;
1462 int max_transfer;
1464 assert(is_power_of_2(align));
1465 assert((offset & (align - 1)) == 0);
1466 assert((bytes & (align - 1)) == 0);
1467 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1468 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1469 align);
1471 /* TODO: We would need a per-BDS .supported_read_flags and
1472 * potential fallback support, if we ever implement any read flags
1473 * to pass through to drivers. For now, there aren't any
1474 * passthrough flags. */
1475 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1477 /* Handle Copy on Read and associated serialisation */
1478 if (flags & BDRV_REQ_COPY_ON_READ) {
1479 /* If we touch the same cluster it counts as an overlap. This
1480 * guarantees that allocating writes will be serialized and not race
1481 * with each other for the same cluster. For example, in copy-on-read
1482 * it ensures that the CoR read and write operations are atomic and
1483 * guest writes cannot interleave between them. */
1484 bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1485 } else {
1486 bdrv_wait_serialising_requests(req);
1489 if (flags & BDRV_REQ_COPY_ON_READ) {
1490 int64_t pnum;
1492 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1493 if (ret < 0) {
1494 goto out;
1497 if (!ret || pnum != bytes) {
1498 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1499 qiov, qiov_offset, flags);
1500 goto out;
1501 } else if (flags & BDRV_REQ_PREFETCH) {
1502 goto out;
1506 /* Forward the request to the BlockDriver, possibly fragmenting it */
1507 total_bytes = bdrv_getlength(bs);
1508 if (total_bytes < 0) {
1509 ret = total_bytes;
1510 goto out;
1513 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1514 if (bytes <= max_bytes && bytes <= max_transfer) {
1515 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, 0);
1516 goto out;
1519 while (bytes_remaining) {
1520 int num;
1522 if (max_bytes) {
1523 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1524 assert(num);
1526 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1527 num, qiov, bytes - bytes_remaining, 0);
1528 max_bytes -= num;
1529 } else {
1530 num = bytes_remaining;
1531 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1532 bytes_remaining);
1534 if (ret < 0) {
1535 goto out;
1537 bytes_remaining -= num;
1540 out:
1541 return ret < 0 ? ret : 0;
1545 * Request padding
1547 * |<---- align ----->| |<----- align ---->|
1548 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1549 * | | | | | |
1550 * -*----------$-------*-------- ... --------*-----$------------*---
1551 * | | | | | |
1552 * | offset | | end |
1553 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1554 * [buf ... ) [tail_buf )
1556 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1557 * is placed at the beginning of @buf and @tail at the @end.
1559 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1560 * around tail, if tail exists.
1562 * @merge_reads is true for small requests,
1563 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1564 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1566 typedef struct BdrvRequestPadding {
1567 uint8_t *buf;
1568 size_t buf_len;
1569 uint8_t *tail_buf;
1570 size_t head;
1571 size_t tail;
1572 bool merge_reads;
1573 QEMUIOVector local_qiov;
1574 } BdrvRequestPadding;
1576 static bool bdrv_init_padding(BlockDriverState *bs,
1577 int64_t offset, int64_t bytes,
1578 BdrvRequestPadding *pad)
1580 uint64_t align = bs->bl.request_alignment;
1581 size_t sum;
1583 memset(pad, 0, sizeof(*pad));
1585 pad->head = offset & (align - 1);
1586 pad->tail = ((offset + bytes) & (align - 1));
1587 if (pad->tail) {
1588 pad->tail = align - pad->tail;
1591 if (!pad->head && !pad->tail) {
1592 return false;
1595 assert(bytes); /* Nothing good in aligning zero-length requests */
1597 sum = pad->head + bytes + pad->tail;
1598 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1599 pad->buf = qemu_blockalign(bs, pad->buf_len);
1600 pad->merge_reads = sum == pad->buf_len;
1601 if (pad->tail) {
1602 pad->tail_buf = pad->buf + pad->buf_len - align;
1605 return true;
1608 static int bdrv_padding_rmw_read(BdrvChild *child,
1609 BdrvTrackedRequest *req,
1610 BdrvRequestPadding *pad,
1611 bool zero_middle)
1613 QEMUIOVector local_qiov;
1614 BlockDriverState *bs = child->bs;
1615 uint64_t align = bs->bl.request_alignment;
1616 int ret;
1618 assert(req->serialising && pad->buf);
1620 if (pad->head || pad->merge_reads) {
1621 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1623 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1625 if (pad->head) {
1626 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1628 if (pad->merge_reads && pad->tail) {
1629 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1631 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1632 align, &local_qiov, 0, 0);
1633 if (ret < 0) {
1634 return ret;
1636 if (pad->head) {
1637 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1639 if (pad->merge_reads && pad->tail) {
1640 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1643 if (pad->merge_reads) {
1644 goto zero_mem;
1648 if (pad->tail) {
1649 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1651 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1652 ret = bdrv_aligned_preadv(
1653 child, req,
1654 req->overlap_offset + req->overlap_bytes - align,
1655 align, align, &local_qiov, 0, 0);
1656 if (ret < 0) {
1657 return ret;
1659 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1662 zero_mem:
1663 if (zero_middle) {
1664 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1667 return 0;
1670 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1672 if (pad->buf) {
1673 qemu_vfree(pad->buf);
1674 qemu_iovec_destroy(&pad->local_qiov);
1679 * bdrv_pad_request
1681 * Exchange request parameters with padded request if needed. Don't include RMW
1682 * read of padding, bdrv_padding_rmw_read() should be called separately if
1683 * needed.
1685 * All parameters except @bs are in-out: they represent original request at
1686 * function call and padded (if padding needed) at function finish.
1688 * Function always succeeds.
1690 static bool bdrv_pad_request(BlockDriverState *bs,
1691 QEMUIOVector **qiov, size_t *qiov_offset,
1692 int64_t *offset, unsigned int *bytes,
1693 BdrvRequestPadding *pad)
1695 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1696 return false;
1699 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1700 *qiov, *qiov_offset, *bytes,
1701 pad->buf + pad->buf_len - pad->tail, pad->tail);
1702 *bytes += pad->head + pad->tail;
1703 *offset -= pad->head;
1704 *qiov = &pad->local_qiov;
1705 *qiov_offset = 0;
1707 return true;
1710 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1711 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1712 BdrvRequestFlags flags)
1714 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1717 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1718 int64_t offset, unsigned int bytes,
1719 QEMUIOVector *qiov, size_t qiov_offset,
1720 BdrvRequestFlags flags)
1722 BlockDriverState *bs = child->bs;
1723 BdrvTrackedRequest req;
1724 BdrvRequestPadding pad;
1725 int ret;
1727 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1729 ret = bdrv_check_byte_request(bs, offset, bytes);
1730 if (ret < 0) {
1731 return ret;
1734 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1736 * Aligning zero request is nonsense. Even if driver has special meaning
1737 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1738 * it to driver due to request_alignment.
1740 * Still, no reason to return an error if someone do unaligned
1741 * zero-length read occasionally.
1743 return 0;
1746 bdrv_inc_in_flight(bs);
1748 /* Don't do copy-on-read if we read data before write operation */
1749 if (atomic_read(&bs->copy_on_read)) {
1750 flags |= BDRV_REQ_COPY_ON_READ;
1753 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1755 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1756 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1757 bs->bl.request_alignment,
1758 qiov, qiov_offset, flags);
1759 tracked_request_end(&req);
1760 bdrv_dec_in_flight(bs);
1762 bdrv_padding_destroy(&pad);
1764 return ret;
1767 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1768 int64_t offset, int bytes, BdrvRequestFlags flags)
1770 BlockDriver *drv = bs->drv;
1771 QEMUIOVector qiov;
1772 void *buf = NULL;
1773 int ret = 0;
1774 bool need_flush = false;
1775 int head = 0;
1776 int tail = 0;
1778 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1779 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1780 bs->bl.request_alignment);
1781 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1783 if (!drv) {
1784 return -ENOMEDIUM;
1787 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1788 return -ENOTSUP;
1791 assert(alignment % bs->bl.request_alignment == 0);
1792 head = offset % alignment;
1793 tail = (offset + bytes) % alignment;
1794 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1795 assert(max_write_zeroes >= bs->bl.request_alignment);
1797 while (bytes > 0 && !ret) {
1798 int num = bytes;
1800 /* Align request. Block drivers can expect the "bulk" of the request
1801 * to be aligned, and that unaligned requests do not cross cluster
1802 * boundaries.
1804 if (head) {
1805 /* Make a small request up to the first aligned sector. For
1806 * convenience, limit this request to max_transfer even if
1807 * we don't need to fall back to writes. */
1808 num = MIN(MIN(bytes, max_transfer), alignment - head);
1809 head = (head + num) % alignment;
1810 assert(num < max_write_zeroes);
1811 } else if (tail && num > alignment) {
1812 /* Shorten the request to the last aligned sector. */
1813 num -= tail;
1816 /* limit request size */
1817 if (num > max_write_zeroes) {
1818 num = max_write_zeroes;
1821 ret = -ENOTSUP;
1822 /* First try the efficient write zeroes operation */
1823 if (drv->bdrv_co_pwrite_zeroes) {
1824 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1825 flags & bs->supported_zero_flags);
1826 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1827 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1828 need_flush = true;
1830 } else {
1831 assert(!bs->supported_zero_flags);
1834 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1835 /* Fall back to bounce buffer if write zeroes is unsupported */
1836 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1838 if ((flags & BDRV_REQ_FUA) &&
1839 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1840 /* No need for bdrv_driver_pwrite() to do a fallback
1841 * flush on each chunk; use just one at the end */
1842 write_flags &= ~BDRV_REQ_FUA;
1843 need_flush = true;
1845 num = MIN(num, max_transfer);
1846 if (buf == NULL) {
1847 buf = qemu_try_blockalign0(bs, num);
1848 if (buf == NULL) {
1849 ret = -ENOMEM;
1850 goto fail;
1853 qemu_iovec_init_buf(&qiov, buf, num);
1855 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1857 /* Keep bounce buffer around if it is big enough for all
1858 * all future requests.
1860 if (num < max_transfer) {
1861 qemu_vfree(buf);
1862 buf = NULL;
1866 offset += num;
1867 bytes -= num;
1870 fail:
1871 if (ret == 0 && need_flush) {
1872 ret = bdrv_co_flush(bs);
1874 qemu_vfree(buf);
1875 return ret;
1878 static inline int coroutine_fn
1879 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1880 BdrvTrackedRequest *req, int flags)
1882 BlockDriverState *bs = child->bs;
1883 bool waited;
1884 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1886 if (bs->read_only) {
1887 return -EPERM;
1890 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1891 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1892 assert(!(flags & ~BDRV_REQ_MASK));
1894 if (flags & BDRV_REQ_SERIALISING) {
1895 waited = bdrv_mark_request_serialising(req, bdrv_get_cluster_size(bs));
1897 * For a misaligned request we should have already waited earlier,
1898 * because we come after bdrv_padding_rmw_read which must be called
1899 * with the request already marked as serialising.
1901 assert(!waited ||
1902 (req->offset == req->overlap_offset &&
1903 req->bytes == req->overlap_bytes));
1904 } else {
1905 bdrv_wait_serialising_requests(req);
1908 assert(req->overlap_offset <= offset);
1909 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1910 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1912 switch (req->type) {
1913 case BDRV_TRACKED_WRITE:
1914 case BDRV_TRACKED_DISCARD:
1915 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1916 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1917 } else {
1918 assert(child->perm & BLK_PERM_WRITE);
1920 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1921 req);
1922 case BDRV_TRACKED_TRUNCATE:
1923 assert(child->perm & BLK_PERM_RESIZE);
1924 return 0;
1925 default:
1926 abort();
1930 static inline void coroutine_fn
1931 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1932 BdrvTrackedRequest *req, int ret)
1934 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1935 BlockDriverState *bs = child->bs;
1937 atomic_inc(&bs->write_gen);
1940 * Discard cannot extend the image, but in error handling cases, such as
1941 * when reverting a qcow2 cluster allocation, the discarded range can pass
1942 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1943 * here. Instead, just skip it, since semantically a discard request
1944 * beyond EOF cannot expand the image anyway.
1946 if (ret == 0 &&
1947 (req->type == BDRV_TRACKED_TRUNCATE ||
1948 end_sector > bs->total_sectors) &&
1949 req->type != BDRV_TRACKED_DISCARD) {
1950 bs->total_sectors = end_sector;
1951 bdrv_parent_cb_resize(bs);
1952 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1954 if (req->bytes) {
1955 switch (req->type) {
1956 case BDRV_TRACKED_WRITE:
1957 stat64_max(&bs->wr_highest_offset, offset + bytes);
1958 /* fall through, to set dirty bits */
1959 case BDRV_TRACKED_DISCARD:
1960 bdrv_set_dirty(bs, offset, bytes);
1961 break;
1962 default:
1963 break;
1969 * Forwards an already correctly aligned write request to the BlockDriver,
1970 * after possibly fragmenting it.
1972 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1973 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1974 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1976 BlockDriverState *bs = child->bs;
1977 BlockDriver *drv = bs->drv;
1978 int ret;
1980 uint64_t bytes_remaining = bytes;
1981 int max_transfer;
1983 if (!drv) {
1984 return -ENOMEDIUM;
1987 if (bdrv_has_readonly_bitmaps(bs)) {
1988 return -EPERM;
1991 assert(is_power_of_2(align));
1992 assert((offset & (align - 1)) == 0);
1993 assert((bytes & (align - 1)) == 0);
1994 assert(!qiov || qiov_offset + bytes <= qiov->size);
1995 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1996 align);
1998 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2000 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2001 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2002 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2003 flags |= BDRV_REQ_ZERO_WRITE;
2004 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2005 flags |= BDRV_REQ_MAY_UNMAP;
2009 if (ret < 0) {
2010 /* Do nothing, write notifier decided to fail this request */
2011 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2012 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2013 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2014 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2015 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2016 qiov, qiov_offset);
2017 } else if (bytes <= max_transfer) {
2018 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2019 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2020 } else {
2021 bdrv_debug_event(bs, BLKDBG_PWRITEV);
2022 while (bytes_remaining) {
2023 int num = MIN(bytes_remaining, max_transfer);
2024 int local_flags = flags;
2026 assert(num);
2027 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2028 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2029 /* If FUA is going to be emulated by flush, we only
2030 * need to flush on the last iteration */
2031 local_flags &= ~BDRV_REQ_FUA;
2034 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2035 num, qiov, bytes - bytes_remaining,
2036 local_flags);
2037 if (ret < 0) {
2038 break;
2040 bytes_remaining -= num;
2043 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2045 if (ret >= 0) {
2046 ret = 0;
2048 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2050 return ret;
2053 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2054 int64_t offset,
2055 unsigned int bytes,
2056 BdrvRequestFlags flags,
2057 BdrvTrackedRequest *req)
2059 BlockDriverState *bs = child->bs;
2060 QEMUIOVector local_qiov;
2061 uint64_t align = bs->bl.request_alignment;
2062 int ret = 0;
2063 bool padding;
2064 BdrvRequestPadding pad;
2066 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2067 if (padding) {
2068 bdrv_mark_request_serialising(req, align);
2070 bdrv_padding_rmw_read(child, req, &pad, true);
2072 if (pad.head || pad.merge_reads) {
2073 int64_t aligned_offset = offset & ~(align - 1);
2074 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2076 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2077 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2078 align, &local_qiov, 0,
2079 flags & ~BDRV_REQ_ZERO_WRITE);
2080 if (ret < 0 || pad.merge_reads) {
2081 /* Error or all work is done */
2082 goto out;
2084 offset += write_bytes - pad.head;
2085 bytes -= write_bytes - pad.head;
2089 assert(!bytes || (offset & (align - 1)) == 0);
2090 if (bytes >= align) {
2091 /* Write the aligned part in the middle. */
2092 uint64_t aligned_bytes = bytes & ~(align - 1);
2093 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2094 NULL, 0, flags);
2095 if (ret < 0) {
2096 goto out;
2098 bytes -= aligned_bytes;
2099 offset += aligned_bytes;
2102 assert(!bytes || (offset & (align - 1)) == 0);
2103 if (bytes) {
2104 assert(align == pad.tail + bytes);
2106 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2107 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2108 &local_qiov, 0,
2109 flags & ~BDRV_REQ_ZERO_WRITE);
2112 out:
2113 bdrv_padding_destroy(&pad);
2115 return ret;
2119 * Handle a write request in coroutine context
2121 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2122 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2123 BdrvRequestFlags flags)
2125 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2128 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2129 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2130 BdrvRequestFlags flags)
2132 BlockDriverState *bs = child->bs;
2133 BdrvTrackedRequest req;
2134 uint64_t align = bs->bl.request_alignment;
2135 BdrvRequestPadding pad;
2136 int ret;
2138 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2140 if (!bs->drv) {
2141 return -ENOMEDIUM;
2144 ret = bdrv_check_byte_request(bs, offset, bytes);
2145 if (ret < 0) {
2146 return ret;
2149 /* If the request is misaligned then we can't make it efficient */
2150 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2151 !QEMU_IS_ALIGNED(offset | bytes, align))
2153 return -ENOTSUP;
2156 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2158 * Aligning zero request is nonsense. Even if driver has special meaning
2159 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2160 * it to driver due to request_alignment.
2162 * Still, no reason to return an error if someone do unaligned
2163 * zero-length write occasionally.
2165 return 0;
2168 bdrv_inc_in_flight(bs);
2170 * Align write if necessary by performing a read-modify-write cycle.
2171 * Pad qiov with the read parts and be sure to have a tracked request not
2172 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2174 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2176 if (flags & BDRV_REQ_ZERO_WRITE) {
2177 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2178 goto out;
2181 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2182 bdrv_mark_request_serialising(&req, align);
2183 bdrv_padding_rmw_read(child, &req, &pad, false);
2186 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2187 qiov, qiov_offset, flags);
2189 bdrv_padding_destroy(&pad);
2191 out:
2192 tracked_request_end(&req);
2193 bdrv_dec_in_flight(bs);
2195 return ret;
2198 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2199 int bytes, BdrvRequestFlags flags)
2201 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2203 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2204 flags &= ~BDRV_REQ_MAY_UNMAP;
2207 return bdrv_co_pwritev(child, offset, bytes, NULL,
2208 BDRV_REQ_ZERO_WRITE | flags);
2212 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2214 int bdrv_flush_all(void)
2216 BdrvNextIterator it;
2217 BlockDriverState *bs = NULL;
2218 int result = 0;
2221 * bdrv queue is managed by record/replay,
2222 * creating new flush request for stopping
2223 * the VM may break the determinism
2225 if (replay_events_enabled()) {
2226 return result;
2229 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2230 AioContext *aio_context = bdrv_get_aio_context(bs);
2231 int ret;
2233 aio_context_acquire(aio_context);
2234 ret = bdrv_flush(bs);
2235 if (ret < 0 && !result) {
2236 result = ret;
2238 aio_context_release(aio_context);
2241 return result;
2245 typedef struct BdrvCoBlockStatusData {
2246 BlockDriverState *bs;
2247 BlockDriverState *base;
2248 bool want_zero;
2249 int64_t offset;
2250 int64_t bytes;
2251 int64_t *pnum;
2252 int64_t *map;
2253 BlockDriverState **file;
2254 } BdrvCoBlockStatusData;
2256 int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs,
2257 bool want_zero,
2258 int64_t offset,
2259 int64_t bytes,
2260 int64_t *pnum,
2261 int64_t *map,
2262 BlockDriverState **file)
2264 assert(bs->file && bs->file->bs);
2265 *pnum = bytes;
2266 *map = offset;
2267 *file = bs->file->bs;
2268 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2271 int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs,
2272 bool want_zero,
2273 int64_t offset,
2274 int64_t bytes,
2275 int64_t *pnum,
2276 int64_t *map,
2277 BlockDriverState **file)
2279 assert(bs->backing && bs->backing->bs);
2280 *pnum = bytes;
2281 *map = offset;
2282 *file = bs->backing->bs;
2283 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2287 * Returns the allocation status of the specified sectors.
2288 * Drivers not implementing the functionality are assumed to not support
2289 * backing files, hence all their sectors are reported as allocated.
2291 * If 'want_zero' is true, the caller is querying for mapping
2292 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2293 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2294 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2296 * If 'offset' is beyond the end of the disk image the return value is
2297 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2299 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2300 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2301 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2303 * 'pnum' is set to the number of bytes (including and immediately
2304 * following the specified offset) that are easily known to be in the
2305 * same allocated/unallocated state. Note that a second call starting
2306 * at the original offset plus returned pnum may have the same status.
2307 * The returned value is non-zero on success except at end-of-file.
2309 * Returns negative errno on failure. Otherwise, if the
2310 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2311 * set to the host mapping and BDS corresponding to the guest offset.
2313 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2314 bool want_zero,
2315 int64_t offset, int64_t bytes,
2316 int64_t *pnum, int64_t *map,
2317 BlockDriverState **file)
2319 int64_t total_size;
2320 int64_t n; /* bytes */
2321 int ret;
2322 int64_t local_map = 0;
2323 BlockDriverState *local_file = NULL;
2324 int64_t aligned_offset, aligned_bytes;
2325 uint32_t align;
2327 assert(pnum);
2328 *pnum = 0;
2329 total_size = bdrv_getlength(bs);
2330 if (total_size < 0) {
2331 ret = total_size;
2332 goto early_out;
2335 if (offset >= total_size) {
2336 ret = BDRV_BLOCK_EOF;
2337 goto early_out;
2339 if (!bytes) {
2340 ret = 0;
2341 goto early_out;
2344 n = total_size - offset;
2345 if (n < bytes) {
2346 bytes = n;
2349 /* Must be non-NULL or bdrv_getlength() would have failed */
2350 assert(bs->drv);
2351 if (!bs->drv->bdrv_co_block_status) {
2352 *pnum = bytes;
2353 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2354 if (offset + bytes == total_size) {
2355 ret |= BDRV_BLOCK_EOF;
2357 if (bs->drv->protocol_name) {
2358 ret |= BDRV_BLOCK_OFFSET_VALID;
2359 local_map = offset;
2360 local_file = bs;
2362 goto early_out;
2365 bdrv_inc_in_flight(bs);
2367 /* Round out to request_alignment boundaries */
2368 align = bs->bl.request_alignment;
2369 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2370 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2372 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2373 aligned_bytes, pnum, &local_map,
2374 &local_file);
2375 if (ret < 0) {
2376 *pnum = 0;
2377 goto out;
2381 * The driver's result must be a non-zero multiple of request_alignment.
2382 * Clamp pnum and adjust map to original request.
2384 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2385 align > offset - aligned_offset);
2386 if (ret & BDRV_BLOCK_RECURSE) {
2387 assert(ret & BDRV_BLOCK_DATA);
2388 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2389 assert(!(ret & BDRV_BLOCK_ZERO));
2392 *pnum -= offset - aligned_offset;
2393 if (*pnum > bytes) {
2394 *pnum = bytes;
2396 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2397 local_map += offset - aligned_offset;
2400 if (ret & BDRV_BLOCK_RAW) {
2401 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2402 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2403 *pnum, pnum, &local_map, &local_file);
2404 goto out;
2407 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2408 ret |= BDRV_BLOCK_ALLOCATED;
2409 } else if (want_zero) {
2410 if (bdrv_unallocated_blocks_are_zero(bs)) {
2411 ret |= BDRV_BLOCK_ZERO;
2412 } else if (bs->backing) {
2413 BlockDriverState *bs2 = bs->backing->bs;
2414 int64_t size2 = bdrv_getlength(bs2);
2416 if (size2 >= 0 && offset >= size2) {
2417 ret |= BDRV_BLOCK_ZERO;
2422 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2423 local_file && local_file != bs &&
2424 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2425 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2426 int64_t file_pnum;
2427 int ret2;
2429 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2430 *pnum, &file_pnum, NULL, NULL);
2431 if (ret2 >= 0) {
2432 /* Ignore errors. This is just providing extra information, it
2433 * is useful but not necessary.
2435 if (ret2 & BDRV_BLOCK_EOF &&
2436 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2438 * It is valid for the format block driver to read
2439 * beyond the end of the underlying file's current
2440 * size; such areas read as zero.
2442 ret |= BDRV_BLOCK_ZERO;
2443 } else {
2444 /* Limit request to the range reported by the protocol driver */
2445 *pnum = file_pnum;
2446 ret |= (ret2 & BDRV_BLOCK_ZERO);
2451 out:
2452 bdrv_dec_in_flight(bs);
2453 if (ret >= 0 && offset + *pnum == total_size) {
2454 ret |= BDRV_BLOCK_EOF;
2456 early_out:
2457 if (file) {
2458 *file = local_file;
2460 if (map) {
2461 *map = local_map;
2463 return ret;
2466 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2467 BlockDriverState *base,
2468 bool want_zero,
2469 int64_t offset,
2470 int64_t bytes,
2471 int64_t *pnum,
2472 int64_t *map,
2473 BlockDriverState **file)
2475 BlockDriverState *p;
2476 int ret = 0;
2477 bool first = true;
2479 assert(bs != base);
2480 for (p = bs; p != base; p = backing_bs(p)) {
2481 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2482 file);
2483 if (ret < 0) {
2484 break;
2486 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2488 * Reading beyond the end of the file continues to read
2489 * zeroes, but we can only widen the result to the
2490 * unallocated length we learned from an earlier
2491 * iteration.
2493 *pnum = bytes;
2495 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2496 break;
2498 /* [offset, pnum] unallocated on this layer, which could be only
2499 * the first part of [offset, bytes]. */
2500 bytes = MIN(bytes, *pnum);
2501 first = false;
2503 return ret;
2506 /* Coroutine wrapper for bdrv_block_status_above() */
2507 static int coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2509 BdrvCoBlockStatusData *data = opaque;
2511 return bdrv_co_block_status_above(data->bs, data->base,
2512 data->want_zero,
2513 data->offset, data->bytes,
2514 data->pnum, data->map, data->file);
2518 * Synchronous wrapper around bdrv_co_block_status_above().
2520 * See bdrv_co_block_status_above() for details.
2522 static int bdrv_common_block_status_above(BlockDriverState *bs,
2523 BlockDriverState *base,
2524 bool want_zero, int64_t offset,
2525 int64_t bytes, int64_t *pnum,
2526 int64_t *map,
2527 BlockDriverState **file)
2529 BdrvCoBlockStatusData data = {
2530 .bs = bs,
2531 .base = base,
2532 .want_zero = want_zero,
2533 .offset = offset,
2534 .bytes = bytes,
2535 .pnum = pnum,
2536 .map = map,
2537 .file = file,
2540 return bdrv_run_co(bs, bdrv_block_status_above_co_entry, &data);
2543 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2544 int64_t offset, int64_t bytes, int64_t *pnum,
2545 int64_t *map, BlockDriverState **file)
2547 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2548 pnum, map, file);
2551 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2552 int64_t *pnum, int64_t *map, BlockDriverState **file)
2554 return bdrv_block_status_above(bs, backing_bs(bs),
2555 offset, bytes, pnum, map, file);
2558 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2559 int64_t bytes, int64_t *pnum)
2561 int ret;
2562 int64_t dummy;
2564 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2565 bytes, pnum ? pnum : &dummy, NULL,
2566 NULL);
2567 if (ret < 0) {
2568 return ret;
2570 return !!(ret & BDRV_BLOCK_ALLOCATED);
2574 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2576 * Return 1 if (a prefix of) the given range is allocated in any image
2577 * between BASE and TOP (BASE is only included if include_base is set).
2578 * BASE can be NULL to check if the given offset is allocated in any
2579 * image of the chain. Return 0 otherwise, or negative errno on
2580 * failure.
2582 * 'pnum' is set to the number of bytes (including and immediately
2583 * following the specified offset) that are known to be in the same
2584 * allocated/unallocated state. Note that a subsequent call starting
2585 * at 'offset + *pnum' may return the same allocation status (in other
2586 * words, the result is not necessarily the maximum possible range);
2587 * but 'pnum' will only be 0 when end of file is reached.
2590 int bdrv_is_allocated_above(BlockDriverState *top,
2591 BlockDriverState *base,
2592 bool include_base, int64_t offset,
2593 int64_t bytes, int64_t *pnum)
2595 BlockDriverState *intermediate;
2596 int ret;
2597 int64_t n = bytes;
2599 assert(base || !include_base);
2601 intermediate = top;
2602 while (include_base || intermediate != base) {
2603 int64_t pnum_inter;
2604 int64_t size_inter;
2606 assert(intermediate);
2607 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2608 if (ret < 0) {
2609 return ret;
2611 if (ret) {
2612 *pnum = pnum_inter;
2613 return 1;
2616 size_inter = bdrv_getlength(intermediate);
2617 if (size_inter < 0) {
2618 return size_inter;
2620 if (n > pnum_inter &&
2621 (intermediate == top || offset + pnum_inter < size_inter)) {
2622 n = pnum_inter;
2625 if (intermediate == base) {
2626 break;
2629 intermediate = backing_bs(intermediate);
2632 *pnum = n;
2633 return 0;
2636 typedef struct BdrvVmstateCo {
2637 BlockDriverState *bs;
2638 QEMUIOVector *qiov;
2639 int64_t pos;
2640 bool is_read;
2641 } BdrvVmstateCo;
2643 static int coroutine_fn
2644 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2645 bool is_read)
2647 BlockDriver *drv = bs->drv;
2648 int ret = -ENOTSUP;
2650 bdrv_inc_in_flight(bs);
2652 if (!drv) {
2653 ret = -ENOMEDIUM;
2654 } else if (drv->bdrv_load_vmstate) {
2655 if (is_read) {
2656 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2657 } else {
2658 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2660 } else if (bs->file) {
2661 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2664 bdrv_dec_in_flight(bs);
2665 return ret;
2668 static int coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2670 BdrvVmstateCo *co = opaque;
2672 return bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2675 static inline int
2676 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2677 bool is_read)
2679 BdrvVmstateCo data = {
2680 .bs = bs,
2681 .qiov = qiov,
2682 .pos = pos,
2683 .is_read = is_read,
2686 return bdrv_run_co(bs, bdrv_co_rw_vmstate_entry, &data);
2689 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2690 int64_t pos, int size)
2692 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2693 int ret;
2695 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2696 if (ret < 0) {
2697 return ret;
2700 return size;
2703 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2705 return bdrv_rw_vmstate(bs, qiov, pos, false);
2708 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2709 int64_t pos, int size)
2711 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2712 int ret;
2714 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2715 if (ret < 0) {
2716 return ret;
2719 return size;
2722 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2724 return bdrv_rw_vmstate(bs, qiov, pos, true);
2727 /**************************************************************/
2728 /* async I/Os */
2730 void bdrv_aio_cancel(BlockAIOCB *acb)
2732 qemu_aio_ref(acb);
2733 bdrv_aio_cancel_async(acb);
2734 while (acb->refcnt > 1) {
2735 if (acb->aiocb_info->get_aio_context) {
2736 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2737 } else if (acb->bs) {
2738 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2739 * assert that we're not using an I/O thread. Thread-safe
2740 * code should use bdrv_aio_cancel_async exclusively.
2742 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2743 aio_poll(bdrv_get_aio_context(acb->bs), true);
2744 } else {
2745 abort();
2748 qemu_aio_unref(acb);
2751 /* Async version of aio cancel. The caller is not blocked if the acb implements
2752 * cancel_async, otherwise we do nothing and let the request normally complete.
2753 * In either case the completion callback must be called. */
2754 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2756 if (acb->aiocb_info->cancel_async) {
2757 acb->aiocb_info->cancel_async(acb);
2761 /**************************************************************/
2762 /* Coroutine block device emulation */
2764 static int coroutine_fn bdrv_flush_co_entry(void *opaque)
2766 return bdrv_co_flush(opaque);
2769 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2771 int current_gen;
2772 int ret = 0;
2774 bdrv_inc_in_flight(bs);
2776 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2777 bdrv_is_sg(bs)) {
2778 goto early_exit;
2781 qemu_co_mutex_lock(&bs->reqs_lock);
2782 current_gen = atomic_read(&bs->write_gen);
2784 /* Wait until any previous flushes are completed */
2785 while (bs->active_flush_req) {
2786 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2789 /* Flushes reach this point in nondecreasing current_gen order. */
2790 bs->active_flush_req = true;
2791 qemu_co_mutex_unlock(&bs->reqs_lock);
2793 /* Write back all layers by calling one driver function */
2794 if (bs->drv->bdrv_co_flush) {
2795 ret = bs->drv->bdrv_co_flush(bs);
2796 goto out;
2799 /* Write back cached data to the OS even with cache=unsafe */
2800 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2801 if (bs->drv->bdrv_co_flush_to_os) {
2802 ret = bs->drv->bdrv_co_flush_to_os(bs);
2803 if (ret < 0) {
2804 goto out;
2808 /* But don't actually force it to the disk with cache=unsafe */
2809 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2810 goto flush_parent;
2813 /* Check if we really need to flush anything */
2814 if (bs->flushed_gen == current_gen) {
2815 goto flush_parent;
2818 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2819 if (!bs->drv) {
2820 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2821 * (even in case of apparent success) */
2822 ret = -ENOMEDIUM;
2823 goto out;
2825 if (bs->drv->bdrv_co_flush_to_disk) {
2826 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2827 } else if (bs->drv->bdrv_aio_flush) {
2828 BlockAIOCB *acb;
2829 CoroutineIOCompletion co = {
2830 .coroutine = qemu_coroutine_self(),
2833 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2834 if (acb == NULL) {
2835 ret = -EIO;
2836 } else {
2837 qemu_coroutine_yield();
2838 ret = co.ret;
2840 } else {
2842 * Some block drivers always operate in either writethrough or unsafe
2843 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2844 * know how the server works (because the behaviour is hardcoded or
2845 * depends on server-side configuration), so we can't ensure that
2846 * everything is safe on disk. Returning an error doesn't work because
2847 * that would break guests even if the server operates in writethrough
2848 * mode.
2850 * Let's hope the user knows what he's doing.
2852 ret = 0;
2855 if (ret < 0) {
2856 goto out;
2859 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2860 * in the case of cache=unsafe, so there are no useless flushes.
2862 flush_parent:
2863 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2864 out:
2865 /* Notify any pending flushes that we have completed */
2866 if (ret == 0) {
2867 bs->flushed_gen = current_gen;
2870 qemu_co_mutex_lock(&bs->reqs_lock);
2871 bs->active_flush_req = false;
2872 /* Return value is ignored - it's ok if wait queue is empty */
2873 qemu_co_queue_next(&bs->flush_queue);
2874 qemu_co_mutex_unlock(&bs->reqs_lock);
2876 early_exit:
2877 bdrv_dec_in_flight(bs);
2878 return ret;
2881 int bdrv_flush(BlockDriverState *bs)
2883 return bdrv_run_co(bs, bdrv_flush_co_entry, bs);
2886 typedef struct DiscardCo {
2887 BdrvChild *child;
2888 int64_t offset;
2889 int64_t bytes;
2890 } DiscardCo;
2892 static int coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2894 DiscardCo *rwco = opaque;
2896 return bdrv_co_pdiscard(rwco->child, rwco->offset, rwco->bytes);
2899 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2900 int64_t bytes)
2902 BdrvTrackedRequest req;
2903 int max_pdiscard, ret;
2904 int head, tail, align;
2905 BlockDriverState *bs = child->bs;
2907 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2908 return -ENOMEDIUM;
2911 if (bdrv_has_readonly_bitmaps(bs)) {
2912 return -EPERM;
2915 if (offset < 0 || bytes < 0 || bytes > INT64_MAX - offset) {
2916 return -EIO;
2919 /* Do nothing if disabled. */
2920 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2921 return 0;
2924 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2925 return 0;
2928 /* Discard is advisory, but some devices track and coalesce
2929 * unaligned requests, so we must pass everything down rather than
2930 * round here. Still, most devices will just silently ignore
2931 * unaligned requests (by returning -ENOTSUP), so we must fragment
2932 * the request accordingly. */
2933 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2934 assert(align % bs->bl.request_alignment == 0);
2935 head = offset % align;
2936 tail = (offset + bytes) % align;
2938 bdrv_inc_in_flight(bs);
2939 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2941 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2942 if (ret < 0) {
2943 goto out;
2946 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2947 align);
2948 assert(max_pdiscard >= bs->bl.request_alignment);
2950 while (bytes > 0) {
2951 int64_t num = bytes;
2953 if (head) {
2954 /* Make small requests to get to alignment boundaries. */
2955 num = MIN(bytes, align - head);
2956 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2957 num %= bs->bl.request_alignment;
2959 head = (head + num) % align;
2960 assert(num < max_pdiscard);
2961 } else if (tail) {
2962 if (num > align) {
2963 /* Shorten the request to the last aligned cluster. */
2964 num -= tail;
2965 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2966 tail > bs->bl.request_alignment) {
2967 tail %= bs->bl.request_alignment;
2968 num -= tail;
2971 /* limit request size */
2972 if (num > max_pdiscard) {
2973 num = max_pdiscard;
2976 if (!bs->drv) {
2977 ret = -ENOMEDIUM;
2978 goto out;
2980 if (bs->drv->bdrv_co_pdiscard) {
2981 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2982 } else {
2983 BlockAIOCB *acb;
2984 CoroutineIOCompletion co = {
2985 .coroutine = qemu_coroutine_self(),
2988 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2989 bdrv_co_io_em_complete, &co);
2990 if (acb == NULL) {
2991 ret = -EIO;
2992 goto out;
2993 } else {
2994 qemu_coroutine_yield();
2995 ret = co.ret;
2998 if (ret && ret != -ENOTSUP) {
2999 goto out;
3002 offset += num;
3003 bytes -= num;
3005 ret = 0;
3006 out:
3007 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3008 tracked_request_end(&req);
3009 bdrv_dec_in_flight(bs);
3010 return ret;
3013 int bdrv_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes)
3015 DiscardCo rwco = {
3016 .child = child,
3017 .offset = offset,
3018 .bytes = bytes,
3021 return bdrv_run_co(child->bs, bdrv_pdiscard_co_entry, &rwco);
3024 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3026 BlockDriver *drv = bs->drv;
3027 CoroutineIOCompletion co = {
3028 .coroutine = qemu_coroutine_self(),
3030 BlockAIOCB *acb;
3032 bdrv_inc_in_flight(bs);
3033 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3034 co.ret = -ENOTSUP;
3035 goto out;
3038 if (drv->bdrv_co_ioctl) {
3039 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3040 } else {
3041 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3042 if (!acb) {
3043 co.ret = -ENOTSUP;
3044 goto out;
3046 qemu_coroutine_yield();
3048 out:
3049 bdrv_dec_in_flight(bs);
3050 return co.ret;
3053 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3055 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3058 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3060 return memset(qemu_blockalign(bs, size), 0, size);
3063 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3065 size_t align = bdrv_opt_mem_align(bs);
3067 /* Ensure that NULL is never returned on success */
3068 assert(align > 0);
3069 if (size == 0) {
3070 size = align;
3073 return qemu_try_memalign(align, size);
3076 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3078 void *mem = qemu_try_blockalign(bs, size);
3080 if (mem) {
3081 memset(mem, 0, size);
3084 return mem;
3088 * Check if all memory in this vector is sector aligned.
3090 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3092 int i;
3093 size_t alignment = bdrv_min_mem_align(bs);
3095 for (i = 0; i < qiov->niov; i++) {
3096 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3097 return false;
3099 if (qiov->iov[i].iov_len % alignment) {
3100 return false;
3104 return true;
3107 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3108 NotifierWithReturn *notifier)
3110 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3113 void bdrv_io_plug(BlockDriverState *bs)
3115 BdrvChild *child;
3117 QLIST_FOREACH(child, &bs->children, next) {
3118 bdrv_io_plug(child->bs);
3121 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
3122 BlockDriver *drv = bs->drv;
3123 if (drv && drv->bdrv_io_plug) {
3124 drv->bdrv_io_plug(bs);
3129 void bdrv_io_unplug(BlockDriverState *bs)
3131 BdrvChild *child;
3133 assert(bs->io_plugged);
3134 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
3135 BlockDriver *drv = bs->drv;
3136 if (drv && drv->bdrv_io_unplug) {
3137 drv->bdrv_io_unplug(bs);
3141 QLIST_FOREACH(child, &bs->children, next) {
3142 bdrv_io_unplug(child->bs);
3146 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3148 BdrvChild *child;
3150 if (bs->drv && bs->drv->bdrv_register_buf) {
3151 bs->drv->bdrv_register_buf(bs, host, size);
3153 QLIST_FOREACH(child, &bs->children, next) {
3154 bdrv_register_buf(child->bs, host, size);
3158 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3160 BdrvChild *child;
3162 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3163 bs->drv->bdrv_unregister_buf(bs, host);
3165 QLIST_FOREACH(child, &bs->children, next) {
3166 bdrv_unregister_buf(child->bs, host);
3170 static int coroutine_fn bdrv_co_copy_range_internal(
3171 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3172 uint64_t dst_offset, uint64_t bytes,
3173 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3174 bool recurse_src)
3176 BdrvTrackedRequest req;
3177 int ret;
3179 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3180 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3181 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3183 if (!dst || !dst->bs) {
3184 return -ENOMEDIUM;
3186 ret = bdrv_check_byte_request(dst->bs, dst_offset, bytes);
3187 if (ret) {
3188 return ret;
3190 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3191 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3194 if (!src || !src->bs) {
3195 return -ENOMEDIUM;
3197 ret = bdrv_check_byte_request(src->bs, src_offset, bytes);
3198 if (ret) {
3199 return ret;
3202 if (!src->bs->drv->bdrv_co_copy_range_from
3203 || !dst->bs->drv->bdrv_co_copy_range_to
3204 || src->bs->encrypted || dst->bs->encrypted) {
3205 return -ENOTSUP;
3208 if (recurse_src) {
3209 bdrv_inc_in_flight(src->bs);
3210 tracked_request_begin(&req, src->bs, src_offset, bytes,
3211 BDRV_TRACKED_READ);
3213 /* BDRV_REQ_SERIALISING is only for write operation */
3214 assert(!(read_flags & BDRV_REQ_SERIALISING));
3215 bdrv_wait_serialising_requests(&req);
3217 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3218 src, src_offset,
3219 dst, dst_offset,
3220 bytes,
3221 read_flags, write_flags);
3223 tracked_request_end(&req);
3224 bdrv_dec_in_flight(src->bs);
3225 } else {
3226 bdrv_inc_in_flight(dst->bs);
3227 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3228 BDRV_TRACKED_WRITE);
3229 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3230 write_flags);
3231 if (!ret) {
3232 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3233 src, src_offset,
3234 dst, dst_offset,
3235 bytes,
3236 read_flags, write_flags);
3238 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3239 tracked_request_end(&req);
3240 bdrv_dec_in_flight(dst->bs);
3243 return ret;
3246 /* Copy range from @src to @dst.
3248 * See the comment of bdrv_co_copy_range for the parameter and return value
3249 * semantics. */
3250 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3251 BdrvChild *dst, uint64_t dst_offset,
3252 uint64_t bytes,
3253 BdrvRequestFlags read_flags,
3254 BdrvRequestFlags write_flags)
3256 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3257 read_flags, write_flags);
3258 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3259 bytes, read_flags, write_flags, true);
3262 /* Copy range from @src to @dst.
3264 * See the comment of bdrv_co_copy_range for the parameter and return value
3265 * semantics. */
3266 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3267 BdrvChild *dst, uint64_t dst_offset,
3268 uint64_t bytes,
3269 BdrvRequestFlags read_flags,
3270 BdrvRequestFlags write_flags)
3272 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3273 read_flags, write_flags);
3274 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3275 bytes, read_flags, write_flags, false);
3278 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3279 BdrvChild *dst, uint64_t dst_offset,
3280 uint64_t bytes, BdrvRequestFlags read_flags,
3281 BdrvRequestFlags write_flags)
3283 return bdrv_co_copy_range_from(src, src_offset,
3284 dst, dst_offset,
3285 bytes, read_flags, write_flags);
3288 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3290 BdrvChild *c;
3291 QLIST_FOREACH(c, &bs->parents, next_parent) {
3292 if (c->klass->resize) {
3293 c->klass->resize(c);
3299 * Truncate file to 'offset' bytes (needed only for file protocols)
3301 * If 'exact' is true, the file must be resized to exactly the given
3302 * 'offset'. Otherwise, it is sufficient for the node to be at least
3303 * 'offset' bytes in length.
3305 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3306 PreallocMode prealloc, BdrvRequestFlags flags,
3307 Error **errp)
3309 BlockDriverState *bs = child->bs;
3310 BlockDriver *drv = bs->drv;
3311 BdrvTrackedRequest req;
3312 int64_t old_size, new_bytes;
3313 int ret;
3316 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3317 if (!drv) {
3318 error_setg(errp, "No medium inserted");
3319 return -ENOMEDIUM;
3321 if (offset < 0) {
3322 error_setg(errp, "Image size cannot be negative");
3323 return -EINVAL;
3326 old_size = bdrv_getlength(bs);
3327 if (old_size < 0) {
3328 error_setg_errno(errp, -old_size, "Failed to get old image size");
3329 return old_size;
3332 if (offset > old_size) {
3333 new_bytes = offset - old_size;
3334 } else {
3335 new_bytes = 0;
3338 bdrv_inc_in_flight(bs);
3339 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3340 BDRV_TRACKED_TRUNCATE);
3342 /* If we are growing the image and potentially using preallocation for the
3343 * new area, we need to make sure that no write requests are made to it
3344 * concurrently or they might be overwritten by preallocation. */
3345 if (new_bytes) {
3346 bdrv_mark_request_serialising(&req, 1);
3348 if (bs->read_only) {
3349 error_setg(errp, "Image is read-only");
3350 ret = -EACCES;
3351 goto out;
3353 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3355 if (ret < 0) {
3356 error_setg_errno(errp, -ret,
3357 "Failed to prepare request for truncation");
3358 goto out;
3362 * If the image has a backing file that is large enough that it would
3363 * provide data for the new area, we cannot leave it unallocated because
3364 * then the backing file content would become visible. Instead, zero-fill
3365 * the new area.
3367 * Note that if the image has a backing file, but was opened without the
3368 * backing file, taking care of keeping things consistent with that backing
3369 * file is the user's responsibility.
3371 if (new_bytes && bs->backing) {
3372 int64_t backing_len;
3374 backing_len = bdrv_getlength(backing_bs(bs));
3375 if (backing_len < 0) {
3376 ret = backing_len;
3377 error_setg_errno(errp, -ret, "Could not get backing file size");
3378 goto out;
3381 if (backing_len > old_size) {
3382 flags |= BDRV_REQ_ZERO_WRITE;
3386 if (drv->bdrv_co_truncate) {
3387 if (flags & ~bs->supported_truncate_flags) {
3388 error_setg(errp, "Block driver does not support requested flags");
3389 ret = -ENOTSUP;
3390 goto out;
3392 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3393 } else if (bs->file && drv->is_filter) {
3394 ret = bdrv_co_truncate(bs->file, offset, exact, prealloc, flags, errp);
3395 } else {
3396 error_setg(errp, "Image format driver does not support resize");
3397 ret = -ENOTSUP;
3398 goto out;
3400 if (ret < 0) {
3401 goto out;
3404 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3405 if (ret < 0) {
3406 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3407 } else {
3408 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3410 /* It's possible that truncation succeeded but refresh_total_sectors
3411 * failed, but the latter doesn't affect how we should finish the request.
3412 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3413 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3415 out:
3416 tracked_request_end(&req);
3417 bdrv_dec_in_flight(bs);
3419 return ret;
3422 typedef struct TruncateCo {
3423 BdrvChild *child;
3424 int64_t offset;
3425 bool exact;
3426 PreallocMode prealloc;
3427 BdrvRequestFlags flags;
3428 Error **errp;
3429 } TruncateCo;
3431 static int coroutine_fn bdrv_truncate_co_entry(void *opaque)
3433 TruncateCo *tco = opaque;
3435 return bdrv_co_truncate(tco->child, tco->offset, tco->exact,
3436 tco->prealloc, tco->flags, tco->errp);
3439 int bdrv_truncate(BdrvChild *child, int64_t offset, bool exact,
3440 PreallocMode prealloc, BdrvRequestFlags flags, Error **errp)
3442 TruncateCo tco = {
3443 .child = child,
3444 .offset = offset,
3445 .exact = exact,
3446 .prealloc = prealloc,
3447 .flags = flags,
3448 .errp = errp,
3451 return bdrv_run_co(child->bs, bdrv_truncate_co_entry, &tco);