remove #if 0 code for timers
[qemu/ar7.git] / target-i386 / kvm.c
blobe41de394d2b9625ac64c1dbf8cbd582d55864f2d
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
32 #include "hyperv.h"
34 //#define DEBUG_KVM
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
47 #ifndef BUS_MCEERR_AR
48 #define BUS_MCEERR_AR 4
49 #endif
50 #ifndef BUS_MCEERR_AO
51 #define BUS_MCEERR_AO 5
52 #endif
54 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_INFO(SET_TSS_ADDR),
56 KVM_CAP_INFO(EXT_CPUID),
57 KVM_CAP_INFO(MP_STATE),
58 KVM_CAP_LAST_INFO
61 static bool has_msr_star;
62 static bool has_msr_hsave_pa;
63 static bool has_msr_tsc_deadline;
64 static bool has_msr_async_pf_en;
65 static bool has_msr_misc_enable;
66 static int lm_capable_kernel;
68 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
70 struct kvm_cpuid2 *cpuid;
71 int r, size;
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
75 cpuid->nent = max;
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77 if (r == 0 && cpuid->nent >= max) {
78 r = -E2BIG;
80 if (r < 0) {
81 if (r == -E2BIG) {
82 g_free(cpuid);
83 return NULL;
84 } else {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 strerror(-r));
87 exit(1);
90 return cpuid;
93 struct kvm_para_features {
94 int cap;
95 int feature;
96 } para_features[] = {
97 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
101 { -1, -1 }
104 static int get_para_features(KVMState *s)
106 int i, features = 0;
108 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109 if (kvm_check_extension(s, para_features[i].cap)) {
110 features |= (1 << para_features[i].feature);
114 return features;
118 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119 uint32_t index, int reg)
121 struct kvm_cpuid2 *cpuid;
122 int i, max;
123 uint32_t ret = 0;
124 uint32_t cpuid_1_edx;
125 int has_kvm_features = 0;
127 max = 1;
128 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
129 max *= 2;
132 for (i = 0; i < cpuid->nent; ++i) {
133 if (cpuid->entries[i].function == function &&
134 cpuid->entries[i].index == index) {
135 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136 has_kvm_features = 1;
138 switch (reg) {
139 case R_EAX:
140 ret = cpuid->entries[i].eax;
141 break;
142 case R_EBX:
143 ret = cpuid->entries[i].ebx;
144 break;
145 case R_ECX:
146 ret = cpuid->entries[i].ecx;
147 break;
148 case R_EDX:
149 ret = cpuid->entries[i].edx;
150 switch (function) {
151 case 1:
152 /* KVM before 2.6.30 misreports the following features */
153 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154 break;
155 case 0x80000001:
156 /* On Intel, kvm returns cpuid according to the Intel spec,
157 * so add missing bits according to the AMD spec:
159 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160 ret |= cpuid_1_edx & 0x183f7ff;
161 break;
163 break;
168 g_free(cpuid);
170 /* fallback for older kernels */
171 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172 ret = get_para_features(s);
175 return ret;
178 typedef struct HWPoisonPage {
179 ram_addr_t ram_addr;
180 QLIST_ENTRY(HWPoisonPage) list;
181 } HWPoisonPage;
183 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
186 static void kvm_unpoison_all(void *param)
188 HWPoisonPage *page, *next_page;
190 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191 QLIST_REMOVE(page, list);
192 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
193 g_free(page);
197 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
199 HWPoisonPage *page;
201 QLIST_FOREACH(page, &hwpoison_page_list, list) {
202 if (page->ram_addr == ram_addr) {
203 return;
206 page = g_malloc(sizeof(HWPoisonPage));
207 page->ram_addr = ram_addr;
208 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
211 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212 int *max_banks)
214 int r;
216 r = kvm_check_extension(s, KVM_CAP_MCE);
217 if (r > 0) {
218 *max_banks = r;
219 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
221 return -ENOSYS;
224 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
226 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228 uint64_t mcg_status = MCG_STATUS_MCIP;
230 if (code == BUS_MCEERR_AR) {
231 status |= MCI_STATUS_AR | 0x134;
232 mcg_status |= MCG_STATUS_EIPV;
233 } else {
234 status |= 0xc0;
235 mcg_status |= MCG_STATUS_RIPV;
237 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238 (MCM_ADDR_PHYS << 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env) ?
240 MCE_INJECT_BROADCAST : 0);
243 static void hardware_memory_error(void)
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
249 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
251 ram_addr_t ram_addr;
252 target_phys_addr_t paddr;
254 if ((env->mcg_cap & MCG_SER_P) && addr
255 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
267 kvm_hwpoison_page_add(ram_addr);
268 kvm_mce_inject(env, paddr, code);
269 } else {
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
278 return 0;
281 int kvm_arch_on_sigbus(int code, void *addr)
283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290 &paddr)) {
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
295 kvm_hwpoison_page_add(ram_addr);
296 kvm_mce_inject(first_cpu, paddr, code);
297 } else {
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
306 return 0;
309 static int kvm_inject_mce_oldstyle(CPUState *env)
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
315 env->exception_injected = -1;
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
326 assert(bank < bank_num);
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
336 return 0;
339 static void cpu_update_state(void *opaque, int running, RunState state)
341 CPUState *env = opaque;
343 if (running) {
344 env->tsc_valid = false;
348 int kvm_arch_init_vcpu(CPUState *env)
350 struct {
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
353 } QEMU_PACKED cpuid_data;
354 KVMState *s = env->kvm_state;
355 uint32_t limit, i, j, cpuid_i;
356 uint32_t unused;
357 struct kvm_cpuid_entry2 *c;
358 uint32_t signature[3];
359 int r;
361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365 env->cpuid_ext_features |= i;
367 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368 0, R_EDX);
369 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
370 0, R_ECX);
371 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
372 0, R_EDX);
374 cpuid_i = 0;
376 /* Paravirtualization CPUIDs */
377 c = &cpuid_data.entries[cpuid_i++];
378 memset(c, 0, sizeof(*c));
379 c->function = KVM_CPUID_SIGNATURE;
380 if (!hyperv_enabled()) {
381 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
382 c->eax = 0;
383 } else {
384 memcpy(signature, "Microsoft Hv", 12);
385 c->eax = HYPERV_CPUID_MIN;
387 c->ebx = signature[0];
388 c->ecx = signature[1];
389 c->edx = signature[2];
391 c = &cpuid_data.entries[cpuid_i++];
392 memset(c, 0, sizeof(*c));
393 c->function = KVM_CPUID_FEATURES;
394 c->eax = env->cpuid_kvm_features &
395 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
397 if (hyperv_enabled()) {
398 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
399 c->eax = signature[0];
401 c = &cpuid_data.entries[cpuid_i++];
402 memset(c, 0, sizeof(*c));
403 c->function = HYPERV_CPUID_VERSION;
404 c->eax = 0x00001bbc;
405 c->ebx = 0x00060001;
407 c = &cpuid_data.entries[cpuid_i++];
408 memset(c, 0, sizeof(*c));
409 c->function = HYPERV_CPUID_FEATURES;
410 if (hyperv_relaxed_timing_enabled()) {
411 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
413 if (hyperv_vapic_recommended()) {
414 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
415 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
418 c = &cpuid_data.entries[cpuid_i++];
419 memset(c, 0, sizeof(*c));
420 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
421 if (hyperv_relaxed_timing_enabled()) {
422 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
424 if (hyperv_vapic_recommended()) {
425 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
427 c->ebx = hyperv_get_spinlock_retries();
429 c = &cpuid_data.entries[cpuid_i++];
430 memset(c, 0, sizeof(*c));
431 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
432 c->eax = 0x40;
433 c->ebx = 0x40;
435 c = &cpuid_data.entries[cpuid_i++];
436 memset(c, 0, sizeof(*c));
437 c->function = KVM_CPUID_SIGNATURE_NEXT;
438 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
439 c->eax = 0;
440 c->ebx = signature[0];
441 c->ecx = signature[1];
442 c->edx = signature[2];
445 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
447 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
449 for (i = 0; i <= limit; i++) {
450 c = &cpuid_data.entries[cpuid_i++];
452 switch (i) {
453 case 2: {
454 /* Keep reading function 2 till all the input is received */
455 int times;
457 c->function = i;
458 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
459 KVM_CPUID_FLAG_STATE_READ_NEXT;
460 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
461 times = c->eax & 0xff;
463 for (j = 1; j < times; ++j) {
464 c = &cpuid_data.entries[cpuid_i++];
465 c->function = i;
466 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
467 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
469 break;
471 case 4:
472 case 0xb:
473 case 0xd:
474 for (j = 0; ; j++) {
475 if (i == 0xd && j == 64) {
476 break;
478 c->function = i;
479 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
480 c->index = j;
481 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
483 if (i == 4 && c->eax == 0) {
484 break;
486 if (i == 0xb && !(c->ecx & 0xff00)) {
487 break;
489 if (i == 0xd && c->eax == 0) {
490 continue;
492 c = &cpuid_data.entries[cpuid_i++];
494 break;
495 default:
496 c->function = i;
497 c->flags = 0;
498 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
499 break;
502 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
504 for (i = 0x80000000; i <= limit; i++) {
505 c = &cpuid_data.entries[cpuid_i++];
507 c->function = i;
508 c->flags = 0;
509 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
512 /* Call Centaur's CPUID instructions they are supported. */
513 if (env->cpuid_xlevel2 > 0) {
514 env->cpuid_ext4_features &=
515 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
516 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
518 for (i = 0xC0000000; i <= limit; i++) {
519 c = &cpuid_data.entries[cpuid_i++];
521 c->function = i;
522 c->flags = 0;
523 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
527 cpuid_data.cpuid.nent = cpuid_i;
529 if (((env->cpuid_version >> 8)&0xF) >= 6
530 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
531 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
532 uint64_t mcg_cap;
533 int banks;
534 int ret;
536 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
537 if (ret < 0) {
538 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
539 return ret;
542 if (banks > MCE_BANKS_DEF) {
543 banks = MCE_BANKS_DEF;
545 mcg_cap &= MCE_CAP_DEF;
546 mcg_cap |= banks;
547 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
548 if (ret < 0) {
549 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
550 return ret;
553 env->mcg_cap = mcg_cap;
556 qemu_add_vm_change_state_handler(cpu_update_state, env);
558 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
559 if (r) {
560 return r;
563 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
564 if (r && env->tsc_khz) {
565 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
566 if (r < 0) {
567 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
568 return r;
572 if (kvm_has_xsave()) {
573 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
576 return 0;
579 void kvm_arch_reset_vcpu(CPUState *env)
581 env->exception_injected = -1;
582 env->interrupt_injected = -1;
583 env->xcr0 = 1;
584 if (kvm_irqchip_in_kernel()) {
585 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
586 KVM_MP_STATE_UNINITIALIZED;
587 } else {
588 env->mp_state = KVM_MP_STATE_RUNNABLE;
592 static int kvm_get_supported_msrs(KVMState *s)
594 static int kvm_supported_msrs;
595 int ret = 0;
597 /* first time */
598 if (kvm_supported_msrs == 0) {
599 struct kvm_msr_list msr_list, *kvm_msr_list;
601 kvm_supported_msrs = -1;
603 /* Obtain MSR list from KVM. These are the MSRs that we must
604 * save/restore */
605 msr_list.nmsrs = 0;
606 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
607 if (ret < 0 && ret != -E2BIG) {
608 return ret;
610 /* Old kernel modules had a bug and could write beyond the provided
611 memory. Allocate at least a safe amount of 1K. */
612 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
613 msr_list.nmsrs *
614 sizeof(msr_list.indices[0])));
616 kvm_msr_list->nmsrs = msr_list.nmsrs;
617 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
618 if (ret >= 0) {
619 int i;
621 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
622 if (kvm_msr_list->indices[i] == MSR_STAR) {
623 has_msr_star = true;
624 continue;
626 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
627 has_msr_hsave_pa = true;
628 continue;
630 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
631 has_msr_tsc_deadline = true;
632 continue;
634 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
635 has_msr_misc_enable = true;
636 continue;
641 g_free(kvm_msr_list);
644 return ret;
647 int kvm_arch_init(KVMState *s)
649 uint64_t identity_base = 0xfffbc000;
650 int ret;
651 struct utsname utsname;
653 ret = kvm_get_supported_msrs(s);
654 if (ret < 0) {
655 return ret;
658 uname(&utsname);
659 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
662 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
663 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
664 * Since these must be part of guest physical memory, we need to allocate
665 * them, both by setting their start addresses in the kernel and by
666 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
668 * Older KVM versions may not support setting the identity map base. In
669 * that case we need to stick with the default, i.e. a 256K maximum BIOS
670 * size.
672 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
673 /* Allows up to 16M BIOSes. */
674 identity_base = 0xfeffc000;
676 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
677 if (ret < 0) {
678 return ret;
682 /* Set TSS base one page after EPT identity map. */
683 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
684 if (ret < 0) {
685 return ret;
688 /* Tell fw_cfg to notify the BIOS to reserve the range. */
689 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
690 if (ret < 0) {
691 fprintf(stderr, "e820_add_entry() table is full\n");
692 return ret;
694 qemu_register_reset(kvm_unpoison_all, NULL);
696 return 0;
699 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
701 lhs->selector = rhs->selector;
702 lhs->base = rhs->base;
703 lhs->limit = rhs->limit;
704 lhs->type = 3;
705 lhs->present = 1;
706 lhs->dpl = 3;
707 lhs->db = 0;
708 lhs->s = 1;
709 lhs->l = 0;
710 lhs->g = 0;
711 lhs->avl = 0;
712 lhs->unusable = 0;
715 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
717 unsigned flags = rhs->flags;
718 lhs->selector = rhs->selector;
719 lhs->base = rhs->base;
720 lhs->limit = rhs->limit;
721 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
722 lhs->present = (flags & DESC_P_MASK) != 0;
723 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
724 lhs->db = (flags >> DESC_B_SHIFT) & 1;
725 lhs->s = (flags & DESC_S_MASK) != 0;
726 lhs->l = (flags >> DESC_L_SHIFT) & 1;
727 lhs->g = (flags & DESC_G_MASK) != 0;
728 lhs->avl = (flags & DESC_AVL_MASK) != 0;
729 lhs->unusable = 0;
732 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
734 lhs->selector = rhs->selector;
735 lhs->base = rhs->base;
736 lhs->limit = rhs->limit;
737 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
738 (rhs->present * DESC_P_MASK) |
739 (rhs->dpl << DESC_DPL_SHIFT) |
740 (rhs->db << DESC_B_SHIFT) |
741 (rhs->s * DESC_S_MASK) |
742 (rhs->l << DESC_L_SHIFT) |
743 (rhs->g * DESC_G_MASK) |
744 (rhs->avl * DESC_AVL_MASK);
747 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
749 if (set) {
750 *kvm_reg = *qemu_reg;
751 } else {
752 *qemu_reg = *kvm_reg;
756 static int kvm_getput_regs(CPUState *env, int set)
758 struct kvm_regs regs;
759 int ret = 0;
761 if (!set) {
762 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
763 if (ret < 0) {
764 return ret;
768 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
769 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
770 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
771 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
772 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
773 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
774 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
775 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
776 #ifdef TARGET_X86_64
777 kvm_getput_reg(&regs.r8, &env->regs[8], set);
778 kvm_getput_reg(&regs.r9, &env->regs[9], set);
779 kvm_getput_reg(&regs.r10, &env->regs[10], set);
780 kvm_getput_reg(&regs.r11, &env->regs[11], set);
781 kvm_getput_reg(&regs.r12, &env->regs[12], set);
782 kvm_getput_reg(&regs.r13, &env->regs[13], set);
783 kvm_getput_reg(&regs.r14, &env->regs[14], set);
784 kvm_getput_reg(&regs.r15, &env->regs[15], set);
785 #endif
787 kvm_getput_reg(&regs.rflags, &env->eflags, set);
788 kvm_getput_reg(&regs.rip, &env->eip, set);
790 if (set) {
791 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
794 return ret;
797 static int kvm_put_fpu(CPUState *env)
799 struct kvm_fpu fpu;
800 int i;
802 memset(&fpu, 0, sizeof fpu);
803 fpu.fsw = env->fpus & ~(7 << 11);
804 fpu.fsw |= (env->fpstt & 7) << 11;
805 fpu.fcw = env->fpuc;
806 fpu.last_opcode = env->fpop;
807 fpu.last_ip = env->fpip;
808 fpu.last_dp = env->fpdp;
809 for (i = 0; i < 8; ++i) {
810 fpu.ftwx |= (!env->fptags[i]) << i;
812 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
813 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
814 fpu.mxcsr = env->mxcsr;
816 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
819 #define XSAVE_FCW_FSW 0
820 #define XSAVE_FTW_FOP 1
821 #define XSAVE_CWD_RIP 2
822 #define XSAVE_CWD_RDP 4
823 #define XSAVE_MXCSR 6
824 #define XSAVE_ST_SPACE 8
825 #define XSAVE_XMM_SPACE 40
826 #define XSAVE_XSTATE_BV 128
827 #define XSAVE_YMMH_SPACE 144
829 static int kvm_put_xsave(CPUState *env)
831 struct kvm_xsave* xsave = env->kvm_xsave_buf;
832 uint16_t cwd, swd, twd;
833 int i, r;
835 if (!kvm_has_xsave()) {
836 return kvm_put_fpu(env);
839 memset(xsave, 0, sizeof(struct kvm_xsave));
840 twd = 0;
841 swd = env->fpus & ~(7 << 11);
842 swd |= (env->fpstt & 7) << 11;
843 cwd = env->fpuc;
844 for (i = 0; i < 8; ++i) {
845 twd |= (!env->fptags[i]) << i;
847 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
848 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
849 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
850 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
851 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
852 sizeof env->fpregs);
853 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
854 sizeof env->xmm_regs);
855 xsave->region[XSAVE_MXCSR] = env->mxcsr;
856 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
857 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
858 sizeof env->ymmh_regs);
859 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
860 return r;
863 static int kvm_put_xcrs(CPUState *env)
865 struct kvm_xcrs xcrs;
867 if (!kvm_has_xcrs()) {
868 return 0;
871 xcrs.nr_xcrs = 1;
872 xcrs.flags = 0;
873 xcrs.xcrs[0].xcr = 0;
874 xcrs.xcrs[0].value = env->xcr0;
875 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
878 static int kvm_put_sregs(CPUState *env)
880 struct kvm_sregs sregs;
882 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
883 if (env->interrupt_injected >= 0) {
884 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
885 (uint64_t)1 << (env->interrupt_injected % 64);
888 if ((env->eflags & VM_MASK)) {
889 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
890 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
891 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
892 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
893 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
894 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
895 } else {
896 set_seg(&sregs.cs, &env->segs[R_CS]);
897 set_seg(&sregs.ds, &env->segs[R_DS]);
898 set_seg(&sregs.es, &env->segs[R_ES]);
899 set_seg(&sregs.fs, &env->segs[R_FS]);
900 set_seg(&sregs.gs, &env->segs[R_GS]);
901 set_seg(&sregs.ss, &env->segs[R_SS]);
904 set_seg(&sregs.tr, &env->tr);
905 set_seg(&sregs.ldt, &env->ldt);
907 sregs.idt.limit = env->idt.limit;
908 sregs.idt.base = env->idt.base;
909 sregs.gdt.limit = env->gdt.limit;
910 sregs.gdt.base = env->gdt.base;
912 sregs.cr0 = env->cr[0];
913 sregs.cr2 = env->cr[2];
914 sregs.cr3 = env->cr[3];
915 sregs.cr4 = env->cr[4];
917 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
918 sregs.apic_base = cpu_get_apic_base(env->apic_state);
920 sregs.efer = env->efer;
922 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
925 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
926 uint32_t index, uint64_t value)
928 entry->index = index;
929 entry->data = value;
932 static int kvm_put_msrs(CPUState *env, int level)
934 struct {
935 struct kvm_msrs info;
936 struct kvm_msr_entry entries[100];
937 } msr_data;
938 struct kvm_msr_entry *msrs = msr_data.entries;
939 int n = 0;
941 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
942 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
943 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
944 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
945 if (has_msr_star) {
946 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
948 if (has_msr_hsave_pa) {
949 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
951 if (has_msr_tsc_deadline) {
952 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
954 if (has_msr_misc_enable) {
955 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
956 env->msr_ia32_misc_enable);
958 #ifdef TARGET_X86_64
959 if (lm_capable_kernel) {
960 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
961 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
962 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
963 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
965 #endif
966 if (level == KVM_PUT_FULL_STATE) {
968 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
969 * writeback. Until this is fixed, we only write the offset to SMP
970 * guests after migration, desynchronizing the VCPUs, but avoiding
971 * huge jump-backs that would occur without any writeback at all.
973 if (smp_cpus == 1 || env->tsc != 0) {
974 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
978 * The following paravirtual MSRs have side effects on the guest or are
979 * too heavy for normal writeback. Limit them to reset or full state
980 * updates.
982 if (level >= KVM_PUT_RESET_STATE) {
983 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
984 env->system_time_msr);
985 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
986 if (has_msr_async_pf_en) {
987 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
988 env->async_pf_en_msr);
990 if (hyperv_hypercall_available()) {
991 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
992 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
994 if (hyperv_vapic_recommended()) {
995 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
998 if (env->mcg_cap) {
999 int i;
1001 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1002 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1003 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1004 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1008 msr_data.info.nmsrs = n;
1010 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1015 static int kvm_get_fpu(CPUState *env)
1017 struct kvm_fpu fpu;
1018 int i, ret;
1020 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1021 if (ret < 0) {
1022 return ret;
1025 env->fpstt = (fpu.fsw >> 11) & 7;
1026 env->fpus = fpu.fsw;
1027 env->fpuc = fpu.fcw;
1028 env->fpop = fpu.last_opcode;
1029 env->fpip = fpu.last_ip;
1030 env->fpdp = fpu.last_dp;
1031 for (i = 0; i < 8; ++i) {
1032 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1034 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1035 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1036 env->mxcsr = fpu.mxcsr;
1038 return 0;
1041 static int kvm_get_xsave(CPUState *env)
1043 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1044 int ret, i;
1045 uint16_t cwd, swd, twd;
1047 if (!kvm_has_xsave()) {
1048 return kvm_get_fpu(env);
1051 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1052 if (ret < 0) {
1053 return ret;
1056 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1057 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1058 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1059 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1060 env->fpstt = (swd >> 11) & 7;
1061 env->fpus = swd;
1062 env->fpuc = cwd;
1063 for (i = 0; i < 8; ++i) {
1064 env->fptags[i] = !((twd >> i) & 1);
1066 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1067 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1068 env->mxcsr = xsave->region[XSAVE_MXCSR];
1069 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1070 sizeof env->fpregs);
1071 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1072 sizeof env->xmm_regs);
1073 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1074 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1075 sizeof env->ymmh_regs);
1076 return 0;
1079 static int kvm_get_xcrs(CPUState *env)
1081 int i, ret;
1082 struct kvm_xcrs xcrs;
1084 if (!kvm_has_xcrs()) {
1085 return 0;
1088 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1089 if (ret < 0) {
1090 return ret;
1093 for (i = 0; i < xcrs.nr_xcrs; i++) {
1094 /* Only support xcr0 now */
1095 if (xcrs.xcrs[0].xcr == 0) {
1096 env->xcr0 = xcrs.xcrs[0].value;
1097 break;
1100 return 0;
1103 static int kvm_get_sregs(CPUState *env)
1105 struct kvm_sregs sregs;
1106 uint32_t hflags;
1107 int bit, i, ret;
1109 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1110 if (ret < 0) {
1111 return ret;
1114 /* There can only be one pending IRQ set in the bitmap at a time, so try
1115 to find it and save its number instead (-1 for none). */
1116 env->interrupt_injected = -1;
1117 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1118 if (sregs.interrupt_bitmap[i]) {
1119 bit = ctz64(sregs.interrupt_bitmap[i]);
1120 env->interrupt_injected = i * 64 + bit;
1121 break;
1125 get_seg(&env->segs[R_CS], &sregs.cs);
1126 get_seg(&env->segs[R_DS], &sregs.ds);
1127 get_seg(&env->segs[R_ES], &sregs.es);
1128 get_seg(&env->segs[R_FS], &sregs.fs);
1129 get_seg(&env->segs[R_GS], &sregs.gs);
1130 get_seg(&env->segs[R_SS], &sregs.ss);
1132 get_seg(&env->tr, &sregs.tr);
1133 get_seg(&env->ldt, &sregs.ldt);
1135 env->idt.limit = sregs.idt.limit;
1136 env->idt.base = sregs.idt.base;
1137 env->gdt.limit = sregs.gdt.limit;
1138 env->gdt.base = sregs.gdt.base;
1140 env->cr[0] = sregs.cr0;
1141 env->cr[2] = sregs.cr2;
1142 env->cr[3] = sregs.cr3;
1143 env->cr[4] = sregs.cr4;
1145 env->efer = sregs.efer;
1147 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1149 #define HFLAG_COPY_MASK \
1150 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1151 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1152 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1153 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1155 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1156 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1157 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1158 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1159 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1160 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1161 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1163 if (env->efer & MSR_EFER_LMA) {
1164 hflags |= HF_LMA_MASK;
1167 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1168 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1169 } else {
1170 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1171 (DESC_B_SHIFT - HF_CS32_SHIFT);
1172 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1173 (DESC_B_SHIFT - HF_SS32_SHIFT);
1174 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1175 !(hflags & HF_CS32_MASK)) {
1176 hflags |= HF_ADDSEG_MASK;
1177 } else {
1178 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1179 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1182 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1184 return 0;
1187 static int kvm_get_msrs(CPUState *env)
1189 struct {
1190 struct kvm_msrs info;
1191 struct kvm_msr_entry entries[100];
1192 } msr_data;
1193 struct kvm_msr_entry *msrs = msr_data.entries;
1194 int ret, i, n;
1196 n = 0;
1197 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1198 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1199 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1200 msrs[n++].index = MSR_PAT;
1201 if (has_msr_star) {
1202 msrs[n++].index = MSR_STAR;
1204 if (has_msr_hsave_pa) {
1205 msrs[n++].index = MSR_VM_HSAVE_PA;
1207 if (has_msr_tsc_deadline) {
1208 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1210 if (has_msr_misc_enable) {
1211 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1214 if (!env->tsc_valid) {
1215 msrs[n++].index = MSR_IA32_TSC;
1216 env->tsc_valid = !runstate_is_running();
1219 #ifdef TARGET_X86_64
1220 if (lm_capable_kernel) {
1221 msrs[n++].index = MSR_CSTAR;
1222 msrs[n++].index = MSR_KERNELGSBASE;
1223 msrs[n++].index = MSR_FMASK;
1224 msrs[n++].index = MSR_LSTAR;
1226 #endif
1227 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1228 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1229 if (has_msr_async_pf_en) {
1230 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1233 if (env->mcg_cap) {
1234 msrs[n++].index = MSR_MCG_STATUS;
1235 msrs[n++].index = MSR_MCG_CTL;
1236 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1237 msrs[n++].index = MSR_MC0_CTL + i;
1241 msr_data.info.nmsrs = n;
1242 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1243 if (ret < 0) {
1244 return ret;
1247 for (i = 0; i < ret; i++) {
1248 switch (msrs[i].index) {
1249 case MSR_IA32_SYSENTER_CS:
1250 env->sysenter_cs = msrs[i].data;
1251 break;
1252 case MSR_IA32_SYSENTER_ESP:
1253 env->sysenter_esp = msrs[i].data;
1254 break;
1255 case MSR_IA32_SYSENTER_EIP:
1256 env->sysenter_eip = msrs[i].data;
1257 break;
1258 case MSR_PAT:
1259 env->pat = msrs[i].data;
1260 break;
1261 case MSR_STAR:
1262 env->star = msrs[i].data;
1263 break;
1264 #ifdef TARGET_X86_64
1265 case MSR_CSTAR:
1266 env->cstar = msrs[i].data;
1267 break;
1268 case MSR_KERNELGSBASE:
1269 env->kernelgsbase = msrs[i].data;
1270 break;
1271 case MSR_FMASK:
1272 env->fmask = msrs[i].data;
1273 break;
1274 case MSR_LSTAR:
1275 env->lstar = msrs[i].data;
1276 break;
1277 #endif
1278 case MSR_IA32_TSC:
1279 env->tsc = msrs[i].data;
1280 break;
1281 case MSR_IA32_TSCDEADLINE:
1282 env->tsc_deadline = msrs[i].data;
1283 break;
1284 case MSR_VM_HSAVE_PA:
1285 env->vm_hsave = msrs[i].data;
1286 break;
1287 case MSR_KVM_SYSTEM_TIME:
1288 env->system_time_msr = msrs[i].data;
1289 break;
1290 case MSR_KVM_WALL_CLOCK:
1291 env->wall_clock_msr = msrs[i].data;
1292 break;
1293 case MSR_MCG_STATUS:
1294 env->mcg_status = msrs[i].data;
1295 break;
1296 case MSR_MCG_CTL:
1297 env->mcg_ctl = msrs[i].data;
1298 break;
1299 case MSR_IA32_MISC_ENABLE:
1300 env->msr_ia32_misc_enable = msrs[i].data;
1301 break;
1302 default:
1303 if (msrs[i].index >= MSR_MC0_CTL &&
1304 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1305 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1307 break;
1308 case MSR_KVM_ASYNC_PF_EN:
1309 env->async_pf_en_msr = msrs[i].data;
1310 break;
1314 return 0;
1317 static int kvm_put_mp_state(CPUState *env)
1319 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1321 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1324 static int kvm_get_mp_state(CPUState *env)
1326 struct kvm_mp_state mp_state;
1327 int ret;
1329 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1330 if (ret < 0) {
1331 return ret;
1333 env->mp_state = mp_state.mp_state;
1334 if (kvm_irqchip_in_kernel()) {
1335 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1337 return 0;
1340 static int kvm_get_apic(CPUState *env)
1342 DeviceState *apic = env->apic_state;
1343 struct kvm_lapic_state kapic;
1344 int ret;
1346 if (apic && kvm_enabled() && kvm_irqchip_in_kernel()) {
1347 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1348 if (ret < 0) {
1349 return ret;
1352 kvm_get_apic_state(apic, &kapic);
1354 return 0;
1357 static int kvm_put_apic(CPUState *env)
1359 DeviceState *apic = env->apic_state;
1360 struct kvm_lapic_state kapic;
1362 if (apic && kvm_enabled() && kvm_irqchip_in_kernel()) {
1363 kvm_put_apic_state(apic, &kapic);
1365 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1367 return 0;
1370 static int kvm_put_vcpu_events(CPUState *env, int level)
1372 struct kvm_vcpu_events events;
1374 if (!kvm_has_vcpu_events()) {
1375 return 0;
1378 events.exception.injected = (env->exception_injected >= 0);
1379 events.exception.nr = env->exception_injected;
1380 events.exception.has_error_code = env->has_error_code;
1381 events.exception.error_code = env->error_code;
1383 events.interrupt.injected = (env->interrupt_injected >= 0);
1384 events.interrupt.nr = env->interrupt_injected;
1385 events.interrupt.soft = env->soft_interrupt;
1387 events.nmi.injected = env->nmi_injected;
1388 events.nmi.pending = env->nmi_pending;
1389 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1391 events.sipi_vector = env->sipi_vector;
1393 events.flags = 0;
1394 if (level >= KVM_PUT_RESET_STATE) {
1395 events.flags |=
1396 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1399 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1402 static int kvm_get_vcpu_events(CPUState *env)
1404 struct kvm_vcpu_events events;
1405 int ret;
1407 if (!kvm_has_vcpu_events()) {
1408 return 0;
1411 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1412 if (ret < 0) {
1413 return ret;
1415 env->exception_injected =
1416 events.exception.injected ? events.exception.nr : -1;
1417 env->has_error_code = events.exception.has_error_code;
1418 env->error_code = events.exception.error_code;
1420 env->interrupt_injected =
1421 events.interrupt.injected ? events.interrupt.nr : -1;
1422 env->soft_interrupt = events.interrupt.soft;
1424 env->nmi_injected = events.nmi.injected;
1425 env->nmi_pending = events.nmi.pending;
1426 if (events.nmi.masked) {
1427 env->hflags2 |= HF2_NMI_MASK;
1428 } else {
1429 env->hflags2 &= ~HF2_NMI_MASK;
1432 env->sipi_vector = events.sipi_vector;
1434 return 0;
1437 static int kvm_guest_debug_workarounds(CPUState *env)
1439 int ret = 0;
1440 unsigned long reinject_trap = 0;
1442 if (!kvm_has_vcpu_events()) {
1443 if (env->exception_injected == 1) {
1444 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1445 } else if (env->exception_injected == 3) {
1446 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1448 env->exception_injected = -1;
1452 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1453 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1454 * by updating the debug state once again if single-stepping is on.
1455 * Another reason to call kvm_update_guest_debug here is a pending debug
1456 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1457 * reinject them via SET_GUEST_DEBUG.
1459 if (reinject_trap ||
1460 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1461 ret = kvm_update_guest_debug(env, reinject_trap);
1463 return ret;
1466 static int kvm_put_debugregs(CPUState *env)
1468 struct kvm_debugregs dbgregs;
1469 int i;
1471 if (!kvm_has_debugregs()) {
1472 return 0;
1475 for (i = 0; i < 4; i++) {
1476 dbgregs.db[i] = env->dr[i];
1478 dbgregs.dr6 = env->dr[6];
1479 dbgregs.dr7 = env->dr[7];
1480 dbgregs.flags = 0;
1482 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1485 static int kvm_get_debugregs(CPUState *env)
1487 struct kvm_debugregs dbgregs;
1488 int i, ret;
1490 if (!kvm_has_debugregs()) {
1491 return 0;
1494 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1495 if (ret < 0) {
1496 return ret;
1498 for (i = 0; i < 4; i++) {
1499 env->dr[i] = dbgregs.db[i];
1501 env->dr[4] = env->dr[6] = dbgregs.dr6;
1502 env->dr[5] = env->dr[7] = dbgregs.dr7;
1504 return 0;
1507 int kvm_arch_put_registers(CPUState *env, int level)
1509 int ret;
1511 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1513 ret = kvm_getput_regs(env, 1);
1514 if (ret < 0) {
1515 return ret;
1517 ret = kvm_put_xsave(env);
1518 if (ret < 0) {
1519 return ret;
1521 ret = kvm_put_xcrs(env);
1522 if (ret < 0) {
1523 return ret;
1525 ret = kvm_put_sregs(env);
1526 if (ret < 0) {
1527 return ret;
1529 /* must be before kvm_put_msrs */
1530 ret = kvm_inject_mce_oldstyle(env);
1531 if (ret < 0) {
1532 return ret;
1534 ret = kvm_put_msrs(env, level);
1535 if (ret < 0) {
1536 return ret;
1538 if (level >= KVM_PUT_RESET_STATE) {
1539 ret = kvm_put_mp_state(env);
1540 if (ret < 0) {
1541 return ret;
1543 ret = kvm_put_apic(env);
1544 if (ret < 0) {
1545 return ret;
1548 ret = kvm_put_vcpu_events(env, level);
1549 if (ret < 0) {
1550 return ret;
1552 ret = kvm_put_debugregs(env);
1553 if (ret < 0) {
1554 return ret;
1556 /* must be last */
1557 ret = kvm_guest_debug_workarounds(env);
1558 if (ret < 0) {
1559 return ret;
1561 return 0;
1564 int kvm_arch_get_registers(CPUState *env)
1566 int ret;
1568 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1570 ret = kvm_getput_regs(env, 0);
1571 if (ret < 0) {
1572 return ret;
1574 ret = kvm_get_xsave(env);
1575 if (ret < 0) {
1576 return ret;
1578 ret = kvm_get_xcrs(env);
1579 if (ret < 0) {
1580 return ret;
1582 ret = kvm_get_sregs(env);
1583 if (ret < 0) {
1584 return ret;
1586 ret = kvm_get_msrs(env);
1587 if (ret < 0) {
1588 return ret;
1590 ret = kvm_get_mp_state(env);
1591 if (ret < 0) {
1592 return ret;
1594 ret = kvm_get_apic(env);
1595 if (ret < 0) {
1596 return ret;
1598 ret = kvm_get_vcpu_events(env);
1599 if (ret < 0) {
1600 return ret;
1602 ret = kvm_get_debugregs(env);
1603 if (ret < 0) {
1604 return ret;
1606 return 0;
1609 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1611 int ret;
1613 /* Inject NMI */
1614 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1615 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1616 DPRINTF("injected NMI\n");
1617 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1618 if (ret < 0) {
1619 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1620 strerror(-ret));
1624 if (!kvm_irqchip_in_kernel()) {
1625 /* Force the VCPU out of its inner loop to process the INIT request */
1626 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1627 env->exit_request = 1;
1630 /* Try to inject an interrupt if the guest can accept it */
1631 if (run->ready_for_interrupt_injection &&
1632 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1633 (env->eflags & IF_MASK)) {
1634 int irq;
1636 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1637 irq = cpu_get_pic_interrupt(env);
1638 if (irq >= 0) {
1639 struct kvm_interrupt intr;
1641 intr.irq = irq;
1642 DPRINTF("injected interrupt %d\n", irq);
1643 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1644 if (ret < 0) {
1645 fprintf(stderr,
1646 "KVM: injection failed, interrupt lost (%s)\n",
1647 strerror(-ret));
1652 /* If we have an interrupt but the guest is not ready to receive an
1653 * interrupt, request an interrupt window exit. This will
1654 * cause a return to userspace as soon as the guest is ready to
1655 * receive interrupts. */
1656 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1657 run->request_interrupt_window = 1;
1658 } else {
1659 run->request_interrupt_window = 0;
1662 DPRINTF("setting tpr\n");
1663 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1667 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1669 if (run->if_flag) {
1670 env->eflags |= IF_MASK;
1671 } else {
1672 env->eflags &= ~IF_MASK;
1674 cpu_set_apic_tpr(env->apic_state, run->cr8);
1675 cpu_set_apic_base(env->apic_state, run->apic_base);
1678 int kvm_arch_process_async_events(CPUState *env)
1680 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1681 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1682 assert(env->mcg_cap);
1684 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1686 kvm_cpu_synchronize_state(env);
1688 if (env->exception_injected == EXCP08_DBLE) {
1689 /* this means triple fault */
1690 qemu_system_reset_request();
1691 env->exit_request = 1;
1692 return 0;
1694 env->exception_injected = EXCP12_MCHK;
1695 env->has_error_code = 0;
1697 env->halted = 0;
1698 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1699 env->mp_state = KVM_MP_STATE_RUNNABLE;
1703 if (kvm_irqchip_in_kernel()) {
1704 return 0;
1707 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1708 (env->eflags & IF_MASK)) ||
1709 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1710 env->halted = 0;
1712 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1713 kvm_cpu_synchronize_state(env);
1714 do_cpu_init(env);
1716 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1717 kvm_cpu_synchronize_state(env);
1718 do_cpu_sipi(env);
1721 return env->halted;
1724 static int kvm_handle_halt(CPUState *env)
1726 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1727 (env->eflags & IF_MASK)) &&
1728 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1729 env->halted = 1;
1730 return EXCP_HLT;
1733 return 0;
1736 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1738 static const uint8_t int3 = 0xcc;
1740 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1741 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1742 return -EINVAL;
1744 return 0;
1747 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1749 uint8_t int3;
1751 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1752 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1753 return -EINVAL;
1755 return 0;
1758 static struct {
1759 target_ulong addr;
1760 int len;
1761 int type;
1762 } hw_breakpoint[4];
1764 static int nb_hw_breakpoint;
1766 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1768 int n;
1770 for (n = 0; n < nb_hw_breakpoint; n++) {
1771 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1772 (hw_breakpoint[n].len == len || len == -1)) {
1773 return n;
1776 return -1;
1779 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1780 target_ulong len, int type)
1782 switch (type) {
1783 case GDB_BREAKPOINT_HW:
1784 len = 1;
1785 break;
1786 case GDB_WATCHPOINT_WRITE:
1787 case GDB_WATCHPOINT_ACCESS:
1788 switch (len) {
1789 case 1:
1790 break;
1791 case 2:
1792 case 4:
1793 case 8:
1794 if (addr & (len - 1)) {
1795 return -EINVAL;
1797 break;
1798 default:
1799 return -EINVAL;
1801 break;
1802 default:
1803 return -ENOSYS;
1806 if (nb_hw_breakpoint == 4) {
1807 return -ENOBUFS;
1809 if (find_hw_breakpoint(addr, len, type) >= 0) {
1810 return -EEXIST;
1812 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1813 hw_breakpoint[nb_hw_breakpoint].len = len;
1814 hw_breakpoint[nb_hw_breakpoint].type = type;
1815 nb_hw_breakpoint++;
1817 return 0;
1820 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1821 target_ulong len, int type)
1823 int n;
1825 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1826 if (n < 0) {
1827 return -ENOENT;
1829 nb_hw_breakpoint--;
1830 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1832 return 0;
1835 void kvm_arch_remove_all_hw_breakpoints(void)
1837 nb_hw_breakpoint = 0;
1840 static CPUWatchpoint hw_watchpoint;
1842 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1844 int ret = 0;
1845 int n;
1847 if (arch_info->exception == 1) {
1848 if (arch_info->dr6 & (1 << 14)) {
1849 if (cpu_single_env->singlestep_enabled) {
1850 ret = EXCP_DEBUG;
1852 } else {
1853 for (n = 0; n < 4; n++) {
1854 if (arch_info->dr6 & (1 << n)) {
1855 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1856 case 0x0:
1857 ret = EXCP_DEBUG;
1858 break;
1859 case 0x1:
1860 ret = EXCP_DEBUG;
1861 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1862 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1863 hw_watchpoint.flags = BP_MEM_WRITE;
1864 break;
1865 case 0x3:
1866 ret = EXCP_DEBUG;
1867 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1868 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1869 hw_watchpoint.flags = BP_MEM_ACCESS;
1870 break;
1875 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1876 ret = EXCP_DEBUG;
1878 if (ret == 0) {
1879 cpu_synchronize_state(cpu_single_env);
1880 assert(cpu_single_env->exception_injected == -1);
1882 /* pass to guest */
1883 cpu_single_env->exception_injected = arch_info->exception;
1884 cpu_single_env->has_error_code = 0;
1887 return ret;
1890 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1892 const uint8_t type_code[] = {
1893 [GDB_BREAKPOINT_HW] = 0x0,
1894 [GDB_WATCHPOINT_WRITE] = 0x1,
1895 [GDB_WATCHPOINT_ACCESS] = 0x3
1897 const uint8_t len_code[] = {
1898 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1900 int n;
1902 if (kvm_sw_breakpoints_active(env)) {
1903 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1905 if (nb_hw_breakpoint > 0) {
1906 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1907 dbg->arch.debugreg[7] = 0x0600;
1908 for (n = 0; n < nb_hw_breakpoint; n++) {
1909 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1910 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1911 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1912 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1917 static bool host_supports_vmx(void)
1919 uint32_t ecx, unused;
1921 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1922 return ecx & CPUID_EXT_VMX;
1925 #define VMX_INVALID_GUEST_STATE 0x80000021
1927 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1929 uint64_t code;
1930 int ret;
1932 switch (run->exit_reason) {
1933 case KVM_EXIT_HLT:
1934 DPRINTF("handle_hlt\n");
1935 ret = kvm_handle_halt(env);
1936 break;
1937 case KVM_EXIT_SET_TPR:
1938 ret = 0;
1939 break;
1940 case KVM_EXIT_FAIL_ENTRY:
1941 code = run->fail_entry.hardware_entry_failure_reason;
1942 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1943 code);
1944 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1945 fprintf(stderr,
1946 "\nIf you're running a guest on an Intel machine without "
1947 "unrestricted mode\n"
1948 "support, the failure can be most likely due to the guest "
1949 "entering an invalid\n"
1950 "state for Intel VT. For example, the guest maybe running "
1951 "in big real mode\n"
1952 "which is not supported on less recent Intel processors."
1953 "\n\n");
1955 ret = -1;
1956 break;
1957 case KVM_EXIT_EXCEPTION:
1958 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1959 run->ex.exception, run->ex.error_code);
1960 ret = -1;
1961 break;
1962 case KVM_EXIT_DEBUG:
1963 DPRINTF("kvm_exit_debug\n");
1964 ret = kvm_handle_debug(&run->debug.arch);
1965 break;
1966 default:
1967 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1968 ret = -1;
1969 break;
1972 return ret;
1975 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1977 return !(env->cr[0] & CR0_PE_MASK) ||
1978 ((env->segs[R_CS].selector & 3) != 3);
1981 void kvm_arch_init_irq_routing(KVMState *s)
1983 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1984 /* If kernel can't do irq routing, interrupt source
1985 * override 0->2 cannot be set up as required by HPET.
1986 * So we have to disable it.
1988 no_hpet = 1;