vnc: fix uint8_t comparisons with negative values
[qemu/ar7.git] / target-i386 / kvm.c
blob0aa0a410da2e72569aa12b4981e27a997a41fc88
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
68 #endif
69 static int lm_capable_kernel;
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
93 return cpuid;
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
135 break;
137 break;
142 qemu_free(cpuid);
144 return ret;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157 #endif
158 { -1, -1 }
161 static int get_para_features(CPUState *env)
163 int i, features = 0;
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172 #endif
173 return features;
175 #endif
177 #ifdef KVM_CAP_MCE
178 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
181 int r;
183 r = kvm_check_extension(s, KVM_CAP_MCE);
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188 return -ENOSYS;
191 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
196 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
201 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState *env)
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
220 int r;
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
230 struct kvm_x86_mce_data
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
237 static void kvm_do_inject_x86_mce(void *_data)
239 struct kvm_x86_mce_data *data = _data;
240 int r;
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 if (kvm_mce_in_progress(data->env)) {
246 return;
250 r = kvm_set_mce(data->env, data->mce);
251 if (r < 0) {
252 perror("kvm_set_mce FAILED");
253 if (data->abort_on_error) {
254 abort();
259 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
276 static void kvm_mce_broadcast_rest(CPUState *env);
277 #endif
279 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
280 uint64_t mcg_status, uint64_t addr, uint64_t misc,
281 int flag)
283 #ifdef KVM_CAP_MCE
284 struct kvm_x86_mce mce = {
285 .bank = bank,
286 .status = status,
287 .mcg_status = mcg_status,
288 .addr = addr,
289 .misc = misc,
292 if (flag & MCE_BROADCAST) {
293 kvm_mce_broadcast_rest(cenv);
296 kvm_inject_x86_mce_on(cenv, &mce, flag);
297 #else
298 if (flag & ABORT_ON_ERROR) {
299 abort();
301 #endif
304 static void cpu_update_state(void *opaque, int running, int reason)
306 CPUState *env = opaque;
308 if (running) {
309 env->tsc_valid = false;
313 int kvm_arch_init_vcpu(CPUState *env)
315 struct {
316 struct kvm_cpuid2 cpuid;
317 struct kvm_cpuid_entry2 entries[100];
318 } __attribute__((packed)) cpuid_data;
319 uint32_t limit, i, j, cpuid_i;
320 uint32_t unused;
321 struct kvm_cpuid_entry2 *c;
322 #ifdef CONFIG_KVM_PARA
323 uint32_t signature[3];
324 #endif
326 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
328 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330 env->cpuid_ext_features |= i;
332 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_EDX);
334 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335 0, R_ECX);
336 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337 0, R_EDX);
340 cpuid_i = 0;
342 #ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_SIGNATURE;
348 c->eax = 0;
349 c->ebx = signature[0];
350 c->ecx = signature[1];
351 c->edx = signature[2];
353 c = &cpuid_data.entries[cpuid_i++];
354 memset(c, 0, sizeof(*c));
355 c->function = KVM_CPUID_FEATURES;
356 c->eax = env->cpuid_kvm_features & get_para_features(env);
357 #endif
359 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
361 for (i = 0; i <= limit; i++) {
362 c = &cpuid_data.entries[cpuid_i++];
364 switch (i) {
365 case 2: {
366 /* Keep reading function 2 till all the input is received */
367 int times;
369 c->function = i;
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371 KVM_CPUID_FLAG_STATE_READ_NEXT;
372 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 times = c->eax & 0xff;
375 for (j = 1; j < times; ++j) {
376 c = &cpuid_data.entries[cpuid_i++];
377 c->function = i;
378 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
381 break;
383 case 4:
384 case 0xb:
385 case 0xd:
386 for (j = 0; ; j++) {
387 c->function = i;
388 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389 c->index = j;
390 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
392 if (i == 4 && c->eax == 0) {
393 break;
395 if (i == 0xb && !(c->ecx & 0xff00)) {
396 break;
398 if (i == 0xd && c->eax == 0) {
399 break;
401 c = &cpuid_data.entries[cpuid_i++];
403 break;
404 default:
405 c->function = i;
406 c->flags = 0;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 break;
411 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
413 for (i = 0x80000000; i <= limit; i++) {
414 c = &cpuid_data.entries[cpuid_i++];
416 c->function = i;
417 c->flags = 0;
418 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
421 cpuid_data.cpuid.nent = cpuid_i;
423 #ifdef KVM_CAP_MCE
424 if (((env->cpuid_version >> 8)&0xF) >= 6
425 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427 uint64_t mcg_cap;
428 int banks;
430 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
431 perror("kvm_get_mce_cap_supported FAILED");
432 } else {
433 if (banks > MCE_BANKS_DEF)
434 banks = MCE_BANKS_DEF;
435 mcg_cap &= MCE_CAP_DEF;
436 mcg_cap |= banks;
437 if (kvm_setup_mce(env, &mcg_cap)) {
438 perror("kvm_setup_mce FAILED");
439 } else {
440 env->mcg_cap = mcg_cap;
444 #endif
446 qemu_add_vm_change_state_handler(cpu_update_state, env);
448 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
451 void kvm_arch_reset_vcpu(CPUState *env)
453 env->exception_injected = -1;
454 env->interrupt_injected = -1;
455 env->xcr0 = 1;
456 if (kvm_irqchip_in_kernel()) {
457 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
458 KVM_MP_STATE_UNINITIALIZED;
459 } else {
460 env->mp_state = KVM_MP_STATE_RUNNABLE;
464 static int kvm_get_supported_msrs(KVMState *s)
466 static int kvm_supported_msrs;
467 int ret = 0;
469 /* first time */
470 if (kvm_supported_msrs == 0) {
471 struct kvm_msr_list msr_list, *kvm_msr_list;
473 kvm_supported_msrs = -1;
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
477 msr_list.nmsrs = 0;
478 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
479 if (ret < 0 && ret != -E2BIG) {
480 return ret;
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
488 kvm_msr_list->nmsrs = msr_list.nmsrs;
489 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490 if (ret >= 0) {
491 int i;
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
495 has_msr_star = true;
496 continue;
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499 has_msr_hsave_pa = true;
500 continue;
505 free(kvm_msr_list);
508 return ret;
511 int kvm_arch_init(KVMState *s)
513 uint64_t identity_base = 0xfffbc000;
514 int ret;
515 struct utsname utsname;
517 ret = kvm_get_supported_msrs(s);
518 if (ret < 0) {
519 return ret;
522 uname(&utsname);
523 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
526 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
527 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
528 * Since these must be part of guest physical memory, we need to allocate
529 * them, both by setting their start addresses in the kernel and by
530 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
532 * Older KVM versions may not support setting the identity map base. In
533 * that case we need to stick with the default, i.e. a 256K maximum BIOS
534 * size.
536 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
537 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
538 /* Allows up to 16M BIOSes. */
539 identity_base = 0xfeffc000;
541 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
542 if (ret < 0) {
543 return ret;
546 #endif
547 /* Set TSS base one page after EPT identity map. */
548 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
549 if (ret < 0) {
550 return ret;
553 /* Tell fw_cfg to notify the BIOS to reserve the range. */
554 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
555 if (ret < 0) {
556 fprintf(stderr, "e820_add_entry() table is full\n");
557 return ret;
560 return 0;
563 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
565 lhs->selector = rhs->selector;
566 lhs->base = rhs->base;
567 lhs->limit = rhs->limit;
568 lhs->type = 3;
569 lhs->present = 1;
570 lhs->dpl = 3;
571 lhs->db = 0;
572 lhs->s = 1;
573 lhs->l = 0;
574 lhs->g = 0;
575 lhs->avl = 0;
576 lhs->unusable = 0;
579 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
581 unsigned flags = rhs->flags;
582 lhs->selector = rhs->selector;
583 lhs->base = rhs->base;
584 lhs->limit = rhs->limit;
585 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
586 lhs->present = (flags & DESC_P_MASK) != 0;
587 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
588 lhs->db = (flags >> DESC_B_SHIFT) & 1;
589 lhs->s = (flags & DESC_S_MASK) != 0;
590 lhs->l = (flags >> DESC_L_SHIFT) & 1;
591 lhs->g = (flags & DESC_G_MASK) != 0;
592 lhs->avl = (flags & DESC_AVL_MASK) != 0;
593 lhs->unusable = 0;
596 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
598 lhs->selector = rhs->selector;
599 lhs->base = rhs->base;
600 lhs->limit = rhs->limit;
601 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
602 (rhs->present * DESC_P_MASK) |
603 (rhs->dpl << DESC_DPL_SHIFT) |
604 (rhs->db << DESC_B_SHIFT) |
605 (rhs->s * DESC_S_MASK) |
606 (rhs->l << DESC_L_SHIFT) |
607 (rhs->g * DESC_G_MASK) |
608 (rhs->avl * DESC_AVL_MASK);
611 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
613 if (set) {
614 *kvm_reg = *qemu_reg;
615 } else {
616 *qemu_reg = *kvm_reg;
620 static int kvm_getput_regs(CPUState *env, int set)
622 struct kvm_regs regs;
623 int ret = 0;
625 if (!set) {
626 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
627 if (ret < 0) {
628 return ret;
632 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
633 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
634 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
635 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
636 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
637 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
638 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
639 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
640 #ifdef TARGET_X86_64
641 kvm_getput_reg(&regs.r8, &env->regs[8], set);
642 kvm_getput_reg(&regs.r9, &env->regs[9], set);
643 kvm_getput_reg(&regs.r10, &env->regs[10], set);
644 kvm_getput_reg(&regs.r11, &env->regs[11], set);
645 kvm_getput_reg(&regs.r12, &env->regs[12], set);
646 kvm_getput_reg(&regs.r13, &env->regs[13], set);
647 kvm_getput_reg(&regs.r14, &env->regs[14], set);
648 kvm_getput_reg(&regs.r15, &env->regs[15], set);
649 #endif
651 kvm_getput_reg(&regs.rflags, &env->eflags, set);
652 kvm_getput_reg(&regs.rip, &env->eip, set);
654 if (set) {
655 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
658 return ret;
661 static int kvm_put_fpu(CPUState *env)
663 struct kvm_fpu fpu;
664 int i;
666 memset(&fpu, 0, sizeof fpu);
667 fpu.fsw = env->fpus & ~(7 << 11);
668 fpu.fsw |= (env->fpstt & 7) << 11;
669 fpu.fcw = env->fpuc;
670 for (i = 0; i < 8; ++i) {
671 fpu.ftwx |= (!env->fptags[i]) << i;
673 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
674 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
675 fpu.mxcsr = env->mxcsr;
677 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
680 #ifdef KVM_CAP_XSAVE
681 #define XSAVE_CWD_RIP 2
682 #define XSAVE_CWD_RDP 4
683 #define XSAVE_MXCSR 6
684 #define XSAVE_ST_SPACE 8
685 #define XSAVE_XMM_SPACE 40
686 #define XSAVE_XSTATE_BV 128
687 #define XSAVE_YMMH_SPACE 144
688 #endif
690 static int kvm_put_xsave(CPUState *env)
692 #ifdef KVM_CAP_XSAVE
693 int i, r;
694 struct kvm_xsave* xsave;
695 uint16_t cwd, swd, twd, fop;
697 if (!kvm_has_xsave()) {
698 return kvm_put_fpu(env);
701 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
702 memset(xsave, 0, sizeof(struct kvm_xsave));
703 cwd = swd = twd = fop = 0;
704 swd = env->fpus & ~(7 << 11);
705 swd |= (env->fpstt & 7) << 11;
706 cwd = env->fpuc;
707 for (i = 0; i < 8; ++i) {
708 twd |= (!env->fptags[i]) << i;
710 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
711 xsave->region[1] = (uint32_t)(fop << 16) + twd;
712 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
713 sizeof env->fpregs);
714 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
715 sizeof env->xmm_regs);
716 xsave->region[XSAVE_MXCSR] = env->mxcsr;
717 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
718 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
719 sizeof env->ymmh_regs);
720 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
721 qemu_free(xsave);
722 return r;
723 #else
724 return kvm_put_fpu(env);
725 #endif
728 static int kvm_put_xcrs(CPUState *env)
730 #ifdef KVM_CAP_XCRS
731 struct kvm_xcrs xcrs;
733 if (!kvm_has_xcrs()) {
734 return 0;
737 xcrs.nr_xcrs = 1;
738 xcrs.flags = 0;
739 xcrs.xcrs[0].xcr = 0;
740 xcrs.xcrs[0].value = env->xcr0;
741 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
742 #else
743 return 0;
744 #endif
747 static int kvm_put_sregs(CPUState *env)
749 struct kvm_sregs sregs;
751 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
752 if (env->interrupt_injected >= 0) {
753 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
754 (uint64_t)1 << (env->interrupt_injected % 64);
757 if ((env->eflags & VM_MASK)) {
758 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
759 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
760 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
761 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
762 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
763 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
764 } else {
765 set_seg(&sregs.cs, &env->segs[R_CS]);
766 set_seg(&sregs.ds, &env->segs[R_DS]);
767 set_seg(&sregs.es, &env->segs[R_ES]);
768 set_seg(&sregs.fs, &env->segs[R_FS]);
769 set_seg(&sregs.gs, &env->segs[R_GS]);
770 set_seg(&sregs.ss, &env->segs[R_SS]);
773 set_seg(&sregs.tr, &env->tr);
774 set_seg(&sregs.ldt, &env->ldt);
776 sregs.idt.limit = env->idt.limit;
777 sregs.idt.base = env->idt.base;
778 sregs.gdt.limit = env->gdt.limit;
779 sregs.gdt.base = env->gdt.base;
781 sregs.cr0 = env->cr[0];
782 sregs.cr2 = env->cr[2];
783 sregs.cr3 = env->cr[3];
784 sregs.cr4 = env->cr[4];
786 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
787 sregs.apic_base = cpu_get_apic_base(env->apic_state);
789 sregs.efer = env->efer;
791 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
794 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
795 uint32_t index, uint64_t value)
797 entry->index = index;
798 entry->data = value;
801 static int kvm_put_msrs(CPUState *env, int level)
803 struct {
804 struct kvm_msrs info;
805 struct kvm_msr_entry entries[100];
806 } msr_data;
807 struct kvm_msr_entry *msrs = msr_data.entries;
808 int n = 0;
810 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
811 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
812 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
813 if (has_msr_star) {
814 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
816 if (has_msr_hsave_pa) {
817 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
819 #ifdef TARGET_X86_64
820 if (lm_capable_kernel) {
821 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
822 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
823 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
824 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
826 #endif
827 if (level == KVM_PUT_FULL_STATE) {
829 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
830 * writeback. Until this is fixed, we only write the offset to SMP
831 * guests after migration, desynchronizing the VCPUs, but avoiding
832 * huge jump-backs that would occur without any writeback at all.
834 if (smp_cpus == 1 || env->tsc != 0) {
835 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
839 * The following paravirtual MSRs have side effects on the guest or are
840 * too heavy for normal writeback. Limit them to reset or full state
841 * updates.
843 if (level >= KVM_PUT_RESET_STATE) {
844 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
845 env->system_time_msr);
846 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
847 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
848 if (has_msr_async_pf_en) {
849 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
850 env->async_pf_en_msr);
852 #endif
854 #ifdef KVM_CAP_MCE
855 if (env->mcg_cap) {
856 int i;
858 if (level == KVM_PUT_RESET_STATE) {
859 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
860 } else if (level == KVM_PUT_FULL_STATE) {
861 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
862 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
863 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
864 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
868 #endif
870 msr_data.info.nmsrs = n;
872 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
877 static int kvm_get_fpu(CPUState *env)
879 struct kvm_fpu fpu;
880 int i, ret;
882 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
883 if (ret < 0) {
884 return ret;
887 env->fpstt = (fpu.fsw >> 11) & 7;
888 env->fpus = fpu.fsw;
889 env->fpuc = fpu.fcw;
890 for (i = 0; i < 8; ++i) {
891 env->fptags[i] = !((fpu.ftwx >> i) & 1);
893 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
894 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
895 env->mxcsr = fpu.mxcsr;
897 return 0;
900 static int kvm_get_xsave(CPUState *env)
902 #ifdef KVM_CAP_XSAVE
903 struct kvm_xsave* xsave;
904 int ret, i;
905 uint16_t cwd, swd, twd, fop;
907 if (!kvm_has_xsave()) {
908 return kvm_get_fpu(env);
911 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
912 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
913 if (ret < 0) {
914 qemu_free(xsave);
915 return ret;
918 cwd = (uint16_t)xsave->region[0];
919 swd = (uint16_t)(xsave->region[0] >> 16);
920 twd = (uint16_t)xsave->region[1];
921 fop = (uint16_t)(xsave->region[1] >> 16);
922 env->fpstt = (swd >> 11) & 7;
923 env->fpus = swd;
924 env->fpuc = cwd;
925 for (i = 0; i < 8; ++i) {
926 env->fptags[i] = !((twd >> i) & 1);
928 env->mxcsr = xsave->region[XSAVE_MXCSR];
929 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
930 sizeof env->fpregs);
931 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
932 sizeof env->xmm_regs);
933 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
934 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
935 sizeof env->ymmh_regs);
936 qemu_free(xsave);
937 return 0;
938 #else
939 return kvm_get_fpu(env);
940 #endif
943 static int kvm_get_xcrs(CPUState *env)
945 #ifdef KVM_CAP_XCRS
946 int i, ret;
947 struct kvm_xcrs xcrs;
949 if (!kvm_has_xcrs()) {
950 return 0;
953 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
954 if (ret < 0) {
955 return ret;
958 for (i = 0; i < xcrs.nr_xcrs; i++) {
959 /* Only support xcr0 now */
960 if (xcrs.xcrs[0].xcr == 0) {
961 env->xcr0 = xcrs.xcrs[0].value;
962 break;
965 return 0;
966 #else
967 return 0;
968 #endif
971 static int kvm_get_sregs(CPUState *env)
973 struct kvm_sregs sregs;
974 uint32_t hflags;
975 int bit, i, ret;
977 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
978 if (ret < 0) {
979 return ret;
982 /* There can only be one pending IRQ set in the bitmap at a time, so try
983 to find it and save its number instead (-1 for none). */
984 env->interrupt_injected = -1;
985 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
986 if (sregs.interrupt_bitmap[i]) {
987 bit = ctz64(sregs.interrupt_bitmap[i]);
988 env->interrupt_injected = i * 64 + bit;
989 break;
993 get_seg(&env->segs[R_CS], &sregs.cs);
994 get_seg(&env->segs[R_DS], &sregs.ds);
995 get_seg(&env->segs[R_ES], &sregs.es);
996 get_seg(&env->segs[R_FS], &sregs.fs);
997 get_seg(&env->segs[R_GS], &sregs.gs);
998 get_seg(&env->segs[R_SS], &sregs.ss);
1000 get_seg(&env->tr, &sregs.tr);
1001 get_seg(&env->ldt, &sregs.ldt);
1003 env->idt.limit = sregs.idt.limit;
1004 env->idt.base = sregs.idt.base;
1005 env->gdt.limit = sregs.gdt.limit;
1006 env->gdt.base = sregs.gdt.base;
1008 env->cr[0] = sregs.cr0;
1009 env->cr[2] = sregs.cr2;
1010 env->cr[3] = sregs.cr3;
1011 env->cr[4] = sregs.cr4;
1013 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1015 env->efer = sregs.efer;
1016 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1018 #define HFLAG_COPY_MASK \
1019 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1020 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1021 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1022 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1024 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1025 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1026 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1027 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1028 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1029 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1030 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1032 if (env->efer & MSR_EFER_LMA) {
1033 hflags |= HF_LMA_MASK;
1036 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1037 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1038 } else {
1039 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1040 (DESC_B_SHIFT - HF_CS32_SHIFT);
1041 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1042 (DESC_B_SHIFT - HF_SS32_SHIFT);
1043 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1044 !(hflags & HF_CS32_MASK)) {
1045 hflags |= HF_ADDSEG_MASK;
1046 } else {
1047 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1048 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1051 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1053 return 0;
1056 static int kvm_get_msrs(CPUState *env)
1058 struct {
1059 struct kvm_msrs info;
1060 struct kvm_msr_entry entries[100];
1061 } msr_data;
1062 struct kvm_msr_entry *msrs = msr_data.entries;
1063 int ret, i, n;
1065 n = 0;
1066 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1067 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1068 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1069 if (has_msr_star) {
1070 msrs[n++].index = MSR_STAR;
1072 if (has_msr_hsave_pa) {
1073 msrs[n++].index = MSR_VM_HSAVE_PA;
1076 if (!env->tsc_valid) {
1077 msrs[n++].index = MSR_IA32_TSC;
1078 env->tsc_valid = !vm_running;
1081 #ifdef TARGET_X86_64
1082 if (lm_capable_kernel) {
1083 msrs[n++].index = MSR_CSTAR;
1084 msrs[n++].index = MSR_KERNELGSBASE;
1085 msrs[n++].index = MSR_FMASK;
1086 msrs[n++].index = MSR_LSTAR;
1088 #endif
1089 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1090 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1091 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1092 if (has_msr_async_pf_en) {
1093 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1095 #endif
1097 #ifdef KVM_CAP_MCE
1098 if (env->mcg_cap) {
1099 msrs[n++].index = MSR_MCG_STATUS;
1100 msrs[n++].index = MSR_MCG_CTL;
1101 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1102 msrs[n++].index = MSR_MC0_CTL + i;
1105 #endif
1107 msr_data.info.nmsrs = n;
1108 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1109 if (ret < 0) {
1110 return ret;
1113 for (i = 0; i < ret; i++) {
1114 switch (msrs[i].index) {
1115 case MSR_IA32_SYSENTER_CS:
1116 env->sysenter_cs = msrs[i].data;
1117 break;
1118 case MSR_IA32_SYSENTER_ESP:
1119 env->sysenter_esp = msrs[i].data;
1120 break;
1121 case MSR_IA32_SYSENTER_EIP:
1122 env->sysenter_eip = msrs[i].data;
1123 break;
1124 case MSR_STAR:
1125 env->star = msrs[i].data;
1126 break;
1127 #ifdef TARGET_X86_64
1128 case MSR_CSTAR:
1129 env->cstar = msrs[i].data;
1130 break;
1131 case MSR_KERNELGSBASE:
1132 env->kernelgsbase = msrs[i].data;
1133 break;
1134 case MSR_FMASK:
1135 env->fmask = msrs[i].data;
1136 break;
1137 case MSR_LSTAR:
1138 env->lstar = msrs[i].data;
1139 break;
1140 #endif
1141 case MSR_IA32_TSC:
1142 env->tsc = msrs[i].data;
1143 break;
1144 case MSR_VM_HSAVE_PA:
1145 env->vm_hsave = msrs[i].data;
1146 break;
1147 case MSR_KVM_SYSTEM_TIME:
1148 env->system_time_msr = msrs[i].data;
1149 break;
1150 case MSR_KVM_WALL_CLOCK:
1151 env->wall_clock_msr = msrs[i].data;
1152 break;
1153 #ifdef KVM_CAP_MCE
1154 case MSR_MCG_STATUS:
1155 env->mcg_status = msrs[i].data;
1156 break;
1157 case MSR_MCG_CTL:
1158 env->mcg_ctl = msrs[i].data;
1159 break;
1160 #endif
1161 default:
1162 #ifdef KVM_CAP_MCE
1163 if (msrs[i].index >= MSR_MC0_CTL &&
1164 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1165 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1167 #endif
1168 break;
1169 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1170 case MSR_KVM_ASYNC_PF_EN:
1171 env->async_pf_en_msr = msrs[i].data;
1172 break;
1173 #endif
1177 return 0;
1180 static int kvm_put_mp_state(CPUState *env)
1182 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1184 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1187 static int kvm_get_mp_state(CPUState *env)
1189 struct kvm_mp_state mp_state;
1190 int ret;
1192 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1193 if (ret < 0) {
1194 return ret;
1196 env->mp_state = mp_state.mp_state;
1197 if (kvm_irqchip_in_kernel()) {
1198 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1200 return 0;
1203 static int kvm_put_vcpu_events(CPUState *env, int level)
1205 #ifdef KVM_CAP_VCPU_EVENTS
1206 struct kvm_vcpu_events events;
1208 if (!kvm_has_vcpu_events()) {
1209 return 0;
1212 events.exception.injected = (env->exception_injected >= 0);
1213 events.exception.nr = env->exception_injected;
1214 events.exception.has_error_code = env->has_error_code;
1215 events.exception.error_code = env->error_code;
1217 events.interrupt.injected = (env->interrupt_injected >= 0);
1218 events.interrupt.nr = env->interrupt_injected;
1219 events.interrupt.soft = env->soft_interrupt;
1221 events.nmi.injected = env->nmi_injected;
1222 events.nmi.pending = env->nmi_pending;
1223 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1225 events.sipi_vector = env->sipi_vector;
1227 events.flags = 0;
1228 if (level >= KVM_PUT_RESET_STATE) {
1229 events.flags |=
1230 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1233 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1234 #else
1235 return 0;
1236 #endif
1239 static int kvm_get_vcpu_events(CPUState *env)
1241 #ifdef KVM_CAP_VCPU_EVENTS
1242 struct kvm_vcpu_events events;
1243 int ret;
1245 if (!kvm_has_vcpu_events()) {
1246 return 0;
1249 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1250 if (ret < 0) {
1251 return ret;
1253 env->exception_injected =
1254 events.exception.injected ? events.exception.nr : -1;
1255 env->has_error_code = events.exception.has_error_code;
1256 env->error_code = events.exception.error_code;
1258 env->interrupt_injected =
1259 events.interrupt.injected ? events.interrupt.nr : -1;
1260 env->soft_interrupt = events.interrupt.soft;
1262 env->nmi_injected = events.nmi.injected;
1263 env->nmi_pending = events.nmi.pending;
1264 if (events.nmi.masked) {
1265 env->hflags2 |= HF2_NMI_MASK;
1266 } else {
1267 env->hflags2 &= ~HF2_NMI_MASK;
1270 env->sipi_vector = events.sipi_vector;
1271 #endif
1273 return 0;
1276 static int kvm_guest_debug_workarounds(CPUState *env)
1278 int ret = 0;
1279 #ifdef KVM_CAP_SET_GUEST_DEBUG
1280 unsigned long reinject_trap = 0;
1282 if (!kvm_has_vcpu_events()) {
1283 if (env->exception_injected == 1) {
1284 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1285 } else if (env->exception_injected == 3) {
1286 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1288 env->exception_injected = -1;
1292 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1293 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1294 * by updating the debug state once again if single-stepping is on.
1295 * Another reason to call kvm_update_guest_debug here is a pending debug
1296 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1297 * reinject them via SET_GUEST_DEBUG.
1299 if (reinject_trap ||
1300 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1301 ret = kvm_update_guest_debug(env, reinject_trap);
1303 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1304 return ret;
1307 static int kvm_put_debugregs(CPUState *env)
1309 #ifdef KVM_CAP_DEBUGREGS
1310 struct kvm_debugregs dbgregs;
1311 int i;
1313 if (!kvm_has_debugregs()) {
1314 return 0;
1317 for (i = 0; i < 4; i++) {
1318 dbgregs.db[i] = env->dr[i];
1320 dbgregs.dr6 = env->dr[6];
1321 dbgregs.dr7 = env->dr[7];
1322 dbgregs.flags = 0;
1324 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1325 #else
1326 return 0;
1327 #endif
1330 static int kvm_get_debugregs(CPUState *env)
1332 #ifdef KVM_CAP_DEBUGREGS
1333 struct kvm_debugregs dbgregs;
1334 int i, ret;
1336 if (!kvm_has_debugregs()) {
1337 return 0;
1340 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1341 if (ret < 0) {
1342 return ret;
1344 for (i = 0; i < 4; i++) {
1345 env->dr[i] = dbgregs.db[i];
1347 env->dr[4] = env->dr[6] = dbgregs.dr6;
1348 env->dr[5] = env->dr[7] = dbgregs.dr7;
1349 #endif
1351 return 0;
1354 int kvm_arch_put_registers(CPUState *env, int level)
1356 int ret;
1358 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1360 ret = kvm_getput_regs(env, 1);
1361 if (ret < 0) {
1362 return ret;
1364 ret = kvm_put_xsave(env);
1365 if (ret < 0) {
1366 return ret;
1368 ret = kvm_put_xcrs(env);
1369 if (ret < 0) {
1370 return ret;
1372 ret = kvm_put_sregs(env);
1373 if (ret < 0) {
1374 return ret;
1376 ret = kvm_put_msrs(env, level);
1377 if (ret < 0) {
1378 return ret;
1380 if (level >= KVM_PUT_RESET_STATE) {
1381 ret = kvm_put_mp_state(env);
1382 if (ret < 0) {
1383 return ret;
1386 ret = kvm_put_vcpu_events(env, level);
1387 if (ret < 0) {
1388 return ret;
1390 ret = kvm_put_debugregs(env);
1391 if (ret < 0) {
1392 return ret;
1394 /* must be last */
1395 ret = kvm_guest_debug_workarounds(env);
1396 if (ret < 0) {
1397 return ret;
1399 return 0;
1402 int kvm_arch_get_registers(CPUState *env)
1404 int ret;
1406 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1408 ret = kvm_getput_regs(env, 0);
1409 if (ret < 0) {
1410 return ret;
1412 ret = kvm_get_xsave(env);
1413 if (ret < 0) {
1414 return ret;
1416 ret = kvm_get_xcrs(env);
1417 if (ret < 0) {
1418 return ret;
1420 ret = kvm_get_sregs(env);
1421 if (ret < 0) {
1422 return ret;
1424 ret = kvm_get_msrs(env);
1425 if (ret < 0) {
1426 return ret;
1428 ret = kvm_get_mp_state(env);
1429 if (ret < 0) {
1430 return ret;
1432 ret = kvm_get_vcpu_events(env);
1433 if (ret < 0) {
1434 return ret;
1436 ret = kvm_get_debugregs(env);
1437 if (ret < 0) {
1438 return ret;
1440 return 0;
1443 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1445 int ret;
1447 /* Inject NMI */
1448 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1449 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1450 DPRINTF("injected NMI\n");
1451 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1452 if (ret < 0) {
1453 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1454 strerror(-ret));
1458 if (!kvm_irqchip_in_kernel()) {
1459 /* Force the VCPU out of its inner loop to process the INIT request */
1460 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1461 env->exit_request = 1;
1464 /* Try to inject an interrupt if the guest can accept it */
1465 if (run->ready_for_interrupt_injection &&
1466 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1467 (env->eflags & IF_MASK)) {
1468 int irq;
1470 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1471 irq = cpu_get_pic_interrupt(env);
1472 if (irq >= 0) {
1473 struct kvm_interrupt intr;
1475 intr.irq = irq;
1476 DPRINTF("injected interrupt %d\n", irq);
1477 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1478 if (ret < 0) {
1479 fprintf(stderr,
1480 "KVM: injection failed, interrupt lost (%s)\n",
1481 strerror(-ret));
1486 /* If we have an interrupt but the guest is not ready to receive an
1487 * interrupt, request an interrupt window exit. This will
1488 * cause a return to userspace as soon as the guest is ready to
1489 * receive interrupts. */
1490 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1491 run->request_interrupt_window = 1;
1492 } else {
1493 run->request_interrupt_window = 0;
1496 DPRINTF("setting tpr\n");
1497 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1501 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1503 if (run->if_flag) {
1504 env->eflags |= IF_MASK;
1505 } else {
1506 env->eflags &= ~IF_MASK;
1508 cpu_set_apic_tpr(env->apic_state, run->cr8);
1509 cpu_set_apic_base(env->apic_state, run->apic_base);
1512 int kvm_arch_process_irqchip_events(CPUState *env)
1514 if (kvm_irqchip_in_kernel()) {
1515 return 0;
1518 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1519 env->halted = 0;
1521 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1522 kvm_cpu_synchronize_state(env);
1523 do_cpu_init(env);
1525 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1526 kvm_cpu_synchronize_state(env);
1527 do_cpu_sipi(env);
1530 return env->halted;
1533 static int kvm_handle_halt(CPUState *env)
1535 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1536 (env->eflags & IF_MASK)) &&
1537 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1538 env->halted = 1;
1539 return 0;
1542 return 1;
1545 static bool host_supports_vmx(void)
1547 uint32_t ecx, unused;
1549 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1550 return ecx & CPUID_EXT_VMX;
1553 #define VMX_INVALID_GUEST_STATE 0x80000021
1555 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1557 uint64_t code;
1558 int ret = 0;
1560 switch (run->exit_reason) {
1561 case KVM_EXIT_HLT:
1562 DPRINTF("handle_hlt\n");
1563 ret = kvm_handle_halt(env);
1564 break;
1565 case KVM_EXIT_SET_TPR:
1566 ret = 1;
1567 break;
1568 case KVM_EXIT_FAIL_ENTRY:
1569 code = run->fail_entry.hardware_entry_failure_reason;
1570 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1571 code);
1572 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1573 fprintf(stderr,
1574 "\nIf you're runnning a guest on an Intel machine without "
1575 "unrestricted mode\n"
1576 "support, the failure can be most likely due to the guest "
1577 "entering an invalid\n"
1578 "state for Intel VT. For example, the guest maybe running "
1579 "in big real mode\n"
1580 "which is not supported on less recent Intel processors."
1581 "\n\n");
1583 ret = -1;
1584 break;
1585 case KVM_EXIT_EXCEPTION:
1586 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1587 run->ex.exception, run->ex.error_code);
1588 ret = -1;
1589 break;
1590 default:
1591 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1592 ret = -1;
1593 break;
1596 return ret;
1599 #ifdef KVM_CAP_SET_GUEST_DEBUG
1600 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1602 static const uint8_t int3 = 0xcc;
1604 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1605 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1606 return -EINVAL;
1608 return 0;
1611 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1613 uint8_t int3;
1615 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1616 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1617 return -EINVAL;
1619 return 0;
1622 static struct {
1623 target_ulong addr;
1624 int len;
1625 int type;
1626 } hw_breakpoint[4];
1628 static int nb_hw_breakpoint;
1630 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1632 int n;
1634 for (n = 0; n < nb_hw_breakpoint; n++) {
1635 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1636 (hw_breakpoint[n].len == len || len == -1)) {
1637 return n;
1640 return -1;
1643 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1644 target_ulong len, int type)
1646 switch (type) {
1647 case GDB_BREAKPOINT_HW:
1648 len = 1;
1649 break;
1650 case GDB_WATCHPOINT_WRITE:
1651 case GDB_WATCHPOINT_ACCESS:
1652 switch (len) {
1653 case 1:
1654 break;
1655 case 2:
1656 case 4:
1657 case 8:
1658 if (addr & (len - 1)) {
1659 return -EINVAL;
1661 break;
1662 default:
1663 return -EINVAL;
1665 break;
1666 default:
1667 return -ENOSYS;
1670 if (nb_hw_breakpoint == 4) {
1671 return -ENOBUFS;
1673 if (find_hw_breakpoint(addr, len, type) >= 0) {
1674 return -EEXIST;
1676 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1677 hw_breakpoint[nb_hw_breakpoint].len = len;
1678 hw_breakpoint[nb_hw_breakpoint].type = type;
1679 nb_hw_breakpoint++;
1681 return 0;
1684 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1685 target_ulong len, int type)
1687 int n;
1689 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1690 if (n < 0) {
1691 return -ENOENT;
1693 nb_hw_breakpoint--;
1694 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1696 return 0;
1699 void kvm_arch_remove_all_hw_breakpoints(void)
1701 nb_hw_breakpoint = 0;
1704 static CPUWatchpoint hw_watchpoint;
1706 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1708 int handle = 0;
1709 int n;
1711 if (arch_info->exception == 1) {
1712 if (arch_info->dr6 & (1 << 14)) {
1713 if (cpu_single_env->singlestep_enabled) {
1714 handle = 1;
1716 } else {
1717 for (n = 0; n < 4; n++) {
1718 if (arch_info->dr6 & (1 << n)) {
1719 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1720 case 0x0:
1721 handle = 1;
1722 break;
1723 case 0x1:
1724 handle = 1;
1725 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1726 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1727 hw_watchpoint.flags = BP_MEM_WRITE;
1728 break;
1729 case 0x3:
1730 handle = 1;
1731 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1732 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1733 hw_watchpoint.flags = BP_MEM_ACCESS;
1734 break;
1739 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1740 handle = 1;
1742 if (!handle) {
1743 cpu_synchronize_state(cpu_single_env);
1744 assert(cpu_single_env->exception_injected == -1);
1746 cpu_single_env->exception_injected = arch_info->exception;
1747 cpu_single_env->has_error_code = 0;
1750 return handle;
1753 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1755 const uint8_t type_code[] = {
1756 [GDB_BREAKPOINT_HW] = 0x0,
1757 [GDB_WATCHPOINT_WRITE] = 0x1,
1758 [GDB_WATCHPOINT_ACCESS] = 0x3
1760 const uint8_t len_code[] = {
1761 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1763 int n;
1765 if (kvm_sw_breakpoints_active(env)) {
1766 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1768 if (nb_hw_breakpoint > 0) {
1769 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1770 dbg->arch.debugreg[7] = 0x0600;
1771 for (n = 0; n < nb_hw_breakpoint; n++) {
1772 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1773 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1774 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1775 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1779 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1781 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1783 return !(env->cr[0] & CR0_PE_MASK) ||
1784 ((env->segs[R_CS].selector & 3) != 3);
1787 static void hardware_memory_error(void)
1789 fprintf(stderr, "Hardware memory error!\n");
1790 exit(1);
1793 #ifdef KVM_CAP_MCE
1794 static void kvm_mce_broadcast_rest(CPUState *env)
1796 struct kvm_x86_mce mce = {
1797 .bank = 1,
1798 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1799 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1800 .addr = 0,
1801 .misc = 0,
1803 CPUState *cenv;
1805 /* Broadcast MCA signal for processor version 06H_EH and above */
1806 if (cpu_x86_support_mca_broadcast(env)) {
1807 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1808 if (cenv == env) {
1809 continue;
1811 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1816 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1818 struct kvm_x86_mce mce = {
1819 .bank = 9,
1820 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1821 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1822 | MCI_STATUS_AR | 0x134,
1823 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1824 .addr = paddr,
1825 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1827 int r;
1829 r = kvm_set_mce(env, &mce);
1830 if (r < 0) {
1831 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1832 abort();
1834 kvm_mce_broadcast_rest(env);
1837 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1839 struct kvm_x86_mce mce = {
1840 .bank = 9,
1841 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1842 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1843 | 0xc0,
1844 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1845 .addr = paddr,
1846 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1848 int r;
1850 r = kvm_set_mce(env, &mce);
1851 if (r < 0) {
1852 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1853 abort();
1855 kvm_mce_broadcast_rest(env);
1858 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1860 struct kvm_x86_mce mce = {
1861 .bank = 9,
1862 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1863 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1864 | 0xc0,
1865 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1866 .addr = paddr,
1867 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1870 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1871 kvm_mce_broadcast_rest(env);
1874 #endif
1876 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1878 #if defined(KVM_CAP_MCE)
1879 void *vaddr;
1880 ram_addr_t ram_addr;
1881 target_phys_addr_t paddr;
1883 if ((env->mcg_cap & MCG_SER_P) && addr
1884 && (code == BUS_MCEERR_AR
1885 || code == BUS_MCEERR_AO)) {
1886 vaddr = (void *)addr;
1887 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1888 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1889 fprintf(stderr, "Hardware memory error for memory used by "
1890 "QEMU itself instead of guest system!\n");
1891 /* Hope we are lucky for AO MCE */
1892 if (code == BUS_MCEERR_AO) {
1893 return 0;
1894 } else {
1895 hardware_memory_error();
1899 if (code == BUS_MCEERR_AR) {
1900 /* Fake an Intel architectural Data Load SRAR UCR */
1901 kvm_mce_inj_srar_dataload(env, paddr);
1902 } else {
1904 * If there is an MCE excpetion being processed, ignore
1905 * this SRAO MCE
1907 if (!kvm_mce_in_progress(env)) {
1908 /* Fake an Intel architectural Memory scrubbing UCR */
1909 kvm_mce_inj_srao_memscrub(env, paddr);
1912 } else
1913 #endif
1915 if (code == BUS_MCEERR_AO) {
1916 return 0;
1917 } else if (code == BUS_MCEERR_AR) {
1918 hardware_memory_error();
1919 } else {
1920 return 1;
1923 return 0;
1926 int kvm_arch_on_sigbus(int code, void *addr)
1928 #if defined(KVM_CAP_MCE)
1929 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1930 void *vaddr;
1931 ram_addr_t ram_addr;
1932 target_phys_addr_t paddr;
1934 /* Hope we are lucky for AO MCE */
1935 vaddr = addr;
1936 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1937 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1938 fprintf(stderr, "Hardware memory error for memory used by "
1939 "QEMU itself instead of guest system!: %p\n", addr);
1940 return 0;
1942 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1943 } else
1944 #endif
1946 if (code == BUS_MCEERR_AO) {
1947 return 0;
1948 } else if (code == BUS_MCEERR_AR) {
1949 hardware_memory_error();
1950 } else {
1951 return 1;
1954 return 0;