hw/ppc: Drop useless CONFIG_KVM ifdefery
[qemu/ar7.git] / hw / block / nand.c
blob0a2736b50eb54c1c111ba33dac52fb0e5c5cbd00
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 #include "qemu/osdep.h"
22 #include "hw/hw.h"
23 #include "hw/block/flash.h"
24 #include "sysemu/block-backend.h"
25 #include "hw/qdev.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 #include "qemu/module.h"
30 # define NAND_CMD_READ0 0x00
31 # define NAND_CMD_READ1 0x01
32 # define NAND_CMD_READ2 0x50
33 # define NAND_CMD_LPREAD2 0x30
34 # define NAND_CMD_NOSERIALREAD2 0x35
35 # define NAND_CMD_RANDOMREAD1 0x05
36 # define NAND_CMD_RANDOMREAD2 0xe0
37 # define NAND_CMD_READID 0x90
38 # define NAND_CMD_RESET 0xff
39 # define NAND_CMD_PAGEPROGRAM1 0x80
40 # define NAND_CMD_PAGEPROGRAM2 0x10
41 # define NAND_CMD_CACHEPROGRAM2 0x15
42 # define NAND_CMD_BLOCKERASE1 0x60
43 # define NAND_CMD_BLOCKERASE2 0xd0
44 # define NAND_CMD_READSTATUS 0x70
45 # define NAND_CMD_COPYBACKPRG1 0x85
47 # define NAND_IOSTATUS_ERROR (1 << 0)
48 # define NAND_IOSTATUS_PLANE0 (1 << 1)
49 # define NAND_IOSTATUS_PLANE1 (1 << 2)
50 # define NAND_IOSTATUS_PLANE2 (1 << 3)
51 # define NAND_IOSTATUS_PLANE3 (1 << 4)
52 # define NAND_IOSTATUS_READY (1 << 6)
53 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
55 # define MAX_PAGE 0x800
56 # define MAX_OOB 0x40
58 typedef struct NANDFlashState NANDFlashState;
59 struct NANDFlashState {
60 DeviceState parent_obj;
62 uint8_t manf_id, chip_id;
63 uint8_t buswidth; /* in BYTES */
64 int size, pages;
65 int page_shift, oob_shift, erase_shift, addr_shift;
66 uint8_t *storage;
67 BlockBackend *blk;
68 int mem_oob;
70 uint8_t cle, ale, ce, wp, gnd;
72 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
73 uint8_t *ioaddr;
74 int iolen;
76 uint32_t cmd;
77 uint64_t addr;
78 int addrlen;
79 int status;
80 int offset;
82 void (*blk_write)(NANDFlashState *s);
83 void (*blk_erase)(NANDFlashState *s);
84 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
86 uint32_t ioaddr_vmstate;
89 #define TYPE_NAND "nand"
91 #define NAND(obj) \
92 OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
94 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
96 /* Like memcpy() but we logical-AND the data into the destination */
97 int i;
98 for (i = 0; i < n; i++) {
99 dest[i] &= src[i];
103 # define NAND_NO_AUTOINCR 0x00000001
104 # define NAND_BUSWIDTH_16 0x00000002
105 # define NAND_NO_PADDING 0x00000004
106 # define NAND_CACHEPRG 0x00000008
107 # define NAND_COPYBACK 0x00000010
108 # define NAND_IS_AND 0x00000020
109 # define NAND_4PAGE_ARRAY 0x00000040
110 # define NAND_NO_READRDY 0x00000100
111 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
113 # define NAND_IO
115 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
116 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
117 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
118 # define OOB_SHIFT (PAGE_SHIFT - 5)
119 # define OOB_SIZE (1 << OOB_SHIFT)
120 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
121 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
123 # define PAGE_SIZE 256
124 # define PAGE_SHIFT 8
125 # define PAGE_SECTORS 1
126 # define ADDR_SHIFT 8
127 # include "nand.c"
128 # define PAGE_SIZE 512
129 # define PAGE_SHIFT 9
130 # define PAGE_SECTORS 1
131 # define ADDR_SHIFT 8
132 # include "nand.c"
133 # define PAGE_SIZE 2048
134 # define PAGE_SHIFT 11
135 # define PAGE_SECTORS 4
136 # define ADDR_SHIFT 16
137 # include "nand.c"
139 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
140 static const struct {
141 int size;
142 int width;
143 int page_shift;
144 int erase_shift;
145 uint32_t options;
146 } nand_flash_ids[0x100] = {
147 [0 ... 0xff] = { 0 },
149 [0x6e] = { 1, 8, 8, 4, 0 },
150 [0x64] = { 2, 8, 8, 4, 0 },
151 [0x6b] = { 4, 8, 9, 4, 0 },
152 [0xe8] = { 1, 8, 8, 4, 0 },
153 [0xec] = { 1, 8, 8, 4, 0 },
154 [0xea] = { 2, 8, 8, 4, 0 },
155 [0xd5] = { 4, 8, 9, 4, 0 },
156 [0xe3] = { 4, 8, 9, 4, 0 },
157 [0xe5] = { 4, 8, 9, 4, 0 },
158 [0xd6] = { 8, 8, 9, 4, 0 },
160 [0x39] = { 8, 8, 9, 4, 0 },
161 [0xe6] = { 8, 8, 9, 4, 0 },
162 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
163 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
165 [0x33] = { 16, 8, 9, 5, 0 },
166 [0x73] = { 16, 8, 9, 5, 0 },
167 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
168 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
170 [0x35] = { 32, 8, 9, 5, 0 },
171 [0x75] = { 32, 8, 9, 5, 0 },
172 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
173 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x36] = { 64, 8, 9, 5, 0 },
176 [0x76] = { 64, 8, 9, 5, 0 },
177 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
178 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
180 [0x78] = { 128, 8, 9, 5, 0 },
181 [0x39] = { 128, 8, 9, 5, 0 },
182 [0x79] = { 128, 8, 9, 5, 0 },
183 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
184 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
185 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
186 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
188 [0x71] = { 256, 8, 9, 5, 0 },
191 * These are the new chips with large page size. The pagesize and the
192 * erasesize is determined from the extended id bytes
194 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
195 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
197 /* 512 Megabit */
198 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
199 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
200 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
201 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
203 /* 1 Gigabit */
204 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
205 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
206 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
207 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
209 /* 2 Gigabit */
210 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
211 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
212 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
213 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
215 /* 4 Gigabit */
216 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
217 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
218 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
219 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
221 /* 8 Gigabit */
222 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
223 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
224 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
225 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
227 /* 16 Gigabit */
228 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
229 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
230 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
231 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
234 static void nand_reset(DeviceState *dev)
236 NANDFlashState *s = NAND(dev);
237 s->cmd = NAND_CMD_READ0;
238 s->addr = 0;
239 s->addrlen = 0;
240 s->iolen = 0;
241 s->offset = 0;
242 s->status &= NAND_IOSTATUS_UNPROTCT;
243 s->status |= NAND_IOSTATUS_READY;
246 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
248 s->ioaddr[s->iolen++] = value;
249 for (value = s->buswidth; --value;) {
250 s->ioaddr[s->iolen++] = 0;
254 static void nand_command(NANDFlashState *s)
256 unsigned int offset;
257 switch (s->cmd) {
258 case NAND_CMD_READ0:
259 s->iolen = 0;
260 break;
262 case NAND_CMD_READID:
263 s->ioaddr = s->io;
264 s->iolen = 0;
265 nand_pushio_byte(s, s->manf_id);
266 nand_pushio_byte(s, s->chip_id);
267 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
268 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
269 /* Page Size, Block Size, Spare Size; bit 6 indicates
270 * 8 vs 16 bit width NAND.
272 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
273 } else {
274 nand_pushio_byte(s, 0xc0); /* Multi-plane */
276 break;
278 case NAND_CMD_RANDOMREAD2:
279 case NAND_CMD_NOSERIALREAD2:
280 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
281 break;
282 offset = s->addr & ((1 << s->addr_shift) - 1);
283 s->blk_load(s, s->addr, offset);
284 if (s->gnd)
285 s->iolen = (1 << s->page_shift) - offset;
286 else
287 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
288 break;
290 case NAND_CMD_RESET:
291 nand_reset(DEVICE(s));
292 break;
294 case NAND_CMD_PAGEPROGRAM1:
295 s->ioaddr = s->io;
296 s->iolen = 0;
297 break;
299 case NAND_CMD_PAGEPROGRAM2:
300 if (s->wp) {
301 s->blk_write(s);
303 break;
305 case NAND_CMD_BLOCKERASE1:
306 break;
308 case NAND_CMD_BLOCKERASE2:
309 s->addr &= (1ull << s->addrlen * 8) - 1;
310 s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
311 16 : 8;
313 if (s->wp) {
314 s->blk_erase(s);
316 break;
318 case NAND_CMD_READSTATUS:
319 s->ioaddr = s->io;
320 s->iolen = 0;
321 nand_pushio_byte(s, s->status);
322 break;
324 default:
325 printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
329 static int nand_pre_save(void *opaque)
331 NANDFlashState *s = NAND(opaque);
333 s->ioaddr_vmstate = s->ioaddr - s->io;
335 return 0;
338 static int nand_post_load(void *opaque, int version_id)
340 NANDFlashState *s = NAND(opaque);
342 if (s->ioaddr_vmstate > sizeof(s->io)) {
343 return -EINVAL;
345 s->ioaddr = s->io + s->ioaddr_vmstate;
347 return 0;
350 static const VMStateDescription vmstate_nand = {
351 .name = "nand",
352 .version_id = 1,
353 .minimum_version_id = 1,
354 .pre_save = nand_pre_save,
355 .post_load = nand_post_load,
356 .fields = (VMStateField[]) {
357 VMSTATE_UINT8(cle, NANDFlashState),
358 VMSTATE_UINT8(ale, NANDFlashState),
359 VMSTATE_UINT8(ce, NANDFlashState),
360 VMSTATE_UINT8(wp, NANDFlashState),
361 VMSTATE_UINT8(gnd, NANDFlashState),
362 VMSTATE_BUFFER(io, NANDFlashState),
363 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
364 VMSTATE_INT32(iolen, NANDFlashState),
365 VMSTATE_UINT32(cmd, NANDFlashState),
366 VMSTATE_UINT64(addr, NANDFlashState),
367 VMSTATE_INT32(addrlen, NANDFlashState),
368 VMSTATE_INT32(status, NANDFlashState),
369 VMSTATE_INT32(offset, NANDFlashState),
370 /* XXX: do we want to save s->storage too? */
371 VMSTATE_END_OF_LIST()
375 static void nand_realize(DeviceState *dev, Error **errp)
377 int pagesize;
378 NANDFlashState *s = NAND(dev);
379 int ret;
382 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
383 s->size = nand_flash_ids[s->chip_id].size << 20;
384 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
385 s->page_shift = 11;
386 s->erase_shift = 6;
387 } else {
388 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
389 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
392 switch (1 << s->page_shift) {
393 case 256:
394 nand_init_256(s);
395 break;
396 case 512:
397 nand_init_512(s);
398 break;
399 case 2048:
400 nand_init_2048(s);
401 break;
402 default:
403 error_setg(errp, "Unsupported NAND block size %#x",
404 1 << s->page_shift);
405 return;
408 pagesize = 1 << s->oob_shift;
409 s->mem_oob = 1;
410 if (s->blk) {
411 if (blk_is_read_only(s->blk)) {
412 error_setg(errp, "Can't use a read-only drive");
413 return;
415 ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
416 BLK_PERM_ALL, errp);
417 if (ret < 0) {
418 return;
420 if (blk_getlength(s->blk) >=
421 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
422 pagesize = 0;
423 s->mem_oob = 0;
425 } else {
426 pagesize += 1 << s->page_shift;
428 if (pagesize) {
429 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
430 0xff, s->pages * pagesize);
432 /* Give s->ioaddr a sane value in case we save state before it is used. */
433 s->ioaddr = s->io;
436 static Property nand_properties[] = {
437 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
438 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
439 DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
440 DEFINE_PROP_END_OF_LIST(),
443 static void nand_class_init(ObjectClass *klass, void *data)
445 DeviceClass *dc = DEVICE_CLASS(klass);
447 dc->realize = nand_realize;
448 dc->reset = nand_reset;
449 dc->vmsd = &vmstate_nand;
450 dc->props = nand_properties;
453 static const TypeInfo nand_info = {
454 .name = TYPE_NAND,
455 .parent = TYPE_DEVICE,
456 .instance_size = sizeof(NANDFlashState),
457 .class_init = nand_class_init,
460 static void nand_register_types(void)
462 type_register_static(&nand_info);
466 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
467 * outputs are R/B and eight I/O pins.
469 * CE, WP and R/B are active low.
471 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
472 uint8_t ce, uint8_t wp, uint8_t gnd)
474 NANDFlashState *s = NAND(dev);
476 s->cle = cle;
477 s->ale = ale;
478 s->ce = ce;
479 s->wp = wp;
480 s->gnd = gnd;
481 if (wp) {
482 s->status |= NAND_IOSTATUS_UNPROTCT;
483 } else {
484 s->status &= ~NAND_IOSTATUS_UNPROTCT;
488 void nand_getpins(DeviceState *dev, int *rb)
490 *rb = 1;
493 void nand_setio(DeviceState *dev, uint32_t value)
495 int i;
496 NANDFlashState *s = NAND(dev);
498 if (!s->ce && s->cle) {
499 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
500 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
501 return;
502 if (value == NAND_CMD_RANDOMREAD1) {
503 s->addr &= ~((1 << s->addr_shift) - 1);
504 s->addrlen = 0;
505 return;
508 if (value == NAND_CMD_READ0) {
509 s->offset = 0;
510 } else if (value == NAND_CMD_READ1) {
511 s->offset = 0x100;
512 value = NAND_CMD_READ0;
513 } else if (value == NAND_CMD_READ2) {
514 s->offset = 1 << s->page_shift;
515 value = NAND_CMD_READ0;
518 s->cmd = value;
520 if (s->cmd == NAND_CMD_READSTATUS ||
521 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
522 s->cmd == NAND_CMD_BLOCKERASE1 ||
523 s->cmd == NAND_CMD_BLOCKERASE2 ||
524 s->cmd == NAND_CMD_NOSERIALREAD2 ||
525 s->cmd == NAND_CMD_RANDOMREAD2 ||
526 s->cmd == NAND_CMD_RESET) {
527 nand_command(s);
530 if (s->cmd != NAND_CMD_RANDOMREAD2) {
531 s->addrlen = 0;
535 if (s->ale) {
536 unsigned int shift = s->addrlen * 8;
537 uint64_t mask = ~(0xffull << shift);
538 uint64_t v = (uint64_t)value << shift;
540 s->addr = (s->addr & mask) | v;
541 s->addrlen ++;
543 switch (s->addrlen) {
544 case 1:
545 if (s->cmd == NAND_CMD_READID) {
546 nand_command(s);
548 break;
549 case 2: /* fix cache address as a byte address */
550 s->addr <<= (s->buswidth - 1);
551 break;
552 case 3:
553 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
554 (s->cmd == NAND_CMD_READ0 ||
555 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
556 nand_command(s);
558 break;
559 case 4:
560 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
561 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
562 (s->cmd == NAND_CMD_READ0 ||
563 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
564 nand_command(s);
566 break;
567 case 5:
568 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
569 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
570 (s->cmd == NAND_CMD_READ0 ||
571 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
572 nand_command(s);
574 break;
575 default:
576 break;
580 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
581 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
582 for (i = s->buswidth; i--; value >>= 8) {
583 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
586 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
587 if ((s->addr & ((1 << s->addr_shift) - 1)) <
588 (1 << s->page_shift) + (1 << s->oob_shift)) {
589 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
590 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
591 (uint8_t) (value & 0xff);
597 uint32_t nand_getio(DeviceState *dev)
599 int offset;
600 uint32_t x = 0;
601 NANDFlashState *s = NAND(dev);
603 /* Allow sequential reading */
604 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
605 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
606 s->offset = 0;
608 s->blk_load(s, s->addr, offset);
609 if (s->gnd)
610 s->iolen = (1 << s->page_shift) - offset;
611 else
612 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
615 if (s->ce || s->iolen <= 0) {
616 return 0;
619 for (offset = s->buswidth; offset--;) {
620 x |= s->ioaddr[offset] << (offset << 3);
622 /* after receiving READ STATUS command all subsequent reads will
623 * return the status register value until another command is issued
625 if (s->cmd != NAND_CMD_READSTATUS) {
626 s->addr += s->buswidth;
627 s->ioaddr += s->buswidth;
628 s->iolen -= s->buswidth;
630 return x;
633 uint32_t nand_getbuswidth(DeviceState *dev)
635 NANDFlashState *s = (NANDFlashState *) dev;
636 return s->buswidth << 3;
639 DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
641 DeviceState *dev;
643 if (nand_flash_ids[chip_id].size == 0) {
644 hw_error("%s: Unsupported NAND chip ID.\n", __func__);
646 dev = DEVICE(object_new(TYPE_NAND));
647 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
648 qdev_prop_set_uint8(dev, "chip_id", chip_id);
649 if (blk) {
650 qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
653 qdev_init_nofail(dev);
654 return dev;
657 type_init(nand_register_types)
659 #else
661 /* Program a single page */
662 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
664 uint64_t off, page, sector, soff;
665 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
666 if (PAGE(s->addr) >= s->pages)
667 return;
669 if (!s->blk) {
670 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
671 s->offset, s->io, s->iolen);
672 } else if (s->mem_oob) {
673 sector = SECTOR(s->addr);
674 off = (s->addr & PAGE_MASK) + s->offset;
675 soff = SECTOR_OFFSET(s->addr);
676 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
677 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
678 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
679 return;
682 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
683 if (off + s->iolen > PAGE_SIZE) {
684 page = PAGE(s->addr);
685 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
686 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
689 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
690 PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
691 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
693 } else {
694 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
695 sector = off >> 9;
696 soff = off & 0x1ff;
697 if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
698 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
699 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
700 return;
703 mem_and(iobuf + soff, s->io, s->iolen);
705 if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
706 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
707 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
710 s->offset = 0;
713 /* Erase a single block */
714 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
716 uint64_t i, page, addr;
717 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
718 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
720 if (PAGE(addr) >= s->pages) {
721 return;
724 if (!s->blk) {
725 memset(s->storage + PAGE_START(addr),
726 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
727 } else if (s->mem_oob) {
728 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
729 0xff, OOB_SIZE << s->erase_shift);
730 i = SECTOR(addr);
731 page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
732 for (; i < page; i ++)
733 if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
734 BDRV_SECTOR_SIZE, 0) < 0) {
735 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
737 } else {
738 addr = PAGE_START(addr);
739 page = addr >> 9;
740 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
741 BDRV_SECTOR_SIZE) < 0) {
742 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
744 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
745 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
746 BDRV_SECTOR_SIZE, 0) < 0) {
747 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
750 memset(iobuf, 0xff, 0x200);
751 i = (addr & ~0x1ff) + 0x200;
752 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
753 i < addr; i += 0x200) {
754 if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
755 printf("%s: write error in sector %" PRIu64 "\n",
756 __func__, i >> 9);
760 page = i >> 9;
761 if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
762 BDRV_SECTOR_SIZE) < 0) {
763 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
765 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
766 if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
767 BDRV_SECTOR_SIZE, 0) < 0) {
768 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
773 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
774 uint64_t addr, int offset)
776 if (PAGE(addr) >= s->pages) {
777 return;
780 if (s->blk) {
781 if (s->mem_oob) {
782 if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
783 PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
784 printf("%s: read error in sector %" PRIu64 "\n",
785 __func__, SECTOR(addr));
787 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
788 s->storage + (PAGE(s->addr) << OOB_SHIFT),
789 OOB_SIZE);
790 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
791 } else {
792 if (blk_pread(s->blk, PAGE_START(addr), s->io,
793 (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
794 printf("%s: read error in sector %" PRIu64 "\n",
795 __func__, PAGE_START(addr) >> 9);
797 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
799 } else {
800 memcpy(s->io, s->storage + PAGE_START(s->addr) +
801 offset, PAGE_SIZE + OOB_SIZE - offset);
802 s->ioaddr = s->io;
806 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
808 s->oob_shift = PAGE_SHIFT - 5;
809 s->pages = s->size >> PAGE_SHIFT;
810 s->addr_shift = ADDR_SHIFT;
812 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
813 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
814 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
817 # undef PAGE_SIZE
818 # undef PAGE_SHIFT
819 # undef PAGE_SECTORS
820 # undef ADDR_SHIFT
821 #endif /* NAND_IO */