hw/ppc: Drop useless CONFIG_KVM ifdefery
[qemu/ar7.git] / hw / block / fdc.c
blob77af9979de1c7651f1421109413bd70b173d1d8f
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/hw.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
42 #include "qemu/log.h"
43 #include "qemu/module.h"
44 #include "trace.h"
46 /********************************************************/
47 /* debug Floppy devices */
49 #define DEBUG_FLOPPY 0
51 #define FLOPPY_DPRINTF(fmt, ...) \
52 do { \
53 if (DEBUG_FLOPPY) { \
54 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
55 } \
56 } while (0)
59 /********************************************************/
60 /* qdev floppy bus */
62 #define TYPE_FLOPPY_BUS "floppy-bus"
63 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
65 typedef struct FDCtrl FDCtrl;
66 typedef struct FDrive FDrive;
67 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
69 typedef struct FloppyBus {
70 BusState bus;
71 FDCtrl *fdc;
72 } FloppyBus;
74 static const TypeInfo floppy_bus_info = {
75 .name = TYPE_FLOPPY_BUS,
76 .parent = TYPE_BUS,
77 .instance_size = sizeof(FloppyBus),
80 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
82 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
83 bus->fdc = fdc;
87 /********************************************************/
88 /* Floppy drive emulation */
90 typedef enum FDriveRate {
91 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
92 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
93 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
94 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
95 } FDriveRate;
97 typedef enum FDriveSize {
98 FDRIVE_SIZE_UNKNOWN,
99 FDRIVE_SIZE_350,
100 FDRIVE_SIZE_525,
101 } FDriveSize;
103 typedef struct FDFormat {
104 FloppyDriveType drive;
105 uint8_t last_sect;
106 uint8_t max_track;
107 uint8_t max_head;
108 FDriveRate rate;
109 } FDFormat;
111 /* In many cases, the total sector size of a format is enough to uniquely
112 * identify it. However, there are some total sector collisions between
113 * formats of different physical size, and these are noted below by
114 * highlighting the total sector size for entries with collisions. */
115 static const FDFormat fd_formats[] = {
116 /* First entry is default format */
117 /* 1.44 MB 3"1/2 floppy disks */
118 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
119 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
120 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
122 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
123 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
124 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
125 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
126 /* 2.88 MB 3"1/2 floppy disks */
127 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
128 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
129 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
130 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
131 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
132 /* 720 kB 3"1/2 floppy disks */
133 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
134 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
135 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
136 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
137 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
138 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
139 /* 1.2 MB 5"1/4 floppy disks */
140 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
141 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
142 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
143 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
144 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
145 /* 720 kB 5"1/4 floppy disks */
146 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
147 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
148 /* 360 kB 5"1/4 floppy disks */
149 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
150 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
151 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
152 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
153 /* 320 kB 5"1/4 floppy disks */
154 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
155 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
156 /* 360 kB must match 5"1/4 better than 3"1/2... */
157 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
158 /* end */
159 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
162 static FDriveSize drive_size(FloppyDriveType drive)
164 switch (drive) {
165 case FLOPPY_DRIVE_TYPE_120:
166 return FDRIVE_SIZE_525;
167 case FLOPPY_DRIVE_TYPE_144:
168 case FLOPPY_DRIVE_TYPE_288:
169 return FDRIVE_SIZE_350;
170 default:
171 return FDRIVE_SIZE_UNKNOWN;
175 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
176 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
178 /* Will always be a fixed parameter for us */
179 #define FD_SECTOR_LEN 512
180 #define FD_SECTOR_SC 2 /* Sector size code */
181 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
183 /* Floppy disk drive emulation */
184 typedef enum FDiskFlags {
185 FDISK_DBL_SIDES = 0x01,
186 } FDiskFlags;
188 struct FDrive {
189 FDCtrl *fdctrl;
190 BlockBackend *blk;
191 BlockConf *conf;
192 /* Drive status */
193 FloppyDriveType drive; /* CMOS drive type */
194 uint8_t perpendicular; /* 2.88 MB access mode */
195 /* Position */
196 uint8_t head;
197 uint8_t track;
198 uint8_t sect;
199 /* Media */
200 FloppyDriveType disk; /* Current disk type */
201 FDiskFlags flags;
202 uint8_t last_sect; /* Nb sector per track */
203 uint8_t max_track; /* Nb of tracks */
204 uint16_t bps; /* Bytes per sector */
205 uint8_t ro; /* Is read-only */
206 uint8_t media_changed; /* Is media changed */
207 uint8_t media_rate; /* Data rate of medium */
209 bool media_validated; /* Have we validated the media? */
213 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
215 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
216 * currently goes through some pains to keep seeks within the bounds
217 * established by last_sect and max_track. Correcting this is difficult,
218 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
220 * For now: allow empty drives to have large bounds so we can seek around,
221 * with the understanding that when a diskette is inserted, the bounds will
222 * properly tighten to match the geometry of that inserted medium.
224 static void fd_empty_seek_hack(FDrive *drv)
226 drv->last_sect = 0xFF;
227 drv->max_track = 0xFF;
230 static void fd_init(FDrive *drv)
232 /* Drive */
233 drv->perpendicular = 0;
234 /* Disk */
235 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
236 drv->last_sect = 0;
237 drv->max_track = 0;
238 drv->ro = true;
239 drv->media_changed = 1;
242 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
244 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
245 uint8_t last_sect, uint8_t num_sides)
247 return (((track * num_sides) + head) * last_sect) + sect - 1;
250 /* Returns current position, in sectors, for given drive */
251 static int fd_sector(FDrive *drv)
253 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
254 NUM_SIDES(drv));
257 /* Returns current position, in bytes, for given drive */
258 static int fd_offset(FDrive *drv)
260 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
261 return fd_sector(drv) << BDRV_SECTOR_BITS;
264 /* Seek to a new position:
265 * returns 0 if already on right track
266 * returns 1 if track changed
267 * returns 2 if track is invalid
268 * returns 3 if sector is invalid
269 * returns 4 if seek is disabled
271 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
272 int enable_seek)
274 uint32_t sector;
275 int ret;
277 if (track > drv->max_track ||
278 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
279 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
280 head, track, sect, 1,
281 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
282 drv->max_track, drv->last_sect);
283 return 2;
285 if (sect > drv->last_sect) {
286 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
287 head, track, sect, 1,
288 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
289 drv->max_track, drv->last_sect);
290 return 3;
292 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
293 ret = 0;
294 if (sector != fd_sector(drv)) {
295 #if 0
296 if (!enable_seek) {
297 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
298 " (max=%d %02x %02x)\n",
299 head, track, sect, 1, drv->max_track,
300 drv->last_sect);
301 return 4;
303 #endif
304 drv->head = head;
305 if (drv->track != track) {
306 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
307 drv->media_changed = 0;
309 ret = 1;
311 drv->track = track;
312 drv->sect = sect;
315 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
316 ret = 2;
319 return ret;
322 /* Set drive back to track 0 */
323 static void fd_recalibrate(FDrive *drv)
325 FLOPPY_DPRINTF("recalibrate\n");
326 fd_seek(drv, 0, 0, 1, 1);
330 * Determine geometry based on inserted diskette.
331 * Will not operate on an empty drive.
333 * @return: 0 on success, -1 if the drive is empty.
335 static int pick_geometry(FDrive *drv)
337 BlockBackend *blk = drv->blk;
338 const FDFormat *parse;
339 uint64_t nb_sectors, size;
340 int i;
341 int match, size_match, type_match;
342 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
344 /* We can only pick a geometry if we have a diskette. */
345 if (!drv->blk || !blk_is_inserted(drv->blk) ||
346 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
348 return -1;
351 /* We need to determine the likely geometry of the inserted medium.
352 * In order of preference, we look for:
353 * (1) The same drive type and number of sectors,
354 * (2) The same diskette size and number of sectors,
355 * (3) The same drive type.
357 * In all cases, matches that occur higher in the drive table will take
358 * precedence over matches that occur later in the table.
360 blk_get_geometry(blk, &nb_sectors);
361 match = size_match = type_match = -1;
362 for (i = 0; ; i++) {
363 parse = &fd_formats[i];
364 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
365 break;
367 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
368 if (nb_sectors == size) {
369 if (magic || parse->drive == drv->drive) {
370 /* (1) perfect match -- nb_sectors and drive type */
371 goto out;
372 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
373 /* (2) size match -- nb_sectors and physical medium size */
374 match = (match == -1) ? i : match;
375 } else {
376 /* This is suspicious -- Did the user misconfigure? */
377 size_match = (size_match == -1) ? i : size_match;
379 } else if (type_match == -1) {
380 if ((parse->drive == drv->drive) ||
381 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
382 /* (3) type match -- nb_sectors mismatch, but matches the type
383 * specified explicitly by the user, or matches the fallback
384 * default type when using the drive autodetect mechanism */
385 type_match = i;
390 /* No exact match found */
391 if (match == -1) {
392 if (size_match != -1) {
393 parse = &fd_formats[size_match];
394 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
395 "but inserted medium appears to be a "
396 "%"PRId64" sector '%s' type\n",
397 FloppyDriveType_str(drv->drive),
398 nb_sectors,
399 FloppyDriveType_str(parse->drive));
401 assert(type_match != -1 && "misconfigured fd_format");
402 match = type_match;
404 parse = &(fd_formats[match]);
406 out:
407 if (parse->max_head == 0) {
408 drv->flags &= ~FDISK_DBL_SIDES;
409 } else {
410 drv->flags |= FDISK_DBL_SIDES;
412 drv->max_track = parse->max_track;
413 drv->last_sect = parse->last_sect;
414 drv->disk = parse->drive;
415 drv->media_rate = parse->rate;
416 return 0;
419 static void pick_drive_type(FDrive *drv)
421 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
422 return;
425 if (pick_geometry(drv) == 0) {
426 drv->drive = drv->disk;
427 } else {
428 drv->drive = get_fallback_drive_type(drv);
431 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
434 /* Revalidate a disk drive after a disk change */
435 static void fd_revalidate(FDrive *drv)
437 int rc;
439 FLOPPY_DPRINTF("revalidate\n");
440 if (drv->blk != NULL) {
441 drv->ro = blk_is_read_only(drv->blk);
442 if (!blk_is_inserted(drv->blk)) {
443 FLOPPY_DPRINTF("No disk in drive\n");
444 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
445 fd_empty_seek_hack(drv);
446 } else if (!drv->media_validated) {
447 rc = pick_geometry(drv);
448 if (rc) {
449 FLOPPY_DPRINTF("Could not validate floppy drive media");
450 } else {
451 drv->media_validated = true;
452 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
453 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
454 drv->max_track, drv->last_sect,
455 drv->ro ? "ro" : "rw");
458 } else {
459 FLOPPY_DPRINTF("No drive connected\n");
460 drv->last_sect = 0;
461 drv->max_track = 0;
462 drv->flags &= ~FDISK_DBL_SIDES;
463 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
464 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
468 static void fd_change_cb(void *opaque, bool load, Error **errp)
470 FDrive *drive = opaque;
472 if (!load) {
473 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
474 } else {
475 if (!blkconf_apply_backend_options(drive->conf,
476 blk_is_read_only(drive->blk), false,
477 errp)) {
478 return;
482 drive->media_changed = 1;
483 drive->media_validated = false;
484 fd_revalidate(drive);
487 static const BlockDevOps fd_block_ops = {
488 .change_media_cb = fd_change_cb,
492 #define TYPE_FLOPPY_DRIVE "floppy"
493 #define FLOPPY_DRIVE(obj) \
494 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
496 typedef struct FloppyDrive {
497 DeviceState qdev;
498 uint32_t unit;
499 BlockConf conf;
500 FloppyDriveType type;
501 } FloppyDrive;
503 static Property floppy_drive_properties[] = {
504 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
505 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
506 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
507 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
508 FloppyDriveType),
509 DEFINE_PROP_END_OF_LIST(),
512 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
514 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
515 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
516 FDrive *drive;
517 int ret;
519 if (dev->unit == -1) {
520 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
521 drive = get_drv(bus->fdc, dev->unit);
522 if (!drive->blk) {
523 break;
528 if (dev->unit >= MAX_FD) {
529 error_setg(errp, "Can't create floppy unit %d, bus supports "
530 "only %d units", dev->unit, MAX_FD);
531 return;
534 drive = get_drv(bus->fdc, dev->unit);
535 if (drive->blk) {
536 error_setg(errp, "Floppy unit %d is in use", dev->unit);
537 return;
540 if (!dev->conf.blk) {
541 /* Anonymous BlockBackend for an empty drive */
542 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
543 ret = blk_attach_dev(dev->conf.blk, qdev);
544 assert(ret == 0);
547 blkconf_blocksizes(&dev->conf);
548 if (dev->conf.logical_block_size != 512 ||
549 dev->conf.physical_block_size != 512)
551 error_setg(errp, "Physical and logical block size must "
552 "be 512 for floppy");
553 return;
556 /* rerror/werror aren't supported by fdc and therefore not even registered
557 * with qdev. So set the defaults manually before they are used in
558 * blkconf_apply_backend_options(). */
559 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
560 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
562 if (!blkconf_apply_backend_options(&dev->conf,
563 blk_is_read_only(dev->conf.blk),
564 false, errp)) {
565 return;
568 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
569 * for empty drives. */
570 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
571 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
572 error_setg(errp, "fdc doesn't support drive option werror");
573 return;
575 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
576 error_setg(errp, "fdc doesn't support drive option rerror");
577 return;
580 drive->conf = &dev->conf;
581 drive->blk = dev->conf.blk;
582 drive->fdctrl = bus->fdc;
584 fd_init(drive);
585 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
587 /* Keep 'type' qdev property and FDrive->drive in sync */
588 drive->drive = dev->type;
589 pick_drive_type(drive);
590 dev->type = drive->drive;
592 fd_revalidate(drive);
595 static void floppy_drive_class_init(ObjectClass *klass, void *data)
597 DeviceClass *k = DEVICE_CLASS(klass);
598 k->realize = floppy_drive_realize;
599 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
600 k->bus_type = TYPE_FLOPPY_BUS;
601 k->props = floppy_drive_properties;
602 k->desc = "virtual floppy drive";
605 static const TypeInfo floppy_drive_info = {
606 .name = TYPE_FLOPPY_DRIVE,
607 .parent = TYPE_DEVICE,
608 .instance_size = sizeof(FloppyDrive),
609 .class_init = floppy_drive_class_init,
612 /********************************************************/
613 /* Intel 82078 floppy disk controller emulation */
615 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
616 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
617 static int fdctrl_transfer_handler (void *opaque, int nchan,
618 int dma_pos, int dma_len);
619 static void fdctrl_raise_irq(FDCtrl *fdctrl);
620 static FDrive *get_cur_drv(FDCtrl *fdctrl);
622 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
623 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
624 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
625 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
626 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
627 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
628 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
629 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
630 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
631 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
632 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
633 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
635 enum {
636 FD_DIR_WRITE = 0,
637 FD_DIR_READ = 1,
638 FD_DIR_SCANE = 2,
639 FD_DIR_SCANL = 3,
640 FD_DIR_SCANH = 4,
641 FD_DIR_VERIFY = 5,
644 enum {
645 FD_STATE_MULTI = 0x01, /* multi track flag */
646 FD_STATE_FORMAT = 0x02, /* format flag */
649 enum {
650 FD_REG_SRA = 0x00,
651 FD_REG_SRB = 0x01,
652 FD_REG_DOR = 0x02,
653 FD_REG_TDR = 0x03,
654 FD_REG_MSR = 0x04,
655 FD_REG_DSR = 0x04,
656 FD_REG_FIFO = 0x05,
657 FD_REG_DIR = 0x07,
658 FD_REG_CCR = 0x07,
661 enum {
662 FD_CMD_READ_TRACK = 0x02,
663 FD_CMD_SPECIFY = 0x03,
664 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
665 FD_CMD_WRITE = 0x05,
666 FD_CMD_READ = 0x06,
667 FD_CMD_RECALIBRATE = 0x07,
668 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
669 FD_CMD_WRITE_DELETED = 0x09,
670 FD_CMD_READ_ID = 0x0a,
671 FD_CMD_READ_DELETED = 0x0c,
672 FD_CMD_FORMAT_TRACK = 0x0d,
673 FD_CMD_DUMPREG = 0x0e,
674 FD_CMD_SEEK = 0x0f,
675 FD_CMD_VERSION = 0x10,
676 FD_CMD_SCAN_EQUAL = 0x11,
677 FD_CMD_PERPENDICULAR_MODE = 0x12,
678 FD_CMD_CONFIGURE = 0x13,
679 FD_CMD_LOCK = 0x14,
680 FD_CMD_VERIFY = 0x16,
681 FD_CMD_POWERDOWN_MODE = 0x17,
682 FD_CMD_PART_ID = 0x18,
683 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
684 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
685 FD_CMD_SAVE = 0x2e,
686 FD_CMD_OPTION = 0x33,
687 FD_CMD_RESTORE = 0x4e,
688 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
689 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
690 FD_CMD_FORMAT_AND_WRITE = 0xcd,
691 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
694 enum {
695 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
696 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
697 FD_CONFIG_POLL = 0x10, /* Poll enabled */
698 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
699 FD_CONFIG_EIS = 0x40, /* No implied seeks */
702 enum {
703 FD_SR0_DS0 = 0x01,
704 FD_SR0_DS1 = 0x02,
705 FD_SR0_HEAD = 0x04,
706 FD_SR0_EQPMT = 0x10,
707 FD_SR0_SEEK = 0x20,
708 FD_SR0_ABNTERM = 0x40,
709 FD_SR0_INVCMD = 0x80,
710 FD_SR0_RDYCHG = 0xc0,
713 enum {
714 FD_SR1_MA = 0x01, /* Missing address mark */
715 FD_SR1_NW = 0x02, /* Not writable */
716 FD_SR1_EC = 0x80, /* End of cylinder */
719 enum {
720 FD_SR2_SNS = 0x04, /* Scan not satisfied */
721 FD_SR2_SEH = 0x08, /* Scan equal hit */
724 enum {
725 FD_SRA_DIR = 0x01,
726 FD_SRA_nWP = 0x02,
727 FD_SRA_nINDX = 0x04,
728 FD_SRA_HDSEL = 0x08,
729 FD_SRA_nTRK0 = 0x10,
730 FD_SRA_STEP = 0x20,
731 FD_SRA_nDRV2 = 0x40,
732 FD_SRA_INTPEND = 0x80,
735 enum {
736 FD_SRB_MTR0 = 0x01,
737 FD_SRB_MTR1 = 0x02,
738 FD_SRB_WGATE = 0x04,
739 FD_SRB_RDATA = 0x08,
740 FD_SRB_WDATA = 0x10,
741 FD_SRB_DR0 = 0x20,
744 enum {
745 #if MAX_FD == 4
746 FD_DOR_SELMASK = 0x03,
747 #else
748 FD_DOR_SELMASK = 0x01,
749 #endif
750 FD_DOR_nRESET = 0x04,
751 FD_DOR_DMAEN = 0x08,
752 FD_DOR_MOTEN0 = 0x10,
753 FD_DOR_MOTEN1 = 0x20,
754 FD_DOR_MOTEN2 = 0x40,
755 FD_DOR_MOTEN3 = 0x80,
758 enum {
759 #if MAX_FD == 4
760 FD_TDR_BOOTSEL = 0x0c,
761 #else
762 FD_TDR_BOOTSEL = 0x04,
763 #endif
766 enum {
767 FD_DSR_DRATEMASK= 0x03,
768 FD_DSR_PWRDOWN = 0x40,
769 FD_DSR_SWRESET = 0x80,
772 enum {
773 FD_MSR_DRV0BUSY = 0x01,
774 FD_MSR_DRV1BUSY = 0x02,
775 FD_MSR_DRV2BUSY = 0x04,
776 FD_MSR_DRV3BUSY = 0x08,
777 FD_MSR_CMDBUSY = 0x10,
778 FD_MSR_NONDMA = 0x20,
779 FD_MSR_DIO = 0x40,
780 FD_MSR_RQM = 0x80,
783 enum {
784 FD_DIR_DSKCHG = 0x80,
788 * See chapter 5.0 "Controller phases" of the spec:
790 * Command phase:
791 * The host writes a command and its parameters into the FIFO. The command
792 * phase is completed when all parameters for the command have been supplied,
793 * and execution phase is entered.
795 * Execution phase:
796 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
797 * contains the payload now, otherwise it's unused. When all bytes of the
798 * required data have been transferred, the state is switched to either result
799 * phase (if the command produces status bytes) or directly back into the
800 * command phase for the next command.
802 * Result phase:
803 * The host reads out the FIFO, which contains one or more result bytes now.
805 enum {
806 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
807 FD_PHASE_RECONSTRUCT = 0,
809 FD_PHASE_COMMAND = 1,
810 FD_PHASE_EXECUTION = 2,
811 FD_PHASE_RESULT = 3,
814 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
815 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
817 struct FDCtrl {
818 MemoryRegion iomem;
819 qemu_irq irq;
820 /* Controller state */
821 QEMUTimer *result_timer;
822 int dma_chann;
823 uint8_t phase;
824 IsaDma *dma;
825 /* Controller's identification */
826 uint8_t version;
827 /* HW */
828 uint8_t sra;
829 uint8_t srb;
830 uint8_t dor;
831 uint8_t dor_vmstate; /* only used as temp during vmstate */
832 uint8_t tdr;
833 uint8_t dsr;
834 uint8_t msr;
835 uint8_t cur_drv;
836 uint8_t status0;
837 uint8_t status1;
838 uint8_t status2;
839 /* Command FIFO */
840 uint8_t *fifo;
841 int32_t fifo_size;
842 uint32_t data_pos;
843 uint32_t data_len;
844 uint8_t data_state;
845 uint8_t data_dir;
846 uint8_t eot; /* last wanted sector */
847 /* States kept only to be returned back */
848 /* precompensation */
849 uint8_t precomp_trk;
850 uint8_t config;
851 uint8_t lock;
852 /* Power down config (also with status regB access mode */
853 uint8_t pwrd;
854 /* Floppy drives */
855 FloppyBus bus;
856 uint8_t num_floppies;
857 FDrive drives[MAX_FD];
858 struct {
859 BlockBackend *blk;
860 FloppyDriveType type;
861 } qdev_for_drives[MAX_FD];
862 int reset_sensei;
863 uint32_t check_media_rate;
864 FloppyDriveType fallback; /* type=auto failure fallback */
865 /* Timers state */
866 uint8_t timer0;
867 uint8_t timer1;
868 PortioList portio_list;
871 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
873 return drv->fdctrl->fallback;
876 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
877 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
879 typedef struct FDCtrlSysBus {
880 /*< private >*/
881 SysBusDevice parent_obj;
882 /*< public >*/
884 struct FDCtrl state;
885 } FDCtrlSysBus;
887 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
889 typedef struct FDCtrlISABus {
890 ISADevice parent_obj;
892 uint32_t iobase;
893 uint32_t irq;
894 uint32_t dma;
895 struct FDCtrl state;
896 int32_t bootindexA;
897 int32_t bootindexB;
898 } FDCtrlISABus;
900 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
902 FDCtrl *fdctrl = opaque;
903 uint32_t retval;
905 reg &= 7;
906 switch (reg) {
907 case FD_REG_SRA:
908 retval = fdctrl_read_statusA(fdctrl);
909 break;
910 case FD_REG_SRB:
911 retval = fdctrl_read_statusB(fdctrl);
912 break;
913 case FD_REG_DOR:
914 retval = fdctrl_read_dor(fdctrl);
915 break;
916 case FD_REG_TDR:
917 retval = fdctrl_read_tape(fdctrl);
918 break;
919 case FD_REG_MSR:
920 retval = fdctrl_read_main_status(fdctrl);
921 break;
922 case FD_REG_FIFO:
923 retval = fdctrl_read_data(fdctrl);
924 break;
925 case FD_REG_DIR:
926 retval = fdctrl_read_dir(fdctrl);
927 break;
928 default:
929 retval = (uint32_t)(-1);
930 break;
932 trace_fdc_ioport_read(reg, retval);
934 return retval;
937 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
939 FDCtrl *fdctrl = opaque;
941 reg &= 7;
942 trace_fdc_ioport_write(reg, value);
943 switch (reg) {
944 case FD_REG_DOR:
945 fdctrl_write_dor(fdctrl, value);
946 break;
947 case FD_REG_TDR:
948 fdctrl_write_tape(fdctrl, value);
949 break;
950 case FD_REG_DSR:
951 fdctrl_write_rate(fdctrl, value);
952 break;
953 case FD_REG_FIFO:
954 fdctrl_write_data(fdctrl, value);
955 break;
956 case FD_REG_CCR:
957 fdctrl_write_ccr(fdctrl, value);
958 break;
959 default:
960 break;
964 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
965 unsigned ize)
967 return fdctrl_read(opaque, (uint32_t)reg);
970 static void fdctrl_write_mem (void *opaque, hwaddr reg,
971 uint64_t value, unsigned size)
973 fdctrl_write(opaque, (uint32_t)reg, value);
976 static const MemoryRegionOps fdctrl_mem_ops = {
977 .read = fdctrl_read_mem,
978 .write = fdctrl_write_mem,
979 .endianness = DEVICE_NATIVE_ENDIAN,
982 static const MemoryRegionOps fdctrl_mem_strict_ops = {
983 .read = fdctrl_read_mem,
984 .write = fdctrl_write_mem,
985 .endianness = DEVICE_NATIVE_ENDIAN,
986 .valid = {
987 .min_access_size = 1,
988 .max_access_size = 1,
992 static bool fdrive_media_changed_needed(void *opaque)
994 FDrive *drive = opaque;
996 return (drive->blk != NULL && drive->media_changed != 1);
999 static const VMStateDescription vmstate_fdrive_media_changed = {
1000 .name = "fdrive/media_changed",
1001 .version_id = 1,
1002 .minimum_version_id = 1,
1003 .needed = fdrive_media_changed_needed,
1004 .fields = (VMStateField[]) {
1005 VMSTATE_UINT8(media_changed, FDrive),
1006 VMSTATE_END_OF_LIST()
1010 static bool fdrive_media_rate_needed(void *opaque)
1012 FDrive *drive = opaque;
1014 return drive->fdctrl->check_media_rate;
1017 static const VMStateDescription vmstate_fdrive_media_rate = {
1018 .name = "fdrive/media_rate",
1019 .version_id = 1,
1020 .minimum_version_id = 1,
1021 .needed = fdrive_media_rate_needed,
1022 .fields = (VMStateField[]) {
1023 VMSTATE_UINT8(media_rate, FDrive),
1024 VMSTATE_END_OF_LIST()
1028 static bool fdrive_perpendicular_needed(void *opaque)
1030 FDrive *drive = opaque;
1032 return drive->perpendicular != 0;
1035 static const VMStateDescription vmstate_fdrive_perpendicular = {
1036 .name = "fdrive/perpendicular",
1037 .version_id = 1,
1038 .minimum_version_id = 1,
1039 .needed = fdrive_perpendicular_needed,
1040 .fields = (VMStateField[]) {
1041 VMSTATE_UINT8(perpendicular, FDrive),
1042 VMSTATE_END_OF_LIST()
1046 static int fdrive_post_load(void *opaque, int version_id)
1048 fd_revalidate(opaque);
1049 return 0;
1052 static const VMStateDescription vmstate_fdrive = {
1053 .name = "fdrive",
1054 .version_id = 1,
1055 .minimum_version_id = 1,
1056 .post_load = fdrive_post_load,
1057 .fields = (VMStateField[]) {
1058 VMSTATE_UINT8(head, FDrive),
1059 VMSTATE_UINT8(track, FDrive),
1060 VMSTATE_UINT8(sect, FDrive),
1061 VMSTATE_END_OF_LIST()
1063 .subsections = (const VMStateDescription*[]) {
1064 &vmstate_fdrive_media_changed,
1065 &vmstate_fdrive_media_rate,
1066 &vmstate_fdrive_perpendicular,
1067 NULL
1072 * Reconstructs the phase from register values according to the logic that was
1073 * implemented in qemu 2.3. This is the default value that is used if the phase
1074 * subsection is not present on migration.
1076 * Don't change this function to reflect newer qemu versions, it is part of
1077 * the migration ABI.
1079 static int reconstruct_phase(FDCtrl *fdctrl)
1081 if (fdctrl->msr & FD_MSR_NONDMA) {
1082 return FD_PHASE_EXECUTION;
1083 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1084 /* qemu 2.3 disabled RQM only during DMA transfers */
1085 return FD_PHASE_EXECUTION;
1086 } else if (fdctrl->msr & FD_MSR_DIO) {
1087 return FD_PHASE_RESULT;
1088 } else {
1089 return FD_PHASE_COMMAND;
1093 static int fdc_pre_save(void *opaque)
1095 FDCtrl *s = opaque;
1097 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1099 return 0;
1102 static int fdc_pre_load(void *opaque)
1104 FDCtrl *s = opaque;
1105 s->phase = FD_PHASE_RECONSTRUCT;
1106 return 0;
1109 static int fdc_post_load(void *opaque, int version_id)
1111 FDCtrl *s = opaque;
1113 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1114 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1116 if (s->phase == FD_PHASE_RECONSTRUCT) {
1117 s->phase = reconstruct_phase(s);
1120 return 0;
1123 static bool fdc_reset_sensei_needed(void *opaque)
1125 FDCtrl *s = opaque;
1127 return s->reset_sensei != 0;
1130 static const VMStateDescription vmstate_fdc_reset_sensei = {
1131 .name = "fdc/reset_sensei",
1132 .version_id = 1,
1133 .minimum_version_id = 1,
1134 .needed = fdc_reset_sensei_needed,
1135 .fields = (VMStateField[]) {
1136 VMSTATE_INT32(reset_sensei, FDCtrl),
1137 VMSTATE_END_OF_LIST()
1141 static bool fdc_result_timer_needed(void *opaque)
1143 FDCtrl *s = opaque;
1145 return timer_pending(s->result_timer);
1148 static const VMStateDescription vmstate_fdc_result_timer = {
1149 .name = "fdc/result_timer",
1150 .version_id = 1,
1151 .minimum_version_id = 1,
1152 .needed = fdc_result_timer_needed,
1153 .fields = (VMStateField[]) {
1154 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1155 VMSTATE_END_OF_LIST()
1159 static bool fdc_phase_needed(void *opaque)
1161 FDCtrl *fdctrl = opaque;
1163 return reconstruct_phase(fdctrl) != fdctrl->phase;
1166 static const VMStateDescription vmstate_fdc_phase = {
1167 .name = "fdc/phase",
1168 .version_id = 1,
1169 .minimum_version_id = 1,
1170 .needed = fdc_phase_needed,
1171 .fields = (VMStateField[]) {
1172 VMSTATE_UINT8(phase, FDCtrl),
1173 VMSTATE_END_OF_LIST()
1177 static const VMStateDescription vmstate_fdc = {
1178 .name = "fdc",
1179 .version_id = 2,
1180 .minimum_version_id = 2,
1181 .pre_save = fdc_pre_save,
1182 .pre_load = fdc_pre_load,
1183 .post_load = fdc_post_load,
1184 .fields = (VMStateField[]) {
1185 /* Controller State */
1186 VMSTATE_UINT8(sra, FDCtrl),
1187 VMSTATE_UINT8(srb, FDCtrl),
1188 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1189 VMSTATE_UINT8(tdr, FDCtrl),
1190 VMSTATE_UINT8(dsr, FDCtrl),
1191 VMSTATE_UINT8(msr, FDCtrl),
1192 VMSTATE_UINT8(status0, FDCtrl),
1193 VMSTATE_UINT8(status1, FDCtrl),
1194 VMSTATE_UINT8(status2, FDCtrl),
1195 /* Command FIFO */
1196 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1197 uint8_t),
1198 VMSTATE_UINT32(data_pos, FDCtrl),
1199 VMSTATE_UINT32(data_len, FDCtrl),
1200 VMSTATE_UINT8(data_state, FDCtrl),
1201 VMSTATE_UINT8(data_dir, FDCtrl),
1202 VMSTATE_UINT8(eot, FDCtrl),
1203 /* States kept only to be returned back */
1204 VMSTATE_UINT8(timer0, FDCtrl),
1205 VMSTATE_UINT8(timer1, FDCtrl),
1206 VMSTATE_UINT8(precomp_trk, FDCtrl),
1207 VMSTATE_UINT8(config, FDCtrl),
1208 VMSTATE_UINT8(lock, FDCtrl),
1209 VMSTATE_UINT8(pwrd, FDCtrl),
1210 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1211 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1212 vmstate_fdrive, FDrive),
1213 VMSTATE_END_OF_LIST()
1215 .subsections = (const VMStateDescription*[]) {
1216 &vmstate_fdc_reset_sensei,
1217 &vmstate_fdc_result_timer,
1218 &vmstate_fdc_phase,
1219 NULL
1223 static void fdctrl_external_reset_sysbus(DeviceState *d)
1225 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1226 FDCtrl *s = &sys->state;
1228 fdctrl_reset(s, 0);
1231 static void fdctrl_external_reset_isa(DeviceState *d)
1233 FDCtrlISABus *isa = ISA_FDC(d);
1234 FDCtrl *s = &isa->state;
1236 fdctrl_reset(s, 0);
1239 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1241 //FDCtrl *s = opaque;
1243 if (level) {
1244 // XXX
1245 FLOPPY_DPRINTF("TC pulsed\n");
1249 /* Change IRQ state */
1250 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1252 fdctrl->status0 = 0;
1253 if (!(fdctrl->sra & FD_SRA_INTPEND))
1254 return;
1255 FLOPPY_DPRINTF("Reset interrupt\n");
1256 qemu_set_irq(fdctrl->irq, 0);
1257 fdctrl->sra &= ~FD_SRA_INTPEND;
1260 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1262 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1263 qemu_set_irq(fdctrl->irq, 1);
1264 fdctrl->sra |= FD_SRA_INTPEND;
1267 fdctrl->reset_sensei = 0;
1268 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1271 /* Reset controller */
1272 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1274 int i;
1276 FLOPPY_DPRINTF("reset controller\n");
1277 fdctrl_reset_irq(fdctrl);
1278 /* Initialise controller */
1279 fdctrl->sra = 0;
1280 fdctrl->srb = 0xc0;
1281 if (!fdctrl->drives[1].blk) {
1282 fdctrl->sra |= FD_SRA_nDRV2;
1284 fdctrl->cur_drv = 0;
1285 fdctrl->dor = FD_DOR_nRESET;
1286 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1287 fdctrl->msr = FD_MSR_RQM;
1288 fdctrl->reset_sensei = 0;
1289 timer_del(fdctrl->result_timer);
1290 /* FIFO state */
1291 fdctrl->data_pos = 0;
1292 fdctrl->data_len = 0;
1293 fdctrl->data_state = 0;
1294 fdctrl->data_dir = FD_DIR_WRITE;
1295 for (i = 0; i < MAX_FD; i++)
1296 fd_recalibrate(&fdctrl->drives[i]);
1297 fdctrl_to_command_phase(fdctrl);
1298 if (do_irq) {
1299 fdctrl->status0 |= FD_SR0_RDYCHG;
1300 fdctrl_raise_irq(fdctrl);
1301 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1305 static inline FDrive *drv0(FDCtrl *fdctrl)
1307 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1310 static inline FDrive *drv1(FDCtrl *fdctrl)
1312 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1313 return &fdctrl->drives[1];
1314 else
1315 return &fdctrl->drives[0];
1318 #if MAX_FD == 4
1319 static inline FDrive *drv2(FDCtrl *fdctrl)
1321 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1322 return &fdctrl->drives[2];
1323 else
1324 return &fdctrl->drives[1];
1327 static inline FDrive *drv3(FDCtrl *fdctrl)
1329 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1330 return &fdctrl->drives[3];
1331 else
1332 return &fdctrl->drives[2];
1334 #endif
1336 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1338 switch (unit) {
1339 case 0: return drv0(fdctrl);
1340 case 1: return drv1(fdctrl);
1341 #if MAX_FD == 4
1342 case 2: return drv2(fdctrl);
1343 case 3: return drv3(fdctrl);
1344 #endif
1345 default: return NULL;
1349 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1351 return get_drv(fdctrl, fdctrl->cur_drv);
1354 /* Status A register : 0x00 (read-only) */
1355 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1357 uint32_t retval = fdctrl->sra;
1359 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1361 return retval;
1364 /* Status B register : 0x01 (read-only) */
1365 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1367 uint32_t retval = fdctrl->srb;
1369 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1371 return retval;
1374 /* Digital output register : 0x02 */
1375 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1377 uint32_t retval = fdctrl->dor;
1379 /* Selected drive */
1380 retval |= fdctrl->cur_drv;
1381 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1383 return retval;
1386 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1388 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1390 /* Motors */
1391 if (value & FD_DOR_MOTEN0)
1392 fdctrl->srb |= FD_SRB_MTR0;
1393 else
1394 fdctrl->srb &= ~FD_SRB_MTR0;
1395 if (value & FD_DOR_MOTEN1)
1396 fdctrl->srb |= FD_SRB_MTR1;
1397 else
1398 fdctrl->srb &= ~FD_SRB_MTR1;
1400 /* Drive */
1401 if (value & 1)
1402 fdctrl->srb |= FD_SRB_DR0;
1403 else
1404 fdctrl->srb &= ~FD_SRB_DR0;
1406 /* Reset */
1407 if (!(value & FD_DOR_nRESET)) {
1408 if (fdctrl->dor & FD_DOR_nRESET) {
1409 FLOPPY_DPRINTF("controller enter RESET state\n");
1411 } else {
1412 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1413 FLOPPY_DPRINTF("controller out of RESET state\n");
1414 fdctrl_reset(fdctrl, 1);
1415 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1418 /* Selected drive */
1419 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1421 fdctrl->dor = value;
1424 /* Tape drive register : 0x03 */
1425 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1427 uint32_t retval = fdctrl->tdr;
1429 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1431 return retval;
1434 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1436 /* Reset mode */
1437 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1438 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1439 return;
1441 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1442 /* Disk boot selection indicator */
1443 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1444 /* Tape indicators: never allow */
1447 /* Main status register : 0x04 (read) */
1448 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1450 uint32_t retval = fdctrl->msr;
1452 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1453 fdctrl->dor |= FD_DOR_nRESET;
1455 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1457 return retval;
1460 /* Data select rate register : 0x04 (write) */
1461 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1463 /* Reset mode */
1464 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1465 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1466 return;
1468 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1469 /* Reset: autoclear */
1470 if (value & FD_DSR_SWRESET) {
1471 fdctrl->dor &= ~FD_DOR_nRESET;
1472 fdctrl_reset(fdctrl, 1);
1473 fdctrl->dor |= FD_DOR_nRESET;
1475 if (value & FD_DSR_PWRDOWN) {
1476 fdctrl_reset(fdctrl, 1);
1478 fdctrl->dsr = value;
1481 /* Configuration control register: 0x07 (write) */
1482 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1484 /* Reset mode */
1485 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1486 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1487 return;
1489 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1491 /* Only the rate selection bits used in AT mode, and we
1492 * store those in the DSR.
1494 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1495 (value & FD_DSR_DRATEMASK);
1498 static int fdctrl_media_changed(FDrive *drv)
1500 return drv->media_changed;
1503 /* Digital input register : 0x07 (read-only) */
1504 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1506 uint32_t retval = 0;
1508 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1509 retval |= FD_DIR_DSKCHG;
1511 if (retval != 0) {
1512 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1515 return retval;
1518 /* Clear the FIFO and update the state for receiving the next command */
1519 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1521 fdctrl->phase = FD_PHASE_COMMAND;
1522 fdctrl->data_dir = FD_DIR_WRITE;
1523 fdctrl->data_pos = 0;
1524 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1525 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1526 fdctrl->msr |= FD_MSR_RQM;
1529 /* Update the state to allow the guest to read out the command status.
1530 * @fifo_len is the number of result bytes to be read out. */
1531 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1533 fdctrl->phase = FD_PHASE_RESULT;
1534 fdctrl->data_dir = FD_DIR_READ;
1535 fdctrl->data_len = fifo_len;
1536 fdctrl->data_pos = 0;
1537 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1540 /* Set an error: unimplemented/unknown command */
1541 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1543 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1544 fdctrl->fifo[0]);
1545 fdctrl->fifo[0] = FD_SR0_INVCMD;
1546 fdctrl_to_result_phase(fdctrl, 1);
1549 /* Seek to next sector
1550 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1551 * otherwise returns 1
1553 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1555 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1556 cur_drv->head, cur_drv->track, cur_drv->sect,
1557 fd_sector(cur_drv));
1558 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1559 error in fact */
1560 uint8_t new_head = cur_drv->head;
1561 uint8_t new_track = cur_drv->track;
1562 uint8_t new_sect = cur_drv->sect;
1564 int ret = 1;
1566 if (new_sect >= cur_drv->last_sect ||
1567 new_sect == fdctrl->eot) {
1568 new_sect = 1;
1569 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1570 if (new_head == 0 &&
1571 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1572 new_head = 1;
1573 } else {
1574 new_head = 0;
1575 new_track++;
1576 fdctrl->status0 |= FD_SR0_SEEK;
1577 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1578 ret = 0;
1581 } else {
1582 fdctrl->status0 |= FD_SR0_SEEK;
1583 new_track++;
1584 ret = 0;
1586 if (ret == 1) {
1587 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1588 new_head, new_track, new_sect, fd_sector(cur_drv));
1590 } else {
1591 new_sect++;
1593 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1594 return ret;
1597 /* Callback for transfer end (stop or abort) */
1598 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1599 uint8_t status1, uint8_t status2)
1601 FDrive *cur_drv;
1602 cur_drv = get_cur_drv(fdctrl);
1604 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1605 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1606 if (cur_drv->head) {
1607 fdctrl->status0 |= FD_SR0_HEAD;
1609 fdctrl->status0 |= status0;
1611 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1612 status0, status1, status2, fdctrl->status0);
1613 fdctrl->fifo[0] = fdctrl->status0;
1614 fdctrl->fifo[1] = status1;
1615 fdctrl->fifo[2] = status2;
1616 fdctrl->fifo[3] = cur_drv->track;
1617 fdctrl->fifo[4] = cur_drv->head;
1618 fdctrl->fifo[5] = cur_drv->sect;
1619 fdctrl->fifo[6] = FD_SECTOR_SC;
1620 fdctrl->data_dir = FD_DIR_READ;
1621 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1622 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1623 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1625 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1626 fdctrl->msr &= ~FD_MSR_NONDMA;
1628 fdctrl_to_result_phase(fdctrl, 7);
1629 fdctrl_raise_irq(fdctrl);
1632 /* Prepare a data transfer (either DMA or FIFO) */
1633 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1635 FDrive *cur_drv;
1636 uint8_t kh, kt, ks;
1638 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1639 cur_drv = get_cur_drv(fdctrl);
1640 kt = fdctrl->fifo[2];
1641 kh = fdctrl->fifo[3];
1642 ks = fdctrl->fifo[4];
1643 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1644 GET_CUR_DRV(fdctrl), kh, kt, ks,
1645 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1646 NUM_SIDES(cur_drv)));
1647 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1648 case 2:
1649 /* sect too big */
1650 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1651 fdctrl->fifo[3] = kt;
1652 fdctrl->fifo[4] = kh;
1653 fdctrl->fifo[5] = ks;
1654 return;
1655 case 3:
1656 /* track too big */
1657 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1658 fdctrl->fifo[3] = kt;
1659 fdctrl->fifo[4] = kh;
1660 fdctrl->fifo[5] = ks;
1661 return;
1662 case 4:
1663 /* No seek enabled */
1664 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1665 fdctrl->fifo[3] = kt;
1666 fdctrl->fifo[4] = kh;
1667 fdctrl->fifo[5] = ks;
1668 return;
1669 case 1:
1670 fdctrl->status0 |= FD_SR0_SEEK;
1671 break;
1672 default:
1673 break;
1676 /* Check the data rate. If the programmed data rate does not match
1677 * the currently inserted medium, the operation has to fail. */
1678 if (fdctrl->check_media_rate &&
1679 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1680 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1681 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1682 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1683 fdctrl->fifo[3] = kt;
1684 fdctrl->fifo[4] = kh;
1685 fdctrl->fifo[5] = ks;
1686 return;
1689 /* Set the FIFO state */
1690 fdctrl->data_dir = direction;
1691 fdctrl->data_pos = 0;
1692 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1693 if (fdctrl->fifo[0] & 0x80)
1694 fdctrl->data_state |= FD_STATE_MULTI;
1695 else
1696 fdctrl->data_state &= ~FD_STATE_MULTI;
1697 if (fdctrl->fifo[5] == 0) {
1698 fdctrl->data_len = fdctrl->fifo[8];
1699 } else {
1700 int tmp;
1701 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1702 tmp = (fdctrl->fifo[6] - ks + 1);
1703 if (fdctrl->fifo[0] & 0x80)
1704 tmp += fdctrl->fifo[6];
1705 fdctrl->data_len *= tmp;
1707 fdctrl->eot = fdctrl->fifo[6];
1708 if (fdctrl->dor & FD_DOR_DMAEN) {
1709 IsaDmaTransferMode dma_mode;
1710 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1711 bool dma_mode_ok;
1712 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1713 dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1714 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1715 dma_mode, direction,
1716 (128 << fdctrl->fifo[5]) *
1717 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1718 switch (direction) {
1719 case FD_DIR_SCANE:
1720 case FD_DIR_SCANL:
1721 case FD_DIR_SCANH:
1722 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1723 break;
1724 case FD_DIR_WRITE:
1725 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1726 break;
1727 case FD_DIR_READ:
1728 dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1729 break;
1730 case FD_DIR_VERIFY:
1731 dma_mode_ok = true;
1732 break;
1733 default:
1734 dma_mode_ok = false;
1735 break;
1737 if (dma_mode_ok) {
1738 /* No access is allowed until DMA transfer has completed */
1739 fdctrl->msr &= ~FD_MSR_RQM;
1740 if (direction != FD_DIR_VERIFY) {
1741 /* Now, we just have to wait for the DMA controller to
1742 * recall us...
1744 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1745 k->schedule(fdctrl->dma);
1746 } else {
1747 /* Start transfer */
1748 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1749 fdctrl->data_len);
1751 return;
1752 } else {
1753 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1754 direction);
1757 FLOPPY_DPRINTF("start non-DMA transfer\n");
1758 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1759 if (direction != FD_DIR_WRITE)
1760 fdctrl->msr |= FD_MSR_DIO;
1761 /* IO based transfer: calculate len */
1762 fdctrl_raise_irq(fdctrl);
1765 /* Prepare a transfer of deleted data */
1766 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1768 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1770 /* We don't handle deleted data,
1771 * so we don't return *ANYTHING*
1773 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1776 /* handlers for DMA transfers */
1777 static int fdctrl_transfer_handler (void *opaque, int nchan,
1778 int dma_pos, int dma_len)
1780 FDCtrl *fdctrl;
1781 FDrive *cur_drv;
1782 int len, start_pos, rel_pos;
1783 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1784 IsaDmaClass *k;
1786 fdctrl = opaque;
1787 if (fdctrl->msr & FD_MSR_RQM) {
1788 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1789 return 0;
1791 k = ISADMA_GET_CLASS(fdctrl->dma);
1792 cur_drv = get_cur_drv(fdctrl);
1793 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1794 fdctrl->data_dir == FD_DIR_SCANH)
1795 status2 = FD_SR2_SNS;
1796 if (dma_len > fdctrl->data_len)
1797 dma_len = fdctrl->data_len;
1798 if (cur_drv->blk == NULL) {
1799 if (fdctrl->data_dir == FD_DIR_WRITE)
1800 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1801 else
1802 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1803 len = 0;
1804 goto transfer_error;
1806 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1807 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1808 len = dma_len - fdctrl->data_pos;
1809 if (len + rel_pos > FD_SECTOR_LEN)
1810 len = FD_SECTOR_LEN - rel_pos;
1811 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1812 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1813 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1814 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1815 fd_sector(cur_drv) * FD_SECTOR_LEN);
1816 if (fdctrl->data_dir != FD_DIR_WRITE ||
1817 len < FD_SECTOR_LEN || rel_pos != 0) {
1818 /* READ & SCAN commands and realign to a sector for WRITE */
1819 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1820 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1821 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1822 fd_sector(cur_drv));
1823 /* Sure, image size is too small... */
1824 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1827 switch (fdctrl->data_dir) {
1828 case FD_DIR_READ:
1829 /* READ commands */
1830 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1831 fdctrl->data_pos, len);
1832 break;
1833 case FD_DIR_WRITE:
1834 /* WRITE commands */
1835 if (cur_drv->ro) {
1836 /* Handle readonly medium early, no need to do DMA, touch the
1837 * LED or attempt any writes. A real floppy doesn't attempt
1838 * to write to readonly media either. */
1839 fdctrl_stop_transfer(fdctrl,
1840 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1841 0x00);
1842 goto transfer_error;
1845 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1846 fdctrl->data_pos, len);
1847 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1848 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1849 FLOPPY_DPRINTF("error writing sector %d\n",
1850 fd_sector(cur_drv));
1851 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1852 goto transfer_error;
1854 break;
1855 case FD_DIR_VERIFY:
1856 /* VERIFY commands */
1857 break;
1858 default:
1859 /* SCAN commands */
1861 uint8_t tmpbuf[FD_SECTOR_LEN];
1862 int ret;
1863 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1864 len);
1865 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1866 if (ret == 0) {
1867 status2 = FD_SR2_SEH;
1868 goto end_transfer;
1870 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1871 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1872 status2 = 0x00;
1873 goto end_transfer;
1876 break;
1878 fdctrl->data_pos += len;
1879 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1880 if (rel_pos == 0) {
1881 /* Seek to next sector */
1882 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1883 break;
1886 end_transfer:
1887 len = fdctrl->data_pos - start_pos;
1888 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1889 fdctrl->data_pos, len, fdctrl->data_len);
1890 if (fdctrl->data_dir == FD_DIR_SCANE ||
1891 fdctrl->data_dir == FD_DIR_SCANL ||
1892 fdctrl->data_dir == FD_DIR_SCANH)
1893 status2 = FD_SR2_SEH;
1894 fdctrl->data_len -= len;
1895 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1896 transfer_error:
1898 return len;
1901 /* Data register : 0x05 */
1902 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1904 FDrive *cur_drv;
1905 uint32_t retval = 0;
1906 uint32_t pos;
1908 cur_drv = get_cur_drv(fdctrl);
1909 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1910 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1911 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1912 return 0;
1915 /* If data_len spans multiple sectors, the current position in the FIFO
1916 * wraps around while fdctrl->data_pos is the real position in the whole
1917 * request. */
1918 pos = fdctrl->data_pos;
1919 pos %= FD_SECTOR_LEN;
1921 switch (fdctrl->phase) {
1922 case FD_PHASE_EXECUTION:
1923 assert(fdctrl->msr & FD_MSR_NONDMA);
1924 if (pos == 0) {
1925 if (fdctrl->data_pos != 0)
1926 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1927 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1928 fd_sector(cur_drv));
1929 return 0;
1931 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1932 BDRV_SECTOR_SIZE)
1933 < 0) {
1934 FLOPPY_DPRINTF("error getting sector %d\n",
1935 fd_sector(cur_drv));
1936 /* Sure, image size is too small... */
1937 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1941 if (++fdctrl->data_pos == fdctrl->data_len) {
1942 fdctrl->msr &= ~FD_MSR_RQM;
1943 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1945 break;
1947 case FD_PHASE_RESULT:
1948 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1949 if (++fdctrl->data_pos == fdctrl->data_len) {
1950 fdctrl->msr &= ~FD_MSR_RQM;
1951 fdctrl_to_command_phase(fdctrl);
1952 fdctrl_reset_irq(fdctrl);
1954 break;
1956 case FD_PHASE_COMMAND:
1957 default:
1958 abort();
1961 retval = fdctrl->fifo[pos];
1962 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1964 return retval;
1967 static void fdctrl_format_sector(FDCtrl *fdctrl)
1969 FDrive *cur_drv;
1970 uint8_t kh, kt, ks;
1972 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1973 cur_drv = get_cur_drv(fdctrl);
1974 kt = fdctrl->fifo[6];
1975 kh = fdctrl->fifo[7];
1976 ks = fdctrl->fifo[8];
1977 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1978 GET_CUR_DRV(fdctrl), kh, kt, ks,
1979 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1980 NUM_SIDES(cur_drv)));
1981 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1982 case 2:
1983 /* sect too big */
1984 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1985 fdctrl->fifo[3] = kt;
1986 fdctrl->fifo[4] = kh;
1987 fdctrl->fifo[5] = ks;
1988 return;
1989 case 3:
1990 /* track too big */
1991 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1992 fdctrl->fifo[3] = kt;
1993 fdctrl->fifo[4] = kh;
1994 fdctrl->fifo[5] = ks;
1995 return;
1996 case 4:
1997 /* No seek enabled */
1998 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1999 fdctrl->fifo[3] = kt;
2000 fdctrl->fifo[4] = kh;
2001 fdctrl->fifo[5] = ks;
2002 return;
2003 case 1:
2004 fdctrl->status0 |= FD_SR0_SEEK;
2005 break;
2006 default:
2007 break;
2009 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2010 if (cur_drv->blk == NULL ||
2011 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2012 BDRV_SECTOR_SIZE, 0) < 0) {
2013 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
2014 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
2015 } else {
2016 if (cur_drv->sect == cur_drv->last_sect) {
2017 fdctrl->data_state &= ~FD_STATE_FORMAT;
2018 /* Last sector done */
2019 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2020 } else {
2021 /* More to do */
2022 fdctrl->data_pos = 0;
2023 fdctrl->data_len = 4;
2028 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2030 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2031 fdctrl->fifo[0] = fdctrl->lock << 4;
2032 fdctrl_to_result_phase(fdctrl, 1);
2035 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2037 FDrive *cur_drv = get_cur_drv(fdctrl);
2039 /* Drives position */
2040 fdctrl->fifo[0] = drv0(fdctrl)->track;
2041 fdctrl->fifo[1] = drv1(fdctrl)->track;
2042 #if MAX_FD == 4
2043 fdctrl->fifo[2] = drv2(fdctrl)->track;
2044 fdctrl->fifo[3] = drv3(fdctrl)->track;
2045 #else
2046 fdctrl->fifo[2] = 0;
2047 fdctrl->fifo[3] = 0;
2048 #endif
2049 /* timers */
2050 fdctrl->fifo[4] = fdctrl->timer0;
2051 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2052 fdctrl->fifo[6] = cur_drv->last_sect;
2053 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2054 (cur_drv->perpendicular << 2);
2055 fdctrl->fifo[8] = fdctrl->config;
2056 fdctrl->fifo[9] = fdctrl->precomp_trk;
2057 fdctrl_to_result_phase(fdctrl, 10);
2060 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2062 /* Controller's version */
2063 fdctrl->fifo[0] = fdctrl->version;
2064 fdctrl_to_result_phase(fdctrl, 1);
2067 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2069 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2070 fdctrl_to_result_phase(fdctrl, 1);
2073 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2075 FDrive *cur_drv = get_cur_drv(fdctrl);
2077 /* Drives position */
2078 drv0(fdctrl)->track = fdctrl->fifo[3];
2079 drv1(fdctrl)->track = fdctrl->fifo[4];
2080 #if MAX_FD == 4
2081 drv2(fdctrl)->track = fdctrl->fifo[5];
2082 drv3(fdctrl)->track = fdctrl->fifo[6];
2083 #endif
2084 /* timers */
2085 fdctrl->timer0 = fdctrl->fifo[7];
2086 fdctrl->timer1 = fdctrl->fifo[8];
2087 cur_drv->last_sect = fdctrl->fifo[9];
2088 fdctrl->lock = fdctrl->fifo[10] >> 7;
2089 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2090 fdctrl->config = fdctrl->fifo[11];
2091 fdctrl->precomp_trk = fdctrl->fifo[12];
2092 fdctrl->pwrd = fdctrl->fifo[13];
2093 fdctrl_to_command_phase(fdctrl);
2096 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2098 FDrive *cur_drv = get_cur_drv(fdctrl);
2100 fdctrl->fifo[0] = 0;
2101 fdctrl->fifo[1] = 0;
2102 /* Drives position */
2103 fdctrl->fifo[2] = drv0(fdctrl)->track;
2104 fdctrl->fifo[3] = drv1(fdctrl)->track;
2105 #if MAX_FD == 4
2106 fdctrl->fifo[4] = drv2(fdctrl)->track;
2107 fdctrl->fifo[5] = drv3(fdctrl)->track;
2108 #else
2109 fdctrl->fifo[4] = 0;
2110 fdctrl->fifo[5] = 0;
2111 #endif
2112 /* timers */
2113 fdctrl->fifo[6] = fdctrl->timer0;
2114 fdctrl->fifo[7] = fdctrl->timer1;
2115 fdctrl->fifo[8] = cur_drv->last_sect;
2116 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2117 (cur_drv->perpendicular << 2);
2118 fdctrl->fifo[10] = fdctrl->config;
2119 fdctrl->fifo[11] = fdctrl->precomp_trk;
2120 fdctrl->fifo[12] = fdctrl->pwrd;
2121 fdctrl->fifo[13] = 0;
2122 fdctrl->fifo[14] = 0;
2123 fdctrl_to_result_phase(fdctrl, 15);
2126 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2128 FDrive *cur_drv = get_cur_drv(fdctrl);
2130 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2131 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2132 (NANOSECONDS_PER_SECOND / 50));
2135 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2137 FDrive *cur_drv;
2139 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2140 cur_drv = get_cur_drv(fdctrl);
2141 fdctrl->data_state |= FD_STATE_FORMAT;
2142 if (fdctrl->fifo[0] & 0x80)
2143 fdctrl->data_state |= FD_STATE_MULTI;
2144 else
2145 fdctrl->data_state &= ~FD_STATE_MULTI;
2146 cur_drv->bps =
2147 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2148 #if 0
2149 cur_drv->last_sect =
2150 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2151 fdctrl->fifo[3] / 2;
2152 #else
2153 cur_drv->last_sect = fdctrl->fifo[3];
2154 #endif
2155 /* TODO: implement format using DMA expected by the Bochs BIOS
2156 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2157 * the sector with the specified fill byte
2159 fdctrl->data_state &= ~FD_STATE_FORMAT;
2160 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2163 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2165 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2166 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2167 if (fdctrl->fifo[2] & 1)
2168 fdctrl->dor &= ~FD_DOR_DMAEN;
2169 else
2170 fdctrl->dor |= FD_DOR_DMAEN;
2171 /* No result back */
2172 fdctrl_to_command_phase(fdctrl);
2175 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2177 FDrive *cur_drv;
2179 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2180 cur_drv = get_cur_drv(fdctrl);
2181 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2182 /* 1 Byte status back */
2183 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2184 (cur_drv->track == 0 ? 0x10 : 0x00) |
2185 (cur_drv->head << 2) |
2186 GET_CUR_DRV(fdctrl) |
2187 0x28;
2188 fdctrl_to_result_phase(fdctrl, 1);
2191 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2193 FDrive *cur_drv;
2195 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2196 cur_drv = get_cur_drv(fdctrl);
2197 fd_recalibrate(cur_drv);
2198 fdctrl_to_command_phase(fdctrl);
2199 /* Raise Interrupt */
2200 fdctrl->status0 |= FD_SR0_SEEK;
2201 fdctrl_raise_irq(fdctrl);
2204 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2206 FDrive *cur_drv = get_cur_drv(fdctrl);
2208 if (fdctrl->reset_sensei > 0) {
2209 fdctrl->fifo[0] =
2210 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2211 fdctrl->reset_sensei--;
2212 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2213 fdctrl->fifo[0] = FD_SR0_INVCMD;
2214 fdctrl_to_result_phase(fdctrl, 1);
2215 return;
2216 } else {
2217 fdctrl->fifo[0] =
2218 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2219 | GET_CUR_DRV(fdctrl);
2222 fdctrl->fifo[1] = cur_drv->track;
2223 fdctrl_to_result_phase(fdctrl, 2);
2224 fdctrl_reset_irq(fdctrl);
2225 fdctrl->status0 = FD_SR0_RDYCHG;
2228 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2230 FDrive *cur_drv;
2232 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2233 cur_drv = get_cur_drv(fdctrl);
2234 fdctrl_to_command_phase(fdctrl);
2235 /* The seek command just sends step pulses to the drive and doesn't care if
2236 * there is a medium inserted of if it's banging the head against the drive.
2238 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2239 /* Raise Interrupt */
2240 fdctrl->status0 |= FD_SR0_SEEK;
2241 fdctrl_raise_irq(fdctrl);
2244 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2246 FDrive *cur_drv = get_cur_drv(fdctrl);
2248 if (fdctrl->fifo[1] & 0x80)
2249 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2250 /* No result back */
2251 fdctrl_to_command_phase(fdctrl);
2254 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2256 fdctrl->config = fdctrl->fifo[2];
2257 fdctrl->precomp_trk = fdctrl->fifo[3];
2258 /* No result back */
2259 fdctrl_to_command_phase(fdctrl);
2262 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2264 fdctrl->pwrd = fdctrl->fifo[1];
2265 fdctrl->fifo[0] = fdctrl->fifo[1];
2266 fdctrl_to_result_phase(fdctrl, 1);
2269 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2271 /* No result back */
2272 fdctrl_to_command_phase(fdctrl);
2275 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2277 FDrive *cur_drv = get_cur_drv(fdctrl);
2278 uint32_t pos;
2280 pos = fdctrl->data_pos - 1;
2281 pos %= FD_SECTOR_LEN;
2282 if (fdctrl->fifo[pos] & 0x80) {
2283 /* Command parameters done */
2284 if (fdctrl->fifo[pos] & 0x40) {
2285 fdctrl->fifo[0] = fdctrl->fifo[1];
2286 fdctrl->fifo[2] = 0;
2287 fdctrl->fifo[3] = 0;
2288 fdctrl_to_result_phase(fdctrl, 4);
2289 } else {
2290 fdctrl_to_command_phase(fdctrl);
2292 } else if (fdctrl->data_len > 7) {
2293 /* ERROR */
2294 fdctrl->fifo[0] = 0x80 |
2295 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2296 fdctrl_to_result_phase(fdctrl, 1);
2300 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2302 FDrive *cur_drv;
2304 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2305 cur_drv = get_cur_drv(fdctrl);
2306 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2307 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2308 cur_drv->sect, 1);
2309 } else {
2310 fd_seek(cur_drv, cur_drv->head,
2311 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2313 fdctrl_to_command_phase(fdctrl);
2314 /* Raise Interrupt */
2315 fdctrl->status0 |= FD_SR0_SEEK;
2316 fdctrl_raise_irq(fdctrl);
2319 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2321 FDrive *cur_drv;
2323 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2324 cur_drv = get_cur_drv(fdctrl);
2325 if (fdctrl->fifo[2] > cur_drv->track) {
2326 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2327 } else {
2328 fd_seek(cur_drv, cur_drv->head,
2329 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2331 fdctrl_to_command_phase(fdctrl);
2332 /* Raise Interrupt */
2333 fdctrl->status0 |= FD_SR0_SEEK;
2334 fdctrl_raise_irq(fdctrl);
2338 * Handlers for the execution phase of each command
2340 typedef struct FDCtrlCommand {
2341 uint8_t value;
2342 uint8_t mask;
2343 const char* name;
2344 int parameters;
2345 void (*handler)(FDCtrl *fdctrl, int direction);
2346 int direction;
2347 } FDCtrlCommand;
2349 static const FDCtrlCommand handlers[] = {
2350 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2351 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2352 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2353 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2354 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2355 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2356 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2357 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2358 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2359 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2360 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2361 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2362 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2363 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2364 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2365 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2366 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2367 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2368 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2369 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2370 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2371 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2372 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2373 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2374 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2375 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2376 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2377 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2378 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2379 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2380 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2381 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2383 /* Associate command to an index in the 'handlers' array */
2384 static uint8_t command_to_handler[256];
2386 static const FDCtrlCommand *get_command(uint8_t cmd)
2388 int idx;
2390 idx = command_to_handler[cmd];
2391 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2392 return &handlers[idx];
2395 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2397 FDrive *cur_drv;
2398 const FDCtrlCommand *cmd;
2399 uint32_t pos;
2401 /* Reset mode */
2402 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2403 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2404 return;
2406 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2407 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2408 return;
2410 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2412 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2414 /* If data_len spans multiple sectors, the current position in the FIFO
2415 * wraps around while fdctrl->data_pos is the real position in the whole
2416 * request. */
2417 pos = fdctrl->data_pos++;
2418 pos %= FD_SECTOR_LEN;
2419 fdctrl->fifo[pos] = value;
2421 if (fdctrl->data_pos == fdctrl->data_len) {
2422 fdctrl->msr &= ~FD_MSR_RQM;
2425 switch (fdctrl->phase) {
2426 case FD_PHASE_EXECUTION:
2427 /* For DMA requests, RQM should be cleared during execution phase, so
2428 * we would have errored out above. */
2429 assert(fdctrl->msr & FD_MSR_NONDMA);
2431 /* FIFO data write */
2432 if (pos == FD_SECTOR_LEN - 1 ||
2433 fdctrl->data_pos == fdctrl->data_len) {
2434 cur_drv = get_cur_drv(fdctrl);
2435 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2436 BDRV_SECTOR_SIZE, 0) < 0) {
2437 FLOPPY_DPRINTF("error writing sector %d\n",
2438 fd_sector(cur_drv));
2439 break;
2441 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2442 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2443 fd_sector(cur_drv));
2444 break;
2448 /* Switch to result phase when done with the transfer */
2449 if (fdctrl->data_pos == fdctrl->data_len) {
2450 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2452 break;
2454 case FD_PHASE_COMMAND:
2455 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2456 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2458 if (pos == 0) {
2459 /* The first byte specifies the command. Now we start reading
2460 * as many parameters as this command requires. */
2461 cmd = get_command(value);
2462 fdctrl->data_len = cmd->parameters + 1;
2463 if (cmd->parameters) {
2464 fdctrl->msr |= FD_MSR_RQM;
2466 fdctrl->msr |= FD_MSR_CMDBUSY;
2469 if (fdctrl->data_pos == fdctrl->data_len) {
2470 /* We have all parameters now, execute the command */
2471 fdctrl->phase = FD_PHASE_EXECUTION;
2473 if (fdctrl->data_state & FD_STATE_FORMAT) {
2474 fdctrl_format_sector(fdctrl);
2475 break;
2478 cmd = get_command(fdctrl->fifo[0]);
2479 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2480 cmd->handler(fdctrl, cmd->direction);
2482 break;
2484 case FD_PHASE_RESULT:
2485 default:
2486 abort();
2490 static void fdctrl_result_timer(void *opaque)
2492 FDCtrl *fdctrl = opaque;
2493 FDrive *cur_drv = get_cur_drv(fdctrl);
2495 /* Pretend we are spinning.
2496 * This is needed for Coherent, which uses READ ID to check for
2497 * sector interleaving.
2499 if (cur_drv->last_sect != 0) {
2500 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2502 /* READ_ID can't automatically succeed! */
2503 if (fdctrl->check_media_rate &&
2504 (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2505 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2506 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2507 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2508 } else {
2509 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2513 /* Init functions */
2514 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2515 Error **errp)
2517 unsigned int i;
2518 FDrive *drive;
2519 DeviceState *dev;
2520 BlockBackend *blk;
2521 Error *local_err = NULL;
2523 for (i = 0; i < MAX_FD; i++) {
2524 drive = &fdctrl->drives[i];
2525 drive->fdctrl = fdctrl;
2527 /* If the drive is not present, we skip creating the qdev device, but
2528 * still have to initialise the controller. */
2529 blk = fdctrl->qdev_for_drives[i].blk;
2530 if (!blk) {
2531 fd_init(drive);
2532 fd_revalidate(drive);
2533 continue;
2536 dev = qdev_create(&fdctrl->bus.bus, "floppy");
2537 qdev_prop_set_uint32(dev, "unit", i);
2538 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2540 blk_ref(blk);
2541 blk_detach_dev(blk, fdc_dev);
2542 fdctrl->qdev_for_drives[i].blk = NULL;
2543 qdev_prop_set_drive(dev, "drive", blk, &local_err);
2544 blk_unref(blk);
2546 if (local_err) {
2547 error_propagate(errp, local_err);
2548 return;
2551 object_property_set_bool(OBJECT(dev), true, "realized", &local_err);
2552 if (local_err) {
2553 error_propagate(errp, local_err);
2554 return;
2559 ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2561 DeviceState *dev;
2562 ISADevice *isadev;
2564 isadev = isa_try_create(bus, TYPE_ISA_FDC);
2565 if (!isadev) {
2566 return NULL;
2568 dev = DEVICE(isadev);
2570 if (fds[0]) {
2571 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2572 &error_fatal);
2574 if (fds[1]) {
2575 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2576 &error_fatal);
2578 qdev_init_nofail(dev);
2580 return isadev;
2583 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2584 hwaddr mmio_base, DriveInfo **fds)
2586 FDCtrl *fdctrl;
2587 DeviceState *dev;
2588 SysBusDevice *sbd;
2589 FDCtrlSysBus *sys;
2591 dev = qdev_create(NULL, "sysbus-fdc");
2592 sys = SYSBUS_FDC(dev);
2593 fdctrl = &sys->state;
2594 fdctrl->dma_chann = dma_chann; /* FIXME */
2595 if (fds[0]) {
2596 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2597 &error_fatal);
2599 if (fds[1]) {
2600 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2601 &error_fatal);
2603 qdev_init_nofail(dev);
2604 sbd = SYS_BUS_DEVICE(dev);
2605 sysbus_connect_irq(sbd, 0, irq);
2606 sysbus_mmio_map(sbd, 0, mmio_base);
2609 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2610 DriveInfo **fds, qemu_irq *fdc_tc)
2612 DeviceState *dev;
2613 FDCtrlSysBus *sys;
2615 dev = qdev_create(NULL, "SUNW,fdtwo");
2616 if (fds[0]) {
2617 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2618 &error_fatal);
2620 qdev_init_nofail(dev);
2621 sys = SYSBUS_FDC(dev);
2622 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2623 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2624 *fdc_tc = qdev_get_gpio_in(dev, 0);
2627 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2628 Error **errp)
2630 int i, j;
2631 static int command_tables_inited = 0;
2633 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2634 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2637 /* Fill 'command_to_handler' lookup table */
2638 if (!command_tables_inited) {
2639 command_tables_inited = 1;
2640 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2641 for (j = 0; j < sizeof(command_to_handler); j++) {
2642 if ((j & handlers[i].mask) == handlers[i].value) {
2643 command_to_handler[j] = i;
2649 FLOPPY_DPRINTF("init controller\n");
2650 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2651 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2652 fdctrl->fifo_size = 512;
2653 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2654 fdctrl_result_timer, fdctrl);
2656 fdctrl->version = 0x90; /* Intel 82078 controller */
2657 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2658 fdctrl->num_floppies = MAX_FD;
2660 if (fdctrl->dma_chann != -1) {
2661 IsaDmaClass *k;
2662 assert(fdctrl->dma);
2663 k = ISADMA_GET_CLASS(fdctrl->dma);
2664 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2665 &fdctrl_transfer_handler, fdctrl);
2668 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2669 fdctrl_connect_drives(fdctrl, dev, errp);
2672 static const MemoryRegionPortio fdc_portio_list[] = {
2673 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2674 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2675 PORTIO_END_OF_LIST(),
2678 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2680 ISADevice *isadev = ISA_DEVICE(dev);
2681 FDCtrlISABus *isa = ISA_FDC(dev);
2682 FDCtrl *fdctrl = &isa->state;
2683 Error *err = NULL;
2685 isa_register_portio_list(isadev, &fdctrl->portio_list,
2686 isa->iobase, fdc_portio_list, fdctrl,
2687 "fdc");
2689 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2690 fdctrl->dma_chann = isa->dma;
2691 if (fdctrl->dma_chann != -1) {
2692 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2693 if (!fdctrl->dma) {
2694 error_setg(errp, "ISA controller does not support DMA");
2695 return;
2699 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2700 fdctrl_realize_common(dev, fdctrl, &err);
2701 if (err != NULL) {
2702 error_propagate(errp, err);
2703 return;
2707 static void sysbus_fdc_initfn(Object *obj)
2709 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2710 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2711 FDCtrl *fdctrl = &sys->state;
2713 fdctrl->dma_chann = -1;
2715 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2716 "fdc", 0x08);
2717 sysbus_init_mmio(sbd, &fdctrl->iomem);
2720 static void sun4m_fdc_initfn(Object *obj)
2722 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2723 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2724 FDCtrl *fdctrl = &sys->state;
2726 fdctrl->dma_chann = -1;
2728 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2729 fdctrl, "fdctrl", 0x08);
2730 sysbus_init_mmio(sbd, &fdctrl->iomem);
2733 static void sysbus_fdc_common_initfn(Object *obj)
2735 DeviceState *dev = DEVICE(obj);
2736 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2737 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2738 FDCtrl *fdctrl = &sys->state;
2740 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2742 sysbus_init_irq(sbd, &fdctrl->irq);
2743 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2746 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2748 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2749 FDCtrl *fdctrl = &sys->state;
2751 fdctrl_realize_common(dev, fdctrl, errp);
2754 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2756 FDCtrlISABus *isa = ISA_FDC(fdc);
2758 return isa->state.drives[i].drive;
2761 void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2762 uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2764 const FDFormat *fdf;
2766 *maxc = *maxh = *maxs = 0;
2767 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2768 if (fdf->drive != type) {
2769 continue;
2771 if (*maxc < fdf->max_track) {
2772 *maxc = fdf->max_track;
2774 if (*maxh < fdf->max_head) {
2775 *maxh = fdf->max_head;
2777 if (*maxs < fdf->last_sect) {
2778 *maxs = fdf->last_sect;
2781 (*maxc)--;
2784 static const VMStateDescription vmstate_isa_fdc ={
2785 .name = "fdc",
2786 .version_id = 2,
2787 .minimum_version_id = 2,
2788 .fields = (VMStateField[]) {
2789 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2790 VMSTATE_END_OF_LIST()
2794 static Property isa_fdc_properties[] = {
2795 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2796 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2797 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2798 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2799 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2800 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2801 0, true),
2802 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2803 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2804 FloppyDriveType),
2805 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2806 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2807 FloppyDriveType),
2808 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2809 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2810 FloppyDriveType),
2811 DEFINE_PROP_END_OF_LIST(),
2814 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2816 DeviceClass *dc = DEVICE_CLASS(klass);
2818 dc->realize = isabus_fdc_realize;
2819 dc->fw_name = "fdc";
2820 dc->reset = fdctrl_external_reset_isa;
2821 dc->vmsd = &vmstate_isa_fdc;
2822 dc->props = isa_fdc_properties;
2823 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2826 static void isabus_fdc_instance_init(Object *obj)
2828 FDCtrlISABus *isa = ISA_FDC(obj);
2830 device_add_bootindex_property(obj, &isa->bootindexA,
2831 "bootindexA", "/floppy@0",
2832 DEVICE(obj), NULL);
2833 device_add_bootindex_property(obj, &isa->bootindexB,
2834 "bootindexB", "/floppy@1",
2835 DEVICE(obj), NULL);
2838 static const TypeInfo isa_fdc_info = {
2839 .name = TYPE_ISA_FDC,
2840 .parent = TYPE_ISA_DEVICE,
2841 .instance_size = sizeof(FDCtrlISABus),
2842 .class_init = isabus_fdc_class_init,
2843 .instance_init = isabus_fdc_instance_init,
2846 static const VMStateDescription vmstate_sysbus_fdc ={
2847 .name = "fdc",
2848 .version_id = 2,
2849 .minimum_version_id = 2,
2850 .fields = (VMStateField[]) {
2851 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2852 VMSTATE_END_OF_LIST()
2856 static Property sysbus_fdc_properties[] = {
2857 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2858 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2859 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2860 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2861 FloppyDriveType),
2862 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2863 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2864 FloppyDriveType),
2865 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2866 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2867 FloppyDriveType),
2868 DEFINE_PROP_END_OF_LIST(),
2871 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2873 DeviceClass *dc = DEVICE_CLASS(klass);
2875 dc->props = sysbus_fdc_properties;
2876 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2879 static const TypeInfo sysbus_fdc_info = {
2880 .name = "sysbus-fdc",
2881 .parent = TYPE_SYSBUS_FDC,
2882 .instance_init = sysbus_fdc_initfn,
2883 .class_init = sysbus_fdc_class_init,
2886 static Property sun4m_fdc_properties[] = {
2887 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2888 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2889 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2890 FloppyDriveType),
2891 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2892 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2893 FloppyDriveType),
2894 DEFINE_PROP_END_OF_LIST(),
2897 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2899 DeviceClass *dc = DEVICE_CLASS(klass);
2901 dc->props = sun4m_fdc_properties;
2902 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2905 static const TypeInfo sun4m_fdc_info = {
2906 .name = "SUNW,fdtwo",
2907 .parent = TYPE_SYSBUS_FDC,
2908 .instance_init = sun4m_fdc_initfn,
2909 .class_init = sun4m_fdc_class_init,
2912 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2914 DeviceClass *dc = DEVICE_CLASS(klass);
2916 dc->realize = sysbus_fdc_common_realize;
2917 dc->reset = fdctrl_external_reset_sysbus;
2918 dc->vmsd = &vmstate_sysbus_fdc;
2921 static const TypeInfo sysbus_fdc_type_info = {
2922 .name = TYPE_SYSBUS_FDC,
2923 .parent = TYPE_SYS_BUS_DEVICE,
2924 .instance_size = sizeof(FDCtrlSysBus),
2925 .instance_init = sysbus_fdc_common_initfn,
2926 .abstract = true,
2927 .class_init = sysbus_fdc_common_class_init,
2930 static void fdc_register_types(void)
2932 type_register_static(&isa_fdc_info);
2933 type_register_static(&sysbus_fdc_type_info);
2934 type_register_static(&sysbus_fdc_info);
2935 type_register_static(&sun4m_fdc_info);
2936 type_register_static(&floppy_bus_info);
2937 type_register_static(&floppy_drive_info);
2940 type_init(fdc_register_types)