net: check packet payload length
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blob92f6a44eeccd0c56b172a635699024ef2e03ada9
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "hw/sysbus.h"
15 #include "qemu/timer.h"
16 #include "hw/arm/arm.h"
17 #include "exec/address-spaces.h"
18 #include "gic_internal.h"
20 typedef struct {
21 GICState gic;
22 struct {
23 uint32_t control;
24 uint32_t reload;
25 int64_t tick;
26 QEMUTimer *timer;
27 } systick;
28 MemoryRegion sysregmem;
29 MemoryRegion gic_iomem_alias;
30 MemoryRegion container;
31 uint32_t num_irq;
32 qemu_irq sysresetreq;
33 } nvic_state;
35 #define TYPE_NVIC "armv7m_nvic"
36 /**
37 * NVICClass:
38 * @parent_reset: the parent class' reset handler.
40 * A model of the v7M NVIC and System Controller
42 typedef struct NVICClass {
43 /*< private >*/
44 ARMGICClass parent_class;
45 /*< public >*/
46 DeviceRealize parent_realize;
47 void (*parent_reset)(DeviceState *dev);
48 } NVICClass;
50 #define NVIC_CLASS(klass) \
51 OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
52 #define NVIC_GET_CLASS(obj) \
53 OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
54 #define NVIC(obj) \
55 OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
57 static const uint8_t nvic_id[] = {
58 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
61 /* qemu timers run at 1GHz. We want something closer to 1MHz. */
62 #define SYSTICK_SCALE 1000ULL
64 #define SYSTICK_ENABLE (1 << 0)
65 #define SYSTICK_TICKINT (1 << 1)
66 #define SYSTICK_CLKSOURCE (1 << 2)
67 #define SYSTICK_COUNTFLAG (1 << 16)
69 int system_clock_scale;
71 /* Conversion factor from qemu timer to SysTick frequencies. */
72 static inline int64_t systick_scale(nvic_state *s)
74 if (s->systick.control & SYSTICK_CLKSOURCE)
75 return system_clock_scale;
76 else
77 return 1000;
80 static void systick_reload(nvic_state *s, int reset)
82 /* The Cortex-M3 Devices Generic User Guide says that "When the
83 * ENABLE bit is set to 1, the counter loads the RELOAD value from the
84 * SYST RVR register and then counts down". So, we need to check the
85 * ENABLE bit before reloading the value.
87 if ((s->systick.control & SYSTICK_ENABLE) == 0) {
88 return;
91 if (reset)
92 s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
93 s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
94 timer_mod(s->systick.timer, s->systick.tick);
97 static void systick_timer_tick(void * opaque)
99 nvic_state *s = (nvic_state *)opaque;
100 s->systick.control |= SYSTICK_COUNTFLAG;
101 if (s->systick.control & SYSTICK_TICKINT) {
102 /* Trigger the interrupt. */
103 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
105 if (s->systick.reload == 0) {
106 s->systick.control &= ~SYSTICK_ENABLE;
107 } else {
108 systick_reload(s, 0);
112 static void systick_reset(nvic_state *s)
114 s->systick.control = 0;
115 s->systick.reload = 0;
116 s->systick.tick = 0;
117 timer_del(s->systick.timer);
120 /* The external routines use the hardware vector numbering, ie. the first
121 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */
122 void armv7m_nvic_set_pending(void *opaque, int irq)
124 nvic_state *s = (nvic_state *)opaque;
125 if (irq >= 16)
126 irq += 16;
127 gic_set_pending_private(&s->gic, 0, irq);
130 /* Make pending IRQ active. */
131 int armv7m_nvic_acknowledge_irq(void *opaque)
133 nvic_state *s = (nvic_state *)opaque;
134 uint32_t irq;
136 irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
137 if (irq == 1023)
138 hw_error("Interrupt but no vector\n");
139 if (irq >= 32)
140 irq -= 16;
141 return irq;
144 void armv7m_nvic_complete_irq(void *opaque, int irq)
146 nvic_state *s = (nvic_state *)opaque;
147 if (irq >= 16)
148 irq += 16;
149 gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
152 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
154 ARMCPU *cpu;
155 uint32_t val;
156 int irq;
158 switch (offset) {
159 case 4: /* Interrupt Control Type. */
160 return (s->num_irq / 32) - 1;
161 case 0x10: /* SysTick Control and Status. */
162 val = s->systick.control;
163 s->systick.control &= ~SYSTICK_COUNTFLAG;
164 return val;
165 case 0x14: /* SysTick Reload Value. */
166 return s->systick.reload;
167 case 0x18: /* SysTick Current Value. */
169 int64_t t;
170 if ((s->systick.control & SYSTICK_ENABLE) == 0)
171 return 0;
172 t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
173 if (t >= s->systick.tick)
174 return 0;
175 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
176 /* The interrupt in triggered when the timer reaches zero.
177 However the counter is not reloaded until the next clock
178 tick. This is a hack to return zero during the first tick. */
179 if (val > s->systick.reload)
180 val = 0;
181 return val;
183 case 0x1c: /* SysTick Calibration Value. */
184 return 10000;
185 case 0xd00: /* CPUID Base. */
186 cpu = ARM_CPU(current_cpu);
187 return cpu->midr;
188 case 0xd04: /* Interrupt Control State. */
189 /* VECTACTIVE */
190 cpu = ARM_CPU(current_cpu);
191 val = cpu->env.v7m.exception;
192 if (val == 1023) {
193 val = 0;
194 } else if (val >= 32) {
195 val -= 16;
197 /* VECTPENDING */
198 if (s->gic.current_pending[0] != 1023)
199 val |= (s->gic.current_pending[0] << 12);
200 /* ISRPENDING and RETTOBASE */
201 for (irq = 32; irq < s->num_irq; irq++) {
202 if (s->gic.irq_state[irq].pending) {
203 val |= (1 << 22);
204 break;
206 if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
207 val |= (1 << 11);
210 /* PENDSTSET */
211 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
212 val |= (1 << 26);
213 /* PENDSVSET */
214 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
215 val |= (1 << 28);
216 /* NMIPENDSET */
217 if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
218 val |= (1 << 31);
219 return val;
220 case 0xd08: /* Vector Table Offset. */
221 cpu = ARM_CPU(current_cpu);
222 return cpu->env.v7m.vecbase;
223 case 0xd0c: /* Application Interrupt/Reset Control. */
224 return 0xfa050000;
225 case 0xd10: /* System Control. */
226 /* TODO: Implement SLEEPONEXIT. */
227 return 0;
228 case 0xd14: /* Configuration Control. */
229 /* TODO: Implement Configuration Control bits. */
230 return 0;
231 case 0xd24: /* System Handler Status. */
232 val = 0;
233 if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
234 if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
235 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
236 if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
237 if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
238 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
239 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
240 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
241 if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
242 if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
243 if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
244 if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
245 if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
246 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
247 return val;
248 case 0xd28: /* Configurable Fault Status. */
249 /* TODO: Implement Fault Status. */
250 qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
251 return 0;
252 case 0xd2c: /* Hard Fault Status. */
253 case 0xd30: /* Debug Fault Status. */
254 case 0xd34: /* Mem Manage Address. */
255 case 0xd38: /* Bus Fault Address. */
256 case 0xd3c: /* Aux Fault Status. */
257 /* TODO: Implement fault status registers. */
258 qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
259 return 0;
260 case 0xd40: /* PFR0. */
261 return 0x00000030;
262 case 0xd44: /* PRF1. */
263 return 0x00000200;
264 case 0xd48: /* DFR0. */
265 return 0x00100000;
266 case 0xd4c: /* AFR0. */
267 return 0x00000000;
268 case 0xd50: /* MMFR0. */
269 return 0x00000030;
270 case 0xd54: /* MMFR1. */
271 return 0x00000000;
272 case 0xd58: /* MMFR2. */
273 return 0x00000000;
274 case 0xd5c: /* MMFR3. */
275 return 0x00000000;
276 case 0xd60: /* ISAR0. */
277 return 0x01141110;
278 case 0xd64: /* ISAR1. */
279 return 0x02111000;
280 case 0xd68: /* ISAR2. */
281 return 0x21112231;
282 case 0xd6c: /* ISAR3. */
283 return 0x01111110;
284 case 0xd70: /* ISAR4. */
285 return 0x01310102;
286 /* TODO: Implement debug registers. */
287 default:
288 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
289 return 0;
293 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
295 ARMCPU *cpu;
296 uint32_t oldval;
297 switch (offset) {
298 case 0x10: /* SysTick Control and Status. */
299 oldval = s->systick.control;
300 s->systick.control &= 0xfffffff8;
301 s->systick.control |= value & 7;
302 if ((oldval ^ value) & SYSTICK_ENABLE) {
303 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
304 if (value & SYSTICK_ENABLE) {
305 if (s->systick.tick) {
306 s->systick.tick += now;
307 timer_mod(s->systick.timer, s->systick.tick);
308 } else {
309 systick_reload(s, 1);
311 } else {
312 timer_del(s->systick.timer);
313 s->systick.tick -= now;
314 if (s->systick.tick < 0)
315 s->systick.tick = 0;
317 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
318 /* This is a hack. Force the timer to be reloaded
319 when the reference clock is changed. */
320 systick_reload(s, 1);
322 break;
323 case 0x14: /* SysTick Reload Value. */
324 s->systick.reload = value;
325 break;
326 case 0x18: /* SysTick Current Value. Writes reload the timer. */
327 systick_reload(s, 1);
328 s->systick.control &= ~SYSTICK_COUNTFLAG;
329 break;
330 case 0xd04: /* Interrupt Control State. */
331 if (value & (1 << 31)) {
332 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
334 if (value & (1 << 28)) {
335 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
336 } else if (value & (1 << 27)) {
337 s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
338 gic_update(&s->gic);
340 if (value & (1 << 26)) {
341 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
342 } else if (value & (1 << 25)) {
343 s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
344 gic_update(&s->gic);
346 break;
347 case 0xd08: /* Vector Table Offset. */
348 cpu = ARM_CPU(current_cpu);
349 cpu->env.v7m.vecbase = value & 0xffffff80;
350 break;
351 case 0xd0c: /* Application Interrupt/Reset Control. */
352 if ((value >> 16) == 0x05fa) {
353 if (value & 4) {
354 qemu_irq_pulse(s->sysresetreq);
356 if (value & 2) {
357 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
359 if (value & 1) {
360 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
362 if (value & 0x700) {
363 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
366 break;
367 case 0xd10: /* System Control. */
368 case 0xd14: /* Configuration Control. */
369 /* TODO: Implement control registers. */
370 qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
371 break;
372 case 0xd24: /* System Handler Control. */
373 /* TODO: Real hardware allows you to set/clear the active bits
374 under some circumstances. We don't implement this. */
375 s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
376 s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
377 s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
378 break;
379 case 0xd28: /* Configurable Fault Status. */
380 case 0xd2c: /* Hard Fault Status. */
381 case 0xd30: /* Debug Fault Status. */
382 case 0xd34: /* Mem Manage Address. */
383 case 0xd38: /* Bus Fault Address. */
384 case 0xd3c: /* Aux Fault Status. */
385 qemu_log_mask(LOG_UNIMP,
386 "NVIC: fault status registers unimplemented\n");
387 break;
388 case 0xf00: /* Software Triggered Interrupt Register */
389 if ((value & 0x1ff) < s->num_irq) {
390 gic_set_pending_private(&s->gic, 0, value & 0x1ff);
392 break;
393 default:
394 qemu_log_mask(LOG_GUEST_ERROR,
395 "NVIC: Bad write offset 0x%x\n", offset);
399 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
400 unsigned size)
402 nvic_state *s = (nvic_state *)opaque;
403 uint32_t offset = addr;
404 int i;
405 uint32_t val;
407 switch (offset) {
408 case 0xd18 ... 0xd23: /* System Handler Priority. */
409 val = 0;
410 for (i = 0; i < size; i++) {
411 val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
413 return val;
414 case 0xfe0 ... 0xfff: /* ID. */
415 if (offset & 3) {
416 return 0;
418 return nvic_id[(offset - 0xfe0) >> 2];
420 if (size == 4) {
421 return nvic_readl(s, offset);
423 qemu_log_mask(LOG_GUEST_ERROR,
424 "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
425 return 0;
428 static void nvic_sysreg_write(void *opaque, hwaddr addr,
429 uint64_t value, unsigned size)
431 nvic_state *s = (nvic_state *)opaque;
432 uint32_t offset = addr;
433 int i;
435 switch (offset) {
436 case 0xd18 ... 0xd23: /* System Handler Priority. */
437 for (i = 0; i < size; i++) {
438 s->gic.priority1[(offset - 0xd14) + i][0] =
439 (value >> (i * 8)) & 0xff;
441 gic_update(&s->gic);
442 return;
444 if (size == 4) {
445 nvic_writel(s, offset, value);
446 return;
448 qemu_log_mask(LOG_GUEST_ERROR,
449 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
452 static const MemoryRegionOps nvic_sysreg_ops = {
453 .read = nvic_sysreg_read,
454 .write = nvic_sysreg_write,
455 .endianness = DEVICE_NATIVE_ENDIAN,
458 static const VMStateDescription vmstate_nvic = {
459 .name = "armv7m_nvic",
460 .version_id = 1,
461 .minimum_version_id = 1,
462 .fields = (VMStateField[]) {
463 VMSTATE_UINT32(systick.control, nvic_state),
464 VMSTATE_UINT32(systick.reload, nvic_state),
465 VMSTATE_INT64(systick.tick, nvic_state),
466 VMSTATE_TIMER_PTR(systick.timer, nvic_state),
467 VMSTATE_END_OF_LIST()
471 static void armv7m_nvic_reset(DeviceState *dev)
473 nvic_state *s = NVIC(dev);
474 NVICClass *nc = NVIC_GET_CLASS(s);
475 nc->parent_reset(dev);
476 /* Common GIC reset resets to disabled; the NVIC doesn't have
477 * per-CPU interfaces so mark our non-existent CPU interface
478 * as enabled by default, and with a priority mask which allows
479 * all interrupts through.
481 s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
482 s->gic.priority_mask[0] = 0x100;
483 /* The NVIC as a whole is always enabled. */
484 s->gic.ctlr = 1;
485 systick_reset(s);
488 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
490 nvic_state *s = NVIC(dev);
491 NVICClass *nc = NVIC_GET_CLASS(s);
492 Error *local_err = NULL;
494 /* The NVIC always has only one CPU */
495 s->gic.num_cpu = 1;
496 /* Tell the common code we're an NVIC */
497 s->gic.revision = 0xffffffff;
498 s->num_irq = s->gic.num_irq;
499 nc->parent_realize(dev, &local_err);
500 if (local_err) {
501 error_propagate(errp, local_err);
502 return;
504 gic_init_irqs_and_distributor(&s->gic);
505 /* The NVIC and system controller register area looks like this:
506 * 0..0xff : system control registers, including systick
507 * 0x100..0xcff : GIC-like registers
508 * 0xd00..0xfff : system control registers
509 * We use overlaying to put the GIC like registers
510 * over the top of the system control register region.
512 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
513 /* The system register region goes at the bottom of the priority
514 * stack as it covers the whole page.
516 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
517 "nvic_sysregs", 0x1000);
518 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
519 /* Alias the GIC region so we can get only the section of it
520 * we need, and layer it on top of the system register region.
522 memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
523 "nvic-gic", &s->gic.iomem,
524 0x100, 0xc00);
525 memory_region_add_subregion_overlap(&s->container, 0x100,
526 &s->gic_iomem_alias, 1);
527 /* Map the whole thing into system memory at the location required
528 * by the v7M architecture.
530 memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
531 s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
534 static void armv7m_nvic_instance_init(Object *obj)
536 /* We have a different default value for the num-irq property
537 * than our superclass. This function runs after qdev init
538 * has set the defaults from the Property array and before
539 * any user-specified property setting, so just modify the
540 * value in the GICState struct.
542 GICState *s = ARM_GIC_COMMON(obj);
543 DeviceState *dev = DEVICE(obj);
544 nvic_state *nvic = NVIC(obj);
545 /* The ARM v7m may have anything from 0 to 496 external interrupt
546 * IRQ lines. We default to 64. Other boards may differ and should
547 * set the num-irq property appropriately.
549 s->num_irq = 64;
550 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
553 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
555 NVICClass *nc = NVIC_CLASS(klass);
556 DeviceClass *dc = DEVICE_CLASS(klass);
558 nc->parent_reset = dc->reset;
559 nc->parent_realize = dc->realize;
560 dc->vmsd = &vmstate_nvic;
561 dc->reset = armv7m_nvic_reset;
562 dc->realize = armv7m_nvic_realize;
565 static const TypeInfo armv7m_nvic_info = {
566 .name = TYPE_NVIC,
567 .parent = TYPE_ARM_GIC_COMMON,
568 .instance_init = armv7m_nvic_instance_init,
569 .instance_size = sizeof(nvic_state),
570 .class_init = armv7m_nvic_class_init,
571 .class_size = sizeof(NVICClass),
574 static void armv7m_nvic_register_types(void)
576 type_register_static(&armv7m_nvic_info);
579 type_init(armv7m_nvic_register_types)