target/arm: Convert B, BL, BLX (immediate)
[qemu/ar7.git] / util / qemu-coroutine-lock.c
blob5da5234155a66e648f7615e1eeeb9083ff568237
1 /*
2 * coroutine queues and locks
4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * The lock-free mutex implementation is based on OSv
25 * (core/lfmutex.cc, include/lockfree/mutex.hh).
26 * Copyright (C) 2013 Cloudius Systems, Ltd.
29 #include "qemu/osdep.h"
30 #include "qemu/coroutine.h"
31 #include "qemu/coroutine_int.h"
32 #include "qemu/processor.h"
33 #include "qemu/queue.h"
34 #include "block/aio.h"
35 #include "trace.h"
37 void qemu_co_queue_init(CoQueue *queue)
39 QSIMPLEQ_INIT(&queue->entries);
42 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock)
44 Coroutine *self = qemu_coroutine_self();
45 QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next);
47 if (lock) {
48 qemu_lockable_unlock(lock);
51 /* There is no race condition here. Other threads will call
52 * aio_co_schedule on our AioContext, which can reenter this
53 * coroutine but only after this yield and after the main loop
54 * has gone through the next iteration.
56 qemu_coroutine_yield();
57 assert(qemu_in_coroutine());
59 /* TODO: OSv implements wait morphing here, where the wakeup
60 * primitive automatically places the woken coroutine on the
61 * mutex's queue. This avoids the thundering herd effect.
62 * This could be implemented for CoMutexes, but not really for
63 * other cases of QemuLockable.
65 if (lock) {
66 qemu_lockable_lock(lock);
70 static bool qemu_co_queue_do_restart(CoQueue *queue, bool single)
72 Coroutine *next;
74 if (QSIMPLEQ_EMPTY(&queue->entries)) {
75 return false;
78 while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) {
79 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
80 aio_co_wake(next);
81 if (single) {
82 break;
85 return true;
88 bool coroutine_fn qemu_co_queue_next(CoQueue *queue)
90 assert(qemu_in_coroutine());
91 return qemu_co_queue_do_restart(queue, true);
94 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue)
96 assert(qemu_in_coroutine());
97 qemu_co_queue_do_restart(queue, false);
100 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock)
102 Coroutine *next;
104 next = QSIMPLEQ_FIRST(&queue->entries);
105 if (!next) {
106 return false;
109 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
110 if (lock) {
111 qemu_lockable_unlock(lock);
113 aio_co_wake(next);
114 if (lock) {
115 qemu_lockable_lock(lock);
117 return true;
120 bool qemu_co_queue_empty(CoQueue *queue)
122 return QSIMPLEQ_FIRST(&queue->entries) == NULL;
125 /* The wait records are handled with a multiple-producer, single-consumer
126 * lock-free queue. There cannot be two concurrent pop_waiter() calls
127 * because pop_waiter() can only be called while mutex->handoff is zero.
128 * This can happen in three cases:
129 * - in qemu_co_mutex_unlock, before the hand-off protocol has started.
130 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
131 * not take part in the handoff.
132 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
133 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
134 * the cmpxchg (it will see either 0 or the next sequence value) and
135 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has
136 * woken up someone.
137 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
138 * In this case another iteration starts with mutex->handoff == 0;
139 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
140 * qemu_co_mutex_unlock will go back to case (1).
142 * The following functions manage this queue.
144 typedef struct CoWaitRecord {
145 Coroutine *co;
146 QSLIST_ENTRY(CoWaitRecord) next;
147 } CoWaitRecord;
149 static void push_waiter(CoMutex *mutex, CoWaitRecord *w)
151 w->co = qemu_coroutine_self();
152 QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next);
155 static void move_waiters(CoMutex *mutex)
157 QSLIST_HEAD(, CoWaitRecord) reversed;
158 QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push);
159 while (!QSLIST_EMPTY(&reversed)) {
160 CoWaitRecord *w = QSLIST_FIRST(&reversed);
161 QSLIST_REMOVE_HEAD(&reversed, next);
162 QSLIST_INSERT_HEAD(&mutex->to_pop, w, next);
166 static CoWaitRecord *pop_waiter(CoMutex *mutex)
168 CoWaitRecord *w;
170 if (QSLIST_EMPTY(&mutex->to_pop)) {
171 move_waiters(mutex);
172 if (QSLIST_EMPTY(&mutex->to_pop)) {
173 return NULL;
176 w = QSLIST_FIRST(&mutex->to_pop);
177 QSLIST_REMOVE_HEAD(&mutex->to_pop, next);
178 return w;
181 static bool has_waiters(CoMutex *mutex)
183 return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push);
186 void qemu_co_mutex_init(CoMutex *mutex)
188 memset(mutex, 0, sizeof(*mutex));
191 static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co)
193 /* Read co before co->ctx; pairs with smp_wmb() in
194 * qemu_coroutine_enter().
196 smp_read_barrier_depends();
197 mutex->ctx = co->ctx;
198 aio_co_wake(co);
201 static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx,
202 CoMutex *mutex)
204 Coroutine *self = qemu_coroutine_self();
205 CoWaitRecord w;
206 unsigned old_handoff;
208 trace_qemu_co_mutex_lock_entry(mutex, self);
209 w.co = self;
210 push_waiter(mutex, &w);
212 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from
213 * a concurrent unlock() the responsibility of waking somebody up.
215 old_handoff = atomic_mb_read(&mutex->handoff);
216 if (old_handoff &&
217 has_waiters(mutex) &&
218 atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) {
219 /* There can be no concurrent pops, because there can be only
220 * one active handoff at a time.
222 CoWaitRecord *to_wake = pop_waiter(mutex);
223 Coroutine *co = to_wake->co;
224 if (co == self) {
225 /* We got the lock ourselves! */
226 assert(to_wake == &w);
227 mutex->ctx = ctx;
228 return;
231 qemu_co_mutex_wake(mutex, co);
234 qemu_coroutine_yield();
235 trace_qemu_co_mutex_lock_return(mutex, self);
238 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex)
240 AioContext *ctx = qemu_get_current_aio_context();
241 Coroutine *self = qemu_coroutine_self();
242 int waiters, i;
244 /* Running a very small critical section on pthread_mutex_t and CoMutex
245 * shows that pthread_mutex_t is much faster because it doesn't actually
246 * go to sleep. What happens is that the critical section is shorter
247 * than the latency of entering the kernel and thus FUTEX_WAIT always
248 * fails. With CoMutex there is no such latency but you still want to
249 * avoid wait and wakeup. So introduce it artificially.
251 i = 0;
252 retry_fast_path:
253 waiters = atomic_cmpxchg(&mutex->locked, 0, 1);
254 if (waiters != 0) {
255 while (waiters == 1 && ++i < 1000) {
256 if (atomic_read(&mutex->ctx) == ctx) {
257 break;
259 if (atomic_read(&mutex->locked) == 0) {
260 goto retry_fast_path;
262 cpu_relax();
264 waiters = atomic_fetch_inc(&mutex->locked);
267 if (waiters == 0) {
268 /* Uncontended. */
269 trace_qemu_co_mutex_lock_uncontended(mutex, self);
270 mutex->ctx = ctx;
271 } else {
272 qemu_co_mutex_lock_slowpath(ctx, mutex);
274 mutex->holder = self;
275 self->locks_held++;
278 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex)
280 Coroutine *self = qemu_coroutine_self();
282 trace_qemu_co_mutex_unlock_entry(mutex, self);
284 assert(mutex->locked);
285 assert(mutex->holder == self);
286 assert(qemu_in_coroutine());
288 mutex->ctx = NULL;
289 mutex->holder = NULL;
290 self->locks_held--;
291 if (atomic_fetch_dec(&mutex->locked) == 1) {
292 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
293 return;
296 for (;;) {
297 CoWaitRecord *to_wake = pop_waiter(mutex);
298 unsigned our_handoff;
300 if (to_wake) {
301 qemu_co_mutex_wake(mutex, to_wake->co);
302 break;
305 /* Some concurrent lock() is in progress (we know this because
306 * mutex->locked was >1) but it hasn't yet put itself on the wait
307 * queue. Pick a sequence number for the handoff protocol (not 0).
309 if (++mutex->sequence == 0) {
310 mutex->sequence = 1;
313 our_handoff = mutex->sequence;
314 atomic_mb_set(&mutex->handoff, our_handoff);
315 if (!has_waiters(mutex)) {
316 /* The concurrent lock has not added itself yet, so it
317 * will be able to pick our handoff.
319 break;
322 /* Try to do the handoff protocol ourselves; if somebody else has
323 * already taken it, however, we're done and they're responsible.
325 if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) {
326 break;
330 trace_qemu_co_mutex_unlock_return(mutex, self);
333 void qemu_co_rwlock_init(CoRwlock *lock)
335 memset(lock, 0, sizeof(*lock));
336 qemu_co_queue_init(&lock->queue);
337 qemu_co_mutex_init(&lock->mutex);
340 void qemu_co_rwlock_rdlock(CoRwlock *lock)
342 Coroutine *self = qemu_coroutine_self();
344 qemu_co_mutex_lock(&lock->mutex);
345 /* For fairness, wait if a writer is in line. */
346 while (lock->pending_writer) {
347 qemu_co_queue_wait(&lock->queue, &lock->mutex);
349 lock->reader++;
350 qemu_co_mutex_unlock(&lock->mutex);
352 /* The rest of the read-side critical section is run without the mutex. */
353 self->locks_held++;
356 void qemu_co_rwlock_unlock(CoRwlock *lock)
358 Coroutine *self = qemu_coroutine_self();
360 assert(qemu_in_coroutine());
361 if (!lock->reader) {
362 /* The critical section started in qemu_co_rwlock_wrlock. */
363 qemu_co_queue_restart_all(&lock->queue);
364 } else {
365 self->locks_held--;
367 qemu_co_mutex_lock(&lock->mutex);
368 lock->reader--;
369 assert(lock->reader >= 0);
370 /* Wakeup only one waiting writer */
371 if (!lock->reader) {
372 qemu_co_queue_next(&lock->queue);
375 qemu_co_mutex_unlock(&lock->mutex);
378 void qemu_co_rwlock_downgrade(CoRwlock *lock)
380 Coroutine *self = qemu_coroutine_self();
382 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or
383 * qemu_co_rwlock_upgrade.
385 assert(lock->reader == 0);
386 lock->reader++;
387 qemu_co_mutex_unlock(&lock->mutex);
389 /* The rest of the read-side critical section is run without the mutex. */
390 self->locks_held++;
393 void qemu_co_rwlock_wrlock(CoRwlock *lock)
395 qemu_co_mutex_lock(&lock->mutex);
396 lock->pending_writer++;
397 while (lock->reader) {
398 qemu_co_queue_wait(&lock->queue, &lock->mutex);
400 lock->pending_writer--;
402 /* The rest of the write-side critical section is run with
403 * the mutex taken, so that lock->reader remains zero.
404 * There is no need to update self->locks_held.
408 void qemu_co_rwlock_upgrade(CoRwlock *lock)
410 Coroutine *self = qemu_coroutine_self();
412 qemu_co_mutex_lock(&lock->mutex);
413 assert(lock->reader > 0);
414 lock->reader--;
415 lock->pending_writer++;
416 while (lock->reader) {
417 qemu_co_queue_wait(&lock->queue, &lock->mutex);
419 lock->pending_writer--;
421 /* The rest of the write-side critical section is run with
422 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do
423 * not account for the lock twice in self->locks_held.
425 self->locks_held--;