4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* Define for architectures which deviate from IEEE in not supporting
83 * signaling NaNs (so all NaNs are treated as quiet).
85 #if defined(TARGET_XTENSA)
86 #define NO_SIGNALING_NANS 1
89 /* Define how the architecture discriminates signaling NaNs.
90 * This done with the most significant bit of the fraction.
91 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
92 * the msb must be zero. MIPS is (so far) unique in supporting both the
93 * 2008 revision and backward compatibility with their original choice.
94 * Thus for MIPS we must make the choice at runtime.
96 static inline flag
snan_bit_is_one(float_status
*status
)
98 #if defined(TARGET_MIPS)
99 return status
->snan_bit_is_one
;
100 #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
107 /*----------------------------------------------------------------------------
108 | For the deconstructed floating-point with fraction FRAC, return true
109 | if the fraction represents a signalling NaN; otherwise false.
110 *----------------------------------------------------------------------------*/
112 static bool parts_is_snan_frac(uint64_t frac
, float_status
*status
)
114 #ifdef NO_SIGNALING_NANS
117 flag msb
= extract64(frac
, DECOMPOSED_BINARY_POINT
- 1, 1);
118 return msb
== snan_bit_is_one(status
);
122 /*----------------------------------------------------------------------------
123 | The pattern for a default generated deconstructed floating-point NaN.
124 *----------------------------------------------------------------------------*/
126 static FloatParts
parts_default_nan(float_status
*status
)
131 #if defined(TARGET_SPARC) || defined(TARGET_M68K)
132 /* !snan_bit_is_one, set all bits */
133 frac
= (1ULL << DECOMPOSED_BINARY_POINT
) - 1;
134 #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
135 || defined(TARGET_MICROBLAZE)
136 /* !snan_bit_is_one, set sign and msb */
137 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
139 #elif defined(TARGET_HPPA)
140 /* snan_bit_is_one, set msb-1. */
141 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 2);
143 /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
144 * S390, SH4, TriCore, and Xtensa. I cannot find documentation
145 * for Unicore32; the choice from the original commit is unchanged.
146 * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
147 * do not have floating-point.
149 if (snan_bit_is_one(status
)) {
150 /* set all bits other than msb */
151 frac
= (1ULL << (DECOMPOSED_BINARY_POINT
- 1)) - 1;
154 frac
= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
158 return (FloatParts
) {
159 .cls
= float_class_qnan
,
166 /*----------------------------------------------------------------------------
167 | Returns a quiet NaN from a signalling NaN for the deconstructed
168 | floating-point parts.
169 *----------------------------------------------------------------------------*/
171 static FloatParts
parts_silence_nan(FloatParts a
, float_status
*status
)
173 #ifdef NO_SIGNALING_NANS
174 g_assert_not_reached();
175 #elif defined(TARGET_HPPA)
176 a
.frac
&= ~(1ULL << (DECOMPOSED_BINARY_POINT
- 1));
177 a
.frac
|= 1ULL << (DECOMPOSED_BINARY_POINT
- 2);
179 if (snan_bit_is_one(status
)) {
180 return parts_default_nan(status
);
182 a
.frac
|= 1ULL << (DECOMPOSED_BINARY_POINT
- 1);
185 a
.cls
= float_class_qnan
;
189 /*----------------------------------------------------------------------------
190 | The pattern for a default generated extended double-precision NaN.
191 *----------------------------------------------------------------------------*/
192 floatx80
floatx80_default_nan(float_status
*status
)
196 /* None of the targets that have snan_bit_is_one use floatx80. */
197 assert(!snan_bit_is_one(status
));
198 #if defined(TARGET_M68K)
199 r
.low
= UINT64_C(0xFFFFFFFFFFFFFFFF);
203 r
.low
= UINT64_C(0xC000000000000000);
209 /*----------------------------------------------------------------------------
210 | The pattern for a default generated extended double-precision inf.
211 *----------------------------------------------------------------------------*/
213 #define floatx80_infinity_high 0x7FFF
214 #if defined(TARGET_M68K)
215 #define floatx80_infinity_low UINT64_C(0x0000000000000000)
217 #define floatx80_infinity_low UINT64_C(0x8000000000000000)
220 const floatx80 floatx80_infinity
221 = make_floatx80_init(floatx80_infinity_high
, floatx80_infinity_low
);
223 /*----------------------------------------------------------------------------
224 | Raises the exceptions specified by `flags'. Floating-point traps can be
225 | defined here if desired. It is currently not possible for such a trap
226 | to substitute a result value. If traps are not implemented, this routine
227 | should be simply `float_exception_flags |= flags;'.
228 *----------------------------------------------------------------------------*/
230 void float_raise(uint8_t flags
, float_status
*status
)
232 status
->float_exception_flags
|= flags
;
235 /*----------------------------------------------------------------------------
236 | Internal canonical NaN format.
237 *----------------------------------------------------------------------------*/
243 /*----------------------------------------------------------------------------
244 | Returns 1 if the half-precision floating-point value `a' is a quiet
245 | NaN; otherwise returns 0.
246 *----------------------------------------------------------------------------*/
248 int float16_is_quiet_nan(float16 a_
, float_status
*status
)
250 #ifdef NO_SIGNALING_NANS
251 return float16_is_any_nan(a_
);
253 uint16_t a
= float16_val(a_
);
254 if (snan_bit_is_one(status
)) {
255 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
257 return ((a
& ~0x8000) >= 0x7C80);
262 /*----------------------------------------------------------------------------
263 | Returns 1 if the half-precision floating-point value `a' is a signaling
264 | NaN; otherwise returns 0.
265 *----------------------------------------------------------------------------*/
267 int float16_is_signaling_nan(float16 a_
, float_status
*status
)
269 #ifdef NO_SIGNALING_NANS
272 uint16_t a
= float16_val(a_
);
273 if (snan_bit_is_one(status
)) {
274 return ((a
& ~0x8000) >= 0x7C80);
276 return (((a
>> 9) & 0x3F) == 0x3E) && (a
& 0x1FF);
281 /*----------------------------------------------------------------------------
282 | Returns 1 if the single-precision floating-point value `a' is a quiet
283 | NaN; otherwise returns 0.
284 *----------------------------------------------------------------------------*/
286 int float32_is_quiet_nan(float32 a_
, float_status
*status
)
288 #ifdef NO_SIGNALING_NANS
289 return float32_is_any_nan(a_
);
291 uint32_t a
= float32_val(a_
);
292 if (snan_bit_is_one(status
)) {
293 return (((a
>> 22) & 0x1FF) == 0x1FE) && (a
& 0x003FFFFF);
295 return ((uint32_t)(a
<< 1) >= 0xFF800000);
300 /*----------------------------------------------------------------------------
301 | Returns 1 if the single-precision floating-point value `a' is a signaling
302 | NaN; otherwise returns 0.
303 *----------------------------------------------------------------------------*/
305 int float32_is_signaling_nan(float32 a_
, float_status
*status
)
307 #ifdef NO_SIGNALING_NANS
310 uint32_t a
= float32_val(a_
);
311 if (snan_bit_is_one(status
)) {
312 return ((uint32_t)(a
<< 1) >= 0xFF800000);
314 return (((a
>> 22) & 0x1FF) == 0x1FE) && (a
& 0x003FFFFF);
319 /*----------------------------------------------------------------------------
320 | Returns the result of converting the single-precision floating-point NaN
321 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
322 | exception is raised.
323 *----------------------------------------------------------------------------*/
325 static commonNaNT
float32ToCommonNaN(float32 a
, float_status
*status
)
329 if (float32_is_signaling_nan(a
, status
)) {
330 float_raise(float_flag_invalid
, status
);
332 z
.sign
= float32_val(a
) >> 31;
334 z
.high
= ((uint64_t)float32_val(a
)) << 41;
338 /*----------------------------------------------------------------------------
339 | Returns the result of converting the canonical NaN `a' to the single-
340 | precision floating-point format.
341 *----------------------------------------------------------------------------*/
343 static float32
commonNaNToFloat32(commonNaNT a
, float_status
*status
)
345 uint32_t mantissa
= a
.high
>> 41;
347 if (status
->default_nan_mode
) {
348 return float32_default_nan(status
);
353 (((uint32_t)a
.sign
) << 31) | 0x7F800000 | (a
.high
>> 41));
355 return float32_default_nan(status
);
359 /*----------------------------------------------------------------------------
360 | Select which NaN to propagate for a two-input operation.
361 | IEEE754 doesn't specify all the details of this, so the
362 | algorithm is target-specific.
363 | The routine is passed various bits of information about the
364 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
365 | Note that signalling NaNs are always squashed to quiet NaNs
366 | by the caller, by calling floatXX_silence_nan() before
369 | aIsLargerSignificand is only valid if both a and b are NaNs
370 | of some kind, and is true if a has the larger significand,
371 | or if both a and b have the same significand but a is
372 | positive but b is negative. It is only needed for the x87
374 *----------------------------------------------------------------------------*/
376 static int pickNaN(FloatClass a_cls
, FloatClass b_cls
,
377 flag aIsLargerSignificand
)
379 #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
380 /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
382 * 1. A if it is signaling
383 * 2. B if it is signaling
386 * A signaling NaN is always quietened before returning it.
388 /* According to MIPS specifications, if one of the two operands is
389 * a sNaN, a new qNaN has to be generated. This is done in
390 * floatXX_silence_nan(). For qNaN inputs the specifications
391 * says: "When possible, this QNaN result is one of the operand QNaN
392 * values." In practice it seems that most implementations choose
393 * the first operand if both operands are qNaN. In short this gives
394 * the following rules:
395 * 1. A if it is signaling
396 * 2. B if it is signaling
399 * A signaling NaN is always silenced before returning it.
401 if (is_snan(a_cls
)) {
403 } else if (is_snan(b_cls
)) {
405 } else if (is_qnan(a_cls
)) {
410 #elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
411 /* PowerPC propagation rules:
412 * 1. A if it sNaN or qNaN
413 * 2. B if it sNaN or qNaN
414 * A signaling NaN is always silenced before returning it.
416 /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
417 * 3.4 FLOATING-POINT INSTRUCTION DETAILS
418 * If either operand, but not both operands, of an operation is a
419 * nonsignaling NaN, then that NaN is returned as the result. If both
420 * operands are nonsignaling NaNs, then the destination operand
421 * nonsignaling NaN is returned as the result.
422 * If either operand to an operation is a signaling NaN (SNaN), then the
423 * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
424 * is set in the FPCR ENABLE byte, then the exception is taken and the
425 * destination is not modified. If the SNaN exception enable bit is not
426 * set, setting the SNaN bit in the operand to a one converts the SNaN to
427 * a nonsignaling NaN. The operation then continues as described in the
428 * preceding paragraph for nonsignaling NaNs.
436 /* This implements x87 NaN propagation rules:
437 * SNaN + QNaN => return the QNaN
438 * two SNaNs => return the one with the larger significand, silenced
439 * two QNaNs => return the one with the larger significand
440 * SNaN and a non-NaN => return the SNaN, silenced
441 * QNaN and a non-NaN => return the QNaN
443 * If we get down to comparing significands and they are the same,
444 * return the NaN with the positive sign bit (if any).
446 if (is_snan(a_cls
)) {
447 if (is_snan(b_cls
)) {
448 return aIsLargerSignificand
? 0 : 1;
450 return is_qnan(b_cls
) ? 1 : 0;
451 } else if (is_qnan(a_cls
)) {
452 if (is_snan(b_cls
) || !is_qnan(b_cls
)) {
455 return aIsLargerSignificand
? 0 : 1;
463 /*----------------------------------------------------------------------------
464 | Select which NaN to propagate for a three-input operation.
465 | For the moment we assume that no CPU needs the 'larger significand'
467 | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
468 *----------------------------------------------------------------------------*/
469 static int pickNaNMulAdd(FloatClass a_cls
, FloatClass b_cls
, FloatClass c_cls
,
470 bool infzero
, float_status
*status
)
472 #if defined(TARGET_ARM)
473 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
476 if (infzero
&& is_qnan(c_cls
)) {
477 float_raise(float_flag_invalid
, status
);
481 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
482 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
484 if (is_snan(c_cls
)) {
486 } else if (is_snan(a_cls
)) {
488 } else if (is_snan(b_cls
)) {
490 } else if (is_qnan(c_cls
)) {
492 } else if (is_qnan(a_cls
)) {
497 #elif defined(TARGET_MIPS)
498 if (snan_bit_is_one(status
)) {
500 * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
501 * case sets InvalidOp and returns the default NaN
504 float_raise(float_flag_invalid
, status
);
507 /* Prefer sNaN over qNaN, in the a, b, c order. */
508 if (is_snan(a_cls
)) {
510 } else if (is_snan(b_cls
)) {
512 } else if (is_snan(c_cls
)) {
514 } else if (is_qnan(a_cls
)) {
516 } else if (is_qnan(b_cls
)) {
523 * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
524 * case sets InvalidOp and returns the input value 'c'
527 float_raise(float_flag_invalid
, status
);
530 /* Prefer sNaN over qNaN, in the c, a, b order. */
531 if (is_snan(c_cls
)) {
533 } else if (is_snan(a_cls
)) {
535 } else if (is_snan(b_cls
)) {
537 } else if (is_qnan(c_cls
)) {
539 } else if (is_qnan(a_cls
)) {
545 #elif defined(TARGET_PPC)
546 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
547 * to return an input NaN if we have one (ie c) rather than generating
551 float_raise(float_flag_invalid
, status
);
555 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
556 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
560 } else if (is_nan(c_cls
)) {
566 /* A default implementation: prefer a to b to c.
567 * This is unlikely to actually match any real implementation.
571 } else if (is_nan(b_cls
)) {
579 /*----------------------------------------------------------------------------
580 | Takes two single-precision floating-point values `a' and `b', one of which
581 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
582 | signaling NaN, the invalid exception is raised.
583 *----------------------------------------------------------------------------*/
585 static float32
propagateFloat32NaN(float32 a
, float32 b
, float_status
*status
)
587 flag aIsLargerSignificand
;
589 FloatClass a_cls
, b_cls
;
591 /* This is not complete, but is good enough for pickNaN. */
592 a_cls
= (!float32_is_any_nan(a
)
594 : float32_is_signaling_nan(a
, status
)
597 b_cls
= (!float32_is_any_nan(b
)
599 : float32_is_signaling_nan(b
, status
)
606 if (is_snan(a_cls
) || is_snan(b_cls
)) {
607 float_raise(float_flag_invalid
, status
);
610 if (status
->default_nan_mode
) {
611 return float32_default_nan(status
);
614 if ((uint32_t)(av
<< 1) < (uint32_t)(bv
<< 1)) {
615 aIsLargerSignificand
= 0;
616 } else if ((uint32_t)(bv
<< 1) < (uint32_t)(av
<< 1)) {
617 aIsLargerSignificand
= 1;
619 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
622 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
623 if (is_snan(b_cls
)) {
624 return float32_silence_nan(b
, status
);
628 if (is_snan(a_cls
)) {
629 return float32_silence_nan(a
, status
);
635 /*----------------------------------------------------------------------------
636 | Returns 1 if the double-precision floating-point value `a' is a quiet
637 | NaN; otherwise returns 0.
638 *----------------------------------------------------------------------------*/
640 int float64_is_quiet_nan(float64 a_
, float_status
*status
)
642 #ifdef NO_SIGNALING_NANS
643 return float64_is_any_nan(a_
);
645 uint64_t a
= float64_val(a_
);
646 if (snan_bit_is_one(status
)) {
647 return (((a
>> 51) & 0xFFF) == 0xFFE)
648 && (a
& 0x0007FFFFFFFFFFFFULL
);
650 return ((a
<< 1) >= 0xFFF0000000000000ULL
);
655 /*----------------------------------------------------------------------------
656 | Returns 1 if the double-precision floating-point value `a' is a signaling
657 | NaN; otherwise returns 0.
658 *----------------------------------------------------------------------------*/
660 int float64_is_signaling_nan(float64 a_
, float_status
*status
)
662 #ifdef NO_SIGNALING_NANS
665 uint64_t a
= float64_val(a_
);
666 if (snan_bit_is_one(status
)) {
667 return ((a
<< 1) >= 0xFFF0000000000000ULL
);
669 return (((a
>> 51) & 0xFFF) == 0xFFE)
670 && (a
& UINT64_C(0x0007FFFFFFFFFFFF));
675 /*----------------------------------------------------------------------------
676 | Returns the result of converting the double-precision floating-point NaN
677 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
678 | exception is raised.
679 *----------------------------------------------------------------------------*/
681 static commonNaNT
float64ToCommonNaN(float64 a
, float_status
*status
)
685 if (float64_is_signaling_nan(a
, status
)) {
686 float_raise(float_flag_invalid
, status
);
688 z
.sign
= float64_val(a
) >> 63;
690 z
.high
= float64_val(a
) << 12;
694 /*----------------------------------------------------------------------------
695 | Returns the result of converting the canonical NaN `a' to the double-
696 | precision floating-point format.
697 *----------------------------------------------------------------------------*/
699 static float64
commonNaNToFloat64(commonNaNT a
, float_status
*status
)
701 uint64_t mantissa
= a
.high
>> 12;
703 if (status
->default_nan_mode
) {
704 return float64_default_nan(status
);
709 (((uint64_t) a
.sign
) << 63)
710 | UINT64_C(0x7FF0000000000000)
713 return float64_default_nan(status
);
717 /*----------------------------------------------------------------------------
718 | Takes two double-precision floating-point values `a' and `b', one of which
719 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
720 | signaling NaN, the invalid exception is raised.
721 *----------------------------------------------------------------------------*/
723 static float64
propagateFloat64NaN(float64 a
, float64 b
, float_status
*status
)
725 flag aIsLargerSignificand
;
727 FloatClass a_cls
, b_cls
;
729 /* This is not complete, but is good enough for pickNaN. */
730 a_cls
= (!float64_is_any_nan(a
)
732 : float64_is_signaling_nan(a
, status
)
735 b_cls
= (!float64_is_any_nan(b
)
737 : float64_is_signaling_nan(b
, status
)
744 if (is_snan(a_cls
) || is_snan(b_cls
)) {
745 float_raise(float_flag_invalid
, status
);
748 if (status
->default_nan_mode
) {
749 return float64_default_nan(status
);
752 if ((uint64_t)(av
<< 1) < (uint64_t)(bv
<< 1)) {
753 aIsLargerSignificand
= 0;
754 } else if ((uint64_t)(bv
<< 1) < (uint64_t)(av
<< 1)) {
755 aIsLargerSignificand
= 1;
757 aIsLargerSignificand
= (av
< bv
) ? 1 : 0;
760 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
761 if (is_snan(b_cls
)) {
762 return float64_silence_nan(b
, status
);
766 if (is_snan(a_cls
)) {
767 return float64_silence_nan(a
, status
);
773 /*----------------------------------------------------------------------------
774 | Returns 1 if the extended double-precision floating-point value `a' is a
775 | quiet NaN; otherwise returns 0. This slightly differs from the same
776 | function for other types as floatx80 has an explicit bit.
777 *----------------------------------------------------------------------------*/
779 int floatx80_is_quiet_nan(floatx80 a
, float_status
*status
)
781 #ifdef NO_SIGNALING_NANS
782 return floatx80_is_any_nan(a
);
784 if (snan_bit_is_one(status
)) {
787 aLow
= a
.low
& ~0x4000000000000000ULL
;
788 return ((a
.high
& 0x7FFF) == 0x7FFF)
792 return ((a
.high
& 0x7FFF) == 0x7FFF)
793 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a
.low
<< 1)));
798 /*----------------------------------------------------------------------------
799 | Returns 1 if the extended double-precision floating-point value `a' is a
800 | signaling NaN; otherwise returns 0. This slightly differs from the same
801 | function for other types as floatx80 has an explicit bit.
802 *----------------------------------------------------------------------------*/
804 int floatx80_is_signaling_nan(floatx80 a
, float_status
*status
)
806 #ifdef NO_SIGNALING_NANS
809 if (snan_bit_is_one(status
)) {
810 return ((a
.high
& 0x7FFF) == 0x7FFF)
811 && ((a
.low
<< 1) >= 0x8000000000000000ULL
);
815 aLow
= a
.low
& ~UINT64_C(0x4000000000000000);
816 return ((a
.high
& 0x7FFF) == 0x7FFF)
817 && (uint64_t)(aLow
<< 1)
823 /*----------------------------------------------------------------------------
824 | Returns a quiet NaN from a signalling NaN for the extended double-precision
825 | floating point value `a'.
826 *----------------------------------------------------------------------------*/
828 floatx80
floatx80_silence_nan(floatx80 a
, float_status
*status
)
830 /* None of the targets that have snan_bit_is_one use floatx80. */
831 assert(!snan_bit_is_one(status
));
832 a
.low
|= UINT64_C(0xC000000000000000);
836 /*----------------------------------------------------------------------------
837 | Returns the result of converting the extended double-precision floating-
838 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
839 | invalid exception is raised.
840 *----------------------------------------------------------------------------*/
842 static commonNaNT
floatx80ToCommonNaN(floatx80 a
, float_status
*status
)
847 if (floatx80_is_signaling_nan(a
, status
)) {
848 float_raise(float_flag_invalid
, status
);
851 z
.sign
= a
.high
>> 15;
855 dflt
= floatx80_default_nan(status
);
856 z
.sign
= dflt
.high
>> 15;
858 z
.high
= dflt
.low
<< 1;
863 /*----------------------------------------------------------------------------
864 | Returns the result of converting the canonical NaN `a' to the extended
865 | double-precision floating-point format.
866 *----------------------------------------------------------------------------*/
868 static floatx80
commonNaNToFloatx80(commonNaNT a
, float_status
*status
)
872 if (status
->default_nan_mode
) {
873 return floatx80_default_nan(status
);
877 z
.low
= UINT64_C(0x8000000000000000) | a
.high
>> 1;
878 z
.high
= (((uint16_t)a
.sign
) << 15) | 0x7FFF;
880 z
= floatx80_default_nan(status
);
885 /*----------------------------------------------------------------------------
886 | Takes two extended double-precision floating-point values `a' and `b', one
887 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
888 | `b' is a signaling NaN, the invalid exception is raised.
889 *----------------------------------------------------------------------------*/
891 floatx80
propagateFloatx80NaN(floatx80 a
, floatx80 b
, float_status
*status
)
893 flag aIsLargerSignificand
;
894 FloatClass a_cls
, b_cls
;
896 /* This is not complete, but is good enough for pickNaN. */
897 a_cls
= (!floatx80_is_any_nan(a
)
899 : floatx80_is_signaling_nan(a
, status
)
902 b_cls
= (!floatx80_is_any_nan(b
)
904 : floatx80_is_signaling_nan(b
, status
)
908 if (is_snan(a_cls
) || is_snan(b_cls
)) {
909 float_raise(float_flag_invalid
, status
);
912 if (status
->default_nan_mode
) {
913 return floatx80_default_nan(status
);
917 aIsLargerSignificand
= 0;
918 } else if (b
.low
< a
.low
) {
919 aIsLargerSignificand
= 1;
921 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
924 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
925 if (is_snan(b_cls
)) {
926 return floatx80_silence_nan(b
, status
);
930 if (is_snan(a_cls
)) {
931 return floatx80_silence_nan(a
, status
);
937 /*----------------------------------------------------------------------------
938 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
939 | NaN; otherwise returns 0.
940 *----------------------------------------------------------------------------*/
942 int float128_is_quiet_nan(float128 a
, float_status
*status
)
944 #ifdef NO_SIGNALING_NANS
945 return float128_is_any_nan(a
);
947 if (snan_bit_is_one(status
)) {
948 return (((a
.high
>> 47) & 0xFFFF) == 0xFFFE)
949 && (a
.low
|| (a
.high
& 0x00007FFFFFFFFFFFULL
));
951 return ((a
.high
<< 1) >= 0xFFFF000000000000ULL
)
952 && (a
.low
|| (a
.high
& 0x0000FFFFFFFFFFFFULL
));
957 /*----------------------------------------------------------------------------
958 | Returns 1 if the quadruple-precision floating-point value `a' is a
959 | signaling NaN; otherwise returns 0.
960 *----------------------------------------------------------------------------*/
962 int float128_is_signaling_nan(float128 a
, float_status
*status
)
964 #ifdef NO_SIGNALING_NANS
967 if (snan_bit_is_one(status
)) {
968 return ((a
.high
<< 1) >= 0xFFFF000000000000ULL
)
969 && (a
.low
|| (a
.high
& 0x0000FFFFFFFFFFFFULL
));
971 return (((a
.high
>> 47) & 0xFFFF) == 0xFFFE)
972 && (a
.low
|| (a
.high
& UINT64_C(0x00007FFFFFFFFFFF)));
977 /*----------------------------------------------------------------------------
978 | Returns a quiet NaN from a signalling NaN for the quadruple-precision
979 | floating point value `a'.
980 *----------------------------------------------------------------------------*/
982 float128
float128_silence_nan(float128 a
, float_status
*status
)
984 #ifdef NO_SIGNALING_NANS
985 g_assert_not_reached();
987 if (snan_bit_is_one(status
)) {
988 return float128_default_nan(status
);
990 a
.high
|= UINT64_C(0x0000800000000000);
996 /*----------------------------------------------------------------------------
997 | Returns the result of converting the quadruple-precision floating-point NaN
998 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
999 | exception is raised.
1000 *----------------------------------------------------------------------------*/
1002 static commonNaNT
float128ToCommonNaN(float128 a
, float_status
*status
)
1006 if (float128_is_signaling_nan(a
, status
)) {
1007 float_raise(float_flag_invalid
, status
);
1009 z
.sign
= a
.high
>> 63;
1010 shortShift128Left(a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1014 /*----------------------------------------------------------------------------
1015 | Returns the result of converting the canonical NaN `a' to the quadruple-
1016 | precision floating-point format.
1017 *----------------------------------------------------------------------------*/
1019 static float128
commonNaNToFloat128(commonNaNT a
, float_status
*status
)
1023 if (status
->default_nan_mode
) {
1024 return float128_default_nan(status
);
1027 shift128Right(a
.high
, a
.low
, 16, &z
.high
, &z
.low
);
1028 z
.high
|= (((uint64_t)a
.sign
) << 63) | UINT64_C(0x7FFF000000000000);
1032 /*----------------------------------------------------------------------------
1033 | Takes two quadruple-precision floating-point values `a' and `b', one of
1034 | which is a NaN, and returns the appropriate NaN result. If either `a' or
1035 | `b' is a signaling NaN, the invalid exception is raised.
1036 *----------------------------------------------------------------------------*/
1038 static float128
propagateFloat128NaN(float128 a
, float128 b
,
1039 float_status
*status
)
1041 flag aIsLargerSignificand
;
1042 FloatClass a_cls
, b_cls
;
1044 /* This is not complete, but is good enough for pickNaN. */
1045 a_cls
= (!float128_is_any_nan(a
)
1046 ? float_class_normal
1047 : float128_is_signaling_nan(a
, status
)
1049 : float_class_qnan
);
1050 b_cls
= (!float128_is_any_nan(b
)
1051 ? float_class_normal
1052 : float128_is_signaling_nan(b
, status
)
1054 : float_class_qnan
);
1056 if (is_snan(a_cls
) || is_snan(b_cls
)) {
1057 float_raise(float_flag_invalid
, status
);
1060 if (status
->default_nan_mode
) {
1061 return float128_default_nan(status
);
1064 if (lt128(a
.high
<< 1, a
.low
, b
.high
<< 1, b
.low
)) {
1065 aIsLargerSignificand
= 0;
1066 } else if (lt128(b
.high
<< 1, b
.low
, a
.high
<< 1, a
.low
)) {
1067 aIsLargerSignificand
= 1;
1069 aIsLargerSignificand
= (a
.high
< b
.high
) ? 1 : 0;
1072 if (pickNaN(a_cls
, b_cls
, aIsLargerSignificand
)) {
1073 if (is_snan(b_cls
)) {
1074 return float128_silence_nan(b
, status
);
1078 if (is_snan(a_cls
)) {
1079 return float128_silence_nan(a
, status
);