2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "internals.h"
25 #include "hw/arm/arm.h"
26 #include "exec/memattrs.h"
28 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
32 static bool cap_has_mp_state
;
34 int kvm_arm_vcpu_init(CPUState
*cs
)
36 ARMCPU
*cpu
= ARM_CPU(cs
);
37 struct kvm_vcpu_init init
;
39 init
.target
= cpu
->kvm_target
;
40 memcpy(init
.features
, cpu
->kvm_init_features
, sizeof(init
.features
));
42 return kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
45 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try
,
47 struct kvm_vcpu_init
*init
)
49 int ret
, kvmfd
= -1, vmfd
= -1, cpufd
= -1;
51 kvmfd
= qemu_open("/dev/kvm", O_RDWR
);
55 vmfd
= ioctl(kvmfd
, KVM_CREATE_VM
, 0);
59 cpufd
= ioctl(vmfd
, KVM_CREATE_VCPU
, 0);
64 ret
= ioctl(vmfd
, KVM_ARM_PREFERRED_TARGET
, init
);
66 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
71 /* Old kernel which doesn't know about the
72 * PREFERRED_TARGET ioctl: we know it will only support
73 * creating one kind of guest CPU which is its preferred
76 while (*cpus_to_try
!= QEMU_KVM_ARM_TARGET_NONE
) {
77 init
->target
= *cpus_to_try
++;
78 memset(init
->features
, 0, sizeof(init
->features
));
79 ret
= ioctl(cpufd
, KVM_ARM_VCPU_INIT
, init
);
109 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray
)
113 for (i
= 2; i
>= 0; i
--) {
118 static void kvm_arm_host_cpu_class_init(ObjectClass
*oc
, void *data
)
120 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_CLASS(oc
);
122 /* All we really need to set up for the 'host' CPU
123 * is the feature bits -- we rely on the fact that the
124 * various ID register values in ARMCPU are only used for
127 if (!kvm_arm_get_host_cpu_features(ahcc
)) {
128 fprintf(stderr
, "Failed to retrieve host CPU features!\n");
133 static void kvm_arm_host_cpu_initfn(Object
*obj
)
135 ARMHostCPUClass
*ahcc
= ARM_HOST_CPU_GET_CLASS(obj
);
136 ARMCPU
*cpu
= ARM_CPU(obj
);
137 CPUARMState
*env
= &cpu
->env
;
139 cpu
->kvm_target
= ahcc
->target
;
140 cpu
->dtb_compatible
= ahcc
->dtb_compatible
;
141 env
->features
= ahcc
->features
;
144 static const TypeInfo host_arm_cpu_type_info
= {
145 .name
= TYPE_ARM_HOST_CPU
,
146 #ifdef TARGET_AARCH64
147 .parent
= TYPE_AARCH64_CPU
,
149 .parent
= TYPE_ARM_CPU
,
151 .instance_init
= kvm_arm_host_cpu_initfn
,
152 .class_init
= kvm_arm_host_cpu_class_init
,
153 .class_size
= sizeof(ARMHostCPUClass
),
156 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
158 /* For ARM interrupt delivery is always asynchronous,
159 * whether we are using an in-kernel VGIC or not.
161 kvm_async_interrupts_allowed
= true;
163 cap_has_mp_state
= kvm_check_extension(s
, KVM_CAP_MP_STATE
);
165 type_register_static(&host_arm_cpu_type_info
);
170 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
172 return cpu
->cpu_index
;
175 /* We track all the KVM devices which need their memory addresses
176 * passing to the kernel in a list of these structures.
177 * When board init is complete we run through the list and
178 * tell the kernel the base addresses of the memory regions.
179 * We use a MemoryListener to track mapping and unmapping of
180 * the regions during board creation, so the board models don't
181 * need to do anything special for the KVM case.
183 typedef struct KVMDevice
{
184 struct kvm_arm_device_addr kda
;
185 struct kvm_device_attr kdattr
;
187 QSLIST_ENTRY(KVMDevice
) entries
;
191 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
193 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
194 MemoryRegionSection
*section
)
198 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
199 if (section
->mr
== kd
->mr
) {
200 kd
->kda
.addr
= section
->offset_within_address_space
;
205 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
206 MemoryRegionSection
*section
)
210 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
211 if (section
->mr
== kd
->mr
) {
217 static MemoryListener devlistener
= {
218 .region_add
= kvm_arm_devlistener_add
,
219 .region_del
= kvm_arm_devlistener_del
,
222 static void kvm_arm_set_device_addr(KVMDevice
*kd
)
224 struct kvm_device_attr
*attr
= &kd
->kdattr
;
227 /* If the device control API is available and we have a device fd on the
228 * KVMDevice struct, let's use the newer API
230 if (kd
->dev_fd
>= 0) {
231 uint64_t addr
= kd
->kda
.addr
;
232 attr
->addr
= (uintptr_t)&addr
;
233 ret
= kvm_device_ioctl(kd
->dev_fd
, KVM_SET_DEVICE_ATTR
, attr
);
235 ret
= kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
, &kd
->kda
);
239 fprintf(stderr
, "Failed to set device address: %s\n",
245 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
249 memory_listener_unregister(&devlistener
);
250 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
251 if (kd
->kda
.addr
!= -1) {
252 kvm_arm_set_device_addr(kd
);
254 memory_region_unref(kd
->mr
);
259 static Notifier notify
= {
260 .notify
= kvm_arm_machine_init_done
,
263 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
, uint64_t group
,
264 uint64_t attr
, int dev_fd
)
268 if (!kvm_irqchip_in_kernel()) {
272 if (QSLIST_EMPTY(&kvm_devices_head
)) {
273 memory_listener_register(&devlistener
, NULL
);
274 qemu_add_machine_init_done_notifier(¬ify
);
276 kd
= g_new0(KVMDevice
, 1);
280 kd
->kdattr
.flags
= 0;
281 kd
->kdattr
.group
= group
;
282 kd
->kdattr
.attr
= attr
;
284 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
285 memory_region_ref(kd
->mr
);
288 static int compare_u64(const void *a
, const void *b
)
290 if (*(uint64_t *)a
> *(uint64_t *)b
) {
293 if (*(uint64_t *)a
< *(uint64_t *)b
) {
299 /* Initialize the CPUState's cpreg list according to the kernel's
300 * definition of what CPU registers it knows about (and throw away
301 * the previous TCG-created cpreg list).
303 int kvm_arm_init_cpreg_list(ARMCPU
*cpu
)
305 struct kvm_reg_list rl
;
306 struct kvm_reg_list
*rlp
;
307 int i
, ret
, arraylen
;
308 CPUState
*cs
= CPU(cpu
);
311 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
315 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
317 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
321 /* Sort the list we get back from the kernel, since cpreg_tuples
322 * must be in strictly ascending order.
324 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
326 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
327 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp
->reg
[i
])) {
330 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
331 case KVM_REG_SIZE_U32
:
332 case KVM_REG_SIZE_U64
:
335 fprintf(stderr
, "Can't handle size of register in kernel list\n");
343 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
344 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
345 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
347 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
349 cpu
->cpreg_array_len
= arraylen
;
350 cpu
->cpreg_vmstate_array_len
= arraylen
;
352 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
353 uint64_t regidx
= rlp
->reg
[i
];
354 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx
)) {
357 cpu
->cpreg_indexes
[arraylen
] = regidx
;
360 assert(cpu
->cpreg_array_len
== arraylen
);
362 if (!write_kvmstate_to_list(cpu
)) {
363 /* Shouldn't happen unless kernel is inconsistent about
364 * what registers exist.
366 fprintf(stderr
, "Initial read of kernel register state failed\n");
376 bool write_kvmstate_to_list(ARMCPU
*cpu
)
378 CPUState
*cs
= CPU(cpu
);
382 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
383 struct kvm_one_reg r
;
384 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
390 switch (regidx
& KVM_REG_SIZE_MASK
) {
391 case KVM_REG_SIZE_U32
:
392 r
.addr
= (uintptr_t)&v32
;
393 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
395 cpu
->cpreg_values
[i
] = v32
;
398 case KVM_REG_SIZE_U64
:
399 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
400 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
412 bool write_list_to_kvmstate(ARMCPU
*cpu
, int level
)
414 CPUState
*cs
= CPU(cpu
);
418 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
419 struct kvm_one_reg r
;
420 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
424 if (kvm_arm_cpreg_level(regidx
) > level
) {
429 switch (regidx
& KVM_REG_SIZE_MASK
) {
430 case KVM_REG_SIZE_U32
:
431 v32
= cpu
->cpreg_values
[i
];
432 r
.addr
= (uintptr_t)&v32
;
434 case KVM_REG_SIZE_U64
:
435 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
440 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
442 /* We might fail for "unknown register" and also for
443 * "you tried to set a register which is constant with
444 * a different value from what it actually contains".
452 void kvm_arm_reset_vcpu(ARMCPU
*cpu
)
456 /* Re-init VCPU so that all registers are set to
457 * their respective reset values.
459 ret
= kvm_arm_vcpu_init(CPU(cpu
));
461 fprintf(stderr
, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret
));
464 if (!write_kvmstate_to_list(cpu
)) {
465 fprintf(stderr
, "write_kvmstate_to_list failed\n");
471 * Update KVM's MP_STATE based on what QEMU thinks it is
473 int kvm_arm_sync_mpstate_to_kvm(ARMCPU
*cpu
)
475 if (cap_has_mp_state
) {
476 struct kvm_mp_state mp_state
= {
478 cpu
->powered_off
? KVM_MP_STATE_STOPPED
: KVM_MP_STATE_RUNNABLE
480 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
482 fprintf(stderr
, "%s: failed to set MP_STATE %d/%s\n",
483 __func__
, ret
, strerror(-ret
));
492 * Sync the KVM MP_STATE into QEMU
494 int kvm_arm_sync_mpstate_to_qemu(ARMCPU
*cpu
)
496 if (cap_has_mp_state
) {
497 struct kvm_mp_state mp_state
;
498 int ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MP_STATE
, &mp_state
);
500 fprintf(stderr
, "%s: failed to get MP_STATE %d/%s\n",
501 __func__
, ret
, strerror(-ret
));
504 cpu
->powered_off
= (mp_state
.mp_state
== KVM_MP_STATE_STOPPED
);
510 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
514 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
516 return MEMTXATTRS_UNSPECIFIED
;
519 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
524 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
529 int kvm_arch_process_async_events(CPUState
*cs
)
534 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
539 int kvm_arch_on_sigbus(int code
, void *addr
)
544 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
546 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
549 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
,
550 struct kvm_sw_breakpoint
*bp
)
552 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
556 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
557 target_ulong len
, int type
)
559 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
563 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
564 target_ulong len
, int type
)
566 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
570 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
,
571 struct kvm_sw_breakpoint
*bp
)
573 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
577 void kvm_arch_remove_all_hw_breakpoints(void)
579 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
582 void kvm_arch_init_irq_routing(KVMState
*s
)
586 int kvm_arch_irqchip_create(KVMState
*s
)
588 /* If we can create the VGIC using the newer device control API, we
589 * let the device do this when it initializes itself, otherwise we
590 * fall back to the old API */
591 return kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
);
594 int kvm_arm_vgic_probe(void)
596 if (kvm_create_device(kvm_state
,
597 KVM_DEV_TYPE_ARM_VGIC_V3
, true) == 0) {
599 } else if (kvm_create_device(kvm_state
,
600 KVM_DEV_TYPE_ARM_VGIC_V2
, true) == 0) {
607 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
608 uint64_t address
, uint32_t data
)
613 int kvm_arch_msi_data_to_gsi(uint32_t data
)
615 return (data
- 32) & 0xffff;