ppc/pnv: Add a PNOR model
[qemu/ar7.git] / target / mips / internal.h
blob3f435b5e6319995abfb21088b1a430e3bbea44ad
1 /*
2 * MIPS internal definitions and helpers
4 * This work is licensed under the terms of the GNU GPL, version 2 or later.
5 * See the COPYING file in the top-level directory.
6 */
8 #ifndef MIPS_INTERNAL_H
9 #define MIPS_INTERNAL_H
11 #include "fpu/softfloat-helpers.h"
14 * MMU types, the first four entries have the same layout as the
15 * CP0C0_MT field.
17 enum mips_mmu_types {
18 MMU_TYPE_NONE,
19 MMU_TYPE_R4000,
20 MMU_TYPE_RESERVED,
21 MMU_TYPE_FMT,
22 MMU_TYPE_R3000,
23 MMU_TYPE_R6000,
24 MMU_TYPE_R8000
27 struct mips_def_t {
28 const char *name;
29 int32_t CP0_PRid;
30 int32_t CP0_Config0;
31 int32_t CP0_Config1;
32 int32_t CP0_Config2;
33 int32_t CP0_Config3;
34 int32_t CP0_Config4;
35 int32_t CP0_Config4_rw_bitmask;
36 int32_t CP0_Config5;
37 int32_t CP0_Config5_rw_bitmask;
38 int32_t CP0_Config6;
39 int32_t CP0_Config7;
40 target_ulong CP0_LLAddr_rw_bitmask;
41 int CP0_LLAddr_shift;
42 int32_t SYNCI_Step;
43 int32_t CCRes;
44 int32_t CP0_Status_rw_bitmask;
45 int32_t CP0_TCStatus_rw_bitmask;
46 int32_t CP0_SRSCtl;
47 int32_t CP1_fcr0;
48 int32_t CP1_fcr31_rw_bitmask;
49 int32_t CP1_fcr31;
50 int32_t MSAIR;
51 int32_t SEGBITS;
52 int32_t PABITS;
53 int32_t CP0_SRSConf0_rw_bitmask;
54 int32_t CP0_SRSConf0;
55 int32_t CP0_SRSConf1_rw_bitmask;
56 int32_t CP0_SRSConf1;
57 int32_t CP0_SRSConf2_rw_bitmask;
58 int32_t CP0_SRSConf2;
59 int32_t CP0_SRSConf3_rw_bitmask;
60 int32_t CP0_SRSConf3;
61 int32_t CP0_SRSConf4_rw_bitmask;
62 int32_t CP0_SRSConf4;
63 int32_t CP0_PageGrain_rw_bitmask;
64 int32_t CP0_PageGrain;
65 target_ulong CP0_EBaseWG_rw_bitmask;
66 uint64_t insn_flags;
67 enum mips_mmu_types mmu_type;
68 int32_t SAARP;
71 extern const struct mips_def_t mips_defs[];
72 extern const int mips_defs_number;
74 enum CPUMIPSMSADataFormat {
75 DF_BYTE = 0,
76 DF_HALF,
77 DF_WORD,
78 DF_DOUBLE
81 void mips_cpu_do_interrupt(CPUState *cpu);
82 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
83 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags);
84 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
85 int mips_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
86 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
87 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
88 MMUAccessType access_type,
89 int mmu_idx, uintptr_t retaddr);
91 #if !defined(CONFIG_USER_ONLY)
93 typedef struct r4k_tlb_t r4k_tlb_t;
94 struct r4k_tlb_t {
95 target_ulong VPN;
96 uint32_t PageMask;
97 uint16_t ASID;
98 unsigned int G:1;
99 unsigned int C0:3;
100 unsigned int C1:3;
101 unsigned int V0:1;
102 unsigned int V1:1;
103 unsigned int D0:1;
104 unsigned int D1:1;
105 unsigned int XI0:1;
106 unsigned int XI1:1;
107 unsigned int RI0:1;
108 unsigned int RI1:1;
109 unsigned int EHINV:1;
110 uint64_t PFN[2];
113 struct CPUMIPSTLBContext {
114 uint32_t nb_tlb;
115 uint32_t tlb_in_use;
116 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
117 target_ulong address, int rw, int access_type);
118 void (*helper_tlbwi)(struct CPUMIPSState *env);
119 void (*helper_tlbwr)(struct CPUMIPSState *env);
120 void (*helper_tlbp)(struct CPUMIPSState *env);
121 void (*helper_tlbr)(struct CPUMIPSState *env);
122 void (*helper_tlbinv)(struct CPUMIPSState *env);
123 void (*helper_tlbinvf)(struct CPUMIPSState *env);
124 union {
125 struct {
126 r4k_tlb_t tlb[MIPS_TLB_MAX];
127 } r4k;
128 } mmu;
131 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
132 target_ulong address, int rw, int access_type);
133 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
134 target_ulong address, int rw, int access_type);
135 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
136 target_ulong address, int rw, int access_type);
137 void r4k_helper_tlbwi(CPUMIPSState *env);
138 void r4k_helper_tlbwr(CPUMIPSState *env);
139 void r4k_helper_tlbp(CPUMIPSState *env);
140 void r4k_helper_tlbr(CPUMIPSState *env);
141 void r4k_helper_tlbinv(CPUMIPSState *env);
142 void r4k_helper_tlbinvf(CPUMIPSState *env);
143 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
145 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
146 vaddr addr, unsigned size,
147 MMUAccessType access_type,
148 int mmu_idx, MemTxAttrs attrs,
149 MemTxResult response, uintptr_t retaddr);
150 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
151 int rw);
152 #endif
154 #define cpu_signal_handler cpu_mips_signal_handler
156 #ifndef CONFIG_USER_ONLY
157 extern const VMStateDescription vmstate_mips_cpu;
158 #endif
160 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
162 return (env->CP0_Status & (1 << CP0St_IE)) &&
163 !(env->CP0_Status & (1 << CP0St_EXL)) &&
164 !(env->CP0_Status & (1 << CP0St_ERL)) &&
165 !(env->hflags & MIPS_HFLAG_DM) &&
167 * Note that the TCStatus IXMT field is initialized to zero,
168 * and only MT capable cores can set it to one. So we don't
169 * need to check for MT capabilities here.
171 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
174 /* Check if there is pending and not masked out interrupt */
175 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
177 int32_t pending;
178 int32_t status;
179 bool r;
181 pending = env->CP0_Cause & CP0Ca_IP_mask;
182 status = env->CP0_Status & CP0Ca_IP_mask;
184 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
186 * A MIPS configured with a vectorizing external interrupt controller
187 * will feed a vector into the Cause pending lines. The core treats
188 * the status lines as a vector level, not as indiviual masks.
190 r = pending > status;
191 } else {
193 * A MIPS configured with compatibility or VInt (Vectored Interrupts)
194 * treats the pending lines as individual interrupt lines, the status
195 * lines are individual masks.
197 r = (pending & status) != 0;
199 return r;
202 void mips_tcg_init(void);
204 /* TODO QOM'ify CPU reset and remove */
205 void cpu_state_reset(CPUMIPSState *s);
206 void cpu_mips_realize_env(CPUMIPSState *env);
208 /* cp0_timer.c */
209 uint32_t cpu_mips_get_random(CPUMIPSState *env);
210 uint32_t cpu_mips_get_count(CPUMIPSState *env);
211 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
212 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
213 void cpu_mips_start_count(CPUMIPSState *env);
214 void cpu_mips_stop_count(CPUMIPSState *env);
216 /* helper.c */
217 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
218 MMUAccessType access_type, int mmu_idx,
219 bool probe, uintptr_t retaddr);
221 /* op_helper.c */
222 uint32_t float_class_s(uint32_t arg, float_status *fst);
223 uint64_t float_class_d(uint64_t arg, float_status *fst);
225 extern unsigned int ieee_rm[];
226 int ieee_ex_to_mips(int xcpt);
227 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
229 static inline void restore_rounding_mode(CPUMIPSState *env)
231 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
232 &env->active_fpu.fp_status);
235 static inline void restore_flush_mode(CPUMIPSState *env)
237 set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
238 &env->active_fpu.fp_status);
241 static inline void restore_snan_bit_mode(CPUMIPSState *env)
243 set_snan_bit_is_one((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) == 0,
244 &env->active_fpu.fp_status);
247 static inline void restore_fp_status(CPUMIPSState *env)
249 restore_rounding_mode(env);
250 restore_flush_mode(env);
251 restore_snan_bit_mode(env);
254 static inline void restore_msa_fp_status(CPUMIPSState *env)
256 float_status *status = &env->active_tc.msa_fp_status;
257 int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
258 bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
260 set_float_rounding_mode(ieee_rm[rounding_mode], status);
261 set_flush_to_zero(flush_to_zero, status);
262 set_flush_inputs_to_zero(flush_to_zero, status);
265 static inline void restore_pamask(CPUMIPSState *env)
267 if (env->hflags & MIPS_HFLAG_ELPA) {
268 env->PAMask = (1ULL << env->PABITS) - 1;
269 } else {
270 env->PAMask = PAMASK_BASE;
274 static inline int mips_vpe_active(CPUMIPSState *env)
276 int active = 1;
278 /* Check that the VPE is enabled. */
279 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
280 active = 0;
282 /* Check that the VPE is activated. */
283 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
284 active = 0;
288 * Now verify that there are active thread contexts in the VPE.
290 * This assumes the CPU model will internally reschedule threads
291 * if the active one goes to sleep. If there are no threads available
292 * the active one will be in a sleeping state, and we can turn off
293 * the entire VPE.
295 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
296 /* TC is not activated. */
297 active = 0;
299 if (env->active_tc.CP0_TCHalt & 1) {
300 /* TC is in halt state. */
301 active = 0;
304 return active;
307 static inline int mips_vp_active(CPUMIPSState *env)
309 CPUState *other_cs = first_cpu;
311 /* Check if the VP disabled other VPs (which means the VP is enabled) */
312 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
313 return 1;
316 /* Check if the virtual processor is disabled due to a DVP */
317 CPU_FOREACH(other_cs) {
318 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
319 if ((&other_cpu->env != env) &&
320 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
321 return 0;
324 return 1;
327 static inline void compute_hflags(CPUMIPSState *env)
329 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
330 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
331 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
332 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
333 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
334 if (env->CP0_Status & (1 << CP0St_ERL)) {
335 env->hflags |= MIPS_HFLAG_ERL;
337 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
338 !(env->CP0_Status & (1 << CP0St_ERL)) &&
339 !(env->hflags & MIPS_HFLAG_DM)) {
340 env->hflags |= (env->CP0_Status >> CP0St_KSU) &
341 MIPS_HFLAG_KSU;
343 #if defined(TARGET_MIPS64)
344 if ((env->insn_flags & ISA_MIPS3) &&
345 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
346 (env->CP0_Status & (1 << CP0St_PX)) ||
347 (env->CP0_Status & (1 << CP0St_UX)))) {
348 env->hflags |= MIPS_HFLAG_64;
351 if (!(env->insn_flags & ISA_MIPS3)) {
352 env->hflags |= MIPS_HFLAG_AWRAP;
353 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
354 !(env->CP0_Status & (1 << CP0St_UX))) {
355 env->hflags |= MIPS_HFLAG_AWRAP;
356 } else if (env->insn_flags & ISA_MIPS64R6) {
357 /* Address wrapping for Supervisor and Kernel is specified in R6 */
358 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
359 !(env->CP0_Status & (1 << CP0St_SX))) ||
360 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
361 !(env->CP0_Status & (1 << CP0St_KX)))) {
362 env->hflags |= MIPS_HFLAG_AWRAP;
365 #endif
366 if (((env->CP0_Status & (1 << CP0St_CU0)) &&
367 !(env->insn_flags & ISA_MIPS32R6)) ||
368 !(env->hflags & MIPS_HFLAG_KSU)) {
369 env->hflags |= MIPS_HFLAG_CP0;
371 if (env->CP0_Status & (1 << CP0St_CU1)) {
372 env->hflags |= MIPS_HFLAG_FPU;
374 if (env->CP0_Status & (1 << CP0St_FR)) {
375 env->hflags |= MIPS_HFLAG_F64;
377 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
378 (env->CP0_Config5 & (1 << CP0C5_SBRI))) {
379 env->hflags |= MIPS_HFLAG_SBRI;
381 if (env->insn_flags & ASE_DSP_R3) {
383 * Our cpu supports DSP R3 ASE, so enable
384 * access to DSP R3 resources.
386 if (env->CP0_Status & (1 << CP0St_MX)) {
387 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
388 MIPS_HFLAG_DSP_R3;
390 } else if (env->insn_flags & ASE_DSP_R2) {
392 * Our cpu supports DSP R2 ASE, so enable
393 * access to DSP R2 resources.
395 if (env->CP0_Status & (1 << CP0St_MX)) {
396 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
399 } else if (env->insn_flags & ASE_DSP) {
401 * Our cpu supports DSP ASE, so enable
402 * access to DSP resources.
404 if (env->CP0_Status & (1 << CP0St_MX)) {
405 env->hflags |= MIPS_HFLAG_DSP;
409 if (env->insn_flags & ISA_MIPS32R2) {
410 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
411 env->hflags |= MIPS_HFLAG_COP1X;
413 } else if (env->insn_flags & ISA_MIPS32) {
414 if (env->hflags & MIPS_HFLAG_64) {
415 env->hflags |= MIPS_HFLAG_COP1X;
417 } else if (env->insn_flags & ISA_MIPS4) {
419 * All supported MIPS IV CPUs use the XX (CU3) to enable
420 * and disable the MIPS IV extensions to the MIPS III ISA.
421 * Some other MIPS IV CPUs ignore the bit, so the check here
422 * would be too restrictive for them.
424 if (env->CP0_Status & (1U << CP0St_CU3)) {
425 env->hflags |= MIPS_HFLAG_COP1X;
428 if (env->insn_flags & ASE_MSA) {
429 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
430 env->hflags |= MIPS_HFLAG_MSA;
433 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
434 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
435 env->hflags |= MIPS_HFLAG_FRE;
438 if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
439 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
440 env->hflags |= MIPS_HFLAG_ELPA;
445 void cpu_mips_tlb_flush(CPUMIPSState *env);
446 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
447 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
448 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
450 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
451 int error_code, uintptr_t pc);
453 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
454 uint32_t exception,
455 uintptr_t pc)
457 do_raise_exception_err(env, exception, 0, pc);
460 #endif