char: serial: check divider value against baud base
[qemu/ar7.git] / hw / char / serial.c
blobeec72b7b9effec8ca25af917fb0313b11c2734a7
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "sysemu/char.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "exec/address-spaces.h"
32 #include "qemu/error-report.h"
34 //#define DEBUG_SERIAL
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56 * These are the definitions for the Modem Control Register
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
65 * These are the definitions for the Modem Status Register
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
98 #define MAX_XMIT_RETRY 4
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
109 static void serial_xmit(SerialState *s);
111 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
113 /* Receive overruns do not overwrite FIFO contents. */
114 if (!fifo8_is_full(&s->recv_fifo)) {
115 fifo8_push(&s->recv_fifo, chr);
116 } else {
117 s->lsr |= UART_LSR_OE;
121 static void serial_update_irq(SerialState *s)
123 uint8_t tmp_iir = UART_IIR_NO_INT;
125 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
126 tmp_iir = UART_IIR_RLSI;
127 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
128 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
129 * this is not in the specification but is observed on existing
130 * hardware. */
131 tmp_iir = UART_IIR_CTI;
132 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
133 (!(s->fcr & UART_FCR_FE) ||
134 s->recv_fifo.num >= s->recv_fifo_itl)) {
135 tmp_iir = UART_IIR_RDI;
136 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
137 tmp_iir = UART_IIR_THRI;
138 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
139 tmp_iir = UART_IIR_MSI;
142 s->iir = tmp_iir | (s->iir & 0xF0);
144 if (tmp_iir != UART_IIR_NO_INT) {
145 qemu_irq_raise(s->irq);
146 } else {
147 qemu_irq_lower(s->irq);
151 static void serial_update_parameters(SerialState *s)
153 int speed, parity, data_bits, stop_bits, frame_size;
154 QEMUSerialSetParams ssp;
156 if (s->divider == 0 || s->divider > s->baudbase) {
157 return;
160 /* Start bit. */
161 frame_size = 1;
162 if (s->lcr & 0x08) {
163 /* Parity bit. */
164 frame_size++;
165 if (s->lcr & 0x10)
166 parity = 'E';
167 else
168 parity = 'O';
169 } else {
170 parity = 'N';
172 if (s->lcr & 0x04)
173 stop_bits = 2;
174 else
175 stop_bits = 1;
177 data_bits = (s->lcr & 0x03) + 5;
178 frame_size += data_bits + stop_bits;
179 speed = s->baudbase / s->divider;
180 ssp.speed = speed;
181 ssp.parity = parity;
182 ssp.data_bits = data_bits;
183 ssp.stop_bits = stop_bits;
184 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
185 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
187 DPRINTF("speed=%d parity=%c data=%d stop=%d\n",
188 speed, parity, data_bits, stop_bits);
191 static void serial_update_msl(SerialState *s)
193 uint8_t omsr;
194 int flags;
196 timer_del(s->modem_status_poll);
198 if (qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
199 s->poll_msl = -1;
200 return;
203 omsr = s->msr;
205 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
206 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
207 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
208 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
210 if (s->msr != omsr) {
211 /* Set delta bits */
212 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
213 /* UART_MSR_TERI only if change was from 1 -> 0 */
214 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
215 s->msr &= ~UART_MSR_TERI;
216 serial_update_irq(s);
219 /* The real 16550A apparently has a 250ns response latency to line status changes.
220 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
222 if (s->poll_msl) {
223 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
224 NANOSECONDS_PER_SECOND / 100);
228 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
229 void *opaque)
231 SerialState *s = opaque;
232 s->watch_tag = 0;
233 serial_xmit(s);
234 return FALSE;
237 static void serial_xmit(SerialState *s)
239 do {
240 assert(!(s->lsr & UART_LSR_TEMT));
241 if (s->tsr_retry == 0) {
242 assert(!(s->lsr & UART_LSR_THRE));
244 if (s->fcr & UART_FCR_FE) {
245 assert(!fifo8_is_empty(&s->xmit_fifo));
246 s->tsr = fifo8_pop(&s->xmit_fifo);
247 if (!s->xmit_fifo.num) {
248 s->lsr |= UART_LSR_THRE;
250 } else {
251 s->tsr = s->thr;
252 s->lsr |= UART_LSR_THRE;
254 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
255 s->thr_ipending = 1;
256 serial_update_irq(s);
260 if (s->mcr & UART_MCR_LOOP) {
261 /* in loopback mode, say that we just received a char */
262 serial_receive1(s, &s->tsr, 1);
263 } else if (qemu_chr_fe_write(s->chr, &s->tsr, 1) != 1 &&
264 s->tsr_retry < MAX_XMIT_RETRY) {
265 assert(s->watch_tag == 0);
266 s->watch_tag = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
267 serial_watch_cb, s);
268 if (s->watch_tag > 0) {
269 s->tsr_retry++;
270 return;
273 s->tsr_retry = 0;
275 /* Transmit another byte if it is already available. It is only
276 possible when FIFO is enabled and not empty. */
277 } while (!(s->lsr & UART_LSR_THRE));
279 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
280 s->lsr |= UART_LSR_TEMT;
283 /* Setter for FCR.
284 is_load flag means, that value is set while loading VM state
285 and interrupt should not be invoked */
286 static void serial_write_fcr(SerialState *s, uint8_t val)
288 /* Set fcr - val only has the bits that are supposed to "stick" */
289 s->fcr = val;
291 if (val & UART_FCR_FE) {
292 s->iir |= UART_IIR_FE;
293 /* Set recv_fifo trigger Level */
294 switch (val & 0xC0) {
295 case UART_FCR_ITL_1:
296 s->recv_fifo_itl = 1;
297 break;
298 case UART_FCR_ITL_2:
299 s->recv_fifo_itl = 4;
300 break;
301 case UART_FCR_ITL_3:
302 s->recv_fifo_itl = 8;
303 break;
304 case UART_FCR_ITL_4:
305 s->recv_fifo_itl = 14;
306 break;
308 } else {
309 s->iir &= ~UART_IIR_FE;
313 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
314 unsigned size)
316 SerialState *s = opaque;
318 addr &= 7;
319 DPRINTF("write addr=0x%" HWADDR_PRIx " val=0x%" PRIx64 "\n", addr, val);
320 switch(addr) {
321 default:
322 case 0:
323 if (s->lcr & UART_LCR_DLAB) {
324 s->divider = (s->divider & 0xff00) | val;
325 serial_update_parameters(s);
326 } else {
327 s->thr = (uint8_t) val;
328 if(s->fcr & UART_FCR_FE) {
329 /* xmit overruns overwrite data, so make space if needed */
330 if (fifo8_is_full(&s->xmit_fifo)) {
331 fifo8_pop(&s->xmit_fifo);
333 fifo8_push(&s->xmit_fifo, s->thr);
335 s->thr_ipending = 0;
336 s->lsr &= ~UART_LSR_THRE;
337 s->lsr &= ~UART_LSR_TEMT;
338 serial_update_irq(s);
339 if (s->tsr_retry == 0) {
340 serial_xmit(s);
343 break;
344 case 1:
345 if (s->lcr & UART_LCR_DLAB) {
346 s->divider = (s->divider & 0x00ff) | (val << 8);
347 serial_update_parameters(s);
348 } else {
349 uint8_t changed = (s->ier ^ val) & 0x0f;
350 s->ier = val & 0x0f;
351 /* If the backend device is a real serial port, turn polling of the modem
352 * status lines on physical port on or off depending on UART_IER_MSI state.
354 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
355 if (s->ier & UART_IER_MSI) {
356 s->poll_msl = 1;
357 serial_update_msl(s);
358 } else {
359 timer_del(s->modem_status_poll);
360 s->poll_msl = 0;
364 /* Turning on the THRE interrupt on IER can trigger the interrupt
365 * if LSR.THRE=1, even if it had been masked before by reading IIR.
366 * This is not in the datasheet, but Windows relies on it. It is
367 * unclear if THRE has to be resampled every time THRI becomes
368 * 1, or only on the rising edge. Bochs does the latter, and Windows
369 * always toggles IER to all zeroes and back to all ones, so do the
370 * same.
372 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
373 * so that the thr_ipending subsection is not migrated.
375 if (changed & UART_IER_THRI) {
376 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
377 s->thr_ipending = 1;
378 } else {
379 s->thr_ipending = 0;
383 if (changed) {
384 serial_update_irq(s);
387 break;
388 case 2:
389 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
390 if ((val ^ s->fcr) & UART_FCR_FE) {
391 val |= UART_FCR_XFR | UART_FCR_RFR;
394 /* FIFO clear */
396 if (val & UART_FCR_RFR) {
397 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
398 timer_del(s->fifo_timeout_timer);
399 s->timeout_ipending = 0;
400 fifo8_reset(&s->recv_fifo);
403 if (val & UART_FCR_XFR) {
404 s->lsr |= UART_LSR_THRE;
405 s->thr_ipending = 1;
406 fifo8_reset(&s->xmit_fifo);
409 serial_write_fcr(s, val & 0xC9);
410 serial_update_irq(s);
411 break;
412 case 3:
414 int break_enable;
415 s->lcr = val;
416 serial_update_parameters(s);
417 break_enable = (val >> 6) & 1;
418 if (break_enable != s->last_break_enable) {
419 s->last_break_enable = break_enable;
420 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
421 &break_enable);
424 break;
425 case 4:
427 int flags;
428 int old_mcr = s->mcr;
429 s->mcr = val & 0x1f;
430 if (val & UART_MCR_LOOP)
431 break;
433 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
435 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
437 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
439 if (val & UART_MCR_RTS)
440 flags |= CHR_TIOCM_RTS;
441 if (val & UART_MCR_DTR)
442 flags |= CHR_TIOCM_DTR;
444 qemu_chr_fe_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
445 /* Update the modem status after a one-character-send wait-time, since there may be a response
446 from the device/computer at the other end of the serial line */
447 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
450 break;
451 case 5:
452 break;
453 case 6:
454 break;
455 case 7:
456 s->scr = val;
457 break;
461 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
463 SerialState *s = opaque;
464 uint32_t ret;
466 addr &= 7;
467 switch(addr) {
468 default:
469 case 0:
470 if (s->lcr & UART_LCR_DLAB) {
471 ret = s->divider & 0xff;
472 } else {
473 if(s->fcr & UART_FCR_FE) {
474 ret = fifo8_is_empty(&s->recv_fifo) ?
475 0 : fifo8_pop(&s->recv_fifo);
476 if (s->recv_fifo.num == 0) {
477 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
478 } else {
479 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
481 s->timeout_ipending = 0;
482 } else {
483 ret = s->rbr;
484 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
486 serial_update_irq(s);
487 if (!(s->mcr & UART_MCR_LOOP)) {
488 /* in loopback mode, don't receive any data */
489 qemu_chr_accept_input(s->chr);
492 break;
493 case 1:
494 if (s->lcr & UART_LCR_DLAB) {
495 ret = (s->divider >> 8) & 0xff;
496 } else {
497 ret = s->ier;
499 break;
500 case 2:
501 ret = s->iir;
502 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
503 s->thr_ipending = 0;
504 serial_update_irq(s);
506 break;
507 case 3:
508 ret = s->lcr;
509 break;
510 case 4:
511 ret = s->mcr;
512 break;
513 case 5:
514 ret = s->lsr;
515 /* Clear break and overrun interrupts */
516 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
517 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
518 serial_update_irq(s);
520 break;
521 case 6:
522 if (s->mcr & UART_MCR_LOOP) {
523 /* in loopback, the modem output pins are connected to the
524 inputs */
525 ret = (s->mcr & 0x0c) << 4;
526 ret |= (s->mcr & 0x02) << 3;
527 ret |= (s->mcr & 0x01) << 5;
528 } else {
529 if (s->poll_msl >= 0)
530 serial_update_msl(s);
531 ret = s->msr;
532 /* Clear delta bits & msr int after read, if they were set */
533 if (s->msr & UART_MSR_ANY_DELTA) {
534 s->msr &= 0xF0;
535 serial_update_irq(s);
538 break;
539 case 7:
540 ret = s->scr;
541 break;
543 DPRINTF("read addr=0x%" HWADDR_PRIx " val=0x%02x\n", addr, ret);
544 return ret;
547 static int serial_can_receive(SerialState *s)
549 if(s->fcr & UART_FCR_FE) {
550 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
552 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
553 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
554 * effect will be to almost always fill the fifo completely before
555 * the guest has a chance to respond, effectively overriding the ITL
556 * that the guest has set.
558 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
559 s->recv_fifo_itl - s->recv_fifo.num : 1;
560 } else {
561 return 0;
563 } else {
564 return !(s->lsr & UART_LSR_DR);
568 static void serial_receive_break(SerialState *s)
570 s->rbr = 0;
571 /* When the LSR_DR is set a null byte is pushed into the fifo */
572 recv_fifo_put(s, '\0');
573 s->lsr |= UART_LSR_BI | UART_LSR_DR;
574 serial_update_irq(s);
577 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
578 static void fifo_timeout_int (void *opaque) {
579 SerialState *s = opaque;
580 if (s->recv_fifo.num) {
581 s->timeout_ipending = 1;
582 serial_update_irq(s);
586 static int serial_can_receive1(void *opaque)
588 SerialState *s = opaque;
589 return serial_can_receive(s);
592 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
594 SerialState *s = opaque;
596 if (s->wakeup) {
597 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER);
599 if(s->fcr & UART_FCR_FE) {
600 int i;
601 for (i = 0; i < size; i++) {
602 recv_fifo_put(s, buf[i]);
604 s->lsr |= UART_LSR_DR;
605 /* call the timeout receive callback in 4 char transmit time */
606 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
607 } else {
608 if (s->lsr & UART_LSR_DR)
609 s->lsr |= UART_LSR_OE;
610 s->rbr = buf[0];
611 s->lsr |= UART_LSR_DR;
613 serial_update_irq(s);
616 static void serial_event(void *opaque, int event)
618 SerialState *s = opaque;
619 DPRINTF("event %x\n", event);
620 if (event == CHR_EVENT_BREAK)
621 serial_receive_break(s);
624 static void serial_pre_save(void *opaque)
626 SerialState *s = opaque;
627 s->fcr_vmstate = s->fcr;
630 static int serial_pre_load(void *opaque)
632 SerialState *s = opaque;
633 s->thr_ipending = -1;
634 s->poll_msl = -1;
635 return 0;
638 static int serial_post_load(void *opaque, int version_id)
640 SerialState *s = opaque;
642 if (version_id < 3) {
643 s->fcr_vmstate = 0;
645 if (s->thr_ipending == -1) {
646 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
649 if (s->tsr_retry > 0) {
650 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
651 if (s->lsr & UART_LSR_TEMT) {
652 error_report("inconsistent state in serial device "
653 "(tsr empty, tsr_retry=%d", s->tsr_retry);
654 return -1;
657 if (s->tsr_retry > MAX_XMIT_RETRY) {
658 s->tsr_retry = MAX_XMIT_RETRY;
661 assert(s->watch_tag == 0);
662 s->watch_tag = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
663 serial_watch_cb, s);
664 } else {
665 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
666 if (!(s->lsr & UART_LSR_TEMT)) {
667 error_report("inconsistent state in serial device "
668 "(tsr not empty, tsr_retry=0");
669 return -1;
673 s->last_break_enable = (s->lcr >> 6) & 1;
674 /* Initialize fcr via setter to perform essential side-effects */
675 serial_write_fcr(s, s->fcr_vmstate);
676 serial_update_parameters(s);
677 return 0;
680 static bool serial_thr_ipending_needed(void *opaque)
682 SerialState *s = opaque;
684 if (s->ier & UART_IER_THRI) {
685 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
686 return s->thr_ipending != expected_value;
687 } else {
688 /* LSR.THRE will be sampled again when the interrupt is
689 * enabled. thr_ipending is not used in this case, do
690 * not migrate it.
692 return false;
696 static const VMStateDescription vmstate_serial_thr_ipending = {
697 .name = "serial/thr_ipending",
698 .version_id = 1,
699 .minimum_version_id = 1,
700 .needed = serial_thr_ipending_needed,
701 .fields = (VMStateField[]) {
702 VMSTATE_INT32(thr_ipending, SerialState),
703 VMSTATE_END_OF_LIST()
707 static bool serial_tsr_needed(void *opaque)
709 SerialState *s = (SerialState *)opaque;
710 return s->tsr_retry != 0;
713 static const VMStateDescription vmstate_serial_tsr = {
714 .name = "serial/tsr",
715 .version_id = 1,
716 .minimum_version_id = 1,
717 .needed = serial_tsr_needed,
718 .fields = (VMStateField[]) {
719 VMSTATE_UINT32(tsr_retry, SerialState),
720 VMSTATE_UINT8(thr, SerialState),
721 VMSTATE_UINT8(tsr, SerialState),
722 VMSTATE_END_OF_LIST()
726 static bool serial_recv_fifo_needed(void *opaque)
728 SerialState *s = (SerialState *)opaque;
729 return !fifo8_is_empty(&s->recv_fifo);
733 static const VMStateDescription vmstate_serial_recv_fifo = {
734 .name = "serial/recv_fifo",
735 .version_id = 1,
736 .minimum_version_id = 1,
737 .needed = serial_recv_fifo_needed,
738 .fields = (VMStateField[]) {
739 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
740 VMSTATE_END_OF_LIST()
744 static bool serial_xmit_fifo_needed(void *opaque)
746 SerialState *s = (SerialState *)opaque;
747 return !fifo8_is_empty(&s->xmit_fifo);
750 static const VMStateDescription vmstate_serial_xmit_fifo = {
751 .name = "serial/xmit_fifo",
752 .version_id = 1,
753 .minimum_version_id = 1,
754 .needed = serial_xmit_fifo_needed,
755 .fields = (VMStateField[]) {
756 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
757 VMSTATE_END_OF_LIST()
761 static bool serial_fifo_timeout_timer_needed(void *opaque)
763 SerialState *s = (SerialState *)opaque;
764 return timer_pending(s->fifo_timeout_timer);
767 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
768 .name = "serial/fifo_timeout_timer",
769 .version_id = 1,
770 .minimum_version_id = 1,
771 .needed = serial_fifo_timeout_timer_needed,
772 .fields = (VMStateField[]) {
773 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
774 VMSTATE_END_OF_LIST()
778 static bool serial_timeout_ipending_needed(void *opaque)
780 SerialState *s = (SerialState *)opaque;
781 return s->timeout_ipending != 0;
784 static const VMStateDescription vmstate_serial_timeout_ipending = {
785 .name = "serial/timeout_ipending",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = serial_timeout_ipending_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(timeout_ipending, SerialState),
791 VMSTATE_END_OF_LIST()
795 static bool serial_poll_needed(void *opaque)
797 SerialState *s = (SerialState *)opaque;
798 return s->poll_msl >= 0;
801 static const VMStateDescription vmstate_serial_poll = {
802 .name = "serial/poll",
803 .version_id = 1,
804 .needed = serial_poll_needed,
805 .minimum_version_id = 1,
806 .fields = (VMStateField[]) {
807 VMSTATE_INT32(poll_msl, SerialState),
808 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_serial = {
814 .name = "serial",
815 .version_id = 3,
816 .minimum_version_id = 2,
817 .pre_save = serial_pre_save,
818 .pre_load = serial_pre_load,
819 .post_load = serial_post_load,
820 .fields = (VMStateField[]) {
821 VMSTATE_UINT16_V(divider, SerialState, 2),
822 VMSTATE_UINT8(rbr, SerialState),
823 VMSTATE_UINT8(ier, SerialState),
824 VMSTATE_UINT8(iir, SerialState),
825 VMSTATE_UINT8(lcr, SerialState),
826 VMSTATE_UINT8(mcr, SerialState),
827 VMSTATE_UINT8(lsr, SerialState),
828 VMSTATE_UINT8(msr, SerialState),
829 VMSTATE_UINT8(scr, SerialState),
830 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
831 VMSTATE_END_OF_LIST()
833 .subsections = (const VMStateDescription*[]) {
834 &vmstate_serial_thr_ipending,
835 &vmstate_serial_tsr,
836 &vmstate_serial_recv_fifo,
837 &vmstate_serial_xmit_fifo,
838 &vmstate_serial_fifo_timeout_timer,
839 &vmstate_serial_timeout_ipending,
840 &vmstate_serial_poll,
841 NULL
845 static void serial_reset(void *opaque)
847 SerialState *s = opaque;
849 if (s->watch_tag > 0) {
850 g_source_remove(s->watch_tag);
851 s->watch_tag = 0;
854 s->rbr = 0;
855 s->ier = 0;
856 s->iir = UART_IIR_NO_INT;
857 s->lcr = 0;
858 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
859 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
860 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
861 s->divider = 0x0C;
862 s->mcr = UART_MCR_OUT2;
863 s->scr = 0;
864 s->tsr_retry = 0;
865 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
866 s->poll_msl = 0;
868 s->timeout_ipending = 0;
869 timer_del(s->fifo_timeout_timer);
870 timer_del(s->modem_status_poll);
872 fifo8_reset(&s->recv_fifo);
873 fifo8_reset(&s->xmit_fifo);
875 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
877 s->thr_ipending = 0;
878 s->last_break_enable = 0;
879 qemu_irq_lower(s->irq);
881 serial_update_msl(s);
882 s->msr &= ~UART_MSR_ANY_DELTA;
885 void serial_realize_core(SerialState *s, Error **errp)
887 if (!s->chr) {
888 error_setg(errp, "Can't create serial device, empty char device");
889 return;
892 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
894 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
895 qemu_register_reset(serial_reset, s);
897 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
898 serial_event, s);
899 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
900 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
901 serial_reset(s);
904 void serial_exit_core(SerialState *s)
906 qemu_chr_add_handlers(s->chr, NULL, NULL, NULL, NULL);
907 qemu_unregister_reset(serial_reset, s);
910 /* Change the main reference oscillator frequency. */
911 void serial_set_frequency(SerialState *s, uint32_t frequency)
913 s->baudbase = frequency;
914 serial_update_parameters(s);
917 const MemoryRegionOps serial_io_ops = {
918 .read = serial_ioport_read,
919 .write = serial_ioport_write,
920 .impl = {
921 .min_access_size = 1,
922 .max_access_size = 1,
924 .endianness = DEVICE_LITTLE_ENDIAN,
927 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
928 CharDriverState *chr, MemoryRegion *system_io)
930 SerialState *s;
932 s = g_malloc0(sizeof(SerialState));
934 s->irq = irq;
935 s->baudbase = baudbase;
936 s->chr = chr;
937 serial_realize_core(s, &error_fatal);
939 vmstate_register(NULL, base, &vmstate_serial, s);
941 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
942 memory_region_add_subregion(system_io, base, &s->io);
944 return s;
947 /* Memory mapped interface */
948 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
949 unsigned size)
951 SerialState *s = opaque;
952 return serial_ioport_read(s, addr >> s->it_shift, 1);
955 static void serial_mm_write(void *opaque, hwaddr addr,
956 uint64_t value, unsigned size)
958 SerialState *s = opaque;
959 value &= ~0u >> (32 - (size * 8));
960 serial_ioport_write(s, addr >> s->it_shift, value, 1);
963 static const MemoryRegionOps serial_mm_ops[3] = {
964 [DEVICE_NATIVE_ENDIAN] = {
965 .read = serial_mm_read,
966 .write = serial_mm_write,
967 .endianness = DEVICE_NATIVE_ENDIAN,
969 [DEVICE_LITTLE_ENDIAN] = {
970 .read = serial_mm_read,
971 .write = serial_mm_write,
972 .endianness = DEVICE_LITTLE_ENDIAN,
974 [DEVICE_BIG_ENDIAN] = {
975 .read = serial_mm_read,
976 .write = serial_mm_write,
977 .endianness = DEVICE_BIG_ENDIAN,
981 SerialState *serial_mm_init(MemoryRegion *address_space,
982 hwaddr base, int it_shift,
983 qemu_irq irq, int baudbase,
984 CharDriverState *chr, enum device_endian end)
986 SerialState *s;
988 s = g_malloc0(sizeof(SerialState));
990 s->it_shift = it_shift;
991 s->irq = irq;
992 s->baudbase = baudbase;
993 s->chr = chr;
995 serial_realize_core(s, &error_fatal);
996 vmstate_register(NULL, base, &vmstate_serial, s);
998 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
999 "serial", 8 << it_shift);
1000 memory_region_add_subregion(address_space, base, &s->io);
1001 return s;