m68k: fix subx mem, mem instruction
[qemu/ar7.git] / target / arm / translate-a64.c
blobbff4e13bf6008fff3b550f9ae581cc87da022cb3
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "exec/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "trace-tcg.h"
40 static TCGv_i64 cpu_X[32];
41 static TCGv_i64 cpu_pc;
43 /* Load/store exclusive handling */
44 static TCGv_i64 cpu_exclusive_high;
45 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
85 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
86 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
88 /* Note that the gvec expanders operate on offsets + sizes. */
89 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
90 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
91 uint32_t, uint32_t);
92 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
93 uint32_t, uint32_t, uint32_t);
95 /* initialize TCG globals. */
96 void a64_translate_init(void)
98 int i;
100 cpu_pc = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, pc),
102 "pc");
103 for (i = 0; i < 32; i++) {
104 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
105 offsetof(CPUARMState, xregs[i]),
106 regnames[i]);
109 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
110 offsetof(CPUARMState, exclusive_high), "exclusive_high");
113 static inline int get_a64_user_mem_index(DisasContext *s)
115 /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns:
116 * if EL1, access as if EL0; otherwise access at current EL
118 ARMMMUIdx useridx;
120 switch (s->mmu_idx) {
121 case ARMMMUIdx_S12NSE1:
122 useridx = ARMMMUIdx_S12NSE0;
123 break;
124 case ARMMMUIdx_S1SE1:
125 useridx = ARMMMUIdx_S1SE0;
126 break;
127 case ARMMMUIdx_S2NS:
128 g_assert_not_reached();
129 default:
130 useridx = s->mmu_idx;
131 break;
133 return arm_to_core_mmu_idx(useridx);
136 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
137 fprintf_function cpu_fprintf, int flags)
139 ARMCPU *cpu = ARM_CPU(cs);
140 CPUARMState *env = &cpu->env;
141 uint32_t psr = pstate_read(env);
142 int i;
143 int el = arm_current_el(env);
144 const char *ns_status;
146 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
147 env->pc, env->xregs[31]);
148 for (i = 0; i < 31; i++) {
149 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
150 if ((i % 4) == 3) {
151 cpu_fprintf(f, "\n");
152 } else {
153 cpu_fprintf(f, " ");
157 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
158 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
159 } else {
160 ns_status = "";
163 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
164 psr,
165 psr & PSTATE_N ? 'N' : '-',
166 psr & PSTATE_Z ? 'Z' : '-',
167 psr & PSTATE_C ? 'C' : '-',
168 psr & PSTATE_V ? 'V' : '-',
169 ns_status,
171 psr & PSTATE_SP ? 'h' : 't');
173 if (flags & CPU_DUMP_FPU) {
174 int numvfpregs = 32;
175 for (i = 0; i < numvfpregs; i++) {
176 uint64_t *q = aa64_vfp_qreg(env, i);
177 uint64_t vlo = q[0];
178 uint64_t vhi = q[1];
179 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "%c",
180 i, vhi, vlo, (i & 1 ? '\n' : ' '));
182 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
183 vfp_get_fpcr(env), vfp_get_fpsr(env));
187 void gen_a64_set_pc_im(uint64_t val)
189 tcg_gen_movi_i64(cpu_pc, val);
192 /* Load the PC from a generic TCG variable.
194 * If address tagging is enabled via the TCR TBI bits, then loading
195 * an address into the PC will clear out any tag in the it:
196 * + for EL2 and EL3 there is only one TBI bit, and if it is set
197 * then the address is zero-extended, clearing bits [63:56]
198 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
199 * and TBI1 controls addressses with bit 55 == 1.
200 * If the appropriate TBI bit is set for the address then
201 * the address is sign-extended from bit 55 into bits [63:56]
203 * We can avoid doing this for relative-branches, because the
204 * PC + offset can never overflow into the tag bits (assuming
205 * that virtual addresses are less than 56 bits wide, as they
206 * are currently), but we must handle it for branch-to-register.
208 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
211 if (s->current_el <= 1) {
212 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
213 * examine bit 55 of address, can just generate code.
214 * If mixed, then test via generated code
216 if (s->tbi0 && s->tbi1) {
217 TCGv_i64 tmp_reg = tcg_temp_new_i64();
218 /* Both bits set, sign extension from bit 55 into [63:56] will
219 * cover both cases
221 tcg_gen_shli_i64(tmp_reg, src, 8);
222 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
223 tcg_temp_free_i64(tmp_reg);
224 } else if (!s->tbi0 && !s->tbi1) {
225 /* Neither bit set, just load it as-is */
226 tcg_gen_mov_i64(cpu_pc, src);
227 } else {
228 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
229 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
230 TCGv_i64 tcg_zero = tcg_const_i64(0);
232 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
234 if (s->tbi0) {
235 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
236 tcg_gen_andi_i64(tcg_tmpval, src,
237 0x00FFFFFFFFFFFFFFull);
238 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
239 tcg_tmpval, src);
240 } else {
241 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
242 tcg_gen_ori_i64(tcg_tmpval, src,
243 0xFF00000000000000ull);
244 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
245 tcg_tmpval, src);
247 tcg_temp_free_i64(tcg_zero);
248 tcg_temp_free_i64(tcg_bit55);
249 tcg_temp_free_i64(tcg_tmpval);
251 } else { /* EL > 1 */
252 if (s->tbi0) {
253 /* Force tag byte to all zero */
254 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
255 } else {
256 /* Load unmodified address */
257 tcg_gen_mov_i64(cpu_pc, src);
262 typedef struct DisasCompare64 {
263 TCGCond cond;
264 TCGv_i64 value;
265 } DisasCompare64;
267 static void a64_test_cc(DisasCompare64 *c64, int cc)
269 DisasCompare c32;
271 arm_test_cc(&c32, cc);
273 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
274 * properly. The NE/EQ comparisons are also fine with this choice. */
275 c64->cond = c32.cond;
276 c64->value = tcg_temp_new_i64();
277 tcg_gen_ext_i32_i64(c64->value, c32.value);
279 arm_free_cc(&c32);
282 static void a64_free_cc(DisasCompare64 *c64)
284 tcg_temp_free_i64(c64->value);
287 static void gen_exception_internal(int excp)
289 TCGv_i32 tcg_excp = tcg_const_i32(excp);
291 assert(excp_is_internal(excp));
292 gen_helper_exception_internal(cpu_env, tcg_excp);
293 tcg_temp_free_i32(tcg_excp);
296 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
298 TCGv_i32 tcg_excp = tcg_const_i32(excp);
299 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
300 TCGv_i32 tcg_el = tcg_const_i32(target_el);
302 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
303 tcg_syn, tcg_el);
304 tcg_temp_free_i32(tcg_el);
305 tcg_temp_free_i32(tcg_syn);
306 tcg_temp_free_i32(tcg_excp);
309 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
311 gen_a64_set_pc_im(s->pc - offset);
312 gen_exception_internal(excp);
313 s->base.is_jmp = DISAS_NORETURN;
316 static void gen_exception_insn(DisasContext *s, int offset, int excp,
317 uint32_t syndrome, uint32_t target_el)
319 gen_a64_set_pc_im(s->pc - offset);
320 gen_exception(excp, syndrome, target_el);
321 s->base.is_jmp = DISAS_NORETURN;
324 static void gen_exception_bkpt_insn(DisasContext *s, int offset,
325 uint32_t syndrome)
327 TCGv_i32 tcg_syn;
329 gen_a64_set_pc_im(s->pc - offset);
330 tcg_syn = tcg_const_i32(syndrome);
331 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
332 tcg_temp_free_i32(tcg_syn);
333 s->base.is_jmp = DISAS_NORETURN;
336 static void gen_ss_advance(DisasContext *s)
338 /* If the singlestep state is Active-not-pending, advance to
339 * Active-pending.
341 if (s->ss_active) {
342 s->pstate_ss = 0;
343 gen_helper_clear_pstate_ss(cpu_env);
347 static void gen_step_complete_exception(DisasContext *s)
349 /* We just completed step of an insn. Move from Active-not-pending
350 * to Active-pending, and then also take the swstep exception.
351 * This corresponds to making the (IMPDEF) choice to prioritize
352 * swstep exceptions over asynchronous exceptions taken to an exception
353 * level where debug is disabled. This choice has the advantage that
354 * we do not need to maintain internal state corresponding to the
355 * ISV/EX syndrome bits between completion of the step and generation
356 * of the exception, and our syndrome information is always correct.
358 gen_ss_advance(s);
359 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
360 default_exception_el(s));
361 s->base.is_jmp = DISAS_NORETURN;
364 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
366 /* No direct tb linking with singlestep (either QEMU's or the ARM
367 * debug architecture kind) or deterministic io
369 if (s->base.singlestep_enabled || s->ss_active ||
370 (tb_cflags(s->base.tb) & CF_LAST_IO)) {
371 return false;
374 #ifndef CONFIG_USER_ONLY
375 /* Only link tbs from inside the same guest page */
376 if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
377 return false;
379 #endif
381 return true;
384 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
386 TranslationBlock *tb;
388 tb = s->base.tb;
389 if (use_goto_tb(s, n, dest)) {
390 tcg_gen_goto_tb(n);
391 gen_a64_set_pc_im(dest);
392 tcg_gen_exit_tb((intptr_t)tb + n);
393 s->base.is_jmp = DISAS_NORETURN;
394 } else {
395 gen_a64_set_pc_im(dest);
396 if (s->ss_active) {
397 gen_step_complete_exception(s);
398 } else if (s->base.singlestep_enabled) {
399 gen_exception_internal(EXCP_DEBUG);
400 } else {
401 tcg_gen_lookup_and_goto_ptr();
402 s->base.is_jmp = DISAS_NORETURN;
407 static void unallocated_encoding(DisasContext *s)
409 /* Unallocated and reserved encodings are uncategorized */
410 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
411 default_exception_el(s));
414 #define unsupported_encoding(s, insn) \
415 do { \
416 qemu_log_mask(LOG_UNIMP, \
417 "%s:%d: unsupported instruction encoding 0x%08x " \
418 "at pc=%016" PRIx64 "\n", \
419 __FILE__, __LINE__, insn, s->pc - 4); \
420 unallocated_encoding(s); \
421 } while (0)
423 static void init_tmp_a64_array(DisasContext *s)
425 #ifdef CONFIG_DEBUG_TCG
426 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
427 #endif
428 s->tmp_a64_count = 0;
431 static void free_tmp_a64(DisasContext *s)
433 int i;
434 for (i = 0; i < s->tmp_a64_count; i++) {
435 tcg_temp_free_i64(s->tmp_a64[i]);
437 init_tmp_a64_array(s);
440 static TCGv_i64 new_tmp_a64(DisasContext *s)
442 assert(s->tmp_a64_count < TMP_A64_MAX);
443 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
446 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
448 TCGv_i64 t = new_tmp_a64(s);
449 tcg_gen_movi_i64(t, 0);
450 return t;
454 * Register access functions
456 * These functions are used for directly accessing a register in where
457 * changes to the final register value are likely to be made. If you
458 * need to use a register for temporary calculation (e.g. index type
459 * operations) use the read_* form.
461 * B1.2.1 Register mappings
463 * In instruction register encoding 31 can refer to ZR (zero register) or
464 * the SP (stack pointer) depending on context. In QEMU's case we map SP
465 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
466 * This is the point of the _sp forms.
468 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
470 if (reg == 31) {
471 return new_tmp_a64_zero(s);
472 } else {
473 return cpu_X[reg];
477 /* register access for when 31 == SP */
478 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
480 return cpu_X[reg];
483 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
484 * representing the register contents. This TCGv is an auto-freed
485 * temporary so it need not be explicitly freed, and may be modified.
487 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
489 TCGv_i64 v = new_tmp_a64(s);
490 if (reg != 31) {
491 if (sf) {
492 tcg_gen_mov_i64(v, cpu_X[reg]);
493 } else {
494 tcg_gen_ext32u_i64(v, cpu_X[reg]);
496 } else {
497 tcg_gen_movi_i64(v, 0);
499 return v;
502 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
504 TCGv_i64 v = new_tmp_a64(s);
505 if (sf) {
506 tcg_gen_mov_i64(v, cpu_X[reg]);
507 } else {
508 tcg_gen_ext32u_i64(v, cpu_X[reg]);
510 return v;
513 /* We should have at some point before trying to access an FP register
514 * done the necessary access check, so assert that
515 * (a) we did the check and
516 * (b) we didn't then just plough ahead anyway if it failed.
517 * Print the instruction pattern in the abort message so we can figure
518 * out what we need to fix if a user encounters this problem in the wild.
520 static inline void assert_fp_access_checked(DisasContext *s)
522 #ifdef CONFIG_DEBUG_TCG
523 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
524 fprintf(stderr, "target-arm: FP access check missing for "
525 "instruction 0x%08x\n", s->insn);
526 abort();
528 #endif
531 /* Return the offset into CPUARMState of an element of specified
532 * size, 'element' places in from the least significant end of
533 * the FP/vector register Qn.
535 static inline int vec_reg_offset(DisasContext *s, int regno,
536 int element, TCGMemOp size)
538 int offs = 0;
539 #ifdef HOST_WORDS_BIGENDIAN
540 /* This is complicated slightly because vfp.zregs[n].d[0] is
541 * still the low half and vfp.zregs[n].d[1] the high half
542 * of the 128 bit vector, even on big endian systems.
543 * Calculate the offset assuming a fully bigendian 128 bits,
544 * then XOR to account for the order of the two 64 bit halves.
546 offs += (16 - ((element + 1) * (1 << size)));
547 offs ^= 8;
548 #else
549 offs += element * (1 << size);
550 #endif
551 offs += offsetof(CPUARMState, vfp.zregs[regno]);
552 assert_fp_access_checked(s);
553 return offs;
556 /* Return the offset info CPUARMState of the "whole" vector register Qn. */
557 static inline int vec_full_reg_offset(DisasContext *s, int regno)
559 assert_fp_access_checked(s);
560 return offsetof(CPUARMState, vfp.zregs[regno]);
563 /* Return a newly allocated pointer to the vector register. */
564 static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
566 TCGv_ptr ret = tcg_temp_new_ptr();
567 tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno));
568 return ret;
571 /* Return the byte size of the "whole" vector register, VL / 8. */
572 static inline int vec_full_reg_size(DisasContext *s)
574 /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags.
575 In the meantime this is just the AdvSIMD length of 128. */
576 return 128 / 8;
579 /* Return the offset into CPUARMState of a slice (from
580 * the least significant end) of FP register Qn (ie
581 * Dn, Sn, Hn or Bn).
582 * (Note that this is not the same mapping as for A32; see cpu.h)
584 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
586 return vec_reg_offset(s, regno, 0, size);
589 /* Offset of the high half of the 128 bit vector Qn */
590 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
592 return vec_reg_offset(s, regno, 1, MO_64);
595 /* Convenience accessors for reading and writing single and double
596 * FP registers. Writing clears the upper parts of the associated
597 * 128 bit vector register, as required by the architecture.
598 * Note that unlike the GP register accessors, the values returned
599 * by the read functions must be manually freed.
601 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
603 TCGv_i64 v = tcg_temp_new_i64();
605 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
606 return v;
609 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
611 TCGv_i32 v = tcg_temp_new_i32();
613 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
614 return v;
617 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
618 * If SVE is not enabled, then there are only 128 bits in the vector.
620 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
622 unsigned ofs = fp_reg_offset(s, rd, MO_64);
623 unsigned vsz = vec_full_reg_size(s);
625 if (!is_q) {
626 TCGv_i64 tcg_zero = tcg_const_i64(0);
627 tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8);
628 tcg_temp_free_i64(tcg_zero);
630 if (vsz > 16) {
631 tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0);
635 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
637 unsigned ofs = fp_reg_offset(s, reg, MO_64);
639 tcg_gen_st_i64(v, cpu_env, ofs);
640 clear_vec_high(s, false, reg);
643 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
645 TCGv_i64 tmp = tcg_temp_new_i64();
647 tcg_gen_extu_i32_i64(tmp, v);
648 write_fp_dreg(s, reg, tmp);
649 tcg_temp_free_i64(tmp);
652 static TCGv_ptr get_fpstatus_ptr(bool is_f16)
654 TCGv_ptr statusptr = tcg_temp_new_ptr();
655 int offset;
657 /* In A64 all instructions (both FP and Neon) use the FPCR; there
658 * is no equivalent of the A32 Neon "standard FPSCR value".
659 * However half-precision operations operate under a different
660 * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status.
662 if (is_f16) {
663 offset = offsetof(CPUARMState, vfp.fp_status_f16);
664 } else {
665 offset = offsetof(CPUARMState, vfp.fp_status);
667 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
668 return statusptr;
671 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
672 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
673 GVecGen2Fn *gvec_fn, int vece)
675 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
676 is_q ? 16 : 8, vec_full_reg_size(s));
679 /* Expand a 2-operand + immediate AdvSIMD vector operation using
680 * an expander function.
682 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
683 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
685 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
686 imm, is_q ? 16 : 8, vec_full_reg_size(s));
689 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
690 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
691 GVecGen3Fn *gvec_fn, int vece)
693 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
694 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
697 /* Expand a 2-operand + immediate AdvSIMD vector operation using
698 * an op descriptor.
700 static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd,
701 int rn, int64_t imm, const GVecGen2i *gvec_op)
703 tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
704 is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op);
707 /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */
708 static void gen_gvec_op3(DisasContext *s, bool is_q, int rd,
709 int rn, int rm, const GVecGen3 *gvec_op)
711 tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
712 vec_full_reg_offset(s, rm), is_q ? 16 : 8,
713 vec_full_reg_size(s), gvec_op);
716 /* Expand a 3-operand + env pointer operation using
717 * an out-of-line helper.
719 static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd,
720 int rn, int rm, gen_helper_gvec_3_ptr *fn)
722 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
723 vec_full_reg_offset(s, rn),
724 vec_full_reg_offset(s, rm), cpu_env,
725 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
728 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
729 * an out-of-line helper.
731 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
732 int rm, bool is_fp16, int data,
733 gen_helper_gvec_3_ptr *fn)
735 TCGv_ptr fpst = get_fpstatus_ptr(is_fp16);
736 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
737 vec_full_reg_offset(s, rn),
738 vec_full_reg_offset(s, rm), fpst,
739 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
740 tcg_temp_free_ptr(fpst);
743 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
744 * than the 32 bit equivalent.
746 static inline void gen_set_NZ64(TCGv_i64 result)
748 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
749 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
752 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
753 static inline void gen_logic_CC(int sf, TCGv_i64 result)
755 if (sf) {
756 gen_set_NZ64(result);
757 } else {
758 tcg_gen_extrl_i64_i32(cpu_ZF, result);
759 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
761 tcg_gen_movi_i32(cpu_CF, 0);
762 tcg_gen_movi_i32(cpu_VF, 0);
765 /* dest = T0 + T1; compute C, N, V and Z flags */
766 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
768 if (sf) {
769 TCGv_i64 result, flag, tmp;
770 result = tcg_temp_new_i64();
771 flag = tcg_temp_new_i64();
772 tmp = tcg_temp_new_i64();
774 tcg_gen_movi_i64(tmp, 0);
775 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
777 tcg_gen_extrl_i64_i32(cpu_CF, flag);
779 gen_set_NZ64(result);
781 tcg_gen_xor_i64(flag, result, t0);
782 tcg_gen_xor_i64(tmp, t0, t1);
783 tcg_gen_andc_i64(flag, flag, tmp);
784 tcg_temp_free_i64(tmp);
785 tcg_gen_extrh_i64_i32(cpu_VF, flag);
787 tcg_gen_mov_i64(dest, result);
788 tcg_temp_free_i64(result);
789 tcg_temp_free_i64(flag);
790 } else {
791 /* 32 bit arithmetic */
792 TCGv_i32 t0_32 = tcg_temp_new_i32();
793 TCGv_i32 t1_32 = tcg_temp_new_i32();
794 TCGv_i32 tmp = tcg_temp_new_i32();
796 tcg_gen_movi_i32(tmp, 0);
797 tcg_gen_extrl_i64_i32(t0_32, t0);
798 tcg_gen_extrl_i64_i32(t1_32, t1);
799 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
800 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
801 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
802 tcg_gen_xor_i32(tmp, t0_32, t1_32);
803 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
804 tcg_gen_extu_i32_i64(dest, cpu_NF);
806 tcg_temp_free_i32(tmp);
807 tcg_temp_free_i32(t0_32);
808 tcg_temp_free_i32(t1_32);
812 /* dest = T0 - T1; compute C, N, V and Z flags */
813 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
815 if (sf) {
816 /* 64 bit arithmetic */
817 TCGv_i64 result, flag, tmp;
819 result = tcg_temp_new_i64();
820 flag = tcg_temp_new_i64();
821 tcg_gen_sub_i64(result, t0, t1);
823 gen_set_NZ64(result);
825 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
826 tcg_gen_extrl_i64_i32(cpu_CF, flag);
828 tcg_gen_xor_i64(flag, result, t0);
829 tmp = tcg_temp_new_i64();
830 tcg_gen_xor_i64(tmp, t0, t1);
831 tcg_gen_and_i64(flag, flag, tmp);
832 tcg_temp_free_i64(tmp);
833 tcg_gen_extrh_i64_i32(cpu_VF, flag);
834 tcg_gen_mov_i64(dest, result);
835 tcg_temp_free_i64(flag);
836 tcg_temp_free_i64(result);
837 } else {
838 /* 32 bit arithmetic */
839 TCGv_i32 t0_32 = tcg_temp_new_i32();
840 TCGv_i32 t1_32 = tcg_temp_new_i32();
841 TCGv_i32 tmp;
843 tcg_gen_extrl_i64_i32(t0_32, t0);
844 tcg_gen_extrl_i64_i32(t1_32, t1);
845 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
846 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
847 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
848 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
849 tmp = tcg_temp_new_i32();
850 tcg_gen_xor_i32(tmp, t0_32, t1_32);
851 tcg_temp_free_i32(t0_32);
852 tcg_temp_free_i32(t1_32);
853 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
854 tcg_temp_free_i32(tmp);
855 tcg_gen_extu_i32_i64(dest, cpu_NF);
859 /* dest = T0 + T1 + CF; do not compute flags. */
860 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 TCGv_i64 flag = tcg_temp_new_i64();
863 tcg_gen_extu_i32_i64(flag, cpu_CF);
864 tcg_gen_add_i64(dest, t0, t1);
865 tcg_gen_add_i64(dest, dest, flag);
866 tcg_temp_free_i64(flag);
868 if (!sf) {
869 tcg_gen_ext32u_i64(dest, dest);
873 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
874 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
876 if (sf) {
877 TCGv_i64 result, cf_64, vf_64, tmp;
878 result = tcg_temp_new_i64();
879 cf_64 = tcg_temp_new_i64();
880 vf_64 = tcg_temp_new_i64();
881 tmp = tcg_const_i64(0);
883 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
884 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
885 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
886 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
887 gen_set_NZ64(result);
889 tcg_gen_xor_i64(vf_64, result, t0);
890 tcg_gen_xor_i64(tmp, t0, t1);
891 tcg_gen_andc_i64(vf_64, vf_64, tmp);
892 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
894 tcg_gen_mov_i64(dest, result);
896 tcg_temp_free_i64(tmp);
897 tcg_temp_free_i64(vf_64);
898 tcg_temp_free_i64(cf_64);
899 tcg_temp_free_i64(result);
900 } else {
901 TCGv_i32 t0_32, t1_32, tmp;
902 t0_32 = tcg_temp_new_i32();
903 t1_32 = tcg_temp_new_i32();
904 tmp = tcg_const_i32(0);
906 tcg_gen_extrl_i64_i32(t0_32, t0);
907 tcg_gen_extrl_i64_i32(t1_32, t1);
908 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
909 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
911 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
912 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
913 tcg_gen_xor_i32(tmp, t0_32, t1_32);
914 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
915 tcg_gen_extu_i32_i64(dest, cpu_NF);
917 tcg_temp_free_i32(tmp);
918 tcg_temp_free_i32(t1_32);
919 tcg_temp_free_i32(t0_32);
924 * Load/Store generators
928 * Store from GPR register to memory.
930 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
931 TCGv_i64 tcg_addr, int size, int memidx,
932 bool iss_valid,
933 unsigned int iss_srt,
934 bool iss_sf, bool iss_ar)
936 g_assert(size <= 3);
937 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
939 if (iss_valid) {
940 uint32_t syn;
942 syn = syn_data_abort_with_iss(0,
943 size,
944 false,
945 iss_srt,
946 iss_sf,
947 iss_ar,
948 0, 0, 0, 0, 0, false);
949 disas_set_insn_syndrome(s, syn);
953 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
954 TCGv_i64 tcg_addr, int size,
955 bool iss_valid,
956 unsigned int iss_srt,
957 bool iss_sf, bool iss_ar)
959 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
960 iss_valid, iss_srt, iss_sf, iss_ar);
964 * Load from memory to GPR register
966 static void do_gpr_ld_memidx(DisasContext *s,
967 TCGv_i64 dest, TCGv_i64 tcg_addr,
968 int size, bool is_signed,
969 bool extend, int memidx,
970 bool iss_valid, unsigned int iss_srt,
971 bool iss_sf, bool iss_ar)
973 TCGMemOp memop = s->be_data + size;
975 g_assert(size <= 3);
977 if (is_signed) {
978 memop += MO_SIGN;
981 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
983 if (extend && is_signed) {
984 g_assert(size < 3);
985 tcg_gen_ext32u_i64(dest, dest);
988 if (iss_valid) {
989 uint32_t syn;
991 syn = syn_data_abort_with_iss(0,
992 size,
993 is_signed,
994 iss_srt,
995 iss_sf,
996 iss_ar,
997 0, 0, 0, 0, 0, false);
998 disas_set_insn_syndrome(s, syn);
1002 static void do_gpr_ld(DisasContext *s,
1003 TCGv_i64 dest, TCGv_i64 tcg_addr,
1004 int size, bool is_signed, bool extend,
1005 bool iss_valid, unsigned int iss_srt,
1006 bool iss_sf, bool iss_ar)
1008 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
1009 get_mem_index(s),
1010 iss_valid, iss_srt, iss_sf, iss_ar);
1014 * Store from FP register to memory
1016 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
1018 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1019 TCGv_i64 tmp = tcg_temp_new_i64();
1020 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
1021 if (size < 4) {
1022 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
1023 s->be_data + size);
1024 } else {
1025 bool be = s->be_data == MO_BE;
1026 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
1028 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1029 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1030 s->be_data | MO_Q);
1031 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
1032 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1033 s->be_data | MO_Q);
1034 tcg_temp_free_i64(tcg_hiaddr);
1037 tcg_temp_free_i64(tmp);
1041 * Load from memory to FP register
1043 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
1045 /* This always zero-extends and writes to a full 128 bit wide vector */
1046 TCGv_i64 tmplo = tcg_temp_new_i64();
1047 TCGv_i64 tmphi;
1049 if (size < 4) {
1050 TCGMemOp memop = s->be_data + size;
1051 tmphi = tcg_const_i64(0);
1052 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
1053 } else {
1054 bool be = s->be_data == MO_BE;
1055 TCGv_i64 tcg_hiaddr;
1057 tmphi = tcg_temp_new_i64();
1058 tcg_hiaddr = tcg_temp_new_i64();
1060 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1061 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
1062 s->be_data | MO_Q);
1063 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
1064 s->be_data | MO_Q);
1065 tcg_temp_free_i64(tcg_hiaddr);
1068 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1069 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1071 tcg_temp_free_i64(tmplo);
1072 tcg_temp_free_i64(tmphi);
1074 clear_vec_high(s, true, destidx);
1078 * Vector load/store helpers.
1080 * The principal difference between this and a FP load is that we don't
1081 * zero extend as we are filling a partial chunk of the vector register.
1082 * These functions don't support 128 bit loads/stores, which would be
1083 * normal load/store operations.
1085 * The _i32 versions are useful when operating on 32 bit quantities
1086 * (eg for floating point single or using Neon helper functions).
1089 /* Get value of an element within a vector register */
1090 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1091 int element, TCGMemOp memop)
1093 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1094 switch (memop) {
1095 case MO_8:
1096 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1097 break;
1098 case MO_16:
1099 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1100 break;
1101 case MO_32:
1102 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1103 break;
1104 case MO_8|MO_SIGN:
1105 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1106 break;
1107 case MO_16|MO_SIGN:
1108 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1109 break;
1110 case MO_32|MO_SIGN:
1111 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1112 break;
1113 case MO_64:
1114 case MO_64|MO_SIGN:
1115 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1116 break;
1117 default:
1118 g_assert_not_reached();
1122 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1123 int element, TCGMemOp memop)
1125 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1126 switch (memop) {
1127 case MO_8:
1128 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1129 break;
1130 case MO_16:
1131 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1132 break;
1133 case MO_8|MO_SIGN:
1134 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1135 break;
1136 case MO_16|MO_SIGN:
1137 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1138 break;
1139 case MO_32:
1140 case MO_32|MO_SIGN:
1141 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1142 break;
1143 default:
1144 g_assert_not_reached();
1148 /* Set value of an element within a vector register */
1149 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1150 int element, TCGMemOp memop)
1152 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1153 switch (memop) {
1154 case MO_8:
1155 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1156 break;
1157 case MO_16:
1158 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1159 break;
1160 case MO_32:
1161 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1162 break;
1163 case MO_64:
1164 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1165 break;
1166 default:
1167 g_assert_not_reached();
1171 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1172 int destidx, int element, TCGMemOp memop)
1174 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1175 switch (memop) {
1176 case MO_8:
1177 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1178 break;
1179 case MO_16:
1180 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1181 break;
1182 case MO_32:
1183 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1184 break;
1185 default:
1186 g_assert_not_reached();
1190 /* Store from vector register to memory */
1191 static void do_vec_st(DisasContext *s, int srcidx, int element,
1192 TCGv_i64 tcg_addr, int size)
1194 TCGMemOp memop = s->be_data + size;
1195 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1197 read_vec_element(s, tcg_tmp, srcidx, element, size);
1198 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1200 tcg_temp_free_i64(tcg_tmp);
1203 /* Load from memory to vector register */
1204 static void do_vec_ld(DisasContext *s, int destidx, int element,
1205 TCGv_i64 tcg_addr, int size)
1207 TCGMemOp memop = s->be_data + size;
1208 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1210 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1211 write_vec_element(s, tcg_tmp, destidx, element, size);
1213 tcg_temp_free_i64(tcg_tmp);
1216 /* Check that FP/Neon access is enabled. If it is, return
1217 * true. If not, emit code to generate an appropriate exception,
1218 * and return false; the caller should not emit any code for
1219 * the instruction. Note that this check must happen after all
1220 * unallocated-encoding checks (otherwise the syndrome information
1221 * for the resulting exception will be incorrect).
1223 static inline bool fp_access_check(DisasContext *s)
1225 assert(!s->fp_access_checked);
1226 s->fp_access_checked = true;
1228 if (!s->fp_excp_el) {
1229 return true;
1232 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1233 s->fp_excp_el);
1234 return false;
1237 /* Check that SVE access is enabled. If it is, return true.
1238 * If not, emit code to generate an appropriate exception and return false.
1240 static inline bool sve_access_check(DisasContext *s)
1242 if (s->sve_excp_el) {
1243 gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(),
1244 s->sve_excp_el);
1245 return false;
1247 return true;
1251 * This utility function is for doing register extension with an
1252 * optional shift. You will likely want to pass a temporary for the
1253 * destination register. See DecodeRegExtend() in the ARM ARM.
1255 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1256 int option, unsigned int shift)
1258 int extsize = extract32(option, 0, 2);
1259 bool is_signed = extract32(option, 2, 1);
1261 if (is_signed) {
1262 switch (extsize) {
1263 case 0:
1264 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1265 break;
1266 case 1:
1267 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1268 break;
1269 case 2:
1270 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1271 break;
1272 case 3:
1273 tcg_gen_mov_i64(tcg_out, tcg_in);
1274 break;
1276 } else {
1277 switch (extsize) {
1278 case 0:
1279 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1280 break;
1281 case 1:
1282 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1283 break;
1284 case 2:
1285 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1286 break;
1287 case 3:
1288 tcg_gen_mov_i64(tcg_out, tcg_in);
1289 break;
1293 if (shift) {
1294 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1298 static inline void gen_check_sp_alignment(DisasContext *s)
1300 /* The AArch64 architecture mandates that (if enabled via PSTATE
1301 * or SCTLR bits) there is a check that SP is 16-aligned on every
1302 * SP-relative load or store (with an exception generated if it is not).
1303 * In line with general QEMU practice regarding misaligned accesses,
1304 * we omit these checks for the sake of guest program performance.
1305 * This function is provided as a hook so we can more easily add these
1306 * checks in future (possibly as a "favour catching guest program bugs
1307 * over speed" user selectable option).
1312 * This provides a simple table based table lookup decoder. It is
1313 * intended to be used when the relevant bits for decode are too
1314 * awkwardly placed and switch/if based logic would be confusing and
1315 * deeply nested. Since it's a linear search through the table, tables
1316 * should be kept small.
1318 * It returns the first handler where insn & mask == pattern, or
1319 * NULL if there is no match.
1320 * The table is terminated by an empty mask (i.e. 0)
1322 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1323 uint32_t insn)
1325 const AArch64DecodeTable *tptr = table;
1327 while (tptr->mask) {
1328 if ((insn & tptr->mask) == tptr->pattern) {
1329 return tptr->disas_fn;
1331 tptr++;
1333 return NULL;
1337 * The instruction disassembly implemented here matches
1338 * the instruction encoding classifications in chapter C4
1339 * of the ARM Architecture Reference Manual (DDI0487B_a);
1340 * classification names and decode diagrams here should generally
1341 * match up with those in the manual.
1344 /* Unconditional branch (immediate)
1345 * 31 30 26 25 0
1346 * +----+-----------+-------------------------------------+
1347 * | op | 0 0 1 0 1 | imm26 |
1348 * +----+-----------+-------------------------------------+
1350 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1352 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1354 if (insn & (1U << 31)) {
1355 /* BL Branch with link */
1356 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1359 /* B Branch / BL Branch with link */
1360 gen_goto_tb(s, 0, addr);
1363 /* Compare and branch (immediate)
1364 * 31 30 25 24 23 5 4 0
1365 * +----+-------------+----+---------------------+--------+
1366 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1367 * +----+-------------+----+---------------------+--------+
1369 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1371 unsigned int sf, op, rt;
1372 uint64_t addr;
1373 TCGLabel *label_match;
1374 TCGv_i64 tcg_cmp;
1376 sf = extract32(insn, 31, 1);
1377 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1378 rt = extract32(insn, 0, 5);
1379 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1381 tcg_cmp = read_cpu_reg(s, rt, sf);
1382 label_match = gen_new_label();
1384 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1385 tcg_cmp, 0, label_match);
1387 gen_goto_tb(s, 0, s->pc);
1388 gen_set_label(label_match);
1389 gen_goto_tb(s, 1, addr);
1392 /* Test and branch (immediate)
1393 * 31 30 25 24 23 19 18 5 4 0
1394 * +----+-------------+----+-------+-------------+------+
1395 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1396 * +----+-------------+----+-------+-------------+------+
1398 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1400 unsigned int bit_pos, op, rt;
1401 uint64_t addr;
1402 TCGLabel *label_match;
1403 TCGv_i64 tcg_cmp;
1405 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1406 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1407 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1408 rt = extract32(insn, 0, 5);
1410 tcg_cmp = tcg_temp_new_i64();
1411 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1412 label_match = gen_new_label();
1413 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1414 tcg_cmp, 0, label_match);
1415 tcg_temp_free_i64(tcg_cmp);
1416 gen_goto_tb(s, 0, s->pc);
1417 gen_set_label(label_match);
1418 gen_goto_tb(s, 1, addr);
1421 /* Conditional branch (immediate)
1422 * 31 25 24 23 5 4 3 0
1423 * +---------------+----+---------------------+----+------+
1424 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1425 * +---------------+----+---------------------+----+------+
1427 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1429 unsigned int cond;
1430 uint64_t addr;
1432 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1433 unallocated_encoding(s);
1434 return;
1436 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1437 cond = extract32(insn, 0, 4);
1439 if (cond < 0x0e) {
1440 /* genuinely conditional branches */
1441 TCGLabel *label_match = gen_new_label();
1442 arm_gen_test_cc(cond, label_match);
1443 gen_goto_tb(s, 0, s->pc);
1444 gen_set_label(label_match);
1445 gen_goto_tb(s, 1, addr);
1446 } else {
1447 /* 0xe and 0xf are both "always" conditions */
1448 gen_goto_tb(s, 0, addr);
1452 /* HINT instruction group, including various allocated HINTs */
1453 static void handle_hint(DisasContext *s, uint32_t insn,
1454 unsigned int op1, unsigned int op2, unsigned int crm)
1456 unsigned int selector = crm << 3 | op2;
1458 if (op1 != 3) {
1459 unallocated_encoding(s);
1460 return;
1463 switch (selector) {
1464 case 0: /* NOP */
1465 return;
1466 case 3: /* WFI */
1467 s->base.is_jmp = DISAS_WFI;
1468 return;
1469 /* When running in MTTCG we don't generate jumps to the yield and
1470 * WFE helpers as it won't affect the scheduling of other vCPUs.
1471 * If we wanted to more completely model WFE/SEV so we don't busy
1472 * spin unnecessarily we would need to do something more involved.
1474 case 1: /* YIELD */
1475 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1476 s->base.is_jmp = DISAS_YIELD;
1478 return;
1479 case 2: /* WFE */
1480 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1481 s->base.is_jmp = DISAS_WFE;
1483 return;
1484 case 4: /* SEV */
1485 case 5: /* SEVL */
1486 /* we treat all as NOP at least for now */
1487 return;
1488 default:
1489 /* default specified as NOP equivalent */
1490 return;
1494 static void gen_clrex(DisasContext *s, uint32_t insn)
1496 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1499 /* CLREX, DSB, DMB, ISB */
1500 static void handle_sync(DisasContext *s, uint32_t insn,
1501 unsigned int op1, unsigned int op2, unsigned int crm)
1503 TCGBar bar;
1505 if (op1 != 3) {
1506 unallocated_encoding(s);
1507 return;
1510 switch (op2) {
1511 case 2: /* CLREX */
1512 gen_clrex(s, insn);
1513 return;
1514 case 4: /* DSB */
1515 case 5: /* DMB */
1516 switch (crm & 3) {
1517 case 1: /* MBReqTypes_Reads */
1518 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1519 break;
1520 case 2: /* MBReqTypes_Writes */
1521 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1522 break;
1523 default: /* MBReqTypes_All */
1524 bar = TCG_BAR_SC | TCG_MO_ALL;
1525 break;
1527 tcg_gen_mb(bar);
1528 return;
1529 case 6: /* ISB */
1530 /* We need to break the TB after this insn to execute
1531 * a self-modified code correctly and also to take
1532 * any pending interrupts immediately.
1534 gen_goto_tb(s, 0, s->pc);
1535 return;
1536 default:
1537 unallocated_encoding(s);
1538 return;
1542 /* MSR (immediate) - move immediate to processor state field */
1543 static void handle_msr_i(DisasContext *s, uint32_t insn,
1544 unsigned int op1, unsigned int op2, unsigned int crm)
1546 int op = op1 << 3 | op2;
1547 switch (op) {
1548 case 0x05: /* SPSel */
1549 if (s->current_el == 0) {
1550 unallocated_encoding(s);
1551 return;
1553 /* fall through */
1554 case 0x1e: /* DAIFSet */
1555 case 0x1f: /* DAIFClear */
1557 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1558 TCGv_i32 tcg_op = tcg_const_i32(op);
1559 gen_a64_set_pc_im(s->pc - 4);
1560 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1561 tcg_temp_free_i32(tcg_imm);
1562 tcg_temp_free_i32(tcg_op);
1563 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1564 gen_a64_set_pc_im(s->pc);
1565 s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP);
1566 break;
1568 default:
1569 unallocated_encoding(s);
1570 return;
1574 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1576 TCGv_i32 tmp = tcg_temp_new_i32();
1577 TCGv_i32 nzcv = tcg_temp_new_i32();
1579 /* build bit 31, N */
1580 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1581 /* build bit 30, Z */
1582 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1583 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1584 /* build bit 29, C */
1585 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1586 /* build bit 28, V */
1587 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1588 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1589 /* generate result */
1590 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1592 tcg_temp_free_i32(nzcv);
1593 tcg_temp_free_i32(tmp);
1596 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1599 TCGv_i32 nzcv = tcg_temp_new_i32();
1601 /* take NZCV from R[t] */
1602 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1604 /* bit 31, N */
1605 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1606 /* bit 30, Z */
1607 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1608 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1609 /* bit 29, C */
1610 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1611 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1612 /* bit 28, V */
1613 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1614 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1615 tcg_temp_free_i32(nzcv);
1618 /* MRS - move from system register
1619 * MSR (register) - move to system register
1620 * SYS
1621 * SYSL
1622 * These are all essentially the same insn in 'read' and 'write'
1623 * versions, with varying op0 fields.
1625 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1626 unsigned int op0, unsigned int op1, unsigned int op2,
1627 unsigned int crn, unsigned int crm, unsigned int rt)
1629 const ARMCPRegInfo *ri;
1630 TCGv_i64 tcg_rt;
1632 ri = get_arm_cp_reginfo(s->cp_regs,
1633 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1634 crn, crm, op0, op1, op2));
1636 if (!ri) {
1637 /* Unknown register; this might be a guest error or a QEMU
1638 * unimplemented feature.
1640 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1641 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1642 isread ? "read" : "write", op0, op1, crn, crm, op2);
1643 unallocated_encoding(s);
1644 return;
1647 /* Check access permissions */
1648 if (!cp_access_ok(s->current_el, ri, isread)) {
1649 unallocated_encoding(s);
1650 return;
1653 if (ri->accessfn) {
1654 /* Emit code to perform further access permissions checks at
1655 * runtime; this may result in an exception.
1657 TCGv_ptr tmpptr;
1658 TCGv_i32 tcg_syn, tcg_isread;
1659 uint32_t syndrome;
1661 gen_a64_set_pc_im(s->pc - 4);
1662 tmpptr = tcg_const_ptr(ri);
1663 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1664 tcg_syn = tcg_const_i32(syndrome);
1665 tcg_isread = tcg_const_i32(isread);
1666 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1667 tcg_temp_free_ptr(tmpptr);
1668 tcg_temp_free_i32(tcg_syn);
1669 tcg_temp_free_i32(tcg_isread);
1672 /* Handle special cases first */
1673 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1674 case ARM_CP_NOP:
1675 return;
1676 case ARM_CP_NZCV:
1677 tcg_rt = cpu_reg(s, rt);
1678 if (isread) {
1679 gen_get_nzcv(tcg_rt);
1680 } else {
1681 gen_set_nzcv(tcg_rt);
1683 return;
1684 case ARM_CP_CURRENTEL:
1685 /* Reads as current EL value from pstate, which is
1686 * guaranteed to be constant by the tb flags.
1688 tcg_rt = cpu_reg(s, rt);
1689 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1690 return;
1691 case ARM_CP_DC_ZVA:
1692 /* Writes clear the aligned block of memory which rt points into. */
1693 tcg_rt = cpu_reg(s, rt);
1694 gen_helper_dc_zva(cpu_env, tcg_rt);
1695 return;
1696 default:
1697 break;
1699 if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1700 return;
1702 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1703 return;
1706 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1707 gen_io_start();
1710 tcg_rt = cpu_reg(s, rt);
1712 if (isread) {
1713 if (ri->type & ARM_CP_CONST) {
1714 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1715 } else if (ri->readfn) {
1716 TCGv_ptr tmpptr;
1717 tmpptr = tcg_const_ptr(ri);
1718 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1719 tcg_temp_free_ptr(tmpptr);
1720 } else {
1721 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1723 } else {
1724 if (ri->type & ARM_CP_CONST) {
1725 /* If not forbidden by access permissions, treat as WI */
1726 return;
1727 } else if (ri->writefn) {
1728 TCGv_ptr tmpptr;
1729 tmpptr = tcg_const_ptr(ri);
1730 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1731 tcg_temp_free_ptr(tmpptr);
1732 } else {
1733 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1737 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1738 /* I/O operations must end the TB here (whether read or write) */
1739 gen_io_end();
1740 s->base.is_jmp = DISAS_UPDATE;
1741 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1742 /* We default to ending the TB on a coprocessor register write,
1743 * but allow this to be suppressed by the register definition
1744 * (usually only necessary to work around guest bugs).
1746 s->base.is_jmp = DISAS_UPDATE;
1750 /* System
1751 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1752 * +---------------------+---+-----+-----+-------+-------+-----+------+
1753 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1754 * +---------------------+---+-----+-----+-------+-------+-----+------+
1756 static void disas_system(DisasContext *s, uint32_t insn)
1758 unsigned int l, op0, op1, crn, crm, op2, rt;
1759 l = extract32(insn, 21, 1);
1760 op0 = extract32(insn, 19, 2);
1761 op1 = extract32(insn, 16, 3);
1762 crn = extract32(insn, 12, 4);
1763 crm = extract32(insn, 8, 4);
1764 op2 = extract32(insn, 5, 3);
1765 rt = extract32(insn, 0, 5);
1767 if (op0 == 0) {
1768 if (l || rt != 31) {
1769 unallocated_encoding(s);
1770 return;
1772 switch (crn) {
1773 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
1774 handle_hint(s, insn, op1, op2, crm);
1775 break;
1776 case 3: /* CLREX, DSB, DMB, ISB */
1777 handle_sync(s, insn, op1, op2, crm);
1778 break;
1779 case 4: /* MSR (immediate) */
1780 handle_msr_i(s, insn, op1, op2, crm);
1781 break;
1782 default:
1783 unallocated_encoding(s);
1784 break;
1786 return;
1788 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1791 /* Exception generation
1793 * 31 24 23 21 20 5 4 2 1 0
1794 * +-----------------+-----+------------------------+-----+----+
1795 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1796 * +-----------------------+------------------------+----------+
1798 static void disas_exc(DisasContext *s, uint32_t insn)
1800 int opc = extract32(insn, 21, 3);
1801 int op2_ll = extract32(insn, 0, 5);
1802 int imm16 = extract32(insn, 5, 16);
1803 TCGv_i32 tmp;
1805 switch (opc) {
1806 case 0:
1807 /* For SVC, HVC and SMC we advance the single-step state
1808 * machine before taking the exception. This is architecturally
1809 * mandated, to ensure that single-stepping a system call
1810 * instruction works properly.
1812 switch (op2_ll) {
1813 case 1: /* SVC */
1814 gen_ss_advance(s);
1815 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1816 default_exception_el(s));
1817 break;
1818 case 2: /* HVC */
1819 if (s->current_el == 0) {
1820 unallocated_encoding(s);
1821 break;
1823 /* The pre HVC helper handles cases when HVC gets trapped
1824 * as an undefined insn by runtime configuration.
1826 gen_a64_set_pc_im(s->pc - 4);
1827 gen_helper_pre_hvc(cpu_env);
1828 gen_ss_advance(s);
1829 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1830 break;
1831 case 3: /* SMC */
1832 if (s->current_el == 0) {
1833 unallocated_encoding(s);
1834 break;
1836 gen_a64_set_pc_im(s->pc - 4);
1837 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1838 gen_helper_pre_smc(cpu_env, tmp);
1839 tcg_temp_free_i32(tmp);
1840 gen_ss_advance(s);
1841 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1842 break;
1843 default:
1844 unallocated_encoding(s);
1845 break;
1847 break;
1848 case 1:
1849 if (op2_ll != 0) {
1850 unallocated_encoding(s);
1851 break;
1853 /* BRK */
1854 gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16));
1855 break;
1856 case 2:
1857 if (op2_ll != 0) {
1858 unallocated_encoding(s);
1859 break;
1861 /* HLT. This has two purposes.
1862 * Architecturally, it is an external halting debug instruction.
1863 * Since QEMU doesn't implement external debug, we treat this as
1864 * it is required for halting debug disabled: it will UNDEF.
1865 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1867 if (semihosting_enabled() && imm16 == 0xf000) {
1868 #ifndef CONFIG_USER_ONLY
1869 /* In system mode, don't allow userspace access to semihosting,
1870 * to provide some semblance of security (and for consistency
1871 * with our 32-bit semihosting).
1873 if (s->current_el == 0) {
1874 unsupported_encoding(s, insn);
1875 break;
1877 #endif
1878 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1879 } else {
1880 unsupported_encoding(s, insn);
1882 break;
1883 case 5:
1884 if (op2_ll < 1 || op2_ll > 3) {
1885 unallocated_encoding(s);
1886 break;
1888 /* DCPS1, DCPS2, DCPS3 */
1889 unsupported_encoding(s, insn);
1890 break;
1891 default:
1892 unallocated_encoding(s);
1893 break;
1897 /* Unconditional branch (register)
1898 * 31 25 24 21 20 16 15 10 9 5 4 0
1899 * +---------------+-------+-------+-------+------+-------+
1900 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1901 * +---------------+-------+-------+-------+------+-------+
1903 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1905 unsigned int opc, op2, op3, rn, op4;
1907 opc = extract32(insn, 21, 4);
1908 op2 = extract32(insn, 16, 5);
1909 op3 = extract32(insn, 10, 6);
1910 rn = extract32(insn, 5, 5);
1911 op4 = extract32(insn, 0, 5);
1913 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1914 unallocated_encoding(s);
1915 return;
1918 switch (opc) {
1919 case 0: /* BR */
1920 case 1: /* BLR */
1921 case 2: /* RET */
1922 gen_a64_set_pc(s, cpu_reg(s, rn));
1923 /* BLR also needs to load return address */
1924 if (opc == 1) {
1925 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1927 break;
1928 case 4: /* ERET */
1929 if (s->current_el == 0) {
1930 unallocated_encoding(s);
1931 return;
1933 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1934 gen_io_start();
1936 gen_helper_exception_return(cpu_env);
1937 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
1938 gen_io_end();
1940 /* Must exit loop to check un-masked IRQs */
1941 s->base.is_jmp = DISAS_EXIT;
1942 return;
1943 case 5: /* DRPS */
1944 if (rn != 0x1f) {
1945 unallocated_encoding(s);
1946 } else {
1947 unsupported_encoding(s, insn);
1949 return;
1950 default:
1951 unallocated_encoding(s);
1952 return;
1955 s->base.is_jmp = DISAS_JUMP;
1958 /* Branches, exception generating and system instructions */
1959 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1961 switch (extract32(insn, 25, 7)) {
1962 case 0x0a: case 0x0b:
1963 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1964 disas_uncond_b_imm(s, insn);
1965 break;
1966 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1967 disas_comp_b_imm(s, insn);
1968 break;
1969 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1970 disas_test_b_imm(s, insn);
1971 break;
1972 case 0x2a: /* Conditional branch (immediate) */
1973 disas_cond_b_imm(s, insn);
1974 break;
1975 case 0x6a: /* Exception generation / System */
1976 if (insn & (1 << 24)) {
1977 disas_system(s, insn);
1978 } else {
1979 disas_exc(s, insn);
1981 break;
1982 case 0x6b: /* Unconditional branch (register) */
1983 disas_uncond_b_reg(s, insn);
1984 break;
1985 default:
1986 unallocated_encoding(s);
1987 break;
1992 * Load/Store exclusive instructions are implemented by remembering
1993 * the value/address loaded, and seeing if these are the same
1994 * when the store is performed. This is not actually the architecturally
1995 * mandated semantics, but it works for typical guest code sequences
1996 * and avoids having to monitor regular stores.
1998 * The store exclusive uses the atomic cmpxchg primitives to avoid
1999 * races in multi-threaded linux-user and when MTTCG softmmu is
2000 * enabled.
2002 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2003 TCGv_i64 addr, int size, bool is_pair)
2005 int idx = get_mem_index(s);
2006 TCGMemOp memop = s->be_data;
2008 g_assert(size <= 3);
2009 if (is_pair) {
2010 g_assert(size >= 2);
2011 if (size == 2) {
2012 /* The pair must be single-copy atomic for the doubleword. */
2013 memop |= MO_64 | MO_ALIGN;
2014 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2015 if (s->be_data == MO_LE) {
2016 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2017 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2018 } else {
2019 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2020 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2022 } else {
2023 /* The pair must be single-copy atomic for *each* doubleword, not
2024 the entire quadword, however it must be quadword aligned. */
2025 memop |= MO_64;
2026 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2027 memop | MO_ALIGN_16);
2029 TCGv_i64 addr2 = tcg_temp_new_i64();
2030 tcg_gen_addi_i64(addr2, addr, 8);
2031 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2032 tcg_temp_free_i64(addr2);
2034 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2035 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2037 } else {
2038 memop |= size | MO_ALIGN;
2039 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2040 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2042 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2045 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2046 TCGv_i64 addr, int size, int is_pair)
2048 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2049 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2050 * [addr] = {Rt};
2051 * if (is_pair) {
2052 * [addr + datasize] = {Rt2};
2054 * {Rd} = 0;
2055 * } else {
2056 * {Rd} = 1;
2058 * env->exclusive_addr = -1;
2060 TCGLabel *fail_label = gen_new_label();
2061 TCGLabel *done_label = gen_new_label();
2062 TCGv_i64 tmp;
2064 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2066 tmp = tcg_temp_new_i64();
2067 if (is_pair) {
2068 if (size == 2) {
2069 if (s->be_data == MO_LE) {
2070 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2071 } else {
2072 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2074 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2075 cpu_exclusive_val, tmp,
2076 get_mem_index(s),
2077 MO_64 | MO_ALIGN | s->be_data);
2078 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2079 } else if (s->be_data == MO_LE) {
2080 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2081 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2082 cpu_exclusive_addr,
2083 cpu_reg(s, rt),
2084 cpu_reg(s, rt2));
2085 } else {
2086 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2087 cpu_reg(s, rt), cpu_reg(s, rt2));
2089 } else {
2090 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2091 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2092 cpu_exclusive_addr,
2093 cpu_reg(s, rt),
2094 cpu_reg(s, rt2));
2095 } else {
2096 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2097 cpu_reg(s, rt), cpu_reg(s, rt2));
2100 } else {
2101 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2102 cpu_reg(s, rt), get_mem_index(s),
2103 size | MO_ALIGN | s->be_data);
2104 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2106 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2107 tcg_temp_free_i64(tmp);
2108 tcg_gen_br(done_label);
2110 gen_set_label(fail_label);
2111 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2112 gen_set_label(done_label);
2113 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2116 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2117 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2119 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2121 int opc0 = extract32(opc, 0, 1);
2122 int regsize;
2124 if (is_signed) {
2125 regsize = opc0 ? 32 : 64;
2126 } else {
2127 regsize = size == 3 ? 64 : 32;
2129 return regsize == 64;
2132 /* Load/store exclusive
2134 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2135 * +-----+-------------+----+---+----+------+----+-------+------+------+
2136 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2137 * +-----+-------------+----+---+----+------+----+-------+------+------+
2139 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2140 * L: 0 -> store, 1 -> load
2141 * o2: 0 -> exclusive, 1 -> not
2142 * o1: 0 -> single register, 1 -> register pair
2143 * o0: 1 -> load-acquire/store-release, 0 -> not
2145 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2147 int rt = extract32(insn, 0, 5);
2148 int rn = extract32(insn, 5, 5);
2149 int rt2 = extract32(insn, 10, 5);
2150 int is_lasr = extract32(insn, 15, 1);
2151 int rs = extract32(insn, 16, 5);
2152 int is_pair = extract32(insn, 21, 1);
2153 int is_store = !extract32(insn, 22, 1);
2154 int is_excl = !extract32(insn, 23, 1);
2155 int size = extract32(insn, 30, 2);
2156 TCGv_i64 tcg_addr;
2158 if ((!is_excl && !is_pair && !is_lasr) ||
2159 (!is_excl && is_pair) ||
2160 (is_pair && size < 2)) {
2161 unallocated_encoding(s);
2162 return;
2165 if (rn == 31) {
2166 gen_check_sp_alignment(s);
2168 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2170 /* Note that since TCG is single threaded load-acquire/store-release
2171 * semantics require no extra if (is_lasr) { ... } handling.
2174 if (is_excl) {
2175 if (!is_store) {
2176 s->is_ldex = true;
2177 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2178 if (is_lasr) {
2179 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2181 } else {
2182 if (is_lasr) {
2183 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2185 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2187 } else {
2188 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2189 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2191 /* Generate ISS for non-exclusive accesses including LASR. */
2192 if (is_store) {
2193 if (is_lasr) {
2194 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2196 do_gpr_st(s, tcg_rt, tcg_addr, size,
2197 true, rt, iss_sf, is_lasr);
2198 } else {
2199 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2200 true, rt, iss_sf, is_lasr);
2201 if (is_lasr) {
2202 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2209 * Load register (literal)
2211 * 31 30 29 27 26 25 24 23 5 4 0
2212 * +-----+-------+---+-----+-------------------+-------+
2213 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2214 * +-----+-------+---+-----+-------------------+-------+
2216 * V: 1 -> vector (simd/fp)
2217 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2218 * 10-> 32 bit signed, 11 -> prefetch
2219 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2221 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2223 int rt = extract32(insn, 0, 5);
2224 int64_t imm = sextract32(insn, 5, 19) << 2;
2225 bool is_vector = extract32(insn, 26, 1);
2226 int opc = extract32(insn, 30, 2);
2227 bool is_signed = false;
2228 int size = 2;
2229 TCGv_i64 tcg_rt, tcg_addr;
2231 if (is_vector) {
2232 if (opc == 3) {
2233 unallocated_encoding(s);
2234 return;
2236 size = 2 + opc;
2237 if (!fp_access_check(s)) {
2238 return;
2240 } else {
2241 if (opc == 3) {
2242 /* PRFM (literal) : prefetch */
2243 return;
2245 size = 2 + extract32(opc, 0, 1);
2246 is_signed = extract32(opc, 1, 1);
2249 tcg_rt = cpu_reg(s, rt);
2251 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2252 if (is_vector) {
2253 do_fp_ld(s, rt, tcg_addr, size);
2254 } else {
2255 /* Only unsigned 32bit loads target 32bit registers. */
2256 bool iss_sf = opc != 0;
2258 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2259 true, rt, iss_sf, false);
2261 tcg_temp_free_i64(tcg_addr);
2265 * LDNP (Load Pair - non-temporal hint)
2266 * LDP (Load Pair - non vector)
2267 * LDPSW (Load Pair Signed Word - non vector)
2268 * STNP (Store Pair - non-temporal hint)
2269 * STP (Store Pair - non vector)
2270 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2271 * LDP (Load Pair of SIMD&FP)
2272 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2273 * STP (Store Pair of SIMD&FP)
2275 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2276 * +-----+-------+---+---+-------+---+-----------------------------+
2277 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2278 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2280 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2281 * LDPSW 01
2282 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2283 * V: 0 -> GPR, 1 -> Vector
2284 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2285 * 10 -> signed offset, 11 -> pre-index
2286 * L: 0 -> Store 1 -> Load
2288 * Rt, Rt2 = GPR or SIMD registers to be stored
2289 * Rn = general purpose register containing address
2290 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2292 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2294 int rt = extract32(insn, 0, 5);
2295 int rn = extract32(insn, 5, 5);
2296 int rt2 = extract32(insn, 10, 5);
2297 uint64_t offset = sextract64(insn, 15, 7);
2298 int index = extract32(insn, 23, 2);
2299 bool is_vector = extract32(insn, 26, 1);
2300 bool is_load = extract32(insn, 22, 1);
2301 int opc = extract32(insn, 30, 2);
2303 bool is_signed = false;
2304 bool postindex = false;
2305 bool wback = false;
2307 TCGv_i64 tcg_addr; /* calculated address */
2308 int size;
2310 if (opc == 3) {
2311 unallocated_encoding(s);
2312 return;
2315 if (is_vector) {
2316 size = 2 + opc;
2317 } else {
2318 size = 2 + extract32(opc, 1, 1);
2319 is_signed = extract32(opc, 0, 1);
2320 if (!is_load && is_signed) {
2321 unallocated_encoding(s);
2322 return;
2326 switch (index) {
2327 case 1: /* post-index */
2328 postindex = true;
2329 wback = true;
2330 break;
2331 case 0:
2332 /* signed offset with "non-temporal" hint. Since we don't emulate
2333 * caches we don't care about hints to the cache system about
2334 * data access patterns, and handle this identically to plain
2335 * signed offset.
2337 if (is_signed) {
2338 /* There is no non-temporal-hint version of LDPSW */
2339 unallocated_encoding(s);
2340 return;
2342 postindex = false;
2343 break;
2344 case 2: /* signed offset, rn not updated */
2345 postindex = false;
2346 break;
2347 case 3: /* pre-index */
2348 postindex = false;
2349 wback = true;
2350 break;
2353 if (is_vector && !fp_access_check(s)) {
2354 return;
2357 offset <<= size;
2359 if (rn == 31) {
2360 gen_check_sp_alignment(s);
2363 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2365 if (!postindex) {
2366 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2369 if (is_vector) {
2370 if (is_load) {
2371 do_fp_ld(s, rt, tcg_addr, size);
2372 } else {
2373 do_fp_st(s, rt, tcg_addr, size);
2375 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2376 if (is_load) {
2377 do_fp_ld(s, rt2, tcg_addr, size);
2378 } else {
2379 do_fp_st(s, rt2, tcg_addr, size);
2381 } else {
2382 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2383 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2385 if (is_load) {
2386 TCGv_i64 tmp = tcg_temp_new_i64();
2388 /* Do not modify tcg_rt before recognizing any exception
2389 * from the second load.
2391 do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false,
2392 false, 0, false, false);
2393 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2394 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2395 false, 0, false, false);
2397 tcg_gen_mov_i64(tcg_rt, tmp);
2398 tcg_temp_free_i64(tmp);
2399 } else {
2400 do_gpr_st(s, tcg_rt, tcg_addr, size,
2401 false, 0, false, false);
2402 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2403 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2404 false, 0, false, false);
2408 if (wback) {
2409 if (postindex) {
2410 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2411 } else {
2412 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2414 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2419 * Load/store (immediate post-indexed)
2420 * Load/store (immediate pre-indexed)
2421 * Load/store (unscaled immediate)
2423 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2424 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2425 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2426 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2428 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2429 10 -> unprivileged
2430 * V = 0 -> non-vector
2431 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2432 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2434 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2435 int opc,
2436 int size,
2437 int rt,
2438 bool is_vector)
2440 int rn = extract32(insn, 5, 5);
2441 int imm9 = sextract32(insn, 12, 9);
2442 int idx = extract32(insn, 10, 2);
2443 bool is_signed = false;
2444 bool is_store = false;
2445 bool is_extended = false;
2446 bool is_unpriv = (idx == 2);
2447 bool iss_valid = !is_vector;
2448 bool post_index;
2449 bool writeback;
2451 TCGv_i64 tcg_addr;
2453 if (is_vector) {
2454 size |= (opc & 2) << 1;
2455 if (size > 4 || is_unpriv) {
2456 unallocated_encoding(s);
2457 return;
2459 is_store = ((opc & 1) == 0);
2460 if (!fp_access_check(s)) {
2461 return;
2463 } else {
2464 if (size == 3 && opc == 2) {
2465 /* PRFM - prefetch */
2466 if (is_unpriv) {
2467 unallocated_encoding(s);
2468 return;
2470 return;
2472 if (opc == 3 && size > 1) {
2473 unallocated_encoding(s);
2474 return;
2476 is_store = (opc == 0);
2477 is_signed = extract32(opc, 1, 1);
2478 is_extended = (size < 3) && extract32(opc, 0, 1);
2481 switch (idx) {
2482 case 0:
2483 case 2:
2484 post_index = false;
2485 writeback = false;
2486 break;
2487 case 1:
2488 post_index = true;
2489 writeback = true;
2490 break;
2491 case 3:
2492 post_index = false;
2493 writeback = true;
2494 break;
2495 default:
2496 g_assert_not_reached();
2499 if (rn == 31) {
2500 gen_check_sp_alignment(s);
2502 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2504 if (!post_index) {
2505 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2508 if (is_vector) {
2509 if (is_store) {
2510 do_fp_st(s, rt, tcg_addr, size);
2511 } else {
2512 do_fp_ld(s, rt, tcg_addr, size);
2514 } else {
2515 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2516 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2517 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2519 if (is_store) {
2520 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2521 iss_valid, rt, iss_sf, false);
2522 } else {
2523 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2524 is_signed, is_extended, memidx,
2525 iss_valid, rt, iss_sf, false);
2529 if (writeback) {
2530 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2531 if (post_index) {
2532 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2534 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2539 * Load/store (register offset)
2541 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2542 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2543 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2544 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2546 * For non-vector:
2547 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2548 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2549 * For vector:
2550 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2551 * opc<0>: 0 -> store, 1 -> load
2552 * V: 1 -> vector/simd
2553 * opt: extend encoding (see DecodeRegExtend)
2554 * S: if S=1 then scale (essentially index by sizeof(size))
2555 * Rt: register to transfer into/out of
2556 * Rn: address register or SP for base
2557 * Rm: offset register or ZR for offset
2559 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2560 int opc,
2561 int size,
2562 int rt,
2563 bool is_vector)
2565 int rn = extract32(insn, 5, 5);
2566 int shift = extract32(insn, 12, 1);
2567 int rm = extract32(insn, 16, 5);
2568 int opt = extract32(insn, 13, 3);
2569 bool is_signed = false;
2570 bool is_store = false;
2571 bool is_extended = false;
2573 TCGv_i64 tcg_rm;
2574 TCGv_i64 tcg_addr;
2576 if (extract32(opt, 1, 1) == 0) {
2577 unallocated_encoding(s);
2578 return;
2581 if (is_vector) {
2582 size |= (opc & 2) << 1;
2583 if (size > 4) {
2584 unallocated_encoding(s);
2585 return;
2587 is_store = !extract32(opc, 0, 1);
2588 if (!fp_access_check(s)) {
2589 return;
2591 } else {
2592 if (size == 3 && opc == 2) {
2593 /* PRFM - prefetch */
2594 return;
2596 if (opc == 3 && size > 1) {
2597 unallocated_encoding(s);
2598 return;
2600 is_store = (opc == 0);
2601 is_signed = extract32(opc, 1, 1);
2602 is_extended = (size < 3) && extract32(opc, 0, 1);
2605 if (rn == 31) {
2606 gen_check_sp_alignment(s);
2608 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2610 tcg_rm = read_cpu_reg(s, rm, 1);
2611 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2613 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2615 if (is_vector) {
2616 if (is_store) {
2617 do_fp_st(s, rt, tcg_addr, size);
2618 } else {
2619 do_fp_ld(s, rt, tcg_addr, size);
2621 } else {
2622 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2623 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2624 if (is_store) {
2625 do_gpr_st(s, tcg_rt, tcg_addr, size,
2626 true, rt, iss_sf, false);
2627 } else {
2628 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2629 is_signed, is_extended,
2630 true, rt, iss_sf, false);
2636 * Load/store (unsigned immediate)
2638 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2639 * +----+-------+---+-----+-----+------------+-------+------+
2640 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2641 * +----+-------+---+-----+-----+------------+-------+------+
2643 * For non-vector:
2644 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2645 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2646 * For vector:
2647 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2648 * opc<0>: 0 -> store, 1 -> load
2649 * Rn: base address register (inc SP)
2650 * Rt: target register
2652 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2653 int opc,
2654 int size,
2655 int rt,
2656 bool is_vector)
2658 int rn = extract32(insn, 5, 5);
2659 unsigned int imm12 = extract32(insn, 10, 12);
2660 unsigned int offset;
2662 TCGv_i64 tcg_addr;
2664 bool is_store;
2665 bool is_signed = false;
2666 bool is_extended = false;
2668 if (is_vector) {
2669 size |= (opc & 2) << 1;
2670 if (size > 4) {
2671 unallocated_encoding(s);
2672 return;
2674 is_store = !extract32(opc, 0, 1);
2675 if (!fp_access_check(s)) {
2676 return;
2678 } else {
2679 if (size == 3 && opc == 2) {
2680 /* PRFM - prefetch */
2681 return;
2683 if (opc == 3 && size > 1) {
2684 unallocated_encoding(s);
2685 return;
2687 is_store = (opc == 0);
2688 is_signed = extract32(opc, 1, 1);
2689 is_extended = (size < 3) && extract32(opc, 0, 1);
2692 if (rn == 31) {
2693 gen_check_sp_alignment(s);
2695 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2696 offset = imm12 << size;
2697 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2699 if (is_vector) {
2700 if (is_store) {
2701 do_fp_st(s, rt, tcg_addr, size);
2702 } else {
2703 do_fp_ld(s, rt, tcg_addr, size);
2705 } else {
2706 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2707 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2708 if (is_store) {
2709 do_gpr_st(s, tcg_rt, tcg_addr, size,
2710 true, rt, iss_sf, false);
2711 } else {
2712 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2713 true, rt, iss_sf, false);
2718 /* Load/store register (all forms) */
2719 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2721 int rt = extract32(insn, 0, 5);
2722 int opc = extract32(insn, 22, 2);
2723 bool is_vector = extract32(insn, 26, 1);
2724 int size = extract32(insn, 30, 2);
2726 switch (extract32(insn, 24, 2)) {
2727 case 0:
2728 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2729 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2730 } else {
2731 /* Load/store register (unscaled immediate)
2732 * Load/store immediate pre/post-indexed
2733 * Load/store register unprivileged
2735 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2737 break;
2738 case 1:
2739 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2740 break;
2741 default:
2742 unallocated_encoding(s);
2743 break;
2747 /* AdvSIMD load/store multiple structures
2749 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2750 * +---+---+---------------+---+-------------+--------+------+------+------+
2751 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2752 * +---+---+---------------+---+-------------+--------+------+------+------+
2754 * AdvSIMD load/store multiple structures (post-indexed)
2756 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2757 * +---+---+---------------+---+---+---------+--------+------+------+------+
2758 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2759 * +---+---+---------------+---+---+---------+--------+------+------+------+
2761 * Rt: first (or only) SIMD&FP register to be transferred
2762 * Rn: base address or SP
2763 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2765 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2767 int rt = extract32(insn, 0, 5);
2768 int rn = extract32(insn, 5, 5);
2769 int size = extract32(insn, 10, 2);
2770 int opcode = extract32(insn, 12, 4);
2771 bool is_store = !extract32(insn, 22, 1);
2772 bool is_postidx = extract32(insn, 23, 1);
2773 bool is_q = extract32(insn, 30, 1);
2774 TCGv_i64 tcg_addr, tcg_rn;
2776 int ebytes = 1 << size;
2777 int elements = (is_q ? 128 : 64) / (8 << size);
2778 int rpt; /* num iterations */
2779 int selem; /* structure elements */
2780 int r;
2782 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2783 unallocated_encoding(s);
2784 return;
2787 /* From the shared decode logic */
2788 switch (opcode) {
2789 case 0x0:
2790 rpt = 1;
2791 selem = 4;
2792 break;
2793 case 0x2:
2794 rpt = 4;
2795 selem = 1;
2796 break;
2797 case 0x4:
2798 rpt = 1;
2799 selem = 3;
2800 break;
2801 case 0x6:
2802 rpt = 3;
2803 selem = 1;
2804 break;
2805 case 0x7:
2806 rpt = 1;
2807 selem = 1;
2808 break;
2809 case 0x8:
2810 rpt = 1;
2811 selem = 2;
2812 break;
2813 case 0xa:
2814 rpt = 2;
2815 selem = 1;
2816 break;
2817 default:
2818 unallocated_encoding(s);
2819 return;
2822 if (size == 3 && !is_q && selem != 1) {
2823 /* reserved */
2824 unallocated_encoding(s);
2825 return;
2828 if (!fp_access_check(s)) {
2829 return;
2832 if (rn == 31) {
2833 gen_check_sp_alignment(s);
2836 tcg_rn = cpu_reg_sp(s, rn);
2837 tcg_addr = tcg_temp_new_i64();
2838 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2840 for (r = 0; r < rpt; r++) {
2841 int e;
2842 for (e = 0; e < elements; e++) {
2843 int tt = (rt + r) % 32;
2844 int xs;
2845 for (xs = 0; xs < selem; xs++) {
2846 if (is_store) {
2847 do_vec_st(s, tt, e, tcg_addr, size);
2848 } else {
2849 do_vec_ld(s, tt, e, tcg_addr, size);
2851 /* For non-quad operations, setting a slice of the low
2852 * 64 bits of the register clears the high 64 bits (in
2853 * the ARM ARM pseudocode this is implicit in the fact
2854 * that 'rval' is a 64 bit wide variable).
2855 * For quad operations, we might still need to zero the
2856 * high bits of SVE. We optimize by noticing that we only
2857 * need to do this the first time we touch a register.
2859 if (e == 0 && (r == 0 || xs == selem - 1)) {
2860 clear_vec_high(s, is_q, tt);
2863 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2864 tt = (tt + 1) % 32;
2869 if (is_postidx) {
2870 int rm = extract32(insn, 16, 5);
2871 if (rm == 31) {
2872 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2873 } else {
2874 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2877 tcg_temp_free_i64(tcg_addr);
2880 /* AdvSIMD load/store single structure
2882 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2883 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2884 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2885 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2887 * AdvSIMD load/store single structure (post-indexed)
2889 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2890 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2891 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2892 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2894 * Rt: first (or only) SIMD&FP register to be transferred
2895 * Rn: base address or SP
2896 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2897 * index = encoded in Q:S:size dependent on size
2899 * lane_size = encoded in R, opc
2900 * transfer width = encoded in opc, S, size
2902 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2904 int rt = extract32(insn, 0, 5);
2905 int rn = extract32(insn, 5, 5);
2906 int size = extract32(insn, 10, 2);
2907 int S = extract32(insn, 12, 1);
2908 int opc = extract32(insn, 13, 3);
2909 int R = extract32(insn, 21, 1);
2910 int is_load = extract32(insn, 22, 1);
2911 int is_postidx = extract32(insn, 23, 1);
2912 int is_q = extract32(insn, 30, 1);
2914 int scale = extract32(opc, 1, 2);
2915 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2916 bool replicate = false;
2917 int index = is_q << 3 | S << 2 | size;
2918 int ebytes, xs;
2919 TCGv_i64 tcg_addr, tcg_rn;
2921 switch (scale) {
2922 case 3:
2923 if (!is_load || S) {
2924 unallocated_encoding(s);
2925 return;
2927 scale = size;
2928 replicate = true;
2929 break;
2930 case 0:
2931 break;
2932 case 1:
2933 if (extract32(size, 0, 1)) {
2934 unallocated_encoding(s);
2935 return;
2937 index >>= 1;
2938 break;
2939 case 2:
2940 if (extract32(size, 1, 1)) {
2941 unallocated_encoding(s);
2942 return;
2944 if (!extract32(size, 0, 1)) {
2945 index >>= 2;
2946 } else {
2947 if (S) {
2948 unallocated_encoding(s);
2949 return;
2951 index >>= 3;
2952 scale = 3;
2954 break;
2955 default:
2956 g_assert_not_reached();
2959 if (!fp_access_check(s)) {
2960 return;
2963 ebytes = 1 << scale;
2965 if (rn == 31) {
2966 gen_check_sp_alignment(s);
2969 tcg_rn = cpu_reg_sp(s, rn);
2970 tcg_addr = tcg_temp_new_i64();
2971 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2973 for (xs = 0; xs < selem; xs++) {
2974 if (replicate) {
2975 /* Load and replicate to all elements */
2976 uint64_t mulconst;
2977 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2979 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2980 get_mem_index(s), s->be_data + scale);
2981 switch (scale) {
2982 case 0:
2983 mulconst = 0x0101010101010101ULL;
2984 break;
2985 case 1:
2986 mulconst = 0x0001000100010001ULL;
2987 break;
2988 case 2:
2989 mulconst = 0x0000000100000001ULL;
2990 break;
2991 case 3:
2992 mulconst = 0;
2993 break;
2994 default:
2995 g_assert_not_reached();
2997 if (mulconst) {
2998 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
3000 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
3001 if (is_q) {
3002 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
3004 tcg_temp_free_i64(tcg_tmp);
3005 clear_vec_high(s, is_q, rt);
3006 } else {
3007 /* Load/store one element per register */
3008 if (is_load) {
3009 do_vec_ld(s, rt, index, tcg_addr, scale);
3010 } else {
3011 do_vec_st(s, rt, index, tcg_addr, scale);
3014 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
3015 rt = (rt + 1) % 32;
3018 if (is_postidx) {
3019 int rm = extract32(insn, 16, 5);
3020 if (rm == 31) {
3021 tcg_gen_mov_i64(tcg_rn, tcg_addr);
3022 } else {
3023 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3026 tcg_temp_free_i64(tcg_addr);
3029 /* Loads and stores */
3030 static void disas_ldst(DisasContext *s, uint32_t insn)
3032 switch (extract32(insn, 24, 6)) {
3033 case 0x08: /* Load/store exclusive */
3034 disas_ldst_excl(s, insn);
3035 break;
3036 case 0x18: case 0x1c: /* Load register (literal) */
3037 disas_ld_lit(s, insn);
3038 break;
3039 case 0x28: case 0x29:
3040 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
3041 disas_ldst_pair(s, insn);
3042 break;
3043 case 0x38: case 0x39:
3044 case 0x3c: case 0x3d: /* Load/store register (all forms) */
3045 disas_ldst_reg(s, insn);
3046 break;
3047 case 0x0c: /* AdvSIMD load/store multiple structures */
3048 disas_ldst_multiple_struct(s, insn);
3049 break;
3050 case 0x0d: /* AdvSIMD load/store single structure */
3051 disas_ldst_single_struct(s, insn);
3052 break;
3053 default:
3054 unallocated_encoding(s);
3055 break;
3059 /* PC-rel. addressing
3060 * 31 30 29 28 24 23 5 4 0
3061 * +----+-------+-----------+-------------------+------+
3062 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
3063 * +----+-------+-----------+-------------------+------+
3065 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
3067 unsigned int page, rd;
3068 uint64_t base;
3069 uint64_t offset;
3071 page = extract32(insn, 31, 1);
3072 /* SignExtend(immhi:immlo) -> offset */
3073 offset = sextract64(insn, 5, 19);
3074 offset = offset << 2 | extract32(insn, 29, 2);
3075 rd = extract32(insn, 0, 5);
3076 base = s->pc - 4;
3078 if (page) {
3079 /* ADRP (page based) */
3080 base &= ~0xfff;
3081 offset <<= 12;
3084 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
3088 * Add/subtract (immediate)
3090 * 31 30 29 28 24 23 22 21 10 9 5 4 0
3091 * +--+--+--+-----------+-----+-------------+-----+-----+
3092 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
3093 * +--+--+--+-----------+-----+-------------+-----+-----+
3095 * sf: 0 -> 32bit, 1 -> 64bit
3096 * op: 0 -> add , 1 -> sub
3097 * S: 1 -> set flags
3098 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
3100 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
3102 int rd = extract32(insn, 0, 5);
3103 int rn = extract32(insn, 5, 5);
3104 uint64_t imm = extract32(insn, 10, 12);
3105 int shift = extract32(insn, 22, 2);
3106 bool setflags = extract32(insn, 29, 1);
3107 bool sub_op = extract32(insn, 30, 1);
3108 bool is_64bit = extract32(insn, 31, 1);
3110 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3111 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
3112 TCGv_i64 tcg_result;
3114 switch (shift) {
3115 case 0x0:
3116 break;
3117 case 0x1:
3118 imm <<= 12;
3119 break;
3120 default:
3121 unallocated_encoding(s);
3122 return;
3125 tcg_result = tcg_temp_new_i64();
3126 if (!setflags) {
3127 if (sub_op) {
3128 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
3129 } else {
3130 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
3132 } else {
3133 TCGv_i64 tcg_imm = tcg_const_i64(imm);
3134 if (sub_op) {
3135 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3136 } else {
3137 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
3139 tcg_temp_free_i64(tcg_imm);
3142 if (is_64bit) {
3143 tcg_gen_mov_i64(tcg_rd, tcg_result);
3144 } else {
3145 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3148 tcg_temp_free_i64(tcg_result);
3151 /* The input should be a value in the bottom e bits (with higher
3152 * bits zero); returns that value replicated into every element
3153 * of size e in a 64 bit integer.
3155 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
3157 assert(e != 0);
3158 while (e < 64) {
3159 mask |= mask << e;
3160 e *= 2;
3162 return mask;
3165 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
3166 static inline uint64_t bitmask64(unsigned int length)
3168 assert(length > 0 && length <= 64);
3169 return ~0ULL >> (64 - length);
3172 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
3173 * only require the wmask. Returns false if the imms/immr/immn are a reserved
3174 * value (ie should cause a guest UNDEF exception), and true if they are
3175 * valid, in which case the decoded bit pattern is written to result.
3177 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3178 unsigned int imms, unsigned int immr)
3180 uint64_t mask;
3181 unsigned e, levels, s, r;
3182 int len;
3184 assert(immn < 2 && imms < 64 && immr < 64);
3186 /* The bit patterns we create here are 64 bit patterns which
3187 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3188 * 64 bits each. Each element contains the same value: a run
3189 * of between 1 and e-1 non-zero bits, rotated within the
3190 * element by between 0 and e-1 bits.
3192 * The element size and run length are encoded into immn (1 bit)
3193 * and imms (6 bits) as follows:
3194 * 64 bit elements: immn = 1, imms = <length of run - 1>
3195 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3196 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3197 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3198 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3199 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3200 * Notice that immn = 0, imms = 11111x is the only combination
3201 * not covered by one of the above options; this is reserved.
3202 * Further, <length of run - 1> all-ones is a reserved pattern.
3204 * In all cases the rotation is by immr % e (and immr is 6 bits).
3207 /* First determine the element size */
3208 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3209 if (len < 1) {
3210 /* This is the immn == 0, imms == 0x11111x case */
3211 return false;
3213 e = 1 << len;
3215 levels = e - 1;
3216 s = imms & levels;
3217 r = immr & levels;
3219 if (s == levels) {
3220 /* <length of run - 1> mustn't be all-ones. */
3221 return false;
3224 /* Create the value of one element: s+1 set bits rotated
3225 * by r within the element (which is e bits wide)...
3227 mask = bitmask64(s + 1);
3228 if (r) {
3229 mask = (mask >> r) | (mask << (e - r));
3230 mask &= bitmask64(e);
3232 /* ...then replicate the element over the whole 64 bit value */
3233 mask = bitfield_replicate(mask, e);
3234 *result = mask;
3235 return true;
3238 /* Logical (immediate)
3239 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3240 * +----+-----+-------------+---+------+------+------+------+
3241 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3242 * +----+-----+-------------+---+------+------+------+------+
3244 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3246 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3247 TCGv_i64 tcg_rd, tcg_rn;
3248 uint64_t wmask;
3249 bool is_and = false;
3251 sf = extract32(insn, 31, 1);
3252 opc = extract32(insn, 29, 2);
3253 is_n = extract32(insn, 22, 1);
3254 immr = extract32(insn, 16, 6);
3255 imms = extract32(insn, 10, 6);
3256 rn = extract32(insn, 5, 5);
3257 rd = extract32(insn, 0, 5);
3259 if (!sf && is_n) {
3260 unallocated_encoding(s);
3261 return;
3264 if (opc == 0x3) { /* ANDS */
3265 tcg_rd = cpu_reg(s, rd);
3266 } else {
3267 tcg_rd = cpu_reg_sp(s, rd);
3269 tcg_rn = cpu_reg(s, rn);
3271 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3272 /* some immediate field values are reserved */
3273 unallocated_encoding(s);
3274 return;
3277 if (!sf) {
3278 wmask &= 0xffffffff;
3281 switch (opc) {
3282 case 0x3: /* ANDS */
3283 case 0x0: /* AND */
3284 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3285 is_and = true;
3286 break;
3287 case 0x1: /* ORR */
3288 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3289 break;
3290 case 0x2: /* EOR */
3291 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3292 break;
3293 default:
3294 assert(FALSE); /* must handle all above */
3295 break;
3298 if (!sf && !is_and) {
3299 /* zero extend final result; we know we can skip this for AND
3300 * since the immediate had the high 32 bits clear.
3302 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3305 if (opc == 3) { /* ANDS */
3306 gen_logic_CC(sf, tcg_rd);
3311 * Move wide (immediate)
3313 * 31 30 29 28 23 22 21 20 5 4 0
3314 * +--+-----+-------------+-----+----------------+------+
3315 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3316 * +--+-----+-------------+-----+----------------+------+
3318 * sf: 0 -> 32 bit, 1 -> 64 bit
3319 * opc: 00 -> N, 10 -> Z, 11 -> K
3320 * hw: shift/16 (0,16, and sf only 32, 48)
3322 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3324 int rd = extract32(insn, 0, 5);
3325 uint64_t imm = extract32(insn, 5, 16);
3326 int sf = extract32(insn, 31, 1);
3327 int opc = extract32(insn, 29, 2);
3328 int pos = extract32(insn, 21, 2) << 4;
3329 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3330 TCGv_i64 tcg_imm;
3332 if (!sf && (pos >= 32)) {
3333 unallocated_encoding(s);
3334 return;
3337 switch (opc) {
3338 case 0: /* MOVN */
3339 case 2: /* MOVZ */
3340 imm <<= pos;
3341 if (opc == 0) {
3342 imm = ~imm;
3344 if (!sf) {
3345 imm &= 0xffffffffu;
3347 tcg_gen_movi_i64(tcg_rd, imm);
3348 break;
3349 case 3: /* MOVK */
3350 tcg_imm = tcg_const_i64(imm);
3351 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3352 tcg_temp_free_i64(tcg_imm);
3353 if (!sf) {
3354 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3356 break;
3357 default:
3358 unallocated_encoding(s);
3359 break;
3363 /* Bitfield
3364 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3365 * +----+-----+-------------+---+------+------+------+------+
3366 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3367 * +----+-----+-------------+---+------+------+------+------+
3369 static void disas_bitfield(DisasContext *s, uint32_t insn)
3371 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3372 TCGv_i64 tcg_rd, tcg_tmp;
3374 sf = extract32(insn, 31, 1);
3375 opc = extract32(insn, 29, 2);
3376 n = extract32(insn, 22, 1);
3377 ri = extract32(insn, 16, 6);
3378 si = extract32(insn, 10, 6);
3379 rn = extract32(insn, 5, 5);
3380 rd = extract32(insn, 0, 5);
3381 bitsize = sf ? 64 : 32;
3383 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3384 unallocated_encoding(s);
3385 return;
3388 tcg_rd = cpu_reg(s, rd);
3390 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3391 to be smaller than bitsize, we'll never reference data outside the
3392 low 32-bits anyway. */
3393 tcg_tmp = read_cpu_reg(s, rn, 1);
3395 /* Recognize simple(r) extractions. */
3396 if (si >= ri) {
3397 /* Wd<s-r:0> = Wn<s:r> */
3398 len = (si - ri) + 1;
3399 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
3400 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
3401 goto done;
3402 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
3403 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
3404 return;
3406 /* opc == 1, BXFIL fall through to deposit */
3407 tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len);
3408 pos = 0;
3409 } else {
3410 /* Handle the ri > si case with a deposit
3411 * Wd<32+s-r,32-r> = Wn<s:0>
3413 len = si + 1;
3414 pos = (bitsize - ri) & (bitsize - 1);
3417 if (opc == 0 && len < ri) {
3418 /* SBFM: sign extend the destination field from len to fill
3419 the balance of the word. Let the deposit below insert all
3420 of those sign bits. */
3421 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
3422 len = ri;
3425 if (opc == 1) { /* BFM, BXFIL */
3426 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3427 } else {
3428 /* SBFM or UBFM: We start with zero, and we haven't modified
3429 any bits outside bitsize, therefore the zero-extension
3430 below is unneeded. */
3431 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
3432 return;
3435 done:
3436 if (!sf) { /* zero extend final result */
3437 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3441 /* Extract
3442 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3443 * +----+------+-------------+---+----+------+--------+------+------+
3444 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3445 * +----+------+-------------+---+----+------+--------+------+------+
3447 static void disas_extract(DisasContext *s, uint32_t insn)
3449 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3451 sf = extract32(insn, 31, 1);
3452 n = extract32(insn, 22, 1);
3453 rm = extract32(insn, 16, 5);
3454 imm = extract32(insn, 10, 6);
3455 rn = extract32(insn, 5, 5);
3456 rd = extract32(insn, 0, 5);
3457 op21 = extract32(insn, 29, 2);
3458 op0 = extract32(insn, 21, 1);
3459 bitsize = sf ? 64 : 32;
3461 if (sf != n || op21 || op0 || imm >= bitsize) {
3462 unallocated_encoding(s);
3463 } else {
3464 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3466 tcg_rd = cpu_reg(s, rd);
3468 if (unlikely(imm == 0)) {
3469 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3470 * so an extract from bit 0 is a special case.
3472 if (sf) {
3473 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3474 } else {
3475 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3477 } else if (rm == rn) { /* ROR */
3478 tcg_rm = cpu_reg(s, rm);
3479 if (sf) {
3480 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3481 } else {
3482 TCGv_i32 tmp = tcg_temp_new_i32();
3483 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3484 tcg_gen_rotri_i32(tmp, tmp, imm);
3485 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3486 tcg_temp_free_i32(tmp);
3488 } else {
3489 tcg_rm = read_cpu_reg(s, rm, sf);
3490 tcg_rn = read_cpu_reg(s, rn, sf);
3491 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3492 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3493 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3494 if (!sf) {
3495 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3501 /* Data processing - immediate */
3502 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3504 switch (extract32(insn, 23, 6)) {
3505 case 0x20: case 0x21: /* PC-rel. addressing */
3506 disas_pc_rel_adr(s, insn);
3507 break;
3508 case 0x22: case 0x23: /* Add/subtract (immediate) */
3509 disas_add_sub_imm(s, insn);
3510 break;
3511 case 0x24: /* Logical (immediate) */
3512 disas_logic_imm(s, insn);
3513 break;
3514 case 0x25: /* Move wide (immediate) */
3515 disas_movw_imm(s, insn);
3516 break;
3517 case 0x26: /* Bitfield */
3518 disas_bitfield(s, insn);
3519 break;
3520 case 0x27: /* Extract */
3521 disas_extract(s, insn);
3522 break;
3523 default:
3524 unallocated_encoding(s);
3525 break;
3529 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3530 * Note that it is the caller's responsibility to ensure that the
3531 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3532 * mandated semantics for out of range shifts.
3534 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3535 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3537 switch (shift_type) {
3538 case A64_SHIFT_TYPE_LSL:
3539 tcg_gen_shl_i64(dst, src, shift_amount);
3540 break;
3541 case A64_SHIFT_TYPE_LSR:
3542 tcg_gen_shr_i64(dst, src, shift_amount);
3543 break;
3544 case A64_SHIFT_TYPE_ASR:
3545 if (!sf) {
3546 tcg_gen_ext32s_i64(dst, src);
3548 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3549 break;
3550 case A64_SHIFT_TYPE_ROR:
3551 if (sf) {
3552 tcg_gen_rotr_i64(dst, src, shift_amount);
3553 } else {
3554 TCGv_i32 t0, t1;
3555 t0 = tcg_temp_new_i32();
3556 t1 = tcg_temp_new_i32();
3557 tcg_gen_extrl_i64_i32(t0, src);
3558 tcg_gen_extrl_i64_i32(t1, shift_amount);
3559 tcg_gen_rotr_i32(t0, t0, t1);
3560 tcg_gen_extu_i32_i64(dst, t0);
3561 tcg_temp_free_i32(t0);
3562 tcg_temp_free_i32(t1);
3564 break;
3565 default:
3566 assert(FALSE); /* all shift types should be handled */
3567 break;
3570 if (!sf) { /* zero extend final result */
3571 tcg_gen_ext32u_i64(dst, dst);
3575 /* Shift a TCGv src by immediate, put result in dst.
3576 * The shift amount must be in range (this should always be true as the
3577 * relevant instructions will UNDEF on bad shift immediates).
3579 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3580 enum a64_shift_type shift_type, unsigned int shift_i)
3582 assert(shift_i < (sf ? 64 : 32));
3584 if (shift_i == 0) {
3585 tcg_gen_mov_i64(dst, src);
3586 } else {
3587 TCGv_i64 shift_const;
3589 shift_const = tcg_const_i64(shift_i);
3590 shift_reg(dst, src, sf, shift_type, shift_const);
3591 tcg_temp_free_i64(shift_const);
3595 /* Logical (shifted register)
3596 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3597 * +----+-----+-----------+-------+---+------+--------+------+------+
3598 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3599 * +----+-----+-----------+-------+---+------+--------+------+------+
3601 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3603 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3604 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3606 sf = extract32(insn, 31, 1);
3607 opc = extract32(insn, 29, 2);
3608 shift_type = extract32(insn, 22, 2);
3609 invert = extract32(insn, 21, 1);
3610 rm = extract32(insn, 16, 5);
3611 shift_amount = extract32(insn, 10, 6);
3612 rn = extract32(insn, 5, 5);
3613 rd = extract32(insn, 0, 5);
3615 if (!sf && (shift_amount & (1 << 5))) {
3616 unallocated_encoding(s);
3617 return;
3620 tcg_rd = cpu_reg(s, rd);
3622 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3623 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3624 * register-register MOV and MVN, so it is worth special casing.
3626 tcg_rm = cpu_reg(s, rm);
3627 if (invert) {
3628 tcg_gen_not_i64(tcg_rd, tcg_rm);
3629 if (!sf) {
3630 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3632 } else {
3633 if (sf) {
3634 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3635 } else {
3636 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3639 return;
3642 tcg_rm = read_cpu_reg(s, rm, sf);
3644 if (shift_amount) {
3645 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3648 tcg_rn = cpu_reg(s, rn);
3650 switch (opc | (invert << 2)) {
3651 case 0: /* AND */
3652 case 3: /* ANDS */
3653 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3654 break;
3655 case 1: /* ORR */
3656 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3657 break;
3658 case 2: /* EOR */
3659 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3660 break;
3661 case 4: /* BIC */
3662 case 7: /* BICS */
3663 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3664 break;
3665 case 5: /* ORN */
3666 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3667 break;
3668 case 6: /* EON */
3669 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3670 break;
3671 default:
3672 assert(FALSE);
3673 break;
3676 if (!sf) {
3677 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3680 if (opc == 3) {
3681 gen_logic_CC(sf, tcg_rd);
3686 * Add/subtract (extended register)
3688 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3689 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3690 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3691 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3693 * sf: 0 -> 32bit, 1 -> 64bit
3694 * op: 0 -> add , 1 -> sub
3695 * S: 1 -> set flags
3696 * opt: 00
3697 * option: extension type (see DecodeRegExtend)
3698 * imm3: optional shift to Rm
3700 * Rd = Rn + LSL(extend(Rm), amount)
3702 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3704 int rd = extract32(insn, 0, 5);
3705 int rn = extract32(insn, 5, 5);
3706 int imm3 = extract32(insn, 10, 3);
3707 int option = extract32(insn, 13, 3);
3708 int rm = extract32(insn, 16, 5);
3709 bool setflags = extract32(insn, 29, 1);
3710 bool sub_op = extract32(insn, 30, 1);
3711 bool sf = extract32(insn, 31, 1);
3713 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3714 TCGv_i64 tcg_rd;
3715 TCGv_i64 tcg_result;
3717 if (imm3 > 4) {
3718 unallocated_encoding(s);
3719 return;
3722 /* non-flag setting ops may use SP */
3723 if (!setflags) {
3724 tcg_rd = cpu_reg_sp(s, rd);
3725 } else {
3726 tcg_rd = cpu_reg(s, rd);
3728 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3730 tcg_rm = read_cpu_reg(s, rm, sf);
3731 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3733 tcg_result = tcg_temp_new_i64();
3735 if (!setflags) {
3736 if (sub_op) {
3737 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3738 } else {
3739 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3741 } else {
3742 if (sub_op) {
3743 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3744 } else {
3745 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3749 if (sf) {
3750 tcg_gen_mov_i64(tcg_rd, tcg_result);
3751 } else {
3752 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3755 tcg_temp_free_i64(tcg_result);
3759 * Add/subtract (shifted register)
3761 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3762 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3763 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3764 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3766 * sf: 0 -> 32bit, 1 -> 64bit
3767 * op: 0 -> add , 1 -> sub
3768 * S: 1 -> set flags
3769 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3770 * imm6: Shift amount to apply to Rm before the add/sub
3772 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3774 int rd = extract32(insn, 0, 5);
3775 int rn = extract32(insn, 5, 5);
3776 int imm6 = extract32(insn, 10, 6);
3777 int rm = extract32(insn, 16, 5);
3778 int shift_type = extract32(insn, 22, 2);
3779 bool setflags = extract32(insn, 29, 1);
3780 bool sub_op = extract32(insn, 30, 1);
3781 bool sf = extract32(insn, 31, 1);
3783 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3784 TCGv_i64 tcg_rn, tcg_rm;
3785 TCGv_i64 tcg_result;
3787 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3788 unallocated_encoding(s);
3789 return;
3792 tcg_rn = read_cpu_reg(s, rn, sf);
3793 tcg_rm = read_cpu_reg(s, rm, sf);
3795 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3797 tcg_result = tcg_temp_new_i64();
3799 if (!setflags) {
3800 if (sub_op) {
3801 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3802 } else {
3803 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3805 } else {
3806 if (sub_op) {
3807 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3808 } else {
3809 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3813 if (sf) {
3814 tcg_gen_mov_i64(tcg_rd, tcg_result);
3815 } else {
3816 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3819 tcg_temp_free_i64(tcg_result);
3822 /* Data-processing (3 source)
3824 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3825 * +--+------+-----------+------+------+----+------+------+------+
3826 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3827 * +--+------+-----------+------+------+----+------+------+------+
3829 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3831 int rd = extract32(insn, 0, 5);
3832 int rn = extract32(insn, 5, 5);
3833 int ra = extract32(insn, 10, 5);
3834 int rm = extract32(insn, 16, 5);
3835 int op_id = (extract32(insn, 29, 3) << 4) |
3836 (extract32(insn, 21, 3) << 1) |
3837 extract32(insn, 15, 1);
3838 bool sf = extract32(insn, 31, 1);
3839 bool is_sub = extract32(op_id, 0, 1);
3840 bool is_high = extract32(op_id, 2, 1);
3841 bool is_signed = false;
3842 TCGv_i64 tcg_op1;
3843 TCGv_i64 tcg_op2;
3844 TCGv_i64 tcg_tmp;
3846 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3847 switch (op_id) {
3848 case 0x42: /* SMADDL */
3849 case 0x43: /* SMSUBL */
3850 case 0x44: /* SMULH */
3851 is_signed = true;
3852 break;
3853 case 0x0: /* MADD (32bit) */
3854 case 0x1: /* MSUB (32bit) */
3855 case 0x40: /* MADD (64bit) */
3856 case 0x41: /* MSUB (64bit) */
3857 case 0x4a: /* UMADDL */
3858 case 0x4b: /* UMSUBL */
3859 case 0x4c: /* UMULH */
3860 break;
3861 default:
3862 unallocated_encoding(s);
3863 return;
3866 if (is_high) {
3867 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3868 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3869 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3870 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3872 if (is_signed) {
3873 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3874 } else {
3875 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3878 tcg_temp_free_i64(low_bits);
3879 return;
3882 tcg_op1 = tcg_temp_new_i64();
3883 tcg_op2 = tcg_temp_new_i64();
3884 tcg_tmp = tcg_temp_new_i64();
3886 if (op_id < 0x42) {
3887 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3888 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3889 } else {
3890 if (is_signed) {
3891 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3892 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3893 } else {
3894 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3895 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3899 if (ra == 31 && !is_sub) {
3900 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3901 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3902 } else {
3903 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3904 if (is_sub) {
3905 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3906 } else {
3907 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3911 if (!sf) {
3912 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3915 tcg_temp_free_i64(tcg_op1);
3916 tcg_temp_free_i64(tcg_op2);
3917 tcg_temp_free_i64(tcg_tmp);
3920 /* Add/subtract (with carry)
3921 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3922 * +--+--+--+------------------------+------+---------+------+-----+
3923 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3924 * +--+--+--+------------------------+------+---------+------+-----+
3925 * [000000]
3928 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3930 unsigned int sf, op, setflags, rm, rn, rd;
3931 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3933 if (extract32(insn, 10, 6) != 0) {
3934 unallocated_encoding(s);
3935 return;
3938 sf = extract32(insn, 31, 1);
3939 op = extract32(insn, 30, 1);
3940 setflags = extract32(insn, 29, 1);
3941 rm = extract32(insn, 16, 5);
3942 rn = extract32(insn, 5, 5);
3943 rd = extract32(insn, 0, 5);
3945 tcg_rd = cpu_reg(s, rd);
3946 tcg_rn = cpu_reg(s, rn);
3948 if (op) {
3949 tcg_y = new_tmp_a64(s);
3950 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3951 } else {
3952 tcg_y = cpu_reg(s, rm);
3955 if (setflags) {
3956 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3957 } else {
3958 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3962 /* Conditional compare (immediate / register)
3963 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3964 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3965 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3966 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3967 * [1] y [0] [0]
3969 static void disas_cc(DisasContext *s, uint32_t insn)
3971 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3972 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3973 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3974 DisasCompare c;
3976 if (!extract32(insn, 29, 1)) {
3977 unallocated_encoding(s);
3978 return;
3980 if (insn & (1 << 10 | 1 << 4)) {
3981 unallocated_encoding(s);
3982 return;
3984 sf = extract32(insn, 31, 1);
3985 op = extract32(insn, 30, 1);
3986 is_imm = extract32(insn, 11, 1);
3987 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3988 cond = extract32(insn, 12, 4);
3989 rn = extract32(insn, 5, 5);
3990 nzcv = extract32(insn, 0, 4);
3992 /* Set T0 = !COND. */
3993 tcg_t0 = tcg_temp_new_i32();
3994 arm_test_cc(&c, cond);
3995 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3996 arm_free_cc(&c);
3998 /* Load the arguments for the new comparison. */
3999 if (is_imm) {
4000 tcg_y = new_tmp_a64(s);
4001 tcg_gen_movi_i64(tcg_y, y);
4002 } else {
4003 tcg_y = cpu_reg(s, y);
4005 tcg_rn = cpu_reg(s, rn);
4007 /* Set the flags for the new comparison. */
4008 tcg_tmp = tcg_temp_new_i64();
4009 if (op) {
4010 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4011 } else {
4012 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4014 tcg_temp_free_i64(tcg_tmp);
4016 /* If COND was false, force the flags to #nzcv. Compute two masks
4017 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4018 * For tcg hosts that support ANDC, we can make do with just T1.
4019 * In either case, allow the tcg optimizer to delete any unused mask.
4021 tcg_t1 = tcg_temp_new_i32();
4022 tcg_t2 = tcg_temp_new_i32();
4023 tcg_gen_neg_i32(tcg_t1, tcg_t0);
4024 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
4026 if (nzcv & 8) { /* N */
4027 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
4028 } else {
4029 if (TCG_TARGET_HAS_andc_i32) {
4030 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
4031 } else {
4032 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
4035 if (nzcv & 4) { /* Z */
4036 if (TCG_TARGET_HAS_andc_i32) {
4037 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
4038 } else {
4039 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
4041 } else {
4042 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
4044 if (nzcv & 2) { /* C */
4045 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
4046 } else {
4047 if (TCG_TARGET_HAS_andc_i32) {
4048 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
4049 } else {
4050 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
4053 if (nzcv & 1) { /* V */
4054 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
4055 } else {
4056 if (TCG_TARGET_HAS_andc_i32) {
4057 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
4058 } else {
4059 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
4062 tcg_temp_free_i32(tcg_t0);
4063 tcg_temp_free_i32(tcg_t1);
4064 tcg_temp_free_i32(tcg_t2);
4067 /* Conditional select
4068 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
4069 * +----+----+---+-----------------+------+------+-----+------+------+
4070 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
4071 * +----+----+---+-----------------+------+------+-----+------+------+
4073 static void disas_cond_select(DisasContext *s, uint32_t insn)
4075 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
4076 TCGv_i64 tcg_rd, zero;
4077 DisasCompare64 c;
4079 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
4080 /* S == 1 or op2<1> == 1 */
4081 unallocated_encoding(s);
4082 return;
4084 sf = extract32(insn, 31, 1);
4085 else_inv = extract32(insn, 30, 1);
4086 rm = extract32(insn, 16, 5);
4087 cond = extract32(insn, 12, 4);
4088 else_inc = extract32(insn, 10, 1);
4089 rn = extract32(insn, 5, 5);
4090 rd = extract32(insn, 0, 5);
4092 tcg_rd = cpu_reg(s, rd);
4094 a64_test_cc(&c, cond);
4095 zero = tcg_const_i64(0);
4097 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
4098 /* CSET & CSETM. */
4099 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
4100 if (else_inv) {
4101 tcg_gen_neg_i64(tcg_rd, tcg_rd);
4103 } else {
4104 TCGv_i64 t_true = cpu_reg(s, rn);
4105 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
4106 if (else_inv && else_inc) {
4107 tcg_gen_neg_i64(t_false, t_false);
4108 } else if (else_inv) {
4109 tcg_gen_not_i64(t_false, t_false);
4110 } else if (else_inc) {
4111 tcg_gen_addi_i64(t_false, t_false, 1);
4113 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
4116 tcg_temp_free_i64(zero);
4117 a64_free_cc(&c);
4119 if (!sf) {
4120 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4124 static void handle_clz(DisasContext *s, unsigned int sf,
4125 unsigned int rn, unsigned int rd)
4127 TCGv_i64 tcg_rd, tcg_rn;
4128 tcg_rd = cpu_reg(s, rd);
4129 tcg_rn = cpu_reg(s, rn);
4131 if (sf) {
4132 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
4133 } else {
4134 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4135 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4136 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
4137 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4138 tcg_temp_free_i32(tcg_tmp32);
4142 static void handle_cls(DisasContext *s, unsigned int sf,
4143 unsigned int rn, unsigned int rd)
4145 TCGv_i64 tcg_rd, tcg_rn;
4146 tcg_rd = cpu_reg(s, rd);
4147 tcg_rn = cpu_reg(s, rn);
4149 if (sf) {
4150 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
4151 } else {
4152 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4153 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4154 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
4155 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4156 tcg_temp_free_i32(tcg_tmp32);
4160 static void handle_rbit(DisasContext *s, unsigned int sf,
4161 unsigned int rn, unsigned int rd)
4163 TCGv_i64 tcg_rd, tcg_rn;
4164 tcg_rd = cpu_reg(s, rd);
4165 tcg_rn = cpu_reg(s, rn);
4167 if (sf) {
4168 gen_helper_rbit64(tcg_rd, tcg_rn);
4169 } else {
4170 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4171 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4172 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4173 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4174 tcg_temp_free_i32(tcg_tmp32);
4178 /* REV with sf==1, opcode==3 ("REV64") */
4179 static void handle_rev64(DisasContext *s, unsigned int sf,
4180 unsigned int rn, unsigned int rd)
4182 if (!sf) {
4183 unallocated_encoding(s);
4184 return;
4186 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4189 /* REV with sf==0, opcode==2
4190 * REV32 (sf==1, opcode==2)
4192 static void handle_rev32(DisasContext *s, unsigned int sf,
4193 unsigned int rn, unsigned int rd)
4195 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4197 if (sf) {
4198 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4199 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4201 /* bswap32_i64 requires zero high word */
4202 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4203 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4204 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4205 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4206 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4208 tcg_temp_free_i64(tcg_tmp);
4209 } else {
4210 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4211 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4215 /* REV16 (opcode==1) */
4216 static void handle_rev16(DisasContext *s, unsigned int sf,
4217 unsigned int rn, unsigned int rd)
4219 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4220 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4221 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4222 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
4224 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
4225 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
4226 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
4227 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
4228 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
4230 tcg_temp_free_i64(mask);
4231 tcg_temp_free_i64(tcg_tmp);
4234 /* Data-processing (1 source)
4235 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4236 * +----+---+---+-----------------+---------+--------+------+------+
4237 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4238 * +----+---+---+-----------------+---------+--------+------+------+
4240 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4242 unsigned int sf, opcode, rn, rd;
4244 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4245 unallocated_encoding(s);
4246 return;
4249 sf = extract32(insn, 31, 1);
4250 opcode = extract32(insn, 10, 6);
4251 rn = extract32(insn, 5, 5);
4252 rd = extract32(insn, 0, 5);
4254 switch (opcode) {
4255 case 0: /* RBIT */
4256 handle_rbit(s, sf, rn, rd);
4257 break;
4258 case 1: /* REV16 */
4259 handle_rev16(s, sf, rn, rd);
4260 break;
4261 case 2: /* REV32 */
4262 handle_rev32(s, sf, rn, rd);
4263 break;
4264 case 3: /* REV64 */
4265 handle_rev64(s, sf, rn, rd);
4266 break;
4267 case 4: /* CLZ */
4268 handle_clz(s, sf, rn, rd);
4269 break;
4270 case 5: /* CLS */
4271 handle_cls(s, sf, rn, rd);
4272 break;
4276 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4277 unsigned int rm, unsigned int rn, unsigned int rd)
4279 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4280 tcg_rd = cpu_reg(s, rd);
4282 if (!sf && is_signed) {
4283 tcg_n = new_tmp_a64(s);
4284 tcg_m = new_tmp_a64(s);
4285 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4286 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4287 } else {
4288 tcg_n = read_cpu_reg(s, rn, sf);
4289 tcg_m = read_cpu_reg(s, rm, sf);
4292 if (is_signed) {
4293 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4294 } else {
4295 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4298 if (!sf) { /* zero extend final result */
4299 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4303 /* LSLV, LSRV, ASRV, RORV */
4304 static void handle_shift_reg(DisasContext *s,
4305 enum a64_shift_type shift_type, unsigned int sf,
4306 unsigned int rm, unsigned int rn, unsigned int rd)
4308 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4309 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4310 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4312 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4313 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4314 tcg_temp_free_i64(tcg_shift);
4317 /* CRC32[BHWX], CRC32C[BHWX] */
4318 static void handle_crc32(DisasContext *s,
4319 unsigned int sf, unsigned int sz, bool crc32c,
4320 unsigned int rm, unsigned int rn, unsigned int rd)
4322 TCGv_i64 tcg_acc, tcg_val;
4323 TCGv_i32 tcg_bytes;
4325 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4326 || (sf == 1 && sz != 3)
4327 || (sf == 0 && sz == 3)) {
4328 unallocated_encoding(s);
4329 return;
4332 if (sz == 3) {
4333 tcg_val = cpu_reg(s, rm);
4334 } else {
4335 uint64_t mask;
4336 switch (sz) {
4337 case 0:
4338 mask = 0xFF;
4339 break;
4340 case 1:
4341 mask = 0xFFFF;
4342 break;
4343 case 2:
4344 mask = 0xFFFFFFFF;
4345 break;
4346 default:
4347 g_assert_not_reached();
4349 tcg_val = new_tmp_a64(s);
4350 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4353 tcg_acc = cpu_reg(s, rn);
4354 tcg_bytes = tcg_const_i32(1 << sz);
4356 if (crc32c) {
4357 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4358 } else {
4359 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4362 tcg_temp_free_i32(tcg_bytes);
4365 /* Data-processing (2 source)
4366 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4367 * +----+---+---+-----------------+------+--------+------+------+
4368 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4369 * +----+---+---+-----------------+------+--------+------+------+
4371 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4373 unsigned int sf, rm, opcode, rn, rd;
4374 sf = extract32(insn, 31, 1);
4375 rm = extract32(insn, 16, 5);
4376 opcode = extract32(insn, 10, 6);
4377 rn = extract32(insn, 5, 5);
4378 rd = extract32(insn, 0, 5);
4380 if (extract32(insn, 29, 1)) {
4381 unallocated_encoding(s);
4382 return;
4385 switch (opcode) {
4386 case 2: /* UDIV */
4387 handle_div(s, false, sf, rm, rn, rd);
4388 break;
4389 case 3: /* SDIV */
4390 handle_div(s, true, sf, rm, rn, rd);
4391 break;
4392 case 8: /* LSLV */
4393 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4394 break;
4395 case 9: /* LSRV */
4396 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4397 break;
4398 case 10: /* ASRV */
4399 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4400 break;
4401 case 11: /* RORV */
4402 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4403 break;
4404 case 16:
4405 case 17:
4406 case 18:
4407 case 19:
4408 case 20:
4409 case 21:
4410 case 22:
4411 case 23: /* CRC32 */
4413 int sz = extract32(opcode, 0, 2);
4414 bool crc32c = extract32(opcode, 2, 1);
4415 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4416 break;
4418 default:
4419 unallocated_encoding(s);
4420 break;
4424 /* Data processing - register */
4425 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4427 switch (extract32(insn, 24, 5)) {
4428 case 0x0a: /* Logical (shifted register) */
4429 disas_logic_reg(s, insn);
4430 break;
4431 case 0x0b: /* Add/subtract */
4432 if (insn & (1 << 21)) { /* (extended register) */
4433 disas_add_sub_ext_reg(s, insn);
4434 } else {
4435 disas_add_sub_reg(s, insn);
4437 break;
4438 case 0x1b: /* Data-processing (3 source) */
4439 disas_data_proc_3src(s, insn);
4440 break;
4441 case 0x1a:
4442 switch (extract32(insn, 21, 3)) {
4443 case 0x0: /* Add/subtract (with carry) */
4444 disas_adc_sbc(s, insn);
4445 break;
4446 case 0x2: /* Conditional compare */
4447 disas_cc(s, insn); /* both imm and reg forms */
4448 break;
4449 case 0x4: /* Conditional select */
4450 disas_cond_select(s, insn);
4451 break;
4452 case 0x6: /* Data-processing */
4453 if (insn & (1 << 30)) { /* (1 source) */
4454 disas_data_proc_1src(s, insn);
4455 } else { /* (2 source) */
4456 disas_data_proc_2src(s, insn);
4458 break;
4459 default:
4460 unallocated_encoding(s);
4461 break;
4463 break;
4464 default:
4465 unallocated_encoding(s);
4466 break;
4470 static void handle_fp_compare(DisasContext *s, bool is_double,
4471 unsigned int rn, unsigned int rm,
4472 bool cmp_with_zero, bool signal_all_nans)
4474 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4475 TCGv_ptr fpst = get_fpstatus_ptr(false);
4477 if (is_double) {
4478 TCGv_i64 tcg_vn, tcg_vm;
4480 tcg_vn = read_fp_dreg(s, rn);
4481 if (cmp_with_zero) {
4482 tcg_vm = tcg_const_i64(0);
4483 } else {
4484 tcg_vm = read_fp_dreg(s, rm);
4486 if (signal_all_nans) {
4487 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4488 } else {
4489 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4491 tcg_temp_free_i64(tcg_vn);
4492 tcg_temp_free_i64(tcg_vm);
4493 } else {
4494 TCGv_i32 tcg_vn, tcg_vm;
4496 tcg_vn = read_fp_sreg(s, rn);
4497 if (cmp_with_zero) {
4498 tcg_vm = tcg_const_i32(0);
4499 } else {
4500 tcg_vm = read_fp_sreg(s, rm);
4502 if (signal_all_nans) {
4503 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4504 } else {
4505 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4507 tcg_temp_free_i32(tcg_vn);
4508 tcg_temp_free_i32(tcg_vm);
4511 tcg_temp_free_ptr(fpst);
4513 gen_set_nzcv(tcg_flags);
4515 tcg_temp_free_i64(tcg_flags);
4518 /* Floating point compare
4519 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4520 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4521 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4522 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4524 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4526 unsigned int mos, type, rm, op, rn, opc, op2r;
4528 mos = extract32(insn, 29, 3);
4529 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4530 rm = extract32(insn, 16, 5);
4531 op = extract32(insn, 14, 2);
4532 rn = extract32(insn, 5, 5);
4533 opc = extract32(insn, 3, 2);
4534 op2r = extract32(insn, 0, 3);
4536 if (mos || op || op2r || type > 1) {
4537 unallocated_encoding(s);
4538 return;
4541 if (!fp_access_check(s)) {
4542 return;
4545 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4548 /* Floating point conditional compare
4549 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4550 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4551 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4552 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4554 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4556 unsigned int mos, type, rm, cond, rn, op, nzcv;
4557 TCGv_i64 tcg_flags;
4558 TCGLabel *label_continue = NULL;
4560 mos = extract32(insn, 29, 3);
4561 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4562 rm = extract32(insn, 16, 5);
4563 cond = extract32(insn, 12, 4);
4564 rn = extract32(insn, 5, 5);
4565 op = extract32(insn, 4, 1);
4566 nzcv = extract32(insn, 0, 4);
4568 if (mos || type > 1) {
4569 unallocated_encoding(s);
4570 return;
4573 if (!fp_access_check(s)) {
4574 return;
4577 if (cond < 0x0e) { /* not always */
4578 TCGLabel *label_match = gen_new_label();
4579 label_continue = gen_new_label();
4580 arm_gen_test_cc(cond, label_match);
4581 /* nomatch: */
4582 tcg_flags = tcg_const_i64(nzcv << 28);
4583 gen_set_nzcv(tcg_flags);
4584 tcg_temp_free_i64(tcg_flags);
4585 tcg_gen_br(label_continue);
4586 gen_set_label(label_match);
4589 handle_fp_compare(s, type, rn, rm, false, op);
4591 if (cond < 0x0e) {
4592 gen_set_label(label_continue);
4596 /* Floating point conditional select
4597 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4598 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4599 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4600 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4602 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4604 unsigned int mos, type, rm, cond, rn, rd;
4605 TCGv_i64 t_true, t_false, t_zero;
4606 DisasCompare64 c;
4608 mos = extract32(insn, 29, 3);
4609 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4610 rm = extract32(insn, 16, 5);
4611 cond = extract32(insn, 12, 4);
4612 rn = extract32(insn, 5, 5);
4613 rd = extract32(insn, 0, 5);
4615 if (mos || type > 1) {
4616 unallocated_encoding(s);
4617 return;
4620 if (!fp_access_check(s)) {
4621 return;
4624 /* Zero extend sreg inputs to 64 bits now. */
4625 t_true = tcg_temp_new_i64();
4626 t_false = tcg_temp_new_i64();
4627 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4628 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4630 a64_test_cc(&c, cond);
4631 t_zero = tcg_const_i64(0);
4632 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4633 tcg_temp_free_i64(t_zero);
4634 tcg_temp_free_i64(t_false);
4635 a64_free_cc(&c);
4637 /* Note that sregs write back zeros to the high bits,
4638 and we've already done the zero-extension. */
4639 write_fp_dreg(s, rd, t_true);
4640 tcg_temp_free_i64(t_true);
4643 /* Floating-point data-processing (1 source) - half precision */
4644 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
4646 TCGv_ptr fpst = NULL;
4647 TCGv_i32 tcg_op = tcg_temp_new_i32();
4648 TCGv_i32 tcg_res = tcg_temp_new_i32();
4650 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
4652 switch (opcode) {
4653 case 0x0: /* FMOV */
4654 tcg_gen_mov_i32(tcg_res, tcg_op);
4655 break;
4656 case 0x1: /* FABS */
4657 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
4658 break;
4659 case 0x2: /* FNEG */
4660 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
4661 break;
4662 case 0x3: /* FSQRT */
4663 gen_helper_sqrt_f16(tcg_res, tcg_op, cpu_env);
4664 break;
4665 case 0x8: /* FRINTN */
4666 case 0x9: /* FRINTP */
4667 case 0xa: /* FRINTM */
4668 case 0xb: /* FRINTZ */
4669 case 0xc: /* FRINTA */
4671 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4672 fpst = get_fpstatus_ptr(true);
4674 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4675 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4677 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4678 tcg_temp_free_i32(tcg_rmode);
4679 break;
4681 case 0xe: /* FRINTX */
4682 fpst = get_fpstatus_ptr(true);
4683 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
4684 break;
4685 case 0xf: /* FRINTI */
4686 fpst = get_fpstatus_ptr(true);
4687 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
4688 break;
4689 default:
4690 abort();
4693 write_fp_sreg(s, rd, tcg_res);
4695 if (fpst) {
4696 tcg_temp_free_ptr(fpst);
4698 tcg_temp_free_i32(tcg_op);
4699 tcg_temp_free_i32(tcg_res);
4702 /* Floating-point data-processing (1 source) - single precision */
4703 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4705 TCGv_ptr fpst;
4706 TCGv_i32 tcg_op;
4707 TCGv_i32 tcg_res;
4709 fpst = get_fpstatus_ptr(false);
4710 tcg_op = read_fp_sreg(s, rn);
4711 tcg_res = tcg_temp_new_i32();
4713 switch (opcode) {
4714 case 0x0: /* FMOV */
4715 tcg_gen_mov_i32(tcg_res, tcg_op);
4716 break;
4717 case 0x1: /* FABS */
4718 gen_helper_vfp_abss(tcg_res, tcg_op);
4719 break;
4720 case 0x2: /* FNEG */
4721 gen_helper_vfp_negs(tcg_res, tcg_op);
4722 break;
4723 case 0x3: /* FSQRT */
4724 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4725 break;
4726 case 0x8: /* FRINTN */
4727 case 0x9: /* FRINTP */
4728 case 0xa: /* FRINTM */
4729 case 0xb: /* FRINTZ */
4730 case 0xc: /* FRINTA */
4732 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4734 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4735 gen_helper_rints(tcg_res, tcg_op, fpst);
4737 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4738 tcg_temp_free_i32(tcg_rmode);
4739 break;
4741 case 0xe: /* FRINTX */
4742 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4743 break;
4744 case 0xf: /* FRINTI */
4745 gen_helper_rints(tcg_res, tcg_op, fpst);
4746 break;
4747 default:
4748 abort();
4751 write_fp_sreg(s, rd, tcg_res);
4753 tcg_temp_free_ptr(fpst);
4754 tcg_temp_free_i32(tcg_op);
4755 tcg_temp_free_i32(tcg_res);
4758 /* Floating-point data-processing (1 source) - double precision */
4759 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4761 TCGv_ptr fpst;
4762 TCGv_i64 tcg_op;
4763 TCGv_i64 tcg_res;
4765 switch (opcode) {
4766 case 0x0: /* FMOV */
4767 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
4768 return;
4771 fpst = get_fpstatus_ptr(false);
4772 tcg_op = read_fp_dreg(s, rn);
4773 tcg_res = tcg_temp_new_i64();
4775 switch (opcode) {
4776 case 0x1: /* FABS */
4777 gen_helper_vfp_absd(tcg_res, tcg_op);
4778 break;
4779 case 0x2: /* FNEG */
4780 gen_helper_vfp_negd(tcg_res, tcg_op);
4781 break;
4782 case 0x3: /* FSQRT */
4783 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4784 break;
4785 case 0x8: /* FRINTN */
4786 case 0x9: /* FRINTP */
4787 case 0xa: /* FRINTM */
4788 case 0xb: /* FRINTZ */
4789 case 0xc: /* FRINTA */
4791 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4793 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4794 gen_helper_rintd(tcg_res, tcg_op, fpst);
4796 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
4797 tcg_temp_free_i32(tcg_rmode);
4798 break;
4800 case 0xe: /* FRINTX */
4801 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4802 break;
4803 case 0xf: /* FRINTI */
4804 gen_helper_rintd(tcg_res, tcg_op, fpst);
4805 break;
4806 default:
4807 abort();
4810 write_fp_dreg(s, rd, tcg_res);
4812 tcg_temp_free_ptr(fpst);
4813 tcg_temp_free_i64(tcg_op);
4814 tcg_temp_free_i64(tcg_res);
4817 static void handle_fp_fcvt(DisasContext *s, int opcode,
4818 int rd, int rn, int dtype, int ntype)
4820 switch (ntype) {
4821 case 0x0:
4823 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4824 if (dtype == 1) {
4825 /* Single to double */
4826 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4827 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4828 write_fp_dreg(s, rd, tcg_rd);
4829 tcg_temp_free_i64(tcg_rd);
4830 } else {
4831 /* Single to half */
4832 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4833 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4834 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4835 write_fp_sreg(s, rd, tcg_rd);
4836 tcg_temp_free_i32(tcg_rd);
4838 tcg_temp_free_i32(tcg_rn);
4839 break;
4841 case 0x1:
4843 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4844 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4845 if (dtype == 0) {
4846 /* Double to single */
4847 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4848 } else {
4849 /* Double to half */
4850 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4851 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4853 write_fp_sreg(s, rd, tcg_rd);
4854 tcg_temp_free_i32(tcg_rd);
4855 tcg_temp_free_i64(tcg_rn);
4856 break;
4858 case 0x3:
4860 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4861 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4862 if (dtype == 0) {
4863 /* Half to single */
4864 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4865 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4866 write_fp_sreg(s, rd, tcg_rd);
4867 tcg_temp_free_i32(tcg_rd);
4868 } else {
4869 /* Half to double */
4870 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4871 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4872 write_fp_dreg(s, rd, tcg_rd);
4873 tcg_temp_free_i64(tcg_rd);
4875 tcg_temp_free_i32(tcg_rn);
4876 break;
4878 default:
4879 abort();
4883 /* Floating point data-processing (1 source)
4884 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4885 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4886 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4887 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4889 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4891 int type = extract32(insn, 22, 2);
4892 int opcode = extract32(insn, 15, 6);
4893 int rn = extract32(insn, 5, 5);
4894 int rd = extract32(insn, 0, 5);
4896 switch (opcode) {
4897 case 0x4: case 0x5: case 0x7:
4899 /* FCVT between half, single and double precision */
4900 int dtype = extract32(opcode, 0, 2);
4901 if (type == 2 || dtype == type) {
4902 unallocated_encoding(s);
4903 return;
4905 if (!fp_access_check(s)) {
4906 return;
4909 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4910 break;
4912 case 0x0 ... 0x3:
4913 case 0x8 ... 0xc:
4914 case 0xe ... 0xf:
4915 /* 32-to-32 and 64-to-64 ops */
4916 switch (type) {
4917 case 0:
4918 if (!fp_access_check(s)) {
4919 return;
4922 handle_fp_1src_single(s, opcode, rd, rn);
4923 break;
4924 case 1:
4925 if (!fp_access_check(s)) {
4926 return;
4929 handle_fp_1src_double(s, opcode, rd, rn);
4930 break;
4931 case 3:
4932 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
4933 unallocated_encoding(s);
4934 return;
4937 if (!fp_access_check(s)) {
4938 return;
4941 handle_fp_1src_half(s, opcode, rd, rn);
4942 break;
4943 default:
4944 unallocated_encoding(s);
4946 break;
4947 default:
4948 unallocated_encoding(s);
4949 break;
4953 /* Floating-point data-processing (2 source) - single precision */
4954 static void handle_fp_2src_single(DisasContext *s, int opcode,
4955 int rd, int rn, int rm)
4957 TCGv_i32 tcg_op1;
4958 TCGv_i32 tcg_op2;
4959 TCGv_i32 tcg_res;
4960 TCGv_ptr fpst;
4962 tcg_res = tcg_temp_new_i32();
4963 fpst = get_fpstatus_ptr(false);
4964 tcg_op1 = read_fp_sreg(s, rn);
4965 tcg_op2 = read_fp_sreg(s, rm);
4967 switch (opcode) {
4968 case 0x0: /* FMUL */
4969 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4970 break;
4971 case 0x1: /* FDIV */
4972 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4973 break;
4974 case 0x2: /* FADD */
4975 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4976 break;
4977 case 0x3: /* FSUB */
4978 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4979 break;
4980 case 0x4: /* FMAX */
4981 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4982 break;
4983 case 0x5: /* FMIN */
4984 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4985 break;
4986 case 0x6: /* FMAXNM */
4987 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4988 break;
4989 case 0x7: /* FMINNM */
4990 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4991 break;
4992 case 0x8: /* FNMUL */
4993 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4994 gen_helper_vfp_negs(tcg_res, tcg_res);
4995 break;
4998 write_fp_sreg(s, rd, tcg_res);
5000 tcg_temp_free_ptr(fpst);
5001 tcg_temp_free_i32(tcg_op1);
5002 tcg_temp_free_i32(tcg_op2);
5003 tcg_temp_free_i32(tcg_res);
5006 /* Floating-point data-processing (2 source) - double precision */
5007 static void handle_fp_2src_double(DisasContext *s, int opcode,
5008 int rd, int rn, int rm)
5010 TCGv_i64 tcg_op1;
5011 TCGv_i64 tcg_op2;
5012 TCGv_i64 tcg_res;
5013 TCGv_ptr fpst;
5015 tcg_res = tcg_temp_new_i64();
5016 fpst = get_fpstatus_ptr(false);
5017 tcg_op1 = read_fp_dreg(s, rn);
5018 tcg_op2 = read_fp_dreg(s, rm);
5020 switch (opcode) {
5021 case 0x0: /* FMUL */
5022 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5023 break;
5024 case 0x1: /* FDIV */
5025 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
5026 break;
5027 case 0x2: /* FADD */
5028 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
5029 break;
5030 case 0x3: /* FSUB */
5031 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
5032 break;
5033 case 0x4: /* FMAX */
5034 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
5035 break;
5036 case 0x5: /* FMIN */
5037 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
5038 break;
5039 case 0x6: /* FMAXNM */
5040 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5041 break;
5042 case 0x7: /* FMINNM */
5043 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
5044 break;
5045 case 0x8: /* FNMUL */
5046 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
5047 gen_helper_vfp_negd(tcg_res, tcg_res);
5048 break;
5051 write_fp_dreg(s, rd, tcg_res);
5053 tcg_temp_free_ptr(fpst);
5054 tcg_temp_free_i64(tcg_op1);
5055 tcg_temp_free_i64(tcg_op2);
5056 tcg_temp_free_i64(tcg_res);
5059 /* Floating point data-processing (2 source)
5060 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5061 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5062 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
5063 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
5065 static void disas_fp_2src(DisasContext *s, uint32_t insn)
5067 int type = extract32(insn, 22, 2);
5068 int rd = extract32(insn, 0, 5);
5069 int rn = extract32(insn, 5, 5);
5070 int rm = extract32(insn, 16, 5);
5071 int opcode = extract32(insn, 12, 4);
5073 if (opcode > 8) {
5074 unallocated_encoding(s);
5075 return;
5078 switch (type) {
5079 case 0:
5080 if (!fp_access_check(s)) {
5081 return;
5083 handle_fp_2src_single(s, opcode, rd, rn, rm);
5084 break;
5085 case 1:
5086 if (!fp_access_check(s)) {
5087 return;
5089 handle_fp_2src_double(s, opcode, rd, rn, rm);
5090 break;
5091 default:
5092 unallocated_encoding(s);
5096 /* Floating-point data-processing (3 source) - single precision */
5097 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
5098 int rd, int rn, int rm, int ra)
5100 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
5101 TCGv_i32 tcg_res = tcg_temp_new_i32();
5102 TCGv_ptr fpst = get_fpstatus_ptr(false);
5104 tcg_op1 = read_fp_sreg(s, rn);
5105 tcg_op2 = read_fp_sreg(s, rm);
5106 tcg_op3 = read_fp_sreg(s, ra);
5108 /* These are fused multiply-add, and must be done as one
5109 * floating point operation with no rounding between the
5110 * multiplication and addition steps.
5111 * NB that doing the negations here as separate steps is
5112 * correct : an input NaN should come out with its sign bit
5113 * flipped if it is a negated-input.
5115 if (o1 == true) {
5116 gen_helper_vfp_negs(tcg_op3, tcg_op3);
5119 if (o0 != o1) {
5120 gen_helper_vfp_negs(tcg_op1, tcg_op1);
5123 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5125 write_fp_sreg(s, rd, tcg_res);
5127 tcg_temp_free_ptr(fpst);
5128 tcg_temp_free_i32(tcg_op1);
5129 tcg_temp_free_i32(tcg_op2);
5130 tcg_temp_free_i32(tcg_op3);
5131 tcg_temp_free_i32(tcg_res);
5134 /* Floating-point data-processing (3 source) - double precision */
5135 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
5136 int rd, int rn, int rm, int ra)
5138 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
5139 TCGv_i64 tcg_res = tcg_temp_new_i64();
5140 TCGv_ptr fpst = get_fpstatus_ptr(false);
5142 tcg_op1 = read_fp_dreg(s, rn);
5143 tcg_op2 = read_fp_dreg(s, rm);
5144 tcg_op3 = read_fp_dreg(s, ra);
5146 /* These are fused multiply-add, and must be done as one
5147 * floating point operation with no rounding between the
5148 * multiplication and addition steps.
5149 * NB that doing the negations here as separate steps is
5150 * correct : an input NaN should come out with its sign bit
5151 * flipped if it is a negated-input.
5153 if (o1 == true) {
5154 gen_helper_vfp_negd(tcg_op3, tcg_op3);
5157 if (o0 != o1) {
5158 gen_helper_vfp_negd(tcg_op1, tcg_op1);
5161 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
5163 write_fp_dreg(s, rd, tcg_res);
5165 tcg_temp_free_ptr(fpst);
5166 tcg_temp_free_i64(tcg_op1);
5167 tcg_temp_free_i64(tcg_op2);
5168 tcg_temp_free_i64(tcg_op3);
5169 tcg_temp_free_i64(tcg_res);
5172 /* Floating point data-processing (3 source)
5173 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
5174 * +---+---+---+-----------+------+----+------+----+------+------+------+
5175 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
5176 * +---+---+---+-----------+------+----+------+----+------+------+------+
5178 static void disas_fp_3src(DisasContext *s, uint32_t insn)
5180 int type = extract32(insn, 22, 2);
5181 int rd = extract32(insn, 0, 5);
5182 int rn = extract32(insn, 5, 5);
5183 int ra = extract32(insn, 10, 5);
5184 int rm = extract32(insn, 16, 5);
5185 bool o0 = extract32(insn, 15, 1);
5186 bool o1 = extract32(insn, 21, 1);
5188 switch (type) {
5189 case 0:
5190 if (!fp_access_check(s)) {
5191 return;
5193 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
5194 break;
5195 case 1:
5196 if (!fp_access_check(s)) {
5197 return;
5199 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
5200 break;
5201 default:
5202 unallocated_encoding(s);
5206 /* The imm8 encodes the sign bit, enough bits to represent an exponent in
5207 * the range 01....1xx to 10....0xx, and the most significant 4 bits of
5208 * the mantissa; see VFPExpandImm() in the v8 ARM ARM.
5210 static uint64_t vfp_expand_imm(int size, uint8_t imm8)
5212 uint64_t imm;
5214 switch (size) {
5215 case MO_64:
5216 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5217 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5218 extract32(imm8, 0, 6);
5219 imm <<= 48;
5220 break;
5221 case MO_32:
5222 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5223 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5224 (extract32(imm8, 0, 6) << 3);
5225 imm <<= 16;
5226 break;
5227 case MO_16:
5228 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5229 (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) |
5230 (extract32(imm8, 0, 6) << 6);
5231 break;
5232 default:
5233 g_assert_not_reached();
5235 return imm;
5238 /* Floating point immediate
5239 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
5240 * +---+---+---+-----------+------+---+------------+-------+------+------+
5241 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
5242 * +---+---+---+-----------+------+---+------------+-------+------+------+
5244 static void disas_fp_imm(DisasContext *s, uint32_t insn)
5246 int rd = extract32(insn, 0, 5);
5247 int imm8 = extract32(insn, 13, 8);
5248 int is_double = extract32(insn, 22, 2);
5249 uint64_t imm;
5250 TCGv_i64 tcg_res;
5252 if (is_double > 1) {
5253 unallocated_encoding(s);
5254 return;
5257 if (!fp_access_check(s)) {
5258 return;
5261 imm = vfp_expand_imm(MO_32 + is_double, imm8);
5263 tcg_res = tcg_const_i64(imm);
5264 write_fp_dreg(s, rd, tcg_res);
5265 tcg_temp_free_i64(tcg_res);
5268 /* Handle floating point <=> fixed point conversions. Note that we can
5269 * also deal with fp <=> integer conversions as a special case (scale == 64)
5270 * OPTME: consider handling that special case specially or at least skipping
5271 * the call to scalbn in the helpers for zero shifts.
5273 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5274 bool itof, int rmode, int scale, int sf, int type)
5276 bool is_signed = !(opcode & 1);
5277 bool is_double = type;
5278 TCGv_ptr tcg_fpstatus;
5279 TCGv_i32 tcg_shift;
5281 tcg_fpstatus = get_fpstatus_ptr(false);
5283 tcg_shift = tcg_const_i32(64 - scale);
5285 if (itof) {
5286 TCGv_i64 tcg_int = cpu_reg(s, rn);
5287 if (!sf) {
5288 TCGv_i64 tcg_extend = new_tmp_a64(s);
5290 if (is_signed) {
5291 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5292 } else {
5293 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5296 tcg_int = tcg_extend;
5299 if (is_double) {
5300 TCGv_i64 tcg_double = tcg_temp_new_i64();
5301 if (is_signed) {
5302 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5303 tcg_shift, tcg_fpstatus);
5304 } else {
5305 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5306 tcg_shift, tcg_fpstatus);
5308 write_fp_dreg(s, rd, tcg_double);
5309 tcg_temp_free_i64(tcg_double);
5310 } else {
5311 TCGv_i32 tcg_single = tcg_temp_new_i32();
5312 if (is_signed) {
5313 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5314 tcg_shift, tcg_fpstatus);
5315 } else {
5316 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5317 tcg_shift, tcg_fpstatus);
5319 write_fp_sreg(s, rd, tcg_single);
5320 tcg_temp_free_i32(tcg_single);
5322 } else {
5323 TCGv_i64 tcg_int = cpu_reg(s, rd);
5324 TCGv_i32 tcg_rmode;
5326 if (extract32(opcode, 2, 1)) {
5327 /* There are too many rounding modes to all fit into rmode,
5328 * so FCVTA[US] is a special case.
5330 rmode = FPROUNDING_TIEAWAY;
5333 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5335 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5337 if (is_double) {
5338 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5339 if (is_signed) {
5340 if (!sf) {
5341 gen_helper_vfp_tosld(tcg_int, tcg_double,
5342 tcg_shift, tcg_fpstatus);
5343 } else {
5344 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5345 tcg_shift, tcg_fpstatus);
5347 } else {
5348 if (!sf) {
5349 gen_helper_vfp_tould(tcg_int, tcg_double,
5350 tcg_shift, tcg_fpstatus);
5351 } else {
5352 gen_helper_vfp_touqd(tcg_int, tcg_double,
5353 tcg_shift, tcg_fpstatus);
5356 tcg_temp_free_i64(tcg_double);
5357 } else {
5358 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5359 if (sf) {
5360 if (is_signed) {
5361 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5362 tcg_shift, tcg_fpstatus);
5363 } else {
5364 gen_helper_vfp_touqs(tcg_int, tcg_single,
5365 tcg_shift, tcg_fpstatus);
5367 } else {
5368 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5369 if (is_signed) {
5370 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5371 tcg_shift, tcg_fpstatus);
5372 } else {
5373 gen_helper_vfp_touls(tcg_dest, tcg_single,
5374 tcg_shift, tcg_fpstatus);
5376 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5377 tcg_temp_free_i32(tcg_dest);
5379 tcg_temp_free_i32(tcg_single);
5382 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
5383 tcg_temp_free_i32(tcg_rmode);
5385 if (!sf) {
5386 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5390 tcg_temp_free_ptr(tcg_fpstatus);
5391 tcg_temp_free_i32(tcg_shift);
5394 /* Floating point <-> fixed point conversions
5395 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5396 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5397 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5398 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5400 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5402 int rd = extract32(insn, 0, 5);
5403 int rn = extract32(insn, 5, 5);
5404 int scale = extract32(insn, 10, 6);
5405 int opcode = extract32(insn, 16, 3);
5406 int rmode = extract32(insn, 19, 2);
5407 int type = extract32(insn, 22, 2);
5408 bool sbit = extract32(insn, 29, 1);
5409 bool sf = extract32(insn, 31, 1);
5410 bool itof;
5412 if (sbit || (type > 1)
5413 || (!sf && scale < 32)) {
5414 unallocated_encoding(s);
5415 return;
5418 switch ((rmode << 3) | opcode) {
5419 case 0x2: /* SCVTF */
5420 case 0x3: /* UCVTF */
5421 itof = true;
5422 break;
5423 case 0x18: /* FCVTZS */
5424 case 0x19: /* FCVTZU */
5425 itof = false;
5426 break;
5427 default:
5428 unallocated_encoding(s);
5429 return;
5432 if (!fp_access_check(s)) {
5433 return;
5436 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5439 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5441 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5442 * without conversion.
5445 if (itof) {
5446 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5448 switch (type) {
5449 case 0:
5451 /* 32 bit */
5452 TCGv_i64 tmp = tcg_temp_new_i64();
5453 tcg_gen_ext32u_i64(tmp, tcg_rn);
5454 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5455 tcg_gen_movi_i64(tmp, 0);
5456 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5457 tcg_temp_free_i64(tmp);
5458 break;
5460 case 1:
5462 /* 64 bit */
5463 TCGv_i64 tmp = tcg_const_i64(0);
5464 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5465 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5466 tcg_temp_free_i64(tmp);
5467 break;
5469 case 2:
5470 /* 64 bit to top half. */
5471 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5472 break;
5474 } else {
5475 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5477 switch (type) {
5478 case 0:
5479 /* 32 bit */
5480 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5481 break;
5482 case 1:
5483 /* 64 bit */
5484 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5485 break;
5486 case 2:
5487 /* 64 bits from top half */
5488 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5489 break;
5494 /* Floating point <-> integer conversions
5495 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5496 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5497 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5498 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5500 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5502 int rd = extract32(insn, 0, 5);
5503 int rn = extract32(insn, 5, 5);
5504 int opcode = extract32(insn, 16, 3);
5505 int rmode = extract32(insn, 19, 2);
5506 int type = extract32(insn, 22, 2);
5507 bool sbit = extract32(insn, 29, 1);
5508 bool sf = extract32(insn, 31, 1);
5510 if (sbit) {
5511 unallocated_encoding(s);
5512 return;
5515 if (opcode > 5) {
5516 /* FMOV */
5517 bool itof = opcode & 1;
5519 if (rmode >= 2) {
5520 unallocated_encoding(s);
5521 return;
5524 switch (sf << 3 | type << 1 | rmode) {
5525 case 0x0: /* 32 bit */
5526 case 0xa: /* 64 bit */
5527 case 0xd: /* 64 bit to top half of quad */
5528 break;
5529 default:
5530 /* all other sf/type/rmode combinations are invalid */
5531 unallocated_encoding(s);
5532 break;
5535 if (!fp_access_check(s)) {
5536 return;
5538 handle_fmov(s, rd, rn, type, itof);
5539 } else {
5540 /* actual FP conversions */
5541 bool itof = extract32(opcode, 1, 1);
5543 if (type > 1 || (rmode != 0 && opcode > 1)) {
5544 unallocated_encoding(s);
5545 return;
5548 if (!fp_access_check(s)) {
5549 return;
5551 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5555 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5556 * 31 30 29 28 25 24 0
5557 * +---+---+---+---------+-----------------------------+
5558 * | | 0 | | 1 1 1 1 | |
5559 * +---+---+---+---------+-----------------------------+
5561 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5563 if (extract32(insn, 24, 1)) {
5564 /* Floating point data-processing (3 source) */
5565 disas_fp_3src(s, insn);
5566 } else if (extract32(insn, 21, 1) == 0) {
5567 /* Floating point to fixed point conversions */
5568 disas_fp_fixed_conv(s, insn);
5569 } else {
5570 switch (extract32(insn, 10, 2)) {
5571 case 1:
5572 /* Floating point conditional compare */
5573 disas_fp_ccomp(s, insn);
5574 break;
5575 case 2:
5576 /* Floating point data-processing (2 source) */
5577 disas_fp_2src(s, insn);
5578 break;
5579 case 3:
5580 /* Floating point conditional select */
5581 disas_fp_csel(s, insn);
5582 break;
5583 case 0:
5584 switch (ctz32(extract32(insn, 12, 4))) {
5585 case 0: /* [15:12] == xxx1 */
5586 /* Floating point immediate */
5587 disas_fp_imm(s, insn);
5588 break;
5589 case 1: /* [15:12] == xx10 */
5590 /* Floating point compare */
5591 disas_fp_compare(s, insn);
5592 break;
5593 case 2: /* [15:12] == x100 */
5594 /* Floating point data-processing (1 source) */
5595 disas_fp_1src(s, insn);
5596 break;
5597 case 3: /* [15:12] == 1000 */
5598 unallocated_encoding(s);
5599 break;
5600 default: /* [15:12] == 0000 */
5601 /* Floating point <-> integer conversions */
5602 disas_fp_int_conv(s, insn);
5603 break;
5605 break;
5610 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5611 int pos)
5613 /* Extract 64 bits from the middle of two concatenated 64 bit
5614 * vector register slices left:right. The extracted bits start
5615 * at 'pos' bits into the right (least significant) side.
5616 * We return the result in tcg_right, and guarantee not to
5617 * trash tcg_left.
5619 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5620 assert(pos > 0 && pos < 64);
5622 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5623 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5624 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5626 tcg_temp_free_i64(tcg_tmp);
5629 /* EXT
5630 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5631 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5632 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5633 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5635 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5637 int is_q = extract32(insn, 30, 1);
5638 int op2 = extract32(insn, 22, 2);
5639 int imm4 = extract32(insn, 11, 4);
5640 int rm = extract32(insn, 16, 5);
5641 int rn = extract32(insn, 5, 5);
5642 int rd = extract32(insn, 0, 5);
5643 int pos = imm4 << 3;
5644 TCGv_i64 tcg_resl, tcg_resh;
5646 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5647 unallocated_encoding(s);
5648 return;
5651 if (!fp_access_check(s)) {
5652 return;
5655 tcg_resh = tcg_temp_new_i64();
5656 tcg_resl = tcg_temp_new_i64();
5658 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5659 * either extracting 128 bits from a 128:128 concatenation, or
5660 * extracting 64 bits from a 64:64 concatenation.
5662 if (!is_q) {
5663 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5664 if (pos != 0) {
5665 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5666 do_ext64(s, tcg_resh, tcg_resl, pos);
5668 tcg_gen_movi_i64(tcg_resh, 0);
5669 } else {
5670 TCGv_i64 tcg_hh;
5671 typedef struct {
5672 int reg;
5673 int elt;
5674 } EltPosns;
5675 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5676 EltPosns *elt = eltposns;
5678 if (pos >= 64) {
5679 elt++;
5680 pos -= 64;
5683 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5684 elt++;
5685 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5686 elt++;
5687 if (pos != 0) {
5688 do_ext64(s, tcg_resh, tcg_resl, pos);
5689 tcg_hh = tcg_temp_new_i64();
5690 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5691 do_ext64(s, tcg_hh, tcg_resh, pos);
5692 tcg_temp_free_i64(tcg_hh);
5696 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5697 tcg_temp_free_i64(tcg_resl);
5698 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5699 tcg_temp_free_i64(tcg_resh);
5702 /* TBL/TBX
5703 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5704 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5705 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5706 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5708 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5710 int op2 = extract32(insn, 22, 2);
5711 int is_q = extract32(insn, 30, 1);
5712 int rm = extract32(insn, 16, 5);
5713 int rn = extract32(insn, 5, 5);
5714 int rd = extract32(insn, 0, 5);
5715 int is_tblx = extract32(insn, 12, 1);
5716 int len = extract32(insn, 13, 2);
5717 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5718 TCGv_i32 tcg_regno, tcg_numregs;
5720 if (op2 != 0) {
5721 unallocated_encoding(s);
5722 return;
5725 if (!fp_access_check(s)) {
5726 return;
5729 /* This does a table lookup: for every byte element in the input
5730 * we index into a table formed from up to four vector registers,
5731 * and then the output is the result of the lookups. Our helper
5732 * function does the lookup operation for a single 64 bit part of
5733 * the input.
5735 tcg_resl = tcg_temp_new_i64();
5736 tcg_resh = tcg_temp_new_i64();
5738 if (is_tblx) {
5739 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5740 } else {
5741 tcg_gen_movi_i64(tcg_resl, 0);
5743 if (is_tblx && is_q) {
5744 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5745 } else {
5746 tcg_gen_movi_i64(tcg_resh, 0);
5749 tcg_idx = tcg_temp_new_i64();
5750 tcg_regno = tcg_const_i32(rn);
5751 tcg_numregs = tcg_const_i32(len + 1);
5752 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5753 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5754 tcg_regno, tcg_numregs);
5755 if (is_q) {
5756 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5757 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5758 tcg_regno, tcg_numregs);
5760 tcg_temp_free_i64(tcg_idx);
5761 tcg_temp_free_i32(tcg_regno);
5762 tcg_temp_free_i32(tcg_numregs);
5764 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5765 tcg_temp_free_i64(tcg_resl);
5766 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5767 tcg_temp_free_i64(tcg_resh);
5770 /* ZIP/UZP/TRN
5771 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5772 * +---+---+-------------+------+---+------+---+------------------+------+
5773 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5774 * +---+---+-------------+------+---+------+---+------------------+------+
5776 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5778 int rd = extract32(insn, 0, 5);
5779 int rn = extract32(insn, 5, 5);
5780 int rm = extract32(insn, 16, 5);
5781 int size = extract32(insn, 22, 2);
5782 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5783 * bit 2 indicates 1 vs 2 variant of the insn.
5785 int opcode = extract32(insn, 12, 2);
5786 bool part = extract32(insn, 14, 1);
5787 bool is_q = extract32(insn, 30, 1);
5788 int esize = 8 << size;
5789 int i, ofs;
5790 int datasize = is_q ? 128 : 64;
5791 int elements = datasize / esize;
5792 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5794 if (opcode == 0 || (size == 3 && !is_q)) {
5795 unallocated_encoding(s);
5796 return;
5799 if (!fp_access_check(s)) {
5800 return;
5803 tcg_resl = tcg_const_i64(0);
5804 tcg_resh = tcg_const_i64(0);
5805 tcg_res = tcg_temp_new_i64();
5807 for (i = 0; i < elements; i++) {
5808 switch (opcode) {
5809 case 1: /* UZP1/2 */
5811 int midpoint = elements / 2;
5812 if (i < midpoint) {
5813 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5814 } else {
5815 read_vec_element(s, tcg_res, rm,
5816 2 * (i - midpoint) + part, size);
5818 break;
5820 case 2: /* TRN1/2 */
5821 if (i & 1) {
5822 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5823 } else {
5824 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5826 break;
5827 case 3: /* ZIP1/2 */
5829 int base = part * elements / 2;
5830 if (i & 1) {
5831 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5832 } else {
5833 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5835 break;
5837 default:
5838 g_assert_not_reached();
5841 ofs = i * esize;
5842 if (ofs < 64) {
5843 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5844 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5845 } else {
5846 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5847 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5851 tcg_temp_free_i64(tcg_res);
5853 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5854 tcg_temp_free_i64(tcg_resl);
5855 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5856 tcg_temp_free_i64(tcg_resh);
5860 * do_reduction_op helper
5862 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
5863 * important for correct NaN propagation that we do these
5864 * operations in exactly the order specified by the pseudocode.
5866 * This is a recursive function, TCG temps should be freed by the
5867 * calling function once it is done with the values.
5869 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
5870 int esize, int size, int vmap, TCGv_ptr fpst)
5872 if (esize == size) {
5873 int element;
5874 TCGMemOp msize = esize == 16 ? MO_16 : MO_32;
5875 TCGv_i32 tcg_elem;
5877 /* We should have one register left here */
5878 assert(ctpop8(vmap) == 1);
5879 element = ctz32(vmap);
5880 assert(element < 8);
5882 tcg_elem = tcg_temp_new_i32();
5883 read_vec_element_i32(s, tcg_elem, rn, element, msize);
5884 return tcg_elem;
5885 } else {
5886 int bits = size / 2;
5887 int shift = ctpop8(vmap) / 2;
5888 int vmap_lo = (vmap >> shift) & vmap;
5889 int vmap_hi = (vmap & ~vmap_lo);
5890 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
5892 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
5893 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
5894 tcg_res = tcg_temp_new_i32();
5896 switch (fpopcode) {
5897 case 0x0c: /* fmaxnmv half-precision */
5898 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5899 break;
5900 case 0x0f: /* fmaxv half-precision */
5901 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
5902 break;
5903 case 0x1c: /* fminnmv half-precision */
5904 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
5905 break;
5906 case 0x1f: /* fminv half-precision */
5907 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
5908 break;
5909 case 0x2c: /* fmaxnmv */
5910 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
5911 break;
5912 case 0x2f: /* fmaxv */
5913 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
5914 break;
5915 case 0x3c: /* fminnmv */
5916 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
5917 break;
5918 case 0x3f: /* fminv */
5919 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
5920 break;
5921 default:
5922 g_assert_not_reached();
5925 tcg_temp_free_i32(tcg_hi);
5926 tcg_temp_free_i32(tcg_lo);
5927 return tcg_res;
5931 /* AdvSIMD across lanes
5932 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5933 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5934 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5935 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5937 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5939 int rd = extract32(insn, 0, 5);
5940 int rn = extract32(insn, 5, 5);
5941 int size = extract32(insn, 22, 2);
5942 int opcode = extract32(insn, 12, 5);
5943 bool is_q = extract32(insn, 30, 1);
5944 bool is_u = extract32(insn, 29, 1);
5945 bool is_fp = false;
5946 bool is_min = false;
5947 int esize;
5948 int elements;
5949 int i;
5950 TCGv_i64 tcg_res, tcg_elt;
5952 switch (opcode) {
5953 case 0x1b: /* ADDV */
5954 if (is_u) {
5955 unallocated_encoding(s);
5956 return;
5958 /* fall through */
5959 case 0x3: /* SADDLV, UADDLV */
5960 case 0xa: /* SMAXV, UMAXV */
5961 case 0x1a: /* SMINV, UMINV */
5962 if (size == 3 || (size == 2 && !is_q)) {
5963 unallocated_encoding(s);
5964 return;
5966 break;
5967 case 0xc: /* FMAXNMV, FMINNMV */
5968 case 0xf: /* FMAXV, FMINV */
5969 /* Bit 1 of size field encodes min vs max and the actual size
5970 * depends on the encoding of the U bit. If not set (and FP16
5971 * enabled) then we do half-precision float instead of single
5972 * precision.
5974 is_min = extract32(size, 1, 1);
5975 is_fp = true;
5976 if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
5977 size = 1;
5978 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
5979 unallocated_encoding(s);
5980 return;
5981 } else {
5982 size = 2;
5984 break;
5985 default:
5986 unallocated_encoding(s);
5987 return;
5990 if (!fp_access_check(s)) {
5991 return;
5994 esize = 8 << size;
5995 elements = (is_q ? 128 : 64) / esize;
5997 tcg_res = tcg_temp_new_i64();
5998 tcg_elt = tcg_temp_new_i64();
6000 /* These instructions operate across all lanes of a vector
6001 * to produce a single result. We can guarantee that a 64
6002 * bit intermediate is sufficient:
6003 * + for [US]ADDLV the maximum element size is 32 bits, and
6004 * the result type is 64 bits
6005 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
6006 * same as the element size, which is 32 bits at most
6007 * For the integer operations we can choose to work at 64
6008 * or 32 bits and truncate at the end; for simplicity
6009 * we use 64 bits always. The floating point
6010 * ops do require 32 bit intermediates, though.
6012 if (!is_fp) {
6013 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
6015 for (i = 1; i < elements; i++) {
6016 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
6018 switch (opcode) {
6019 case 0x03: /* SADDLV / UADDLV */
6020 case 0x1b: /* ADDV */
6021 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
6022 break;
6023 case 0x0a: /* SMAXV / UMAXV */
6024 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
6025 tcg_res,
6026 tcg_res, tcg_elt, tcg_res, tcg_elt);
6027 break;
6028 case 0x1a: /* SMINV / UMINV */
6029 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
6030 tcg_res,
6031 tcg_res, tcg_elt, tcg_res, tcg_elt);
6032 break;
6033 break;
6034 default:
6035 g_assert_not_reached();
6039 } else {
6040 /* Floating point vector reduction ops which work across 32
6041 * bit (single) or 16 bit (half-precision) intermediates.
6042 * Note that correct NaN propagation requires that we do these
6043 * operations in exactly the order specified by the pseudocode.
6045 TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16);
6046 int fpopcode = opcode | is_min << 4 | is_u << 5;
6047 int vmap = (1 << elements) - 1;
6048 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
6049 (is_q ? 128 : 64), vmap, fpst);
6050 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
6051 tcg_temp_free_i32(tcg_res32);
6052 tcg_temp_free_ptr(fpst);
6055 tcg_temp_free_i64(tcg_elt);
6057 /* Now truncate the result to the width required for the final output */
6058 if (opcode == 0x03) {
6059 /* SADDLV, UADDLV: result is 2*esize */
6060 size++;
6063 switch (size) {
6064 case 0:
6065 tcg_gen_ext8u_i64(tcg_res, tcg_res);
6066 break;
6067 case 1:
6068 tcg_gen_ext16u_i64(tcg_res, tcg_res);
6069 break;
6070 case 2:
6071 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6072 break;
6073 case 3:
6074 break;
6075 default:
6076 g_assert_not_reached();
6079 write_fp_dreg(s, rd, tcg_res);
6080 tcg_temp_free_i64(tcg_res);
6083 /* DUP (Element, Vector)
6085 * 31 30 29 21 20 16 15 10 9 5 4 0
6086 * +---+---+-------------------+--------+-------------+------+------+
6087 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6088 * +---+---+-------------------+--------+-------------+------+------+
6090 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6092 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
6093 int imm5)
6095 int size = ctz32(imm5);
6096 int index = imm5 >> (size + 1);
6098 if (size > 3 || (size == 3 && !is_q)) {
6099 unallocated_encoding(s);
6100 return;
6103 if (!fp_access_check(s)) {
6104 return;
6107 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
6108 vec_reg_offset(s, rn, index, size),
6109 is_q ? 16 : 8, vec_full_reg_size(s));
6112 /* DUP (element, scalar)
6113 * 31 21 20 16 15 10 9 5 4 0
6114 * +-----------------------+--------+-------------+------+------+
6115 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
6116 * +-----------------------+--------+-------------+------+------+
6118 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
6119 int imm5)
6121 int size = ctz32(imm5);
6122 int index;
6123 TCGv_i64 tmp;
6125 if (size > 3) {
6126 unallocated_encoding(s);
6127 return;
6130 if (!fp_access_check(s)) {
6131 return;
6134 index = imm5 >> (size + 1);
6136 /* This instruction just extracts the specified element and
6137 * zero-extends it into the bottom of the destination register.
6139 tmp = tcg_temp_new_i64();
6140 read_vec_element(s, tmp, rn, index, size);
6141 write_fp_dreg(s, rd, tmp);
6142 tcg_temp_free_i64(tmp);
6145 /* DUP (General)
6147 * 31 30 29 21 20 16 15 10 9 5 4 0
6148 * +---+---+-------------------+--------+-------------+------+------+
6149 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
6150 * +---+---+-------------------+--------+-------------+------+------+
6152 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6154 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
6155 int imm5)
6157 int size = ctz32(imm5);
6158 uint32_t dofs, oprsz, maxsz;
6160 if (size > 3 || ((size == 3) && !is_q)) {
6161 unallocated_encoding(s);
6162 return;
6165 if (!fp_access_check(s)) {
6166 return;
6169 dofs = vec_full_reg_offset(s, rd);
6170 oprsz = is_q ? 16 : 8;
6171 maxsz = vec_full_reg_size(s);
6173 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
6176 /* INS (Element)
6178 * 31 21 20 16 15 14 11 10 9 5 4 0
6179 * +-----------------------+--------+------------+---+------+------+
6180 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6181 * +-----------------------+--------+------------+---+------+------+
6183 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6184 * index: encoded in imm5<4:size+1>
6186 static void handle_simd_inse(DisasContext *s, int rd, int rn,
6187 int imm4, int imm5)
6189 int size = ctz32(imm5);
6190 int src_index, dst_index;
6191 TCGv_i64 tmp;
6193 if (size > 3) {
6194 unallocated_encoding(s);
6195 return;
6198 if (!fp_access_check(s)) {
6199 return;
6202 dst_index = extract32(imm5, 1+size, 5);
6203 src_index = extract32(imm4, size, 4);
6205 tmp = tcg_temp_new_i64();
6207 read_vec_element(s, tmp, rn, src_index, size);
6208 write_vec_element(s, tmp, rd, dst_index, size);
6210 tcg_temp_free_i64(tmp);
6214 /* INS (General)
6216 * 31 21 20 16 15 10 9 5 4 0
6217 * +-----------------------+--------+-------------+------+------+
6218 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
6219 * +-----------------------+--------+-------------+------+------+
6221 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6222 * index: encoded in imm5<4:size+1>
6224 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
6226 int size = ctz32(imm5);
6227 int idx;
6229 if (size > 3) {
6230 unallocated_encoding(s);
6231 return;
6234 if (!fp_access_check(s)) {
6235 return;
6238 idx = extract32(imm5, 1 + size, 4 - size);
6239 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
6243 * UMOV (General)
6244 * SMOV (General)
6246 * 31 30 29 21 20 16 15 12 10 9 5 4 0
6247 * +---+---+-------------------+--------+-------------+------+------+
6248 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6249 * +---+---+-------------------+--------+-------------+------+------+
6251 * U: unsigned when set
6252 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6254 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6255 int rn, int rd, int imm5)
6257 int size = ctz32(imm5);
6258 int element;
6259 TCGv_i64 tcg_rd;
6261 /* Check for UnallocatedEncodings */
6262 if (is_signed) {
6263 if (size > 2 || (size == 2 && !is_q)) {
6264 unallocated_encoding(s);
6265 return;
6267 } else {
6268 if (size > 3
6269 || (size < 3 && is_q)
6270 || (size == 3 && !is_q)) {
6271 unallocated_encoding(s);
6272 return;
6276 if (!fp_access_check(s)) {
6277 return;
6280 element = extract32(imm5, 1+size, 4);
6282 tcg_rd = cpu_reg(s, rd);
6283 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6284 if (is_signed && !is_q) {
6285 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6289 /* AdvSIMD copy
6290 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6291 * +---+---+----+-----------------+------+---+------+---+------+------+
6292 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6293 * +---+---+----+-----------------+------+---+------+---+------+------+
6295 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6297 int rd = extract32(insn, 0, 5);
6298 int rn = extract32(insn, 5, 5);
6299 int imm4 = extract32(insn, 11, 4);
6300 int op = extract32(insn, 29, 1);
6301 int is_q = extract32(insn, 30, 1);
6302 int imm5 = extract32(insn, 16, 5);
6304 if (op) {
6305 if (is_q) {
6306 /* INS (element) */
6307 handle_simd_inse(s, rd, rn, imm4, imm5);
6308 } else {
6309 unallocated_encoding(s);
6311 } else {
6312 switch (imm4) {
6313 case 0:
6314 /* DUP (element - vector) */
6315 handle_simd_dupe(s, is_q, rd, rn, imm5);
6316 break;
6317 case 1:
6318 /* DUP (general) */
6319 handle_simd_dupg(s, is_q, rd, rn, imm5);
6320 break;
6321 case 3:
6322 if (is_q) {
6323 /* INS (general) */
6324 handle_simd_insg(s, rd, rn, imm5);
6325 } else {
6326 unallocated_encoding(s);
6328 break;
6329 case 5:
6330 case 7:
6331 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6332 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6333 break;
6334 default:
6335 unallocated_encoding(s);
6336 break;
6341 /* AdvSIMD modified immediate
6342 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6343 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6344 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6345 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6347 * There are a number of operations that can be carried out here:
6348 * MOVI - move (shifted) imm into register
6349 * MVNI - move inverted (shifted) imm into register
6350 * ORR - bitwise OR of (shifted) imm with register
6351 * BIC - bitwise clear of (shifted) imm with register
6352 * With ARMv8.2 we also have:
6353 * FMOV half-precision
6355 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6357 int rd = extract32(insn, 0, 5);
6358 int cmode = extract32(insn, 12, 4);
6359 int cmode_3_1 = extract32(cmode, 1, 3);
6360 int cmode_0 = extract32(cmode, 0, 1);
6361 int o2 = extract32(insn, 11, 1);
6362 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6363 bool is_neg = extract32(insn, 29, 1);
6364 bool is_q = extract32(insn, 30, 1);
6365 uint64_t imm = 0;
6367 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6368 /* Check for FMOV (vector, immediate) - half-precision */
6369 if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) {
6370 unallocated_encoding(s);
6371 return;
6375 if (!fp_access_check(s)) {
6376 return;
6379 /* See AdvSIMDExpandImm() in ARM ARM */
6380 switch (cmode_3_1) {
6381 case 0: /* Replicate(Zeros(24):imm8, 2) */
6382 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6383 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6384 case 3: /* Replicate(imm8:Zeros(24), 2) */
6386 int shift = cmode_3_1 * 8;
6387 imm = bitfield_replicate(abcdefgh << shift, 32);
6388 break;
6390 case 4: /* Replicate(Zeros(8):imm8, 4) */
6391 case 5: /* Replicate(imm8:Zeros(8), 4) */
6393 int shift = (cmode_3_1 & 0x1) * 8;
6394 imm = bitfield_replicate(abcdefgh << shift, 16);
6395 break;
6397 case 6:
6398 if (cmode_0) {
6399 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6400 imm = (abcdefgh << 16) | 0xffff;
6401 } else {
6402 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6403 imm = (abcdefgh << 8) | 0xff;
6405 imm = bitfield_replicate(imm, 32);
6406 break;
6407 case 7:
6408 if (!cmode_0 && !is_neg) {
6409 imm = bitfield_replicate(abcdefgh, 8);
6410 } else if (!cmode_0 && is_neg) {
6411 int i;
6412 imm = 0;
6413 for (i = 0; i < 8; i++) {
6414 if ((abcdefgh) & (1 << i)) {
6415 imm |= 0xffULL << (i * 8);
6418 } else if (cmode_0) {
6419 if (is_neg) {
6420 imm = (abcdefgh & 0x3f) << 48;
6421 if (abcdefgh & 0x80) {
6422 imm |= 0x8000000000000000ULL;
6424 if (abcdefgh & 0x40) {
6425 imm |= 0x3fc0000000000000ULL;
6426 } else {
6427 imm |= 0x4000000000000000ULL;
6429 } else {
6430 if (o2) {
6431 /* FMOV (vector, immediate) - half-precision */
6432 imm = vfp_expand_imm(MO_16, abcdefgh);
6433 /* now duplicate across the lanes */
6434 imm = bitfield_replicate(imm, 16);
6435 } else {
6436 imm = (abcdefgh & 0x3f) << 19;
6437 if (abcdefgh & 0x80) {
6438 imm |= 0x80000000;
6440 if (abcdefgh & 0x40) {
6441 imm |= 0x3e000000;
6442 } else {
6443 imm |= 0x40000000;
6445 imm |= (imm << 32);
6449 break;
6450 default:
6451 fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1);
6452 g_assert_not_reached();
6455 if (cmode_3_1 != 7 && is_neg) {
6456 imm = ~imm;
6459 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
6460 /* MOVI or MVNI, with MVNI negation handled above. */
6461 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8,
6462 vec_full_reg_size(s), imm);
6463 } else {
6464 /* ORR or BIC, with BIC negation to AND handled above. */
6465 if (is_neg) {
6466 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
6467 } else {
6468 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
6473 /* AdvSIMD scalar copy
6474 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6475 * +-----+----+-----------------+------+---+------+---+------+------+
6476 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6477 * +-----+----+-----------------+------+---+------+---+------+------+
6479 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6481 int rd = extract32(insn, 0, 5);
6482 int rn = extract32(insn, 5, 5);
6483 int imm4 = extract32(insn, 11, 4);
6484 int imm5 = extract32(insn, 16, 5);
6485 int op = extract32(insn, 29, 1);
6487 if (op != 0 || imm4 != 0) {
6488 unallocated_encoding(s);
6489 return;
6492 /* DUP (element, scalar) */
6493 handle_simd_dupes(s, rd, rn, imm5);
6496 /* AdvSIMD scalar pairwise
6497 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6498 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6499 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6500 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6502 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6504 int u = extract32(insn, 29, 1);
6505 int size = extract32(insn, 22, 2);
6506 int opcode = extract32(insn, 12, 5);
6507 int rn = extract32(insn, 5, 5);
6508 int rd = extract32(insn, 0, 5);
6509 TCGv_ptr fpst;
6511 /* For some ops (the FP ones), size[1] is part of the encoding.
6512 * For ADDP strictly it is not but size[1] is always 1 for valid
6513 * encodings.
6515 opcode |= (extract32(size, 1, 1) << 5);
6517 switch (opcode) {
6518 case 0x3b: /* ADDP */
6519 if (u || size != 3) {
6520 unallocated_encoding(s);
6521 return;
6523 if (!fp_access_check(s)) {
6524 return;
6527 fpst = NULL;
6528 break;
6529 case 0xc: /* FMAXNMP */
6530 case 0xd: /* FADDP */
6531 case 0xf: /* FMAXP */
6532 case 0x2c: /* FMINNMP */
6533 case 0x2f: /* FMINP */
6534 /* FP op, size[0] is 32 or 64 bit*/
6535 if (!u) {
6536 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
6537 unallocated_encoding(s);
6538 return;
6539 } else {
6540 size = MO_16;
6542 } else {
6543 size = extract32(size, 0, 1) ? MO_64 : MO_32;
6546 if (!fp_access_check(s)) {
6547 return;
6550 fpst = get_fpstatus_ptr(size == MO_16);
6551 break;
6552 default:
6553 unallocated_encoding(s);
6554 return;
6557 if (size == MO_64) {
6558 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6559 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6560 TCGv_i64 tcg_res = tcg_temp_new_i64();
6562 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6563 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6565 switch (opcode) {
6566 case 0x3b: /* ADDP */
6567 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6568 break;
6569 case 0xc: /* FMAXNMP */
6570 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6571 break;
6572 case 0xd: /* FADDP */
6573 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6574 break;
6575 case 0xf: /* FMAXP */
6576 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6577 break;
6578 case 0x2c: /* FMINNMP */
6579 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6580 break;
6581 case 0x2f: /* FMINP */
6582 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6583 break;
6584 default:
6585 g_assert_not_reached();
6588 write_fp_dreg(s, rd, tcg_res);
6590 tcg_temp_free_i64(tcg_op1);
6591 tcg_temp_free_i64(tcg_op2);
6592 tcg_temp_free_i64(tcg_res);
6593 } else {
6594 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6595 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6596 TCGv_i32 tcg_res = tcg_temp_new_i32();
6598 read_vec_element_i32(s, tcg_op1, rn, 0, size);
6599 read_vec_element_i32(s, tcg_op2, rn, 1, size);
6601 if (size == MO_16) {
6602 switch (opcode) {
6603 case 0xc: /* FMAXNMP */
6604 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6605 break;
6606 case 0xd: /* FADDP */
6607 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6608 break;
6609 case 0xf: /* FMAXP */
6610 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6611 break;
6612 case 0x2c: /* FMINNMP */
6613 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6614 break;
6615 case 0x2f: /* FMINP */
6616 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6617 break;
6618 default:
6619 g_assert_not_reached();
6621 } else {
6622 switch (opcode) {
6623 case 0xc: /* FMAXNMP */
6624 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6625 break;
6626 case 0xd: /* FADDP */
6627 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6628 break;
6629 case 0xf: /* FMAXP */
6630 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6631 break;
6632 case 0x2c: /* FMINNMP */
6633 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6634 break;
6635 case 0x2f: /* FMINP */
6636 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6637 break;
6638 default:
6639 g_assert_not_reached();
6643 write_fp_sreg(s, rd, tcg_res);
6645 tcg_temp_free_i32(tcg_op1);
6646 tcg_temp_free_i32(tcg_op2);
6647 tcg_temp_free_i32(tcg_res);
6650 if (fpst) {
6651 tcg_temp_free_ptr(fpst);
6656 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6658 * This code is handles the common shifting code and is used by both
6659 * the vector and scalar code.
6661 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6662 TCGv_i64 tcg_rnd, bool accumulate,
6663 bool is_u, int size, int shift)
6665 bool extended_result = false;
6666 bool round = tcg_rnd != NULL;
6667 int ext_lshift = 0;
6668 TCGv_i64 tcg_src_hi;
6670 if (round && size == 3) {
6671 extended_result = true;
6672 ext_lshift = 64 - shift;
6673 tcg_src_hi = tcg_temp_new_i64();
6674 } else if (shift == 64) {
6675 if (!accumulate && is_u) {
6676 /* result is zero */
6677 tcg_gen_movi_i64(tcg_res, 0);
6678 return;
6682 /* Deal with the rounding step */
6683 if (round) {
6684 if (extended_result) {
6685 TCGv_i64 tcg_zero = tcg_const_i64(0);
6686 if (!is_u) {
6687 /* take care of sign extending tcg_res */
6688 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6689 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6690 tcg_src, tcg_src_hi,
6691 tcg_rnd, tcg_zero);
6692 } else {
6693 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6694 tcg_src, tcg_zero,
6695 tcg_rnd, tcg_zero);
6697 tcg_temp_free_i64(tcg_zero);
6698 } else {
6699 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6703 /* Now do the shift right */
6704 if (round && extended_result) {
6705 /* extended case, >64 bit precision required */
6706 if (ext_lshift == 0) {
6707 /* special case, only high bits matter */
6708 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6709 } else {
6710 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6711 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6712 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6714 } else {
6715 if (is_u) {
6716 if (shift == 64) {
6717 /* essentially shifting in 64 zeros */
6718 tcg_gen_movi_i64(tcg_src, 0);
6719 } else {
6720 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6722 } else {
6723 if (shift == 64) {
6724 /* effectively extending the sign-bit */
6725 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6726 } else {
6727 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6732 if (accumulate) {
6733 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6734 } else {
6735 tcg_gen_mov_i64(tcg_res, tcg_src);
6738 if (extended_result) {
6739 tcg_temp_free_i64(tcg_src_hi);
6743 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6744 static void handle_scalar_simd_shri(DisasContext *s,
6745 bool is_u, int immh, int immb,
6746 int opcode, int rn, int rd)
6748 const int size = 3;
6749 int immhb = immh << 3 | immb;
6750 int shift = 2 * (8 << size) - immhb;
6751 bool accumulate = false;
6752 bool round = false;
6753 bool insert = false;
6754 TCGv_i64 tcg_rn;
6755 TCGv_i64 tcg_rd;
6756 TCGv_i64 tcg_round;
6758 if (!extract32(immh, 3, 1)) {
6759 unallocated_encoding(s);
6760 return;
6763 if (!fp_access_check(s)) {
6764 return;
6767 switch (opcode) {
6768 case 0x02: /* SSRA / USRA (accumulate) */
6769 accumulate = true;
6770 break;
6771 case 0x04: /* SRSHR / URSHR (rounding) */
6772 round = true;
6773 break;
6774 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6775 accumulate = round = true;
6776 break;
6777 case 0x08: /* SRI */
6778 insert = true;
6779 break;
6782 if (round) {
6783 uint64_t round_const = 1ULL << (shift - 1);
6784 tcg_round = tcg_const_i64(round_const);
6785 } else {
6786 tcg_round = NULL;
6789 tcg_rn = read_fp_dreg(s, rn);
6790 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6792 if (insert) {
6793 /* shift count same as element size is valid but does nothing;
6794 * special case to avoid potential shift by 64.
6796 int esize = 8 << size;
6797 if (shift != esize) {
6798 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
6799 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
6801 } else {
6802 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6803 accumulate, is_u, size, shift);
6806 write_fp_dreg(s, rd, tcg_rd);
6808 tcg_temp_free_i64(tcg_rn);
6809 tcg_temp_free_i64(tcg_rd);
6810 if (round) {
6811 tcg_temp_free_i64(tcg_round);
6815 /* SHL/SLI - Scalar shift left */
6816 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6817 int immh, int immb, int opcode,
6818 int rn, int rd)
6820 int size = 32 - clz32(immh) - 1;
6821 int immhb = immh << 3 | immb;
6822 int shift = immhb - (8 << size);
6823 TCGv_i64 tcg_rn = new_tmp_a64(s);
6824 TCGv_i64 tcg_rd = new_tmp_a64(s);
6826 if (!extract32(immh, 3, 1)) {
6827 unallocated_encoding(s);
6828 return;
6831 if (!fp_access_check(s)) {
6832 return;
6835 tcg_rn = read_fp_dreg(s, rn);
6836 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6838 if (insert) {
6839 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
6840 } else {
6841 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
6844 write_fp_dreg(s, rd, tcg_rd);
6846 tcg_temp_free_i64(tcg_rn);
6847 tcg_temp_free_i64(tcg_rd);
6850 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6851 * (signed/unsigned) narrowing */
6852 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6853 bool is_u_shift, bool is_u_narrow,
6854 int immh, int immb, int opcode,
6855 int rn, int rd)
6857 int immhb = immh << 3 | immb;
6858 int size = 32 - clz32(immh) - 1;
6859 int esize = 8 << size;
6860 int shift = (2 * esize) - immhb;
6861 int elements = is_scalar ? 1 : (64 / esize);
6862 bool round = extract32(opcode, 0, 1);
6863 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6864 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6865 TCGv_i32 tcg_rd_narrowed;
6866 TCGv_i64 tcg_final;
6868 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6869 { gen_helper_neon_narrow_sat_s8,
6870 gen_helper_neon_unarrow_sat8 },
6871 { gen_helper_neon_narrow_sat_s16,
6872 gen_helper_neon_unarrow_sat16 },
6873 { gen_helper_neon_narrow_sat_s32,
6874 gen_helper_neon_unarrow_sat32 },
6875 { NULL, NULL },
6877 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6878 gen_helper_neon_narrow_sat_u8,
6879 gen_helper_neon_narrow_sat_u16,
6880 gen_helper_neon_narrow_sat_u32,
6881 NULL
6883 NeonGenNarrowEnvFn *narrowfn;
6885 int i;
6887 assert(size < 4);
6889 if (extract32(immh, 3, 1)) {
6890 unallocated_encoding(s);
6891 return;
6894 if (!fp_access_check(s)) {
6895 return;
6898 if (is_u_shift) {
6899 narrowfn = unsigned_narrow_fns[size];
6900 } else {
6901 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6904 tcg_rn = tcg_temp_new_i64();
6905 tcg_rd = tcg_temp_new_i64();
6906 tcg_rd_narrowed = tcg_temp_new_i32();
6907 tcg_final = tcg_const_i64(0);
6909 if (round) {
6910 uint64_t round_const = 1ULL << (shift - 1);
6911 tcg_round = tcg_const_i64(round_const);
6912 } else {
6913 tcg_round = NULL;
6916 for (i = 0; i < elements; i++) {
6917 read_vec_element(s, tcg_rn, rn, i, ldop);
6918 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6919 false, is_u_shift, size+1, shift);
6920 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6921 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6922 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6925 if (!is_q) {
6926 write_vec_element(s, tcg_final, rd, 0, MO_64);
6927 } else {
6928 write_vec_element(s, tcg_final, rd, 1, MO_64);
6931 if (round) {
6932 tcg_temp_free_i64(tcg_round);
6934 tcg_temp_free_i64(tcg_rn);
6935 tcg_temp_free_i64(tcg_rd);
6936 tcg_temp_free_i32(tcg_rd_narrowed);
6937 tcg_temp_free_i64(tcg_final);
6939 clear_vec_high(s, is_q, rd);
6942 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6943 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6944 bool src_unsigned, bool dst_unsigned,
6945 int immh, int immb, int rn, int rd)
6947 int immhb = immh << 3 | immb;
6948 int size = 32 - clz32(immh) - 1;
6949 int shift = immhb - (8 << size);
6950 int pass;
6952 assert(immh != 0);
6953 assert(!(scalar && is_q));
6955 if (!scalar) {
6956 if (!is_q && extract32(immh, 3, 1)) {
6957 unallocated_encoding(s);
6958 return;
6961 /* Since we use the variable-shift helpers we must
6962 * replicate the shift count into each element of
6963 * the tcg_shift value.
6965 switch (size) {
6966 case 0:
6967 shift |= shift << 8;
6968 /* fall through */
6969 case 1:
6970 shift |= shift << 16;
6971 break;
6972 case 2:
6973 case 3:
6974 break;
6975 default:
6976 g_assert_not_reached();
6980 if (!fp_access_check(s)) {
6981 return;
6984 if (size == 3) {
6985 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6986 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6987 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6988 { NULL, gen_helper_neon_qshl_u64 },
6990 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6991 int maxpass = is_q ? 2 : 1;
6993 for (pass = 0; pass < maxpass; pass++) {
6994 TCGv_i64 tcg_op = tcg_temp_new_i64();
6996 read_vec_element(s, tcg_op, rn, pass, MO_64);
6997 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6998 write_vec_element(s, tcg_op, rd, pass, MO_64);
7000 tcg_temp_free_i64(tcg_op);
7002 tcg_temp_free_i64(tcg_shift);
7003 clear_vec_high(s, is_q, rd);
7004 } else {
7005 TCGv_i32 tcg_shift = tcg_const_i32(shift);
7006 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
7008 { gen_helper_neon_qshl_s8,
7009 gen_helper_neon_qshl_s16,
7010 gen_helper_neon_qshl_s32 },
7011 { gen_helper_neon_qshlu_s8,
7012 gen_helper_neon_qshlu_s16,
7013 gen_helper_neon_qshlu_s32 }
7014 }, {
7015 { NULL, NULL, NULL },
7016 { gen_helper_neon_qshl_u8,
7017 gen_helper_neon_qshl_u16,
7018 gen_helper_neon_qshl_u32 }
7021 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
7022 TCGMemOp memop = scalar ? size : MO_32;
7023 int maxpass = scalar ? 1 : is_q ? 4 : 2;
7025 for (pass = 0; pass < maxpass; pass++) {
7026 TCGv_i32 tcg_op = tcg_temp_new_i32();
7028 read_vec_element_i32(s, tcg_op, rn, pass, memop);
7029 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
7030 if (scalar) {
7031 switch (size) {
7032 case 0:
7033 tcg_gen_ext8u_i32(tcg_op, tcg_op);
7034 break;
7035 case 1:
7036 tcg_gen_ext16u_i32(tcg_op, tcg_op);
7037 break;
7038 case 2:
7039 break;
7040 default:
7041 g_assert_not_reached();
7043 write_fp_sreg(s, rd, tcg_op);
7044 } else {
7045 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7048 tcg_temp_free_i32(tcg_op);
7050 tcg_temp_free_i32(tcg_shift);
7052 if (!scalar) {
7053 clear_vec_high(s, is_q, rd);
7058 /* Common vector code for handling integer to FP conversion */
7059 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
7060 int elements, int is_signed,
7061 int fracbits, int size)
7063 TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16);
7064 TCGv_i32 tcg_shift = NULL;
7066 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
7067 int pass;
7069 if (fracbits || size == MO_64) {
7070 tcg_shift = tcg_const_i32(fracbits);
7073 if (size == MO_64) {
7074 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
7075 TCGv_i64 tcg_double = tcg_temp_new_i64();
7077 for (pass = 0; pass < elements; pass++) {
7078 read_vec_element(s, tcg_int64, rn, pass, mop);
7080 if (is_signed) {
7081 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
7082 tcg_shift, tcg_fpst);
7083 } else {
7084 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
7085 tcg_shift, tcg_fpst);
7087 if (elements == 1) {
7088 write_fp_dreg(s, rd, tcg_double);
7089 } else {
7090 write_vec_element(s, tcg_double, rd, pass, MO_64);
7094 tcg_temp_free_i64(tcg_int64);
7095 tcg_temp_free_i64(tcg_double);
7097 } else {
7098 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
7099 TCGv_i32 tcg_float = tcg_temp_new_i32();
7101 for (pass = 0; pass < elements; pass++) {
7102 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
7104 switch (size) {
7105 case MO_32:
7106 if (fracbits) {
7107 if (is_signed) {
7108 gen_helper_vfp_sltos(tcg_float, tcg_int32,
7109 tcg_shift, tcg_fpst);
7110 } else {
7111 gen_helper_vfp_ultos(tcg_float, tcg_int32,
7112 tcg_shift, tcg_fpst);
7114 } else {
7115 if (is_signed) {
7116 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
7117 } else {
7118 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
7121 break;
7122 case MO_16:
7123 if (fracbits) {
7124 if (is_signed) {
7125 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
7126 tcg_shift, tcg_fpst);
7127 } else {
7128 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
7129 tcg_shift, tcg_fpst);
7131 } else {
7132 if (is_signed) {
7133 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
7134 } else {
7135 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
7138 break;
7139 default:
7140 g_assert_not_reached();
7143 if (elements == 1) {
7144 write_fp_sreg(s, rd, tcg_float);
7145 } else {
7146 write_vec_element_i32(s, tcg_float, rd, pass, size);
7150 tcg_temp_free_i32(tcg_int32);
7151 tcg_temp_free_i32(tcg_float);
7154 tcg_temp_free_ptr(tcg_fpst);
7155 if (tcg_shift) {
7156 tcg_temp_free_i32(tcg_shift);
7159 clear_vec_high(s, elements << size == 16, rd);
7162 /* UCVTF/SCVTF - Integer to FP conversion */
7163 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
7164 bool is_q, bool is_u,
7165 int immh, int immb, int opcode,
7166 int rn, int rd)
7168 bool is_double = extract32(immh, 3, 1);
7169 int size = is_double ? MO_64 : MO_32;
7170 int elements;
7171 int immhb = immh << 3 | immb;
7172 int fracbits = (is_double ? 128 : 64) - immhb;
7174 if (!extract32(immh, 2, 2)) {
7175 unallocated_encoding(s);
7176 return;
7179 if (is_scalar) {
7180 elements = 1;
7181 } else {
7182 elements = is_double ? 2 : is_q ? 4 : 2;
7183 if (is_double && !is_q) {
7184 unallocated_encoding(s);
7185 return;
7189 if (!fp_access_check(s)) {
7190 return;
7193 /* immh == 0 would be a failure of the decode logic */
7194 g_assert(immh);
7196 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
7199 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
7200 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
7201 bool is_q, bool is_u,
7202 int immh, int immb, int rn, int rd)
7204 bool is_double = extract32(immh, 3, 1);
7205 int immhb = immh << 3 | immb;
7206 int fracbits = (is_double ? 128 : 64) - immhb;
7207 int pass;
7208 TCGv_ptr tcg_fpstatus;
7209 TCGv_i32 tcg_rmode, tcg_shift;
7211 if (!extract32(immh, 2, 2)) {
7212 unallocated_encoding(s);
7213 return;
7216 if (!is_scalar && !is_q && is_double) {
7217 unallocated_encoding(s);
7218 return;
7221 if (!fp_access_check(s)) {
7222 return;
7225 assert(!(is_scalar && is_q));
7227 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
7228 tcg_fpstatus = get_fpstatus_ptr(false);
7229 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7230 tcg_shift = tcg_const_i32(fracbits);
7232 if (is_double) {
7233 int maxpass = is_scalar ? 1 : 2;
7235 for (pass = 0; pass < maxpass; pass++) {
7236 TCGv_i64 tcg_op = tcg_temp_new_i64();
7238 read_vec_element(s, tcg_op, rn, pass, MO_64);
7239 if (is_u) {
7240 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7241 } else {
7242 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7244 write_vec_element(s, tcg_op, rd, pass, MO_64);
7245 tcg_temp_free_i64(tcg_op);
7247 clear_vec_high(s, is_q, rd);
7248 } else {
7249 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
7250 for (pass = 0; pass < maxpass; pass++) {
7251 TCGv_i32 tcg_op = tcg_temp_new_i32();
7253 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7254 if (is_u) {
7255 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7256 } else {
7257 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
7259 if (is_scalar) {
7260 write_fp_sreg(s, rd, tcg_op);
7261 } else {
7262 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
7264 tcg_temp_free_i32(tcg_op);
7266 if (!is_scalar) {
7267 clear_vec_high(s, is_q, rd);
7271 tcg_temp_free_ptr(tcg_fpstatus);
7272 tcg_temp_free_i32(tcg_shift);
7273 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7274 tcg_temp_free_i32(tcg_rmode);
7277 /* AdvSIMD scalar shift by immediate
7278 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
7279 * +-----+---+-------------+------+------+--------+---+------+------+
7280 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
7281 * +-----+---+-------------+------+------+--------+---+------+------+
7283 * This is the scalar version so it works on a fixed sized registers
7285 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
7287 int rd = extract32(insn, 0, 5);
7288 int rn = extract32(insn, 5, 5);
7289 int opcode = extract32(insn, 11, 5);
7290 int immb = extract32(insn, 16, 3);
7291 int immh = extract32(insn, 19, 4);
7292 bool is_u = extract32(insn, 29, 1);
7294 if (immh == 0) {
7295 unallocated_encoding(s);
7296 return;
7299 switch (opcode) {
7300 case 0x08: /* SRI */
7301 if (!is_u) {
7302 unallocated_encoding(s);
7303 return;
7305 /* fall through */
7306 case 0x00: /* SSHR / USHR */
7307 case 0x02: /* SSRA / USRA */
7308 case 0x04: /* SRSHR / URSHR */
7309 case 0x06: /* SRSRA / URSRA */
7310 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7311 break;
7312 case 0x0a: /* SHL / SLI */
7313 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7314 break;
7315 case 0x1c: /* SCVTF, UCVTF */
7316 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7317 opcode, rn, rd);
7318 break;
7319 case 0x10: /* SQSHRUN, SQSHRUN2 */
7320 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7321 if (!is_u) {
7322 unallocated_encoding(s);
7323 return;
7325 handle_vec_simd_sqshrn(s, true, false, false, true,
7326 immh, immb, opcode, rn, rd);
7327 break;
7328 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7329 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7330 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7331 immh, immb, opcode, rn, rd);
7332 break;
7333 case 0xc: /* SQSHLU */
7334 if (!is_u) {
7335 unallocated_encoding(s);
7336 return;
7338 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7339 break;
7340 case 0xe: /* SQSHL, UQSHL */
7341 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7342 break;
7343 case 0x1f: /* FCVTZS, FCVTZU */
7344 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7345 break;
7346 default:
7347 unallocated_encoding(s);
7348 break;
7352 /* AdvSIMD scalar three different
7353 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7354 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7355 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7356 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7358 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7360 bool is_u = extract32(insn, 29, 1);
7361 int size = extract32(insn, 22, 2);
7362 int opcode = extract32(insn, 12, 4);
7363 int rm = extract32(insn, 16, 5);
7364 int rn = extract32(insn, 5, 5);
7365 int rd = extract32(insn, 0, 5);
7367 if (is_u) {
7368 unallocated_encoding(s);
7369 return;
7372 switch (opcode) {
7373 case 0x9: /* SQDMLAL, SQDMLAL2 */
7374 case 0xb: /* SQDMLSL, SQDMLSL2 */
7375 case 0xd: /* SQDMULL, SQDMULL2 */
7376 if (size == 0 || size == 3) {
7377 unallocated_encoding(s);
7378 return;
7380 break;
7381 default:
7382 unallocated_encoding(s);
7383 return;
7386 if (!fp_access_check(s)) {
7387 return;
7390 if (size == 2) {
7391 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7392 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7393 TCGv_i64 tcg_res = tcg_temp_new_i64();
7395 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7396 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7398 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7399 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7401 switch (opcode) {
7402 case 0xd: /* SQDMULL, SQDMULL2 */
7403 break;
7404 case 0xb: /* SQDMLSL, SQDMLSL2 */
7405 tcg_gen_neg_i64(tcg_res, tcg_res);
7406 /* fall through */
7407 case 0x9: /* SQDMLAL, SQDMLAL2 */
7408 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7409 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7410 tcg_res, tcg_op1);
7411 break;
7412 default:
7413 g_assert_not_reached();
7416 write_fp_dreg(s, rd, tcg_res);
7418 tcg_temp_free_i64(tcg_op1);
7419 tcg_temp_free_i64(tcg_op2);
7420 tcg_temp_free_i64(tcg_res);
7421 } else {
7422 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7423 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7424 TCGv_i64 tcg_res = tcg_temp_new_i64();
7426 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7427 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7429 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7430 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7432 switch (opcode) {
7433 case 0xd: /* SQDMULL, SQDMULL2 */
7434 break;
7435 case 0xb: /* SQDMLSL, SQDMLSL2 */
7436 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7437 /* fall through */
7438 case 0x9: /* SQDMLAL, SQDMLAL2 */
7440 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7441 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7442 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7443 tcg_res, tcg_op3);
7444 tcg_temp_free_i64(tcg_op3);
7445 break;
7447 default:
7448 g_assert_not_reached();
7451 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7452 write_fp_dreg(s, rd, tcg_res);
7454 tcg_temp_free_i32(tcg_op1);
7455 tcg_temp_free_i32(tcg_op2);
7456 tcg_temp_free_i64(tcg_res);
7460 /* CMTST : test is "if (X & Y != 0)". */
7461 static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
7463 tcg_gen_and_i32(d, a, b);
7464 tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
7465 tcg_gen_neg_i32(d, d);
7468 static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
7470 tcg_gen_and_i64(d, a, b);
7471 tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
7472 tcg_gen_neg_i64(d, d);
7475 static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
7477 tcg_gen_and_vec(vece, d, a, b);
7478 tcg_gen_dupi_vec(vece, a, 0);
7479 tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
7482 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7483 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7485 /* Handle 64x64->64 opcodes which are shared between the scalar
7486 * and vector 3-same groups. We cover every opcode where size == 3
7487 * is valid in either the three-reg-same (integer, not pairwise)
7488 * or scalar-three-reg-same groups.
7490 TCGCond cond;
7492 switch (opcode) {
7493 case 0x1: /* SQADD */
7494 if (u) {
7495 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7496 } else {
7497 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7499 break;
7500 case 0x5: /* SQSUB */
7501 if (u) {
7502 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7503 } else {
7504 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7506 break;
7507 case 0x6: /* CMGT, CMHI */
7508 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7509 * We implement this using setcond (test) and then negating.
7511 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7512 do_cmop:
7513 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7514 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7515 break;
7516 case 0x7: /* CMGE, CMHS */
7517 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7518 goto do_cmop;
7519 case 0x11: /* CMTST, CMEQ */
7520 if (u) {
7521 cond = TCG_COND_EQ;
7522 goto do_cmop;
7524 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
7525 break;
7526 case 0x8: /* SSHL, USHL */
7527 if (u) {
7528 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7529 } else {
7530 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7532 break;
7533 case 0x9: /* SQSHL, UQSHL */
7534 if (u) {
7535 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7536 } else {
7537 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7539 break;
7540 case 0xa: /* SRSHL, URSHL */
7541 if (u) {
7542 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7543 } else {
7544 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7546 break;
7547 case 0xb: /* SQRSHL, UQRSHL */
7548 if (u) {
7549 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7550 } else {
7551 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7553 break;
7554 case 0x10: /* ADD, SUB */
7555 if (u) {
7556 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7557 } else {
7558 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7560 break;
7561 default:
7562 g_assert_not_reached();
7566 /* Handle the 3-same-operands float operations; shared by the scalar
7567 * and vector encodings. The caller must filter out any encodings
7568 * not allocated for the encoding it is dealing with.
7570 static void handle_3same_float(DisasContext *s, int size, int elements,
7571 int fpopcode, int rd, int rn, int rm)
7573 int pass;
7574 TCGv_ptr fpst = get_fpstatus_ptr(false);
7576 for (pass = 0; pass < elements; pass++) {
7577 if (size) {
7578 /* Double */
7579 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7580 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7581 TCGv_i64 tcg_res = tcg_temp_new_i64();
7583 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7584 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7586 switch (fpopcode) {
7587 case 0x39: /* FMLS */
7588 /* As usual for ARM, separate negation for fused multiply-add */
7589 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7590 /* fall through */
7591 case 0x19: /* FMLA */
7592 read_vec_element(s, tcg_res, rd, pass, MO_64);
7593 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7594 tcg_res, fpst);
7595 break;
7596 case 0x18: /* FMAXNM */
7597 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7598 break;
7599 case 0x1a: /* FADD */
7600 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7601 break;
7602 case 0x1b: /* FMULX */
7603 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7604 break;
7605 case 0x1c: /* FCMEQ */
7606 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7607 break;
7608 case 0x1e: /* FMAX */
7609 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7610 break;
7611 case 0x1f: /* FRECPS */
7612 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7613 break;
7614 case 0x38: /* FMINNM */
7615 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7616 break;
7617 case 0x3a: /* FSUB */
7618 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7619 break;
7620 case 0x3e: /* FMIN */
7621 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7622 break;
7623 case 0x3f: /* FRSQRTS */
7624 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7625 break;
7626 case 0x5b: /* FMUL */
7627 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7628 break;
7629 case 0x5c: /* FCMGE */
7630 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7631 break;
7632 case 0x5d: /* FACGE */
7633 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7634 break;
7635 case 0x5f: /* FDIV */
7636 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7637 break;
7638 case 0x7a: /* FABD */
7639 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7640 gen_helper_vfp_absd(tcg_res, tcg_res);
7641 break;
7642 case 0x7c: /* FCMGT */
7643 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7644 break;
7645 case 0x7d: /* FACGT */
7646 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7647 break;
7648 default:
7649 g_assert_not_reached();
7652 write_vec_element(s, tcg_res, rd, pass, MO_64);
7654 tcg_temp_free_i64(tcg_res);
7655 tcg_temp_free_i64(tcg_op1);
7656 tcg_temp_free_i64(tcg_op2);
7657 } else {
7658 /* Single */
7659 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7660 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7661 TCGv_i32 tcg_res = tcg_temp_new_i32();
7663 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7664 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7666 switch (fpopcode) {
7667 case 0x39: /* FMLS */
7668 /* As usual for ARM, separate negation for fused multiply-add */
7669 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7670 /* fall through */
7671 case 0x19: /* FMLA */
7672 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7673 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7674 tcg_res, fpst);
7675 break;
7676 case 0x1a: /* FADD */
7677 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7678 break;
7679 case 0x1b: /* FMULX */
7680 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7681 break;
7682 case 0x1c: /* FCMEQ */
7683 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7684 break;
7685 case 0x1e: /* FMAX */
7686 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7687 break;
7688 case 0x1f: /* FRECPS */
7689 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7690 break;
7691 case 0x18: /* FMAXNM */
7692 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7693 break;
7694 case 0x38: /* FMINNM */
7695 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7696 break;
7697 case 0x3a: /* FSUB */
7698 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7699 break;
7700 case 0x3e: /* FMIN */
7701 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7702 break;
7703 case 0x3f: /* FRSQRTS */
7704 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7705 break;
7706 case 0x5b: /* FMUL */
7707 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7708 break;
7709 case 0x5c: /* FCMGE */
7710 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7711 break;
7712 case 0x5d: /* FACGE */
7713 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7714 break;
7715 case 0x5f: /* FDIV */
7716 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7717 break;
7718 case 0x7a: /* FABD */
7719 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7720 gen_helper_vfp_abss(tcg_res, tcg_res);
7721 break;
7722 case 0x7c: /* FCMGT */
7723 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7724 break;
7725 case 0x7d: /* FACGT */
7726 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7727 break;
7728 default:
7729 g_assert_not_reached();
7732 if (elements == 1) {
7733 /* scalar single so clear high part */
7734 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7736 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7737 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7738 tcg_temp_free_i64(tcg_tmp);
7739 } else {
7740 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7743 tcg_temp_free_i32(tcg_res);
7744 tcg_temp_free_i32(tcg_op1);
7745 tcg_temp_free_i32(tcg_op2);
7749 tcg_temp_free_ptr(fpst);
7751 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
7754 /* AdvSIMD scalar three same
7755 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7756 * +-----+---+-----------+------+---+------+--------+---+------+------+
7757 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7758 * +-----+---+-----------+------+---+------+--------+---+------+------+
7760 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7762 int rd = extract32(insn, 0, 5);
7763 int rn = extract32(insn, 5, 5);
7764 int opcode = extract32(insn, 11, 5);
7765 int rm = extract32(insn, 16, 5);
7766 int size = extract32(insn, 22, 2);
7767 bool u = extract32(insn, 29, 1);
7768 TCGv_i64 tcg_rd;
7770 if (opcode >= 0x18) {
7771 /* Floating point: U, size[1] and opcode indicate operation */
7772 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7773 switch (fpopcode) {
7774 case 0x1b: /* FMULX */
7775 case 0x1f: /* FRECPS */
7776 case 0x3f: /* FRSQRTS */
7777 case 0x5d: /* FACGE */
7778 case 0x7d: /* FACGT */
7779 case 0x1c: /* FCMEQ */
7780 case 0x5c: /* FCMGE */
7781 case 0x7c: /* FCMGT */
7782 case 0x7a: /* FABD */
7783 break;
7784 default:
7785 unallocated_encoding(s);
7786 return;
7789 if (!fp_access_check(s)) {
7790 return;
7793 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7794 return;
7797 switch (opcode) {
7798 case 0x1: /* SQADD, UQADD */
7799 case 0x5: /* SQSUB, UQSUB */
7800 case 0x9: /* SQSHL, UQSHL */
7801 case 0xb: /* SQRSHL, UQRSHL */
7802 break;
7803 case 0x8: /* SSHL, USHL */
7804 case 0xa: /* SRSHL, URSHL */
7805 case 0x6: /* CMGT, CMHI */
7806 case 0x7: /* CMGE, CMHS */
7807 case 0x11: /* CMTST, CMEQ */
7808 case 0x10: /* ADD, SUB (vector) */
7809 if (size != 3) {
7810 unallocated_encoding(s);
7811 return;
7813 break;
7814 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7815 if (size != 1 && size != 2) {
7816 unallocated_encoding(s);
7817 return;
7819 break;
7820 default:
7821 unallocated_encoding(s);
7822 return;
7825 if (!fp_access_check(s)) {
7826 return;
7829 tcg_rd = tcg_temp_new_i64();
7831 if (size == 3) {
7832 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7833 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7835 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7836 tcg_temp_free_i64(tcg_rn);
7837 tcg_temp_free_i64(tcg_rm);
7838 } else {
7839 /* Do a single operation on the lowest element in the vector.
7840 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7841 * no side effects for all these operations.
7842 * OPTME: special-purpose helpers would avoid doing some
7843 * unnecessary work in the helper for the 8 and 16 bit cases.
7845 NeonGenTwoOpEnvFn *genenvfn;
7846 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7847 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7848 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7850 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7851 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7853 switch (opcode) {
7854 case 0x1: /* SQADD, UQADD */
7856 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7857 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7858 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7859 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7861 genenvfn = fns[size][u];
7862 break;
7864 case 0x5: /* SQSUB, UQSUB */
7866 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7867 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7868 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7869 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7871 genenvfn = fns[size][u];
7872 break;
7874 case 0x9: /* SQSHL, UQSHL */
7876 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7877 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7878 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7879 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7881 genenvfn = fns[size][u];
7882 break;
7884 case 0xb: /* SQRSHL, UQRSHL */
7886 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7887 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7888 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7889 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7891 genenvfn = fns[size][u];
7892 break;
7894 case 0x16: /* SQDMULH, SQRDMULH */
7896 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7897 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7898 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7900 assert(size == 1 || size == 2);
7901 genenvfn = fns[size - 1][u];
7902 break;
7904 default:
7905 g_assert_not_reached();
7908 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7909 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7910 tcg_temp_free_i32(tcg_rd32);
7911 tcg_temp_free_i32(tcg_rn);
7912 tcg_temp_free_i32(tcg_rm);
7915 write_fp_dreg(s, rd, tcg_rd);
7917 tcg_temp_free_i64(tcg_rd);
7920 /* AdvSIMD scalar three same FP16
7921 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
7922 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7923 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
7924 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
7925 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
7926 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
7928 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
7929 uint32_t insn)
7931 int rd = extract32(insn, 0, 5);
7932 int rn = extract32(insn, 5, 5);
7933 int opcode = extract32(insn, 11, 3);
7934 int rm = extract32(insn, 16, 5);
7935 bool u = extract32(insn, 29, 1);
7936 bool a = extract32(insn, 23, 1);
7937 int fpopcode = opcode | (a << 3) | (u << 4);
7938 TCGv_ptr fpst;
7939 TCGv_i32 tcg_op1;
7940 TCGv_i32 tcg_op2;
7941 TCGv_i32 tcg_res;
7943 switch (fpopcode) {
7944 case 0x03: /* FMULX */
7945 case 0x04: /* FCMEQ (reg) */
7946 case 0x07: /* FRECPS */
7947 case 0x0f: /* FRSQRTS */
7948 case 0x14: /* FCMGE (reg) */
7949 case 0x15: /* FACGE */
7950 case 0x1a: /* FABD */
7951 case 0x1c: /* FCMGT (reg) */
7952 case 0x1d: /* FACGT */
7953 break;
7954 default:
7955 unallocated_encoding(s);
7956 return;
7959 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
7960 unallocated_encoding(s);
7963 if (!fp_access_check(s)) {
7964 return;
7967 fpst = get_fpstatus_ptr(true);
7969 tcg_op1 = tcg_temp_new_i32();
7970 tcg_op2 = tcg_temp_new_i32();
7971 tcg_res = tcg_temp_new_i32();
7973 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7974 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7976 switch (fpopcode) {
7977 case 0x03: /* FMULX */
7978 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
7979 break;
7980 case 0x04: /* FCMEQ (reg) */
7981 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7982 break;
7983 case 0x07: /* FRECPS */
7984 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7985 break;
7986 case 0x0f: /* FRSQRTS */
7987 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7988 break;
7989 case 0x14: /* FCMGE (reg) */
7990 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7991 break;
7992 case 0x15: /* FACGE */
7993 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
7994 break;
7995 case 0x1a: /* FABD */
7996 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
7997 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
7998 break;
7999 case 0x1c: /* FCMGT (reg) */
8000 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8001 break;
8002 case 0x1d: /* FACGT */
8003 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
8004 break;
8005 default:
8006 g_assert_not_reached();
8009 write_fp_sreg(s, rd, tcg_res);
8012 tcg_temp_free_i32(tcg_res);
8013 tcg_temp_free_i32(tcg_op1);
8014 tcg_temp_free_i32(tcg_op2);
8015 tcg_temp_free_ptr(fpst);
8018 /* AdvSIMD scalar three same extra
8019 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8020 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8021 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
8022 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
8024 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
8025 uint32_t insn)
8027 int rd = extract32(insn, 0, 5);
8028 int rn = extract32(insn, 5, 5);
8029 int opcode = extract32(insn, 11, 4);
8030 int rm = extract32(insn, 16, 5);
8031 int size = extract32(insn, 22, 2);
8032 bool u = extract32(insn, 29, 1);
8033 TCGv_i32 ele1, ele2, ele3;
8034 TCGv_i64 res;
8035 int feature;
8037 switch (u * 16 + opcode) {
8038 case 0x10: /* SQRDMLAH (vector) */
8039 case 0x11: /* SQRDMLSH (vector) */
8040 if (size != 1 && size != 2) {
8041 unallocated_encoding(s);
8042 return;
8044 feature = ARM_FEATURE_V8_RDM;
8045 break;
8046 default:
8047 unallocated_encoding(s);
8048 return;
8050 if (!arm_dc_feature(s, feature)) {
8051 unallocated_encoding(s);
8052 return;
8054 if (!fp_access_check(s)) {
8055 return;
8058 /* Do a single operation on the lowest element in the vector.
8059 * We use the standard Neon helpers and rely on 0 OP 0 == 0
8060 * with no side effects for all these operations.
8061 * OPTME: special-purpose helpers would avoid doing some
8062 * unnecessary work in the helper for the 16 bit cases.
8064 ele1 = tcg_temp_new_i32();
8065 ele2 = tcg_temp_new_i32();
8066 ele3 = tcg_temp_new_i32();
8068 read_vec_element_i32(s, ele1, rn, 0, size);
8069 read_vec_element_i32(s, ele2, rm, 0, size);
8070 read_vec_element_i32(s, ele3, rd, 0, size);
8072 switch (opcode) {
8073 case 0x0: /* SQRDMLAH */
8074 if (size == 1) {
8075 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
8076 } else {
8077 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
8079 break;
8080 case 0x1: /* SQRDMLSH */
8081 if (size == 1) {
8082 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
8083 } else {
8084 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
8086 break;
8087 default:
8088 g_assert_not_reached();
8090 tcg_temp_free_i32(ele1);
8091 tcg_temp_free_i32(ele2);
8093 res = tcg_temp_new_i64();
8094 tcg_gen_extu_i32_i64(res, ele3);
8095 tcg_temp_free_i32(ele3);
8097 write_fp_dreg(s, rd, res);
8098 tcg_temp_free_i64(res);
8101 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
8102 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
8103 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
8105 /* Handle 64->64 opcodes which are shared between the scalar and
8106 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
8107 * is valid in either group and also the double-precision fp ops.
8108 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
8109 * requires them.
8111 TCGCond cond;
8113 switch (opcode) {
8114 case 0x4: /* CLS, CLZ */
8115 if (u) {
8116 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8117 } else {
8118 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
8120 break;
8121 case 0x5: /* NOT */
8122 /* This opcode is shared with CNT and RBIT but we have earlier
8123 * enforced that size == 3 if and only if this is the NOT insn.
8125 tcg_gen_not_i64(tcg_rd, tcg_rn);
8126 break;
8127 case 0x7: /* SQABS, SQNEG */
8128 if (u) {
8129 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
8130 } else {
8131 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
8133 break;
8134 case 0xa: /* CMLT */
8135 /* 64 bit integer comparison against zero, result is
8136 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
8137 * subtracting 1.
8139 cond = TCG_COND_LT;
8140 do_cmop:
8141 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
8142 tcg_gen_neg_i64(tcg_rd, tcg_rd);
8143 break;
8144 case 0x8: /* CMGT, CMGE */
8145 cond = u ? TCG_COND_GE : TCG_COND_GT;
8146 goto do_cmop;
8147 case 0x9: /* CMEQ, CMLE */
8148 cond = u ? TCG_COND_LE : TCG_COND_EQ;
8149 goto do_cmop;
8150 case 0xb: /* ABS, NEG */
8151 if (u) {
8152 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8153 } else {
8154 TCGv_i64 tcg_zero = tcg_const_i64(0);
8155 tcg_gen_neg_i64(tcg_rd, tcg_rn);
8156 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
8157 tcg_rn, tcg_rd);
8158 tcg_temp_free_i64(tcg_zero);
8160 break;
8161 case 0x2f: /* FABS */
8162 gen_helper_vfp_absd(tcg_rd, tcg_rn);
8163 break;
8164 case 0x6f: /* FNEG */
8165 gen_helper_vfp_negd(tcg_rd, tcg_rn);
8166 break;
8167 case 0x7f: /* FSQRT */
8168 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
8169 break;
8170 case 0x1a: /* FCVTNS */
8171 case 0x1b: /* FCVTMS */
8172 case 0x1c: /* FCVTAS */
8173 case 0x3a: /* FCVTPS */
8174 case 0x3b: /* FCVTZS */
8176 TCGv_i32 tcg_shift = tcg_const_i32(0);
8177 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8178 tcg_temp_free_i32(tcg_shift);
8179 break;
8181 case 0x5a: /* FCVTNU */
8182 case 0x5b: /* FCVTMU */
8183 case 0x5c: /* FCVTAU */
8184 case 0x7a: /* FCVTPU */
8185 case 0x7b: /* FCVTZU */
8187 TCGv_i32 tcg_shift = tcg_const_i32(0);
8188 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8189 tcg_temp_free_i32(tcg_shift);
8190 break;
8192 case 0x18: /* FRINTN */
8193 case 0x19: /* FRINTM */
8194 case 0x38: /* FRINTP */
8195 case 0x39: /* FRINTZ */
8196 case 0x58: /* FRINTA */
8197 case 0x79: /* FRINTI */
8198 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
8199 break;
8200 case 0x59: /* FRINTX */
8201 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
8202 break;
8203 default:
8204 g_assert_not_reached();
8208 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
8209 bool is_scalar, bool is_u, bool is_q,
8210 int size, int rn, int rd)
8212 bool is_double = (size == MO_64);
8213 TCGv_ptr fpst;
8215 if (!fp_access_check(s)) {
8216 return;
8219 fpst = get_fpstatus_ptr(size == MO_16);
8221 if (is_double) {
8222 TCGv_i64 tcg_op = tcg_temp_new_i64();
8223 TCGv_i64 tcg_zero = tcg_const_i64(0);
8224 TCGv_i64 tcg_res = tcg_temp_new_i64();
8225 NeonGenTwoDoubleOPFn *genfn;
8226 bool swap = false;
8227 int pass;
8229 switch (opcode) {
8230 case 0x2e: /* FCMLT (zero) */
8231 swap = true;
8232 /* fallthrough */
8233 case 0x2c: /* FCMGT (zero) */
8234 genfn = gen_helper_neon_cgt_f64;
8235 break;
8236 case 0x2d: /* FCMEQ (zero) */
8237 genfn = gen_helper_neon_ceq_f64;
8238 break;
8239 case 0x6d: /* FCMLE (zero) */
8240 swap = true;
8241 /* fall through */
8242 case 0x6c: /* FCMGE (zero) */
8243 genfn = gen_helper_neon_cge_f64;
8244 break;
8245 default:
8246 g_assert_not_reached();
8249 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8250 read_vec_element(s, tcg_op, rn, pass, MO_64);
8251 if (swap) {
8252 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8253 } else {
8254 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8256 write_vec_element(s, tcg_res, rd, pass, MO_64);
8258 tcg_temp_free_i64(tcg_res);
8259 tcg_temp_free_i64(tcg_zero);
8260 tcg_temp_free_i64(tcg_op);
8262 clear_vec_high(s, !is_scalar, rd);
8263 } else {
8264 TCGv_i32 tcg_op = tcg_temp_new_i32();
8265 TCGv_i32 tcg_zero = tcg_const_i32(0);
8266 TCGv_i32 tcg_res = tcg_temp_new_i32();
8267 NeonGenTwoSingleOPFn *genfn;
8268 bool swap = false;
8269 int pass, maxpasses;
8271 if (size == MO_16) {
8272 switch (opcode) {
8273 case 0x2e: /* FCMLT (zero) */
8274 swap = true;
8275 /* fall through */
8276 case 0x2c: /* FCMGT (zero) */
8277 genfn = gen_helper_advsimd_cgt_f16;
8278 break;
8279 case 0x2d: /* FCMEQ (zero) */
8280 genfn = gen_helper_advsimd_ceq_f16;
8281 break;
8282 case 0x6d: /* FCMLE (zero) */
8283 swap = true;
8284 /* fall through */
8285 case 0x6c: /* FCMGE (zero) */
8286 genfn = gen_helper_advsimd_cge_f16;
8287 break;
8288 default:
8289 g_assert_not_reached();
8291 } else {
8292 switch (opcode) {
8293 case 0x2e: /* FCMLT (zero) */
8294 swap = true;
8295 /* fall through */
8296 case 0x2c: /* FCMGT (zero) */
8297 genfn = gen_helper_neon_cgt_f32;
8298 break;
8299 case 0x2d: /* FCMEQ (zero) */
8300 genfn = gen_helper_neon_ceq_f32;
8301 break;
8302 case 0x6d: /* FCMLE (zero) */
8303 swap = true;
8304 /* fall through */
8305 case 0x6c: /* FCMGE (zero) */
8306 genfn = gen_helper_neon_cge_f32;
8307 break;
8308 default:
8309 g_assert_not_reached();
8313 if (is_scalar) {
8314 maxpasses = 1;
8315 } else {
8316 int vector_size = 8 << is_q;
8317 maxpasses = vector_size >> size;
8320 for (pass = 0; pass < maxpasses; pass++) {
8321 read_vec_element_i32(s, tcg_op, rn, pass, size);
8322 if (swap) {
8323 genfn(tcg_res, tcg_zero, tcg_op, fpst);
8324 } else {
8325 genfn(tcg_res, tcg_op, tcg_zero, fpst);
8327 if (is_scalar) {
8328 write_fp_sreg(s, rd, tcg_res);
8329 } else {
8330 write_vec_element_i32(s, tcg_res, rd, pass, size);
8333 tcg_temp_free_i32(tcg_res);
8334 tcg_temp_free_i32(tcg_zero);
8335 tcg_temp_free_i32(tcg_op);
8336 if (!is_scalar) {
8337 clear_vec_high(s, is_q, rd);
8341 tcg_temp_free_ptr(fpst);
8344 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
8345 bool is_scalar, bool is_u, bool is_q,
8346 int size, int rn, int rd)
8348 bool is_double = (size == 3);
8349 TCGv_ptr fpst = get_fpstatus_ptr(false);
8351 if (is_double) {
8352 TCGv_i64 tcg_op = tcg_temp_new_i64();
8353 TCGv_i64 tcg_res = tcg_temp_new_i64();
8354 int pass;
8356 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8357 read_vec_element(s, tcg_op, rn, pass, MO_64);
8358 switch (opcode) {
8359 case 0x3d: /* FRECPE */
8360 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
8361 break;
8362 case 0x3f: /* FRECPX */
8363 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
8364 break;
8365 case 0x7d: /* FRSQRTE */
8366 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
8367 break;
8368 default:
8369 g_assert_not_reached();
8371 write_vec_element(s, tcg_res, rd, pass, MO_64);
8373 tcg_temp_free_i64(tcg_res);
8374 tcg_temp_free_i64(tcg_op);
8375 clear_vec_high(s, !is_scalar, rd);
8376 } else {
8377 TCGv_i32 tcg_op = tcg_temp_new_i32();
8378 TCGv_i32 tcg_res = tcg_temp_new_i32();
8379 int pass, maxpasses;
8381 if (is_scalar) {
8382 maxpasses = 1;
8383 } else {
8384 maxpasses = is_q ? 4 : 2;
8387 for (pass = 0; pass < maxpasses; pass++) {
8388 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
8390 switch (opcode) {
8391 case 0x3c: /* URECPE */
8392 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
8393 break;
8394 case 0x3d: /* FRECPE */
8395 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
8396 break;
8397 case 0x3f: /* FRECPX */
8398 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
8399 break;
8400 case 0x7d: /* FRSQRTE */
8401 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
8402 break;
8403 default:
8404 g_assert_not_reached();
8407 if (is_scalar) {
8408 write_fp_sreg(s, rd, tcg_res);
8409 } else {
8410 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8413 tcg_temp_free_i32(tcg_res);
8414 tcg_temp_free_i32(tcg_op);
8415 if (!is_scalar) {
8416 clear_vec_high(s, is_q, rd);
8419 tcg_temp_free_ptr(fpst);
8422 static void handle_2misc_narrow(DisasContext *s, bool scalar,
8423 int opcode, bool u, bool is_q,
8424 int size, int rn, int rd)
8426 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
8427 * in the source becomes a size element in the destination).
8429 int pass;
8430 TCGv_i32 tcg_res[2];
8431 int destelt = is_q ? 2 : 0;
8432 int passes = scalar ? 1 : 2;
8434 if (scalar) {
8435 tcg_res[1] = tcg_const_i32(0);
8438 for (pass = 0; pass < passes; pass++) {
8439 TCGv_i64 tcg_op = tcg_temp_new_i64();
8440 NeonGenNarrowFn *genfn = NULL;
8441 NeonGenNarrowEnvFn *genenvfn = NULL;
8443 if (scalar) {
8444 read_vec_element(s, tcg_op, rn, pass, size + 1);
8445 } else {
8446 read_vec_element(s, tcg_op, rn, pass, MO_64);
8448 tcg_res[pass] = tcg_temp_new_i32();
8450 switch (opcode) {
8451 case 0x12: /* XTN, SQXTUN */
8453 static NeonGenNarrowFn * const xtnfns[3] = {
8454 gen_helper_neon_narrow_u8,
8455 gen_helper_neon_narrow_u16,
8456 tcg_gen_extrl_i64_i32,
8458 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
8459 gen_helper_neon_unarrow_sat8,
8460 gen_helper_neon_unarrow_sat16,
8461 gen_helper_neon_unarrow_sat32,
8463 if (u) {
8464 genenvfn = sqxtunfns[size];
8465 } else {
8466 genfn = xtnfns[size];
8468 break;
8470 case 0x14: /* SQXTN, UQXTN */
8472 static NeonGenNarrowEnvFn * const fns[3][2] = {
8473 { gen_helper_neon_narrow_sat_s8,
8474 gen_helper_neon_narrow_sat_u8 },
8475 { gen_helper_neon_narrow_sat_s16,
8476 gen_helper_neon_narrow_sat_u16 },
8477 { gen_helper_neon_narrow_sat_s32,
8478 gen_helper_neon_narrow_sat_u32 },
8480 genenvfn = fns[size][u];
8481 break;
8483 case 0x16: /* FCVTN, FCVTN2 */
8484 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
8485 if (size == 2) {
8486 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
8487 } else {
8488 TCGv_i32 tcg_lo = tcg_temp_new_i32();
8489 TCGv_i32 tcg_hi = tcg_temp_new_i32();
8490 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
8491 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
8492 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
8493 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
8494 tcg_temp_free_i32(tcg_lo);
8495 tcg_temp_free_i32(tcg_hi);
8497 break;
8498 case 0x56: /* FCVTXN, FCVTXN2 */
8499 /* 64 bit to 32 bit float conversion
8500 * with von Neumann rounding (round to odd)
8502 assert(size == 2);
8503 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
8504 break;
8505 default:
8506 g_assert_not_reached();
8509 if (genfn) {
8510 genfn(tcg_res[pass], tcg_op);
8511 } else if (genenvfn) {
8512 genenvfn(tcg_res[pass], cpu_env, tcg_op);
8515 tcg_temp_free_i64(tcg_op);
8518 for (pass = 0; pass < 2; pass++) {
8519 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
8520 tcg_temp_free_i32(tcg_res[pass]);
8522 clear_vec_high(s, is_q, rd);
8525 /* Remaining saturating accumulating ops */
8526 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
8527 bool is_q, int size, int rn, int rd)
8529 bool is_double = (size == 3);
8531 if (is_double) {
8532 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8533 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8534 int pass;
8536 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8537 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8538 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8540 if (is_u) { /* USQADD */
8541 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8542 } else { /* SUQADD */
8543 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8545 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8547 tcg_temp_free_i64(tcg_rd);
8548 tcg_temp_free_i64(tcg_rn);
8549 clear_vec_high(s, !is_scalar, rd);
8550 } else {
8551 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8552 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8553 int pass, maxpasses;
8555 if (is_scalar) {
8556 maxpasses = 1;
8557 } else {
8558 maxpasses = is_q ? 4 : 2;
8561 for (pass = 0; pass < maxpasses; pass++) {
8562 if (is_scalar) {
8563 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8564 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8565 } else {
8566 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8567 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8570 if (is_u) { /* USQADD */
8571 switch (size) {
8572 case 0:
8573 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8574 break;
8575 case 1:
8576 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8577 break;
8578 case 2:
8579 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8580 break;
8581 default:
8582 g_assert_not_reached();
8584 } else { /* SUQADD */
8585 switch (size) {
8586 case 0:
8587 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8588 break;
8589 case 1:
8590 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8591 break;
8592 case 2:
8593 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8594 break;
8595 default:
8596 g_assert_not_reached();
8600 if (is_scalar) {
8601 TCGv_i64 tcg_zero = tcg_const_i64(0);
8602 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8603 tcg_temp_free_i64(tcg_zero);
8605 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8607 tcg_temp_free_i32(tcg_rd);
8608 tcg_temp_free_i32(tcg_rn);
8609 clear_vec_high(s, is_q, rd);
8613 /* AdvSIMD scalar two reg misc
8614 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8615 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8616 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8617 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8619 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8621 int rd = extract32(insn, 0, 5);
8622 int rn = extract32(insn, 5, 5);
8623 int opcode = extract32(insn, 12, 5);
8624 int size = extract32(insn, 22, 2);
8625 bool u = extract32(insn, 29, 1);
8626 bool is_fcvt = false;
8627 int rmode;
8628 TCGv_i32 tcg_rmode;
8629 TCGv_ptr tcg_fpstatus;
8631 switch (opcode) {
8632 case 0x3: /* USQADD / SUQADD*/
8633 if (!fp_access_check(s)) {
8634 return;
8636 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8637 return;
8638 case 0x7: /* SQABS / SQNEG */
8639 break;
8640 case 0xa: /* CMLT */
8641 if (u) {
8642 unallocated_encoding(s);
8643 return;
8645 /* fall through */
8646 case 0x8: /* CMGT, CMGE */
8647 case 0x9: /* CMEQ, CMLE */
8648 case 0xb: /* ABS, NEG */
8649 if (size != 3) {
8650 unallocated_encoding(s);
8651 return;
8653 break;
8654 case 0x12: /* SQXTUN */
8655 if (!u) {
8656 unallocated_encoding(s);
8657 return;
8659 /* fall through */
8660 case 0x14: /* SQXTN, UQXTN */
8661 if (size == 3) {
8662 unallocated_encoding(s);
8663 return;
8665 if (!fp_access_check(s)) {
8666 return;
8668 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8669 return;
8670 case 0xc ... 0xf:
8671 case 0x16 ... 0x1d:
8672 case 0x1f:
8673 /* Floating point: U, size[1] and opcode indicate operation;
8674 * size[0] indicates single or double precision.
8676 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8677 size = extract32(size, 0, 1) ? 3 : 2;
8678 switch (opcode) {
8679 case 0x2c: /* FCMGT (zero) */
8680 case 0x2d: /* FCMEQ (zero) */
8681 case 0x2e: /* FCMLT (zero) */
8682 case 0x6c: /* FCMGE (zero) */
8683 case 0x6d: /* FCMLE (zero) */
8684 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8685 return;
8686 case 0x1d: /* SCVTF */
8687 case 0x5d: /* UCVTF */
8689 bool is_signed = (opcode == 0x1d);
8690 if (!fp_access_check(s)) {
8691 return;
8693 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8694 return;
8696 case 0x3d: /* FRECPE */
8697 case 0x3f: /* FRECPX */
8698 case 0x7d: /* FRSQRTE */
8699 if (!fp_access_check(s)) {
8700 return;
8702 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8703 return;
8704 case 0x1a: /* FCVTNS */
8705 case 0x1b: /* FCVTMS */
8706 case 0x3a: /* FCVTPS */
8707 case 0x3b: /* FCVTZS */
8708 case 0x5a: /* FCVTNU */
8709 case 0x5b: /* FCVTMU */
8710 case 0x7a: /* FCVTPU */
8711 case 0x7b: /* FCVTZU */
8712 is_fcvt = true;
8713 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8714 break;
8715 case 0x1c: /* FCVTAS */
8716 case 0x5c: /* FCVTAU */
8717 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8718 is_fcvt = true;
8719 rmode = FPROUNDING_TIEAWAY;
8720 break;
8721 case 0x56: /* FCVTXN, FCVTXN2 */
8722 if (size == 2) {
8723 unallocated_encoding(s);
8724 return;
8726 if (!fp_access_check(s)) {
8727 return;
8729 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8730 return;
8731 default:
8732 unallocated_encoding(s);
8733 return;
8735 break;
8736 default:
8737 unallocated_encoding(s);
8738 return;
8741 if (!fp_access_check(s)) {
8742 return;
8745 if (is_fcvt) {
8746 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8747 tcg_fpstatus = get_fpstatus_ptr(false);
8748 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8749 } else {
8750 tcg_rmode = NULL;
8751 tcg_fpstatus = NULL;
8754 if (size == 3) {
8755 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8756 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8758 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8759 write_fp_dreg(s, rd, tcg_rd);
8760 tcg_temp_free_i64(tcg_rd);
8761 tcg_temp_free_i64(tcg_rn);
8762 } else {
8763 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8764 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8766 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8768 switch (opcode) {
8769 case 0x7: /* SQABS, SQNEG */
8771 NeonGenOneOpEnvFn *genfn;
8772 static NeonGenOneOpEnvFn * const fns[3][2] = {
8773 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8774 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8775 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8777 genfn = fns[size][u];
8778 genfn(tcg_rd, cpu_env, tcg_rn);
8779 break;
8781 case 0x1a: /* FCVTNS */
8782 case 0x1b: /* FCVTMS */
8783 case 0x1c: /* FCVTAS */
8784 case 0x3a: /* FCVTPS */
8785 case 0x3b: /* FCVTZS */
8787 TCGv_i32 tcg_shift = tcg_const_i32(0);
8788 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8789 tcg_temp_free_i32(tcg_shift);
8790 break;
8792 case 0x5a: /* FCVTNU */
8793 case 0x5b: /* FCVTMU */
8794 case 0x5c: /* FCVTAU */
8795 case 0x7a: /* FCVTPU */
8796 case 0x7b: /* FCVTZU */
8798 TCGv_i32 tcg_shift = tcg_const_i32(0);
8799 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8800 tcg_temp_free_i32(tcg_shift);
8801 break;
8803 default:
8804 g_assert_not_reached();
8807 write_fp_sreg(s, rd, tcg_rd);
8808 tcg_temp_free_i32(tcg_rd);
8809 tcg_temp_free_i32(tcg_rn);
8812 if (is_fcvt) {
8813 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8814 tcg_temp_free_i32(tcg_rmode);
8815 tcg_temp_free_ptr(tcg_fpstatus);
8819 static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8821 tcg_gen_vec_sar8i_i64(a, a, shift);
8822 tcg_gen_vec_add8_i64(d, d, a);
8825 static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8827 tcg_gen_vec_sar16i_i64(a, a, shift);
8828 tcg_gen_vec_add16_i64(d, d, a);
8831 static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8833 tcg_gen_sari_i32(a, a, shift);
8834 tcg_gen_add_i32(d, d, a);
8837 static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8839 tcg_gen_sari_i64(a, a, shift);
8840 tcg_gen_add_i64(d, d, a);
8843 static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8845 tcg_gen_sari_vec(vece, a, a, sh);
8846 tcg_gen_add_vec(vece, d, d, a);
8849 static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8851 tcg_gen_vec_shr8i_i64(a, a, shift);
8852 tcg_gen_vec_add8_i64(d, d, a);
8855 static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8857 tcg_gen_vec_shr16i_i64(a, a, shift);
8858 tcg_gen_vec_add16_i64(d, d, a);
8861 static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8863 tcg_gen_shri_i32(a, a, shift);
8864 tcg_gen_add_i32(d, d, a);
8867 static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8869 tcg_gen_shri_i64(a, a, shift);
8870 tcg_gen_add_i64(d, d, a);
8873 static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8875 tcg_gen_shri_vec(vece, a, a, sh);
8876 tcg_gen_add_vec(vece, d, d, a);
8879 static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8881 uint64_t mask = dup_const(MO_8, 0xff >> shift);
8882 TCGv_i64 t = tcg_temp_new_i64();
8884 tcg_gen_shri_i64(t, a, shift);
8885 tcg_gen_andi_i64(t, t, mask);
8886 tcg_gen_andi_i64(d, d, ~mask);
8887 tcg_gen_or_i64(d, d, t);
8888 tcg_temp_free_i64(t);
8891 static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8893 uint64_t mask = dup_const(MO_16, 0xffff >> shift);
8894 TCGv_i64 t = tcg_temp_new_i64();
8896 tcg_gen_shri_i64(t, a, shift);
8897 tcg_gen_andi_i64(t, t, mask);
8898 tcg_gen_andi_i64(d, d, ~mask);
8899 tcg_gen_or_i64(d, d, t);
8900 tcg_temp_free_i64(t);
8903 static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
8905 tcg_gen_shri_i32(a, a, shift);
8906 tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
8909 static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
8911 tcg_gen_shri_i64(a, a, shift);
8912 tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
8915 static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
8917 uint64_t mask = (2ull << ((8 << vece) - 1)) - 1;
8918 TCGv_vec t = tcg_temp_new_vec_matching(d);
8919 TCGv_vec m = tcg_temp_new_vec_matching(d);
8921 tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh));
8922 tcg_gen_shri_vec(vece, t, a, sh);
8923 tcg_gen_and_vec(vece, d, d, m);
8924 tcg_gen_or_vec(vece, d, d, t);
8926 tcg_temp_free_vec(t);
8927 tcg_temp_free_vec(m);
8930 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8931 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8932 int immh, int immb, int opcode, int rn, int rd)
8934 static const GVecGen2i ssra_op[4] = {
8935 { .fni8 = gen_ssra8_i64,
8936 .fniv = gen_ssra_vec,
8937 .load_dest = true,
8938 .opc = INDEX_op_sari_vec,
8939 .vece = MO_8 },
8940 { .fni8 = gen_ssra16_i64,
8941 .fniv = gen_ssra_vec,
8942 .load_dest = true,
8943 .opc = INDEX_op_sari_vec,
8944 .vece = MO_16 },
8945 { .fni4 = gen_ssra32_i32,
8946 .fniv = gen_ssra_vec,
8947 .load_dest = true,
8948 .opc = INDEX_op_sari_vec,
8949 .vece = MO_32 },
8950 { .fni8 = gen_ssra64_i64,
8951 .fniv = gen_ssra_vec,
8952 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8953 .load_dest = true,
8954 .opc = INDEX_op_sari_vec,
8955 .vece = MO_64 },
8957 static const GVecGen2i usra_op[4] = {
8958 { .fni8 = gen_usra8_i64,
8959 .fniv = gen_usra_vec,
8960 .load_dest = true,
8961 .opc = INDEX_op_shri_vec,
8962 .vece = MO_8, },
8963 { .fni8 = gen_usra16_i64,
8964 .fniv = gen_usra_vec,
8965 .load_dest = true,
8966 .opc = INDEX_op_shri_vec,
8967 .vece = MO_16, },
8968 { .fni4 = gen_usra32_i32,
8969 .fniv = gen_usra_vec,
8970 .load_dest = true,
8971 .opc = INDEX_op_shri_vec,
8972 .vece = MO_32, },
8973 { .fni8 = gen_usra64_i64,
8974 .fniv = gen_usra_vec,
8975 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8976 .load_dest = true,
8977 .opc = INDEX_op_shri_vec,
8978 .vece = MO_64, },
8980 static const GVecGen2i sri_op[4] = {
8981 { .fni8 = gen_shr8_ins_i64,
8982 .fniv = gen_shr_ins_vec,
8983 .load_dest = true,
8984 .opc = INDEX_op_shri_vec,
8985 .vece = MO_8 },
8986 { .fni8 = gen_shr16_ins_i64,
8987 .fniv = gen_shr_ins_vec,
8988 .load_dest = true,
8989 .opc = INDEX_op_shri_vec,
8990 .vece = MO_16 },
8991 { .fni4 = gen_shr32_ins_i32,
8992 .fniv = gen_shr_ins_vec,
8993 .load_dest = true,
8994 .opc = INDEX_op_shri_vec,
8995 .vece = MO_32 },
8996 { .fni8 = gen_shr64_ins_i64,
8997 .fniv = gen_shr_ins_vec,
8998 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
8999 .load_dest = true,
9000 .opc = INDEX_op_shri_vec,
9001 .vece = MO_64 },
9004 int size = 32 - clz32(immh) - 1;
9005 int immhb = immh << 3 | immb;
9006 int shift = 2 * (8 << size) - immhb;
9007 bool accumulate = false;
9008 int dsize = is_q ? 128 : 64;
9009 int esize = 8 << size;
9010 int elements = dsize/esize;
9011 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
9012 TCGv_i64 tcg_rn = new_tmp_a64(s);
9013 TCGv_i64 tcg_rd = new_tmp_a64(s);
9014 TCGv_i64 tcg_round;
9015 uint64_t round_const;
9016 int i;
9018 if (extract32(immh, 3, 1) && !is_q) {
9019 unallocated_encoding(s);
9020 return;
9023 if (size > 3 && !is_q) {
9024 unallocated_encoding(s);
9025 return;
9028 if (!fp_access_check(s)) {
9029 return;
9032 switch (opcode) {
9033 case 0x02: /* SSRA / USRA (accumulate) */
9034 if (is_u) {
9035 /* Shift count same as element size produces zero to add. */
9036 if (shift == 8 << size) {
9037 goto done;
9039 gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]);
9040 } else {
9041 /* Shift count same as element size produces all sign to add. */
9042 if (shift == 8 << size) {
9043 shift -= 1;
9045 gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]);
9047 return;
9048 case 0x08: /* SRI */
9049 /* Shift count same as element size is valid but does nothing. */
9050 if (shift == 8 << size) {
9051 goto done;
9053 gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]);
9054 return;
9056 case 0x00: /* SSHR / USHR */
9057 if (is_u) {
9058 if (shift == 8 << size) {
9059 /* Shift count the same size as element size produces zero. */
9060 tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd),
9061 is_q ? 16 : 8, vec_full_reg_size(s), 0);
9062 } else {
9063 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size);
9065 } else {
9066 /* Shift count the same size as element size produces all sign. */
9067 if (shift == 8 << size) {
9068 shift -= 1;
9070 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size);
9072 return;
9074 case 0x04: /* SRSHR / URSHR (rounding) */
9075 break;
9076 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9077 accumulate = true;
9078 break;
9079 default:
9080 g_assert_not_reached();
9083 round_const = 1ULL << (shift - 1);
9084 tcg_round = tcg_const_i64(round_const);
9086 for (i = 0; i < elements; i++) {
9087 read_vec_element(s, tcg_rn, rn, i, memop);
9088 if (accumulate) {
9089 read_vec_element(s, tcg_rd, rd, i, memop);
9092 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9093 accumulate, is_u, size, shift);
9095 write_vec_element(s, tcg_rd, rd, i, size);
9097 tcg_temp_free_i64(tcg_round);
9099 done:
9100 clear_vec_high(s, is_q, rd);
9103 static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9105 uint64_t mask = dup_const(MO_8, 0xff << shift);
9106 TCGv_i64 t = tcg_temp_new_i64();
9108 tcg_gen_shli_i64(t, a, shift);
9109 tcg_gen_andi_i64(t, t, mask);
9110 tcg_gen_andi_i64(d, d, ~mask);
9111 tcg_gen_or_i64(d, d, t);
9112 tcg_temp_free_i64(t);
9115 static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9117 uint64_t mask = dup_const(MO_16, 0xffff << shift);
9118 TCGv_i64 t = tcg_temp_new_i64();
9120 tcg_gen_shli_i64(t, a, shift);
9121 tcg_gen_andi_i64(t, t, mask);
9122 tcg_gen_andi_i64(d, d, ~mask);
9123 tcg_gen_or_i64(d, d, t);
9124 tcg_temp_free_i64(t);
9127 static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
9129 tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
9132 static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
9134 tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
9137 static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
9139 uint64_t mask = (1ull << sh) - 1;
9140 TCGv_vec t = tcg_temp_new_vec_matching(d);
9141 TCGv_vec m = tcg_temp_new_vec_matching(d);
9143 tcg_gen_dupi_vec(vece, m, mask);
9144 tcg_gen_shli_vec(vece, t, a, sh);
9145 tcg_gen_and_vec(vece, d, d, m);
9146 tcg_gen_or_vec(vece, d, d, t);
9148 tcg_temp_free_vec(t);
9149 tcg_temp_free_vec(m);
9152 /* SHL/SLI - Vector shift left */
9153 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
9154 int immh, int immb, int opcode, int rn, int rd)
9156 static const GVecGen2i shi_op[4] = {
9157 { .fni8 = gen_shl8_ins_i64,
9158 .fniv = gen_shl_ins_vec,
9159 .opc = INDEX_op_shli_vec,
9160 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9161 .load_dest = true,
9162 .vece = MO_8 },
9163 { .fni8 = gen_shl16_ins_i64,
9164 .fniv = gen_shl_ins_vec,
9165 .opc = INDEX_op_shli_vec,
9166 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9167 .load_dest = true,
9168 .vece = MO_16 },
9169 { .fni4 = gen_shl32_ins_i32,
9170 .fniv = gen_shl_ins_vec,
9171 .opc = INDEX_op_shli_vec,
9172 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9173 .load_dest = true,
9174 .vece = MO_32 },
9175 { .fni8 = gen_shl64_ins_i64,
9176 .fniv = gen_shl_ins_vec,
9177 .opc = INDEX_op_shli_vec,
9178 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9179 .load_dest = true,
9180 .vece = MO_64 },
9182 int size = 32 - clz32(immh) - 1;
9183 int immhb = immh << 3 | immb;
9184 int shift = immhb - (8 << size);
9186 if (extract32(immh, 3, 1) && !is_q) {
9187 unallocated_encoding(s);
9188 return;
9191 if (size > 3 && !is_q) {
9192 unallocated_encoding(s);
9193 return;
9196 if (!fp_access_check(s)) {
9197 return;
9200 if (insert) {
9201 gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]);
9202 } else {
9203 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
9207 /* USHLL/SHLL - Vector shift left with widening */
9208 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
9209 int immh, int immb, int opcode, int rn, int rd)
9211 int size = 32 - clz32(immh) - 1;
9212 int immhb = immh << 3 | immb;
9213 int shift = immhb - (8 << size);
9214 int dsize = 64;
9215 int esize = 8 << size;
9216 int elements = dsize/esize;
9217 TCGv_i64 tcg_rn = new_tmp_a64(s);
9218 TCGv_i64 tcg_rd = new_tmp_a64(s);
9219 int i;
9221 if (size >= 3) {
9222 unallocated_encoding(s);
9223 return;
9226 if (!fp_access_check(s)) {
9227 return;
9230 /* For the LL variants the store is larger than the load,
9231 * so if rd == rn we would overwrite parts of our input.
9232 * So load everything right now and use shifts in the main loop.
9234 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
9236 for (i = 0; i < elements; i++) {
9237 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
9238 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
9239 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
9240 write_vec_element(s, tcg_rd, rd, i, size + 1);
9244 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
9245 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
9246 int immh, int immb, int opcode, int rn, int rd)
9248 int immhb = immh << 3 | immb;
9249 int size = 32 - clz32(immh) - 1;
9250 int dsize = 64;
9251 int esize = 8 << size;
9252 int elements = dsize/esize;
9253 int shift = (2 * esize) - immhb;
9254 bool round = extract32(opcode, 0, 1);
9255 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
9256 TCGv_i64 tcg_round;
9257 int i;
9259 if (extract32(immh, 3, 1)) {
9260 unallocated_encoding(s);
9261 return;
9264 if (!fp_access_check(s)) {
9265 return;
9268 tcg_rn = tcg_temp_new_i64();
9269 tcg_rd = tcg_temp_new_i64();
9270 tcg_final = tcg_temp_new_i64();
9271 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
9273 if (round) {
9274 uint64_t round_const = 1ULL << (shift - 1);
9275 tcg_round = tcg_const_i64(round_const);
9276 } else {
9277 tcg_round = NULL;
9280 for (i = 0; i < elements; i++) {
9281 read_vec_element(s, tcg_rn, rn, i, size+1);
9282 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9283 false, true, size+1, shift);
9285 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9288 if (!is_q) {
9289 write_vec_element(s, tcg_final, rd, 0, MO_64);
9290 } else {
9291 write_vec_element(s, tcg_final, rd, 1, MO_64);
9293 if (round) {
9294 tcg_temp_free_i64(tcg_round);
9296 tcg_temp_free_i64(tcg_rn);
9297 tcg_temp_free_i64(tcg_rd);
9298 tcg_temp_free_i64(tcg_final);
9300 clear_vec_high(s, is_q, rd);
9304 /* AdvSIMD shift by immediate
9305 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9306 * +---+---+---+-------------+------+------+--------+---+------+------+
9307 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9308 * +---+---+---+-------------+------+------+--------+---+------+------+
9310 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
9312 int rd = extract32(insn, 0, 5);
9313 int rn = extract32(insn, 5, 5);
9314 int opcode = extract32(insn, 11, 5);
9315 int immb = extract32(insn, 16, 3);
9316 int immh = extract32(insn, 19, 4);
9317 bool is_u = extract32(insn, 29, 1);
9318 bool is_q = extract32(insn, 30, 1);
9320 switch (opcode) {
9321 case 0x08: /* SRI */
9322 if (!is_u) {
9323 unallocated_encoding(s);
9324 return;
9326 /* fall through */
9327 case 0x00: /* SSHR / USHR */
9328 case 0x02: /* SSRA / USRA (accumulate) */
9329 case 0x04: /* SRSHR / URSHR (rounding) */
9330 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9331 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
9332 break;
9333 case 0x0a: /* SHL / SLI */
9334 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9335 break;
9336 case 0x10: /* SHRN */
9337 case 0x11: /* RSHRN / SQRSHRUN */
9338 if (is_u) {
9339 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
9340 opcode, rn, rd);
9341 } else {
9342 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
9344 break;
9345 case 0x12: /* SQSHRN / UQSHRN */
9346 case 0x13: /* SQRSHRN / UQRSHRN */
9347 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
9348 opcode, rn, rd);
9349 break;
9350 case 0x14: /* SSHLL / USHLL */
9351 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
9352 break;
9353 case 0x1c: /* SCVTF / UCVTF */
9354 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
9355 opcode, rn, rd);
9356 break;
9357 case 0xc: /* SQSHLU */
9358 if (!is_u) {
9359 unallocated_encoding(s);
9360 return;
9362 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
9363 break;
9364 case 0xe: /* SQSHL, UQSHL */
9365 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
9366 break;
9367 case 0x1f: /* FCVTZS/ FCVTZU */
9368 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
9369 return;
9370 default:
9371 unallocated_encoding(s);
9372 return;
9376 /* Generate code to do a "long" addition or subtraction, ie one done in
9377 * TCGv_i64 on vector lanes twice the width specified by size.
9379 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
9380 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
9382 static NeonGenTwo64OpFn * const fns[3][2] = {
9383 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
9384 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
9385 { tcg_gen_add_i64, tcg_gen_sub_i64 },
9387 NeonGenTwo64OpFn *genfn;
9388 assert(size < 3);
9390 genfn = fns[size][is_sub];
9391 genfn(tcg_res, tcg_op1, tcg_op2);
9394 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
9395 int opcode, int rd, int rn, int rm)
9397 /* 3-reg-different widening insns: 64 x 64 -> 128 */
9398 TCGv_i64 tcg_res[2];
9399 int pass, accop;
9401 tcg_res[0] = tcg_temp_new_i64();
9402 tcg_res[1] = tcg_temp_new_i64();
9404 /* Does this op do an adding accumulate, a subtracting accumulate,
9405 * or no accumulate at all?
9407 switch (opcode) {
9408 case 5:
9409 case 8:
9410 case 9:
9411 accop = 1;
9412 break;
9413 case 10:
9414 case 11:
9415 accop = -1;
9416 break;
9417 default:
9418 accop = 0;
9419 break;
9422 if (accop != 0) {
9423 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
9424 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
9427 /* size == 2 means two 32x32->64 operations; this is worth special
9428 * casing because we can generally handle it inline.
9430 if (size == 2) {
9431 for (pass = 0; pass < 2; pass++) {
9432 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9433 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9434 TCGv_i64 tcg_passres;
9435 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
9437 int elt = pass + is_q * 2;
9439 read_vec_element(s, tcg_op1, rn, elt, memop);
9440 read_vec_element(s, tcg_op2, rm, elt, memop);
9442 if (accop == 0) {
9443 tcg_passres = tcg_res[pass];
9444 } else {
9445 tcg_passres = tcg_temp_new_i64();
9448 switch (opcode) {
9449 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9450 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
9451 break;
9452 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9453 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
9454 break;
9455 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9456 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9458 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
9459 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
9461 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
9462 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
9463 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
9464 tcg_passres,
9465 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
9466 tcg_temp_free_i64(tcg_tmp1);
9467 tcg_temp_free_i64(tcg_tmp2);
9468 break;
9470 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9471 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9472 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9473 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9474 break;
9475 case 9: /* SQDMLAL, SQDMLAL2 */
9476 case 11: /* SQDMLSL, SQDMLSL2 */
9477 case 13: /* SQDMULL, SQDMULL2 */
9478 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
9479 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
9480 tcg_passres, tcg_passres);
9481 break;
9482 default:
9483 g_assert_not_reached();
9486 if (opcode == 9 || opcode == 11) {
9487 /* saturating accumulate ops */
9488 if (accop < 0) {
9489 tcg_gen_neg_i64(tcg_passres, tcg_passres);
9491 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
9492 tcg_res[pass], tcg_passres);
9493 } else if (accop > 0) {
9494 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9495 } else if (accop < 0) {
9496 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
9499 if (accop != 0) {
9500 tcg_temp_free_i64(tcg_passres);
9503 tcg_temp_free_i64(tcg_op1);
9504 tcg_temp_free_i64(tcg_op2);
9506 } else {
9507 /* size 0 or 1, generally helper functions */
9508 for (pass = 0; pass < 2; pass++) {
9509 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9510 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9511 TCGv_i64 tcg_passres;
9512 int elt = pass + is_q * 2;
9514 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
9515 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
9517 if (accop == 0) {
9518 tcg_passres = tcg_res[pass];
9519 } else {
9520 tcg_passres = tcg_temp_new_i64();
9523 switch (opcode) {
9524 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9525 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9527 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
9528 static NeonGenWidenFn * const widenfns[2][2] = {
9529 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9530 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9532 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9534 widenfn(tcg_op2_64, tcg_op2);
9535 widenfn(tcg_passres, tcg_op1);
9536 gen_neon_addl(size, (opcode == 2), tcg_passres,
9537 tcg_passres, tcg_op2_64);
9538 tcg_temp_free_i64(tcg_op2_64);
9539 break;
9541 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9542 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9543 if (size == 0) {
9544 if (is_u) {
9545 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
9546 } else {
9547 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
9549 } else {
9550 if (is_u) {
9551 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
9552 } else {
9553 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
9556 break;
9557 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9558 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9559 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
9560 if (size == 0) {
9561 if (is_u) {
9562 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
9563 } else {
9564 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
9566 } else {
9567 if (is_u) {
9568 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
9569 } else {
9570 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9573 break;
9574 case 9: /* SQDMLAL, SQDMLAL2 */
9575 case 11: /* SQDMLSL, SQDMLSL2 */
9576 case 13: /* SQDMULL, SQDMULL2 */
9577 assert(size == 1);
9578 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
9579 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
9580 tcg_passres, tcg_passres);
9581 break;
9582 case 14: /* PMULL */
9583 assert(size == 0);
9584 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
9585 break;
9586 default:
9587 g_assert_not_reached();
9589 tcg_temp_free_i32(tcg_op1);
9590 tcg_temp_free_i32(tcg_op2);
9592 if (accop != 0) {
9593 if (opcode == 9 || opcode == 11) {
9594 /* saturating accumulate ops */
9595 if (accop < 0) {
9596 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
9598 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
9599 tcg_res[pass],
9600 tcg_passres);
9601 } else {
9602 gen_neon_addl(size, (accop < 0), tcg_res[pass],
9603 tcg_res[pass], tcg_passres);
9605 tcg_temp_free_i64(tcg_passres);
9610 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9611 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9612 tcg_temp_free_i64(tcg_res[0]);
9613 tcg_temp_free_i64(tcg_res[1]);
9616 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
9617 int opcode, int rd, int rn, int rm)
9619 TCGv_i64 tcg_res[2];
9620 int part = is_q ? 2 : 0;
9621 int pass;
9623 for (pass = 0; pass < 2; pass++) {
9624 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9625 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9626 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
9627 static NeonGenWidenFn * const widenfns[3][2] = {
9628 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
9629 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
9630 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
9632 NeonGenWidenFn *widenfn = widenfns[size][is_u];
9634 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9635 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
9636 widenfn(tcg_op2_wide, tcg_op2);
9637 tcg_temp_free_i32(tcg_op2);
9638 tcg_res[pass] = tcg_temp_new_i64();
9639 gen_neon_addl(size, (opcode == 3),
9640 tcg_res[pass], tcg_op1, tcg_op2_wide);
9641 tcg_temp_free_i64(tcg_op1);
9642 tcg_temp_free_i64(tcg_op2_wide);
9645 for (pass = 0; pass < 2; pass++) {
9646 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9647 tcg_temp_free_i64(tcg_res[pass]);
9651 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
9653 tcg_gen_addi_i64(in, in, 1U << 31);
9654 tcg_gen_extrh_i64_i32(res, in);
9657 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
9658 int opcode, int rd, int rn, int rm)
9660 TCGv_i32 tcg_res[2];
9661 int part = is_q ? 2 : 0;
9662 int pass;
9664 for (pass = 0; pass < 2; pass++) {
9665 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9666 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9667 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
9668 static NeonGenNarrowFn * const narrowfns[3][2] = {
9669 { gen_helper_neon_narrow_high_u8,
9670 gen_helper_neon_narrow_round_high_u8 },
9671 { gen_helper_neon_narrow_high_u16,
9672 gen_helper_neon_narrow_round_high_u16 },
9673 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
9675 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
9677 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9678 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9680 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
9682 tcg_temp_free_i64(tcg_op1);
9683 tcg_temp_free_i64(tcg_op2);
9685 tcg_res[pass] = tcg_temp_new_i32();
9686 gennarrow(tcg_res[pass], tcg_wideres);
9687 tcg_temp_free_i64(tcg_wideres);
9690 for (pass = 0; pass < 2; pass++) {
9691 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
9692 tcg_temp_free_i32(tcg_res[pass]);
9694 clear_vec_high(s, is_q, rd);
9697 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
9699 /* PMULL of 64 x 64 -> 128 is an odd special case because it
9700 * is the only three-reg-diff instruction which produces a
9701 * 128-bit wide result from a single operation. However since
9702 * it's possible to calculate the two halves more or less
9703 * separately we just use two helper calls.
9705 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9706 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9707 TCGv_i64 tcg_res = tcg_temp_new_i64();
9709 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
9710 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
9711 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
9712 write_vec_element(s, tcg_res, rd, 0, MO_64);
9713 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
9714 write_vec_element(s, tcg_res, rd, 1, MO_64);
9716 tcg_temp_free_i64(tcg_op1);
9717 tcg_temp_free_i64(tcg_op2);
9718 tcg_temp_free_i64(tcg_res);
9721 /* AdvSIMD three different
9722 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9723 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9724 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9725 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
9727 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
9729 /* Instructions in this group fall into three basic classes
9730 * (in each case with the operation working on each element in
9731 * the input vectors):
9732 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
9733 * 128 bit input)
9734 * (2) wide 64 x 128 -> 128
9735 * (3) narrowing 128 x 128 -> 64
9736 * Here we do initial decode, catch unallocated cases and
9737 * dispatch to separate functions for each class.
9739 int is_q = extract32(insn, 30, 1);
9740 int is_u = extract32(insn, 29, 1);
9741 int size = extract32(insn, 22, 2);
9742 int opcode = extract32(insn, 12, 4);
9743 int rm = extract32(insn, 16, 5);
9744 int rn = extract32(insn, 5, 5);
9745 int rd = extract32(insn, 0, 5);
9747 switch (opcode) {
9748 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
9749 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
9750 /* 64 x 128 -> 128 */
9751 if (size == 3) {
9752 unallocated_encoding(s);
9753 return;
9755 if (!fp_access_check(s)) {
9756 return;
9758 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
9759 break;
9760 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
9761 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
9762 /* 128 x 128 -> 64 */
9763 if (size == 3) {
9764 unallocated_encoding(s);
9765 return;
9767 if (!fp_access_check(s)) {
9768 return;
9770 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
9771 break;
9772 case 14: /* PMULL, PMULL2 */
9773 if (is_u || size == 1 || size == 2) {
9774 unallocated_encoding(s);
9775 return;
9777 if (size == 3) {
9778 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
9779 unallocated_encoding(s);
9780 return;
9782 if (!fp_access_check(s)) {
9783 return;
9785 handle_pmull_64(s, is_q, rd, rn, rm);
9786 return;
9788 goto is_widening;
9789 case 9: /* SQDMLAL, SQDMLAL2 */
9790 case 11: /* SQDMLSL, SQDMLSL2 */
9791 case 13: /* SQDMULL, SQDMULL2 */
9792 if (is_u || size == 0) {
9793 unallocated_encoding(s);
9794 return;
9796 /* fall through */
9797 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9798 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9799 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9800 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9801 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9802 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9803 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9804 /* 64 x 64 -> 128 */
9805 if (size == 3) {
9806 unallocated_encoding(s);
9807 return;
9809 is_widening:
9810 if (!fp_access_check(s)) {
9811 return;
9814 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9815 break;
9816 default:
9817 /* opcode 15 not allocated */
9818 unallocated_encoding(s);
9819 break;
9823 static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9825 tcg_gen_xor_i64(rn, rn, rm);
9826 tcg_gen_and_i64(rn, rn, rd);
9827 tcg_gen_xor_i64(rd, rm, rn);
9830 static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9832 tcg_gen_xor_i64(rn, rn, rd);
9833 tcg_gen_and_i64(rn, rn, rm);
9834 tcg_gen_xor_i64(rd, rd, rn);
9837 static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm)
9839 tcg_gen_xor_i64(rn, rn, rd);
9840 tcg_gen_andc_i64(rn, rn, rm);
9841 tcg_gen_xor_i64(rd, rd, rn);
9844 static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9846 tcg_gen_xor_vec(vece, rn, rn, rm);
9847 tcg_gen_and_vec(vece, rn, rn, rd);
9848 tcg_gen_xor_vec(vece, rd, rm, rn);
9851 static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9853 tcg_gen_xor_vec(vece, rn, rn, rd);
9854 tcg_gen_and_vec(vece, rn, rn, rm);
9855 tcg_gen_xor_vec(vece, rd, rd, rn);
9858 static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm)
9860 tcg_gen_xor_vec(vece, rn, rn, rd);
9861 tcg_gen_andc_vec(vece, rn, rn, rm);
9862 tcg_gen_xor_vec(vece, rd, rd, rn);
9865 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9866 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9868 static const GVecGen3 bsl_op = {
9869 .fni8 = gen_bsl_i64,
9870 .fniv = gen_bsl_vec,
9871 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9872 .load_dest = true
9874 static const GVecGen3 bit_op = {
9875 .fni8 = gen_bit_i64,
9876 .fniv = gen_bit_vec,
9877 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9878 .load_dest = true
9880 static const GVecGen3 bif_op = {
9881 .fni8 = gen_bif_i64,
9882 .fniv = gen_bif_vec,
9883 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
9884 .load_dest = true
9887 int rd = extract32(insn, 0, 5);
9888 int rn = extract32(insn, 5, 5);
9889 int rm = extract32(insn, 16, 5);
9890 int size = extract32(insn, 22, 2);
9891 bool is_u = extract32(insn, 29, 1);
9892 bool is_q = extract32(insn, 30, 1);
9894 if (!fp_access_check(s)) {
9895 return;
9898 switch (size + 4 * is_u) {
9899 case 0: /* AND */
9900 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
9901 return;
9902 case 1: /* BIC */
9903 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
9904 return;
9905 case 2: /* ORR */
9906 if (rn == rm) { /* MOV */
9907 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0);
9908 } else {
9909 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
9911 return;
9912 case 3: /* ORN */
9913 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
9914 return;
9915 case 4: /* EOR */
9916 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
9917 return;
9919 case 5: /* BSL bitwise select */
9920 gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op);
9921 return;
9922 case 6: /* BIT, bitwise insert if true */
9923 gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op);
9924 return;
9925 case 7: /* BIF, bitwise insert if false */
9926 gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op);
9927 return;
9929 default:
9930 g_assert_not_reached();
9934 /* Helper functions for 32 bit comparisons */
9935 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9937 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9940 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9942 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9945 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9947 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9950 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9952 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9955 /* Pairwise op subgroup of C3.6.16.
9957 * This is called directly or via the handle_3same_float for float pairwise
9958 * operations where the opcode and size are calculated differently.
9960 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9961 int size, int rn, int rm, int rd)
9963 TCGv_ptr fpst;
9964 int pass;
9966 /* Floating point operations need fpst */
9967 if (opcode >= 0x58) {
9968 fpst = get_fpstatus_ptr(false);
9969 } else {
9970 fpst = NULL;
9973 if (!fp_access_check(s)) {
9974 return;
9977 /* These operations work on the concatenated rm:rn, with each pair of
9978 * adjacent elements being operated on to produce an element in the result.
9980 if (size == 3) {
9981 TCGv_i64 tcg_res[2];
9983 for (pass = 0; pass < 2; pass++) {
9984 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9985 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9986 int passreg = (pass == 0) ? rn : rm;
9988 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9989 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9990 tcg_res[pass] = tcg_temp_new_i64();
9992 switch (opcode) {
9993 case 0x17: /* ADDP */
9994 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9995 break;
9996 case 0x58: /* FMAXNMP */
9997 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9998 break;
9999 case 0x5a: /* FADDP */
10000 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10001 break;
10002 case 0x5e: /* FMAXP */
10003 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10004 break;
10005 case 0x78: /* FMINNMP */
10006 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10007 break;
10008 case 0x7e: /* FMINP */
10009 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10010 break;
10011 default:
10012 g_assert_not_reached();
10015 tcg_temp_free_i64(tcg_op1);
10016 tcg_temp_free_i64(tcg_op2);
10019 for (pass = 0; pass < 2; pass++) {
10020 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10021 tcg_temp_free_i64(tcg_res[pass]);
10023 } else {
10024 int maxpass = is_q ? 4 : 2;
10025 TCGv_i32 tcg_res[4];
10027 for (pass = 0; pass < maxpass; pass++) {
10028 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10029 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10030 NeonGenTwoOpFn *genfn = NULL;
10031 int passreg = pass < (maxpass / 2) ? rn : rm;
10032 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10034 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10035 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10036 tcg_res[pass] = tcg_temp_new_i32();
10038 switch (opcode) {
10039 case 0x17: /* ADDP */
10041 static NeonGenTwoOpFn * const fns[3] = {
10042 gen_helper_neon_padd_u8,
10043 gen_helper_neon_padd_u16,
10044 tcg_gen_add_i32,
10046 genfn = fns[size];
10047 break;
10049 case 0x14: /* SMAXP, UMAXP */
10051 static NeonGenTwoOpFn * const fns[3][2] = {
10052 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10053 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10054 { gen_max_s32, gen_max_u32 },
10056 genfn = fns[size][u];
10057 break;
10059 case 0x15: /* SMINP, UMINP */
10061 static NeonGenTwoOpFn * const fns[3][2] = {
10062 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10063 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10064 { gen_min_s32, gen_min_u32 },
10066 genfn = fns[size][u];
10067 break;
10069 /* The FP operations are all on single floats (32 bit) */
10070 case 0x58: /* FMAXNMP */
10071 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10072 break;
10073 case 0x5a: /* FADDP */
10074 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10075 break;
10076 case 0x5e: /* FMAXP */
10077 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10078 break;
10079 case 0x78: /* FMINNMP */
10080 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10081 break;
10082 case 0x7e: /* FMINP */
10083 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10084 break;
10085 default:
10086 g_assert_not_reached();
10089 /* FP ops called directly, otherwise call now */
10090 if (genfn) {
10091 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10094 tcg_temp_free_i32(tcg_op1);
10095 tcg_temp_free_i32(tcg_op2);
10098 for (pass = 0; pass < maxpass; pass++) {
10099 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10100 tcg_temp_free_i32(tcg_res[pass]);
10102 clear_vec_high(s, is_q, rd);
10105 if (fpst) {
10106 tcg_temp_free_ptr(fpst);
10110 /* Floating point op subgroup of C3.6.16. */
10111 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10113 /* For floating point ops, the U, size[1] and opcode bits
10114 * together indicate the operation. size[0] indicates single
10115 * or double.
10117 int fpopcode = extract32(insn, 11, 5)
10118 | (extract32(insn, 23, 1) << 5)
10119 | (extract32(insn, 29, 1) << 6);
10120 int is_q = extract32(insn, 30, 1);
10121 int size = extract32(insn, 22, 1);
10122 int rm = extract32(insn, 16, 5);
10123 int rn = extract32(insn, 5, 5);
10124 int rd = extract32(insn, 0, 5);
10126 int datasize = is_q ? 128 : 64;
10127 int esize = 32 << size;
10128 int elements = datasize / esize;
10130 if (size == 1 && !is_q) {
10131 unallocated_encoding(s);
10132 return;
10135 switch (fpopcode) {
10136 case 0x58: /* FMAXNMP */
10137 case 0x5a: /* FADDP */
10138 case 0x5e: /* FMAXP */
10139 case 0x78: /* FMINNMP */
10140 case 0x7e: /* FMINP */
10141 if (size && !is_q) {
10142 unallocated_encoding(s);
10143 return;
10145 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10146 rn, rm, rd);
10147 return;
10148 case 0x1b: /* FMULX */
10149 case 0x1f: /* FRECPS */
10150 case 0x3f: /* FRSQRTS */
10151 case 0x5d: /* FACGE */
10152 case 0x7d: /* FACGT */
10153 case 0x19: /* FMLA */
10154 case 0x39: /* FMLS */
10155 case 0x18: /* FMAXNM */
10156 case 0x1a: /* FADD */
10157 case 0x1c: /* FCMEQ */
10158 case 0x1e: /* FMAX */
10159 case 0x38: /* FMINNM */
10160 case 0x3a: /* FSUB */
10161 case 0x3e: /* FMIN */
10162 case 0x5b: /* FMUL */
10163 case 0x5c: /* FCMGE */
10164 case 0x5f: /* FDIV */
10165 case 0x7a: /* FABD */
10166 case 0x7c: /* FCMGT */
10167 if (!fp_access_check(s)) {
10168 return;
10171 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10172 return;
10173 default:
10174 unallocated_encoding(s);
10175 return;
10179 static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10181 gen_helper_neon_mul_u8(a, a, b);
10182 gen_helper_neon_add_u8(d, d, a);
10185 static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10187 gen_helper_neon_mul_u16(a, a, b);
10188 gen_helper_neon_add_u16(d, d, a);
10191 static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10193 tcg_gen_mul_i32(a, a, b);
10194 tcg_gen_add_i32(d, d, a);
10197 static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10199 tcg_gen_mul_i64(a, a, b);
10200 tcg_gen_add_i64(d, d, a);
10203 static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10205 tcg_gen_mul_vec(vece, a, a, b);
10206 tcg_gen_add_vec(vece, d, d, a);
10209 static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10211 gen_helper_neon_mul_u8(a, a, b);
10212 gen_helper_neon_sub_u8(d, d, a);
10215 static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10217 gen_helper_neon_mul_u16(a, a, b);
10218 gen_helper_neon_sub_u16(d, d, a);
10221 static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
10223 tcg_gen_mul_i32(a, a, b);
10224 tcg_gen_sub_i32(d, d, a);
10227 static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
10229 tcg_gen_mul_i64(a, a, b);
10230 tcg_gen_sub_i64(d, d, a);
10233 static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
10235 tcg_gen_mul_vec(vece, a, a, b);
10236 tcg_gen_sub_vec(vece, d, d, a);
10239 /* Integer op subgroup of C3.6.16. */
10240 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10242 static const GVecGen3 cmtst_op[4] = {
10243 { .fni4 = gen_helper_neon_tst_u8,
10244 .fniv = gen_cmtst_vec,
10245 .vece = MO_8 },
10246 { .fni4 = gen_helper_neon_tst_u16,
10247 .fniv = gen_cmtst_vec,
10248 .vece = MO_16 },
10249 { .fni4 = gen_cmtst_i32,
10250 .fniv = gen_cmtst_vec,
10251 .vece = MO_32 },
10252 { .fni8 = gen_cmtst_i64,
10253 .fniv = gen_cmtst_vec,
10254 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10255 .vece = MO_64 },
10257 static const GVecGen3 mla_op[4] = {
10258 { .fni4 = gen_mla8_i32,
10259 .fniv = gen_mla_vec,
10260 .opc = INDEX_op_mul_vec,
10261 .load_dest = true,
10262 .vece = MO_8 },
10263 { .fni4 = gen_mla16_i32,
10264 .fniv = gen_mla_vec,
10265 .opc = INDEX_op_mul_vec,
10266 .load_dest = true,
10267 .vece = MO_16 },
10268 { .fni4 = gen_mla32_i32,
10269 .fniv = gen_mla_vec,
10270 .opc = INDEX_op_mul_vec,
10271 .load_dest = true,
10272 .vece = MO_32 },
10273 { .fni8 = gen_mla64_i64,
10274 .fniv = gen_mla_vec,
10275 .opc = INDEX_op_mul_vec,
10276 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10277 .load_dest = true,
10278 .vece = MO_64 },
10280 static const GVecGen3 mls_op[4] = {
10281 { .fni4 = gen_mls8_i32,
10282 .fniv = gen_mls_vec,
10283 .opc = INDEX_op_mul_vec,
10284 .load_dest = true,
10285 .vece = MO_8 },
10286 { .fni4 = gen_mls16_i32,
10287 .fniv = gen_mls_vec,
10288 .opc = INDEX_op_mul_vec,
10289 .load_dest = true,
10290 .vece = MO_16 },
10291 { .fni4 = gen_mls32_i32,
10292 .fniv = gen_mls_vec,
10293 .opc = INDEX_op_mul_vec,
10294 .load_dest = true,
10295 .vece = MO_32 },
10296 { .fni8 = gen_mls64_i64,
10297 .fniv = gen_mls_vec,
10298 .opc = INDEX_op_mul_vec,
10299 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
10300 .load_dest = true,
10301 .vece = MO_64 },
10304 int is_q = extract32(insn, 30, 1);
10305 int u = extract32(insn, 29, 1);
10306 int size = extract32(insn, 22, 2);
10307 int opcode = extract32(insn, 11, 5);
10308 int rm = extract32(insn, 16, 5);
10309 int rn = extract32(insn, 5, 5);
10310 int rd = extract32(insn, 0, 5);
10311 int pass;
10312 TCGCond cond;
10314 switch (opcode) {
10315 case 0x13: /* MUL, PMUL */
10316 if (u && size != 0) {
10317 unallocated_encoding(s);
10318 return;
10320 /* fall through */
10321 case 0x0: /* SHADD, UHADD */
10322 case 0x2: /* SRHADD, URHADD */
10323 case 0x4: /* SHSUB, UHSUB */
10324 case 0xc: /* SMAX, UMAX */
10325 case 0xd: /* SMIN, UMIN */
10326 case 0xe: /* SABD, UABD */
10327 case 0xf: /* SABA, UABA */
10328 case 0x12: /* MLA, MLS */
10329 if (size == 3) {
10330 unallocated_encoding(s);
10331 return;
10333 break;
10334 case 0x16: /* SQDMULH, SQRDMULH */
10335 if (size == 0 || size == 3) {
10336 unallocated_encoding(s);
10337 return;
10339 break;
10340 default:
10341 if (size == 3 && !is_q) {
10342 unallocated_encoding(s);
10343 return;
10345 break;
10348 if (!fp_access_check(s)) {
10349 return;
10352 switch (opcode) {
10353 case 0x10: /* ADD, SUB */
10354 if (u) {
10355 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
10356 } else {
10357 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
10359 return;
10360 case 0x13: /* MUL, PMUL */
10361 if (!u) { /* MUL */
10362 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
10363 return;
10365 break;
10366 case 0x12: /* MLA, MLS */
10367 if (u) {
10368 gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]);
10369 } else {
10370 gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]);
10372 return;
10373 case 0x11:
10374 if (!u) { /* CMTST */
10375 gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]);
10376 return;
10378 /* else CMEQ */
10379 cond = TCG_COND_EQ;
10380 goto do_gvec_cmp;
10381 case 0x06: /* CMGT, CMHI */
10382 cond = u ? TCG_COND_GTU : TCG_COND_GT;
10383 goto do_gvec_cmp;
10384 case 0x07: /* CMGE, CMHS */
10385 cond = u ? TCG_COND_GEU : TCG_COND_GE;
10386 do_gvec_cmp:
10387 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
10388 vec_full_reg_offset(s, rn),
10389 vec_full_reg_offset(s, rm),
10390 is_q ? 16 : 8, vec_full_reg_size(s));
10391 return;
10394 if (size == 3) {
10395 assert(is_q);
10396 for (pass = 0; pass < 2; pass++) {
10397 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10398 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10399 TCGv_i64 tcg_res = tcg_temp_new_i64();
10401 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10402 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10404 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
10406 write_vec_element(s, tcg_res, rd, pass, MO_64);
10408 tcg_temp_free_i64(tcg_res);
10409 tcg_temp_free_i64(tcg_op1);
10410 tcg_temp_free_i64(tcg_op2);
10412 } else {
10413 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10414 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10415 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10416 TCGv_i32 tcg_res = tcg_temp_new_i32();
10417 NeonGenTwoOpFn *genfn = NULL;
10418 NeonGenTwoOpEnvFn *genenvfn = NULL;
10420 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
10421 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
10423 switch (opcode) {
10424 case 0x0: /* SHADD, UHADD */
10426 static NeonGenTwoOpFn * const fns[3][2] = {
10427 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
10428 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
10429 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
10431 genfn = fns[size][u];
10432 break;
10434 case 0x1: /* SQADD, UQADD */
10436 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10437 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
10438 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
10439 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
10441 genenvfn = fns[size][u];
10442 break;
10444 case 0x2: /* SRHADD, URHADD */
10446 static NeonGenTwoOpFn * const fns[3][2] = {
10447 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
10448 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
10449 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
10451 genfn = fns[size][u];
10452 break;
10454 case 0x4: /* SHSUB, UHSUB */
10456 static NeonGenTwoOpFn * const fns[3][2] = {
10457 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
10458 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
10459 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
10461 genfn = fns[size][u];
10462 break;
10464 case 0x5: /* SQSUB, UQSUB */
10466 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10467 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
10468 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
10469 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
10471 genenvfn = fns[size][u];
10472 break;
10474 case 0x8: /* SSHL, USHL */
10476 static NeonGenTwoOpFn * const fns[3][2] = {
10477 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
10478 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
10479 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
10481 genfn = fns[size][u];
10482 break;
10484 case 0x9: /* SQSHL, UQSHL */
10486 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10487 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
10488 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
10489 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
10491 genenvfn = fns[size][u];
10492 break;
10494 case 0xa: /* SRSHL, URSHL */
10496 static NeonGenTwoOpFn * const fns[3][2] = {
10497 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
10498 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
10499 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
10501 genfn = fns[size][u];
10502 break;
10504 case 0xb: /* SQRSHL, UQRSHL */
10506 static NeonGenTwoOpEnvFn * const fns[3][2] = {
10507 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
10508 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
10509 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
10511 genenvfn = fns[size][u];
10512 break;
10514 case 0xc: /* SMAX, UMAX */
10516 static NeonGenTwoOpFn * const fns[3][2] = {
10517 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
10518 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
10519 { gen_max_s32, gen_max_u32 },
10521 genfn = fns[size][u];
10522 break;
10525 case 0xd: /* SMIN, UMIN */
10527 static NeonGenTwoOpFn * const fns[3][2] = {
10528 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
10529 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
10530 { gen_min_s32, gen_min_u32 },
10532 genfn = fns[size][u];
10533 break;
10535 case 0xe: /* SABD, UABD */
10536 case 0xf: /* SABA, UABA */
10538 static NeonGenTwoOpFn * const fns[3][2] = {
10539 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
10540 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
10541 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
10543 genfn = fns[size][u];
10544 break;
10546 case 0x13: /* MUL, PMUL */
10547 assert(u); /* PMUL */
10548 assert(size == 0);
10549 genfn = gen_helper_neon_mul_p8;
10550 break;
10551 case 0x16: /* SQDMULH, SQRDMULH */
10553 static NeonGenTwoOpEnvFn * const fns[2][2] = {
10554 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
10555 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
10557 assert(size == 1 || size == 2);
10558 genenvfn = fns[size - 1][u];
10559 break;
10561 default:
10562 g_assert_not_reached();
10565 if (genenvfn) {
10566 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
10567 } else {
10568 genfn(tcg_res, tcg_op1, tcg_op2);
10571 if (opcode == 0xf) {
10572 /* SABA, UABA: accumulating ops */
10573 static NeonGenTwoOpFn * const fns[3] = {
10574 gen_helper_neon_add_u8,
10575 gen_helper_neon_add_u16,
10576 tcg_gen_add_i32,
10579 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
10580 fns[size](tcg_res, tcg_op1, tcg_res);
10583 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10585 tcg_temp_free_i32(tcg_res);
10586 tcg_temp_free_i32(tcg_op1);
10587 tcg_temp_free_i32(tcg_op2);
10590 clear_vec_high(s, is_q, rd);
10593 /* AdvSIMD three same
10594 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
10595 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10596 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
10597 * +---+---+---+-----------+------+---+------+--------+---+------+------+
10599 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
10601 int opcode = extract32(insn, 11, 5);
10603 switch (opcode) {
10604 case 0x3: /* logic ops */
10605 disas_simd_3same_logic(s, insn);
10606 break;
10607 case 0x17: /* ADDP */
10608 case 0x14: /* SMAXP, UMAXP */
10609 case 0x15: /* SMINP, UMINP */
10611 /* Pairwise operations */
10612 int is_q = extract32(insn, 30, 1);
10613 int u = extract32(insn, 29, 1);
10614 int size = extract32(insn, 22, 2);
10615 int rm = extract32(insn, 16, 5);
10616 int rn = extract32(insn, 5, 5);
10617 int rd = extract32(insn, 0, 5);
10618 if (opcode == 0x17) {
10619 if (u || (size == 3 && !is_q)) {
10620 unallocated_encoding(s);
10621 return;
10623 } else {
10624 if (size == 3) {
10625 unallocated_encoding(s);
10626 return;
10629 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
10630 break;
10632 case 0x18 ... 0x31:
10633 /* floating point ops, sz[1] and U are part of opcode */
10634 disas_simd_3same_float(s, insn);
10635 break;
10636 default:
10637 disas_simd_3same_int(s, insn);
10638 break;
10643 * Advanced SIMD three same (ARMv8.2 FP16 variants)
10645 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
10646 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10647 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
10648 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
10650 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
10651 * (register), FACGE, FABD, FCMGT (register) and FACGT.
10654 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
10656 int opcode, fpopcode;
10657 int is_q, u, a, rm, rn, rd;
10658 int datasize, elements;
10659 int pass;
10660 TCGv_ptr fpst;
10661 bool pairwise = false;
10663 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
10664 unallocated_encoding(s);
10665 return;
10668 if (!fp_access_check(s)) {
10669 return;
10672 /* For these floating point ops, the U, a and opcode bits
10673 * together indicate the operation.
10675 opcode = extract32(insn, 11, 3);
10676 u = extract32(insn, 29, 1);
10677 a = extract32(insn, 23, 1);
10678 is_q = extract32(insn, 30, 1);
10679 rm = extract32(insn, 16, 5);
10680 rn = extract32(insn, 5, 5);
10681 rd = extract32(insn, 0, 5);
10683 fpopcode = opcode | (a << 3) | (u << 4);
10684 datasize = is_q ? 128 : 64;
10685 elements = datasize / 16;
10687 switch (fpopcode) {
10688 case 0x10: /* FMAXNMP */
10689 case 0x12: /* FADDP */
10690 case 0x16: /* FMAXP */
10691 case 0x18: /* FMINNMP */
10692 case 0x1e: /* FMINP */
10693 pairwise = true;
10694 break;
10697 fpst = get_fpstatus_ptr(true);
10699 if (pairwise) {
10700 int maxpass = is_q ? 8 : 4;
10701 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10702 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10703 TCGv_i32 tcg_res[8];
10705 for (pass = 0; pass < maxpass; pass++) {
10706 int passreg = pass < (maxpass / 2) ? rn : rm;
10707 int passelt = (pass << 1) & (maxpass - 1);
10709 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
10710 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
10711 tcg_res[pass] = tcg_temp_new_i32();
10713 switch (fpopcode) {
10714 case 0x10: /* FMAXNMP */
10715 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
10716 fpst);
10717 break;
10718 case 0x12: /* FADDP */
10719 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10720 break;
10721 case 0x16: /* FMAXP */
10722 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10723 break;
10724 case 0x18: /* FMINNMP */
10725 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
10726 fpst);
10727 break;
10728 case 0x1e: /* FMINP */
10729 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10730 break;
10731 default:
10732 g_assert_not_reached();
10736 for (pass = 0; pass < maxpass; pass++) {
10737 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
10738 tcg_temp_free_i32(tcg_res[pass]);
10741 tcg_temp_free_i32(tcg_op1);
10742 tcg_temp_free_i32(tcg_op2);
10744 } else {
10745 for (pass = 0; pass < elements; pass++) {
10746 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10747 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10748 TCGv_i32 tcg_res = tcg_temp_new_i32();
10750 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
10751 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
10753 switch (fpopcode) {
10754 case 0x0: /* FMAXNM */
10755 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10756 break;
10757 case 0x1: /* FMLA */
10758 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10759 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10760 fpst);
10761 break;
10762 case 0x2: /* FADD */
10763 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
10764 break;
10765 case 0x3: /* FMULX */
10766 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
10767 break;
10768 case 0x4: /* FCMEQ */
10769 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10770 break;
10771 case 0x6: /* FMAX */
10772 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
10773 break;
10774 case 0x7: /* FRECPS */
10775 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10776 break;
10777 case 0x8: /* FMINNM */
10778 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
10779 break;
10780 case 0x9: /* FMLS */
10781 /* As usual for ARM, separate negation for fused multiply-add */
10782 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
10783 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10784 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
10785 fpst);
10786 break;
10787 case 0xa: /* FSUB */
10788 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10789 break;
10790 case 0xe: /* FMIN */
10791 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
10792 break;
10793 case 0xf: /* FRSQRTS */
10794 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10795 break;
10796 case 0x13: /* FMUL */
10797 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
10798 break;
10799 case 0x14: /* FCMGE */
10800 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10801 break;
10802 case 0x15: /* FACGE */
10803 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10804 break;
10805 case 0x17: /* FDIV */
10806 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
10807 break;
10808 case 0x1a: /* FABD */
10809 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
10810 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
10811 break;
10812 case 0x1c: /* FCMGT */
10813 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10814 break;
10815 case 0x1d: /* FACGT */
10816 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
10817 break;
10818 default:
10819 fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n",
10820 __func__, insn, fpopcode, s->pc);
10821 g_assert_not_reached();
10824 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
10825 tcg_temp_free_i32(tcg_res);
10826 tcg_temp_free_i32(tcg_op1);
10827 tcg_temp_free_i32(tcg_op2);
10831 tcg_temp_free_ptr(fpst);
10833 clear_vec_high(s, is_q, rd);
10836 /* AdvSIMD three same extra
10837 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
10838 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10839 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
10840 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
10842 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
10844 int rd = extract32(insn, 0, 5);
10845 int rn = extract32(insn, 5, 5);
10846 int opcode = extract32(insn, 11, 4);
10847 int rm = extract32(insn, 16, 5);
10848 int size = extract32(insn, 22, 2);
10849 bool u = extract32(insn, 29, 1);
10850 bool is_q = extract32(insn, 30, 1);
10851 int feature, rot;
10853 switch (u * 16 + opcode) {
10854 case 0x10: /* SQRDMLAH (vector) */
10855 case 0x11: /* SQRDMLSH (vector) */
10856 if (size != 1 && size != 2) {
10857 unallocated_encoding(s);
10858 return;
10860 feature = ARM_FEATURE_V8_RDM;
10861 break;
10862 case 0x8: /* FCMLA, #0 */
10863 case 0x9: /* FCMLA, #90 */
10864 case 0xa: /* FCMLA, #180 */
10865 case 0xb: /* FCMLA, #270 */
10866 case 0xc: /* FCADD, #90 */
10867 case 0xe: /* FCADD, #270 */
10868 if (size == 0
10869 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16))
10870 || (size == 3 && !is_q)) {
10871 unallocated_encoding(s);
10872 return;
10874 feature = ARM_FEATURE_V8_FCMA;
10875 break;
10876 default:
10877 unallocated_encoding(s);
10878 return;
10880 if (!arm_dc_feature(s, feature)) {
10881 unallocated_encoding(s);
10882 return;
10884 if (!fp_access_check(s)) {
10885 return;
10888 switch (opcode) {
10889 case 0x0: /* SQRDMLAH (vector) */
10890 switch (size) {
10891 case 1:
10892 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16);
10893 break;
10894 case 2:
10895 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32);
10896 break;
10897 default:
10898 g_assert_not_reached();
10900 return;
10902 case 0x1: /* SQRDMLSH (vector) */
10903 switch (size) {
10904 case 1:
10905 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16);
10906 break;
10907 case 2:
10908 gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32);
10909 break;
10910 default:
10911 g_assert_not_reached();
10913 return;
10915 case 0x8: /* FCMLA, #0 */
10916 case 0x9: /* FCMLA, #90 */
10917 case 0xa: /* FCMLA, #180 */
10918 case 0xb: /* FCMLA, #270 */
10919 rot = extract32(opcode, 0, 2);
10920 switch (size) {
10921 case 1:
10922 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot,
10923 gen_helper_gvec_fcmlah);
10924 break;
10925 case 2:
10926 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
10927 gen_helper_gvec_fcmlas);
10928 break;
10929 case 3:
10930 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot,
10931 gen_helper_gvec_fcmlad);
10932 break;
10933 default:
10934 g_assert_not_reached();
10936 return;
10938 case 0xc: /* FCADD, #90 */
10939 case 0xe: /* FCADD, #270 */
10940 rot = extract32(opcode, 1, 1);
10941 switch (size) {
10942 case 1:
10943 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10944 gen_helper_gvec_fcaddh);
10945 break;
10946 case 2:
10947 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10948 gen_helper_gvec_fcadds);
10949 break;
10950 case 3:
10951 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
10952 gen_helper_gvec_fcaddd);
10953 break;
10954 default:
10955 g_assert_not_reached();
10957 return;
10959 default:
10960 g_assert_not_reached();
10964 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10965 int size, int rn, int rd)
10967 /* Handle 2-reg-misc ops which are widening (so each size element
10968 * in the source becomes a 2*size element in the destination.
10969 * The only instruction like this is FCVTL.
10971 int pass;
10973 if (size == 3) {
10974 /* 32 -> 64 bit fp conversion */
10975 TCGv_i64 tcg_res[2];
10976 int srcelt = is_q ? 2 : 0;
10978 for (pass = 0; pass < 2; pass++) {
10979 TCGv_i32 tcg_op = tcg_temp_new_i32();
10980 tcg_res[pass] = tcg_temp_new_i64();
10982 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10983 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
10984 tcg_temp_free_i32(tcg_op);
10986 for (pass = 0; pass < 2; pass++) {
10987 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10988 tcg_temp_free_i64(tcg_res[pass]);
10990 } else {
10991 /* 16 -> 32 bit fp conversion */
10992 int srcelt = is_q ? 4 : 0;
10993 TCGv_i32 tcg_res[4];
10995 for (pass = 0; pass < 4; pass++) {
10996 tcg_res[pass] = tcg_temp_new_i32();
10998 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10999 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11000 cpu_env);
11002 for (pass = 0; pass < 4; pass++) {
11003 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11004 tcg_temp_free_i32(tcg_res[pass]);
11009 static void handle_rev(DisasContext *s, int opcode, bool u,
11010 bool is_q, int size, int rn, int rd)
11012 int op = (opcode << 1) | u;
11013 int opsz = op + size;
11014 int grp_size = 3 - opsz;
11015 int dsize = is_q ? 128 : 64;
11016 int i;
11018 if (opsz >= 3) {
11019 unallocated_encoding(s);
11020 return;
11023 if (!fp_access_check(s)) {
11024 return;
11027 if (size == 0) {
11028 /* Special case bytes, use bswap op on each group of elements */
11029 int groups = dsize / (8 << grp_size);
11031 for (i = 0; i < groups; i++) {
11032 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11034 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11035 switch (grp_size) {
11036 case MO_16:
11037 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
11038 break;
11039 case MO_32:
11040 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
11041 break;
11042 case MO_64:
11043 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11044 break;
11045 default:
11046 g_assert_not_reached();
11048 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11049 tcg_temp_free_i64(tcg_tmp);
11051 clear_vec_high(s, is_q, rd);
11052 } else {
11053 int revmask = (1 << grp_size) - 1;
11054 int esize = 8 << size;
11055 int elements = dsize / esize;
11056 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11057 TCGv_i64 tcg_rd = tcg_const_i64(0);
11058 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
11060 for (i = 0; i < elements; i++) {
11061 int e_rev = (i & 0xf) ^ revmask;
11062 int off = e_rev * esize;
11063 read_vec_element(s, tcg_rn, rn, i, size);
11064 if (off >= 64) {
11065 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
11066 tcg_rn, off - 64, esize);
11067 } else {
11068 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
11071 write_vec_element(s, tcg_rd, rd, 0, MO_64);
11072 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
11074 tcg_temp_free_i64(tcg_rd_hi);
11075 tcg_temp_free_i64(tcg_rd);
11076 tcg_temp_free_i64(tcg_rn);
11080 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11081 bool is_q, int size, int rn, int rd)
11083 /* Implement the pairwise operations from 2-misc:
11084 * SADDLP, UADDLP, SADALP, UADALP.
11085 * These all add pairs of elements in the input to produce a
11086 * double-width result element in the output (possibly accumulating).
11088 bool accum = (opcode == 0x6);
11089 int maxpass = is_q ? 2 : 1;
11090 int pass;
11091 TCGv_i64 tcg_res[2];
11093 if (size == 2) {
11094 /* 32 + 32 -> 64 op */
11095 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
11097 for (pass = 0; pass < maxpass; pass++) {
11098 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11099 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11101 tcg_res[pass] = tcg_temp_new_i64();
11103 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11104 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11105 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11106 if (accum) {
11107 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11108 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11111 tcg_temp_free_i64(tcg_op1);
11112 tcg_temp_free_i64(tcg_op2);
11114 } else {
11115 for (pass = 0; pass < maxpass; pass++) {
11116 TCGv_i64 tcg_op = tcg_temp_new_i64();
11117 NeonGenOneOpFn *genfn;
11118 static NeonGenOneOpFn * const fns[2][2] = {
11119 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11120 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11123 genfn = fns[size][u];
11125 tcg_res[pass] = tcg_temp_new_i64();
11127 read_vec_element(s, tcg_op, rn, pass, MO_64);
11128 genfn(tcg_res[pass], tcg_op);
11130 if (accum) {
11131 read_vec_element(s, tcg_op, rd, pass, MO_64);
11132 if (size == 0) {
11133 gen_helper_neon_addl_u16(tcg_res[pass],
11134 tcg_res[pass], tcg_op);
11135 } else {
11136 gen_helper_neon_addl_u32(tcg_res[pass],
11137 tcg_res[pass], tcg_op);
11140 tcg_temp_free_i64(tcg_op);
11143 if (!is_q) {
11144 tcg_res[1] = tcg_const_i64(0);
11146 for (pass = 0; pass < 2; pass++) {
11147 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11148 tcg_temp_free_i64(tcg_res[pass]);
11152 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11154 /* Implement SHLL and SHLL2 */
11155 int pass;
11156 int part = is_q ? 2 : 0;
11157 TCGv_i64 tcg_res[2];
11159 for (pass = 0; pass < 2; pass++) {
11160 static NeonGenWidenFn * const widenfns[3] = {
11161 gen_helper_neon_widen_u8,
11162 gen_helper_neon_widen_u16,
11163 tcg_gen_extu_i32_i64,
11165 NeonGenWidenFn *widenfn = widenfns[size];
11166 TCGv_i32 tcg_op = tcg_temp_new_i32();
11168 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11169 tcg_res[pass] = tcg_temp_new_i64();
11170 widenfn(tcg_res[pass], tcg_op);
11171 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11173 tcg_temp_free_i32(tcg_op);
11176 for (pass = 0; pass < 2; pass++) {
11177 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11178 tcg_temp_free_i64(tcg_res[pass]);
11182 /* AdvSIMD two reg misc
11183 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11184 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11185 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11186 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11188 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11190 int size = extract32(insn, 22, 2);
11191 int opcode = extract32(insn, 12, 5);
11192 bool u = extract32(insn, 29, 1);
11193 bool is_q = extract32(insn, 30, 1);
11194 int rn = extract32(insn, 5, 5);
11195 int rd = extract32(insn, 0, 5);
11196 bool need_fpstatus = false;
11197 bool need_rmode = false;
11198 int rmode = -1;
11199 TCGv_i32 tcg_rmode;
11200 TCGv_ptr tcg_fpstatus;
11202 switch (opcode) {
11203 case 0x0: /* REV64, REV32 */
11204 case 0x1: /* REV16 */
11205 handle_rev(s, opcode, u, is_q, size, rn, rd);
11206 return;
11207 case 0x5: /* CNT, NOT, RBIT */
11208 if (u && size == 0) {
11209 /* NOT */
11210 break;
11211 } else if (u && size == 1) {
11212 /* RBIT */
11213 break;
11214 } else if (!u && size == 0) {
11215 /* CNT */
11216 break;
11218 unallocated_encoding(s);
11219 return;
11220 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11221 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11222 if (size == 3) {
11223 unallocated_encoding(s);
11224 return;
11226 if (!fp_access_check(s)) {
11227 return;
11230 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11231 return;
11232 case 0x4: /* CLS, CLZ */
11233 if (size == 3) {
11234 unallocated_encoding(s);
11235 return;
11237 break;
11238 case 0x2: /* SADDLP, UADDLP */
11239 case 0x6: /* SADALP, UADALP */
11240 if (size == 3) {
11241 unallocated_encoding(s);
11242 return;
11244 if (!fp_access_check(s)) {
11245 return;
11247 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11248 return;
11249 case 0x13: /* SHLL, SHLL2 */
11250 if (u == 0 || size == 3) {
11251 unallocated_encoding(s);
11252 return;
11254 if (!fp_access_check(s)) {
11255 return;
11257 handle_shll(s, is_q, size, rn, rd);
11258 return;
11259 case 0xa: /* CMLT */
11260 if (u == 1) {
11261 unallocated_encoding(s);
11262 return;
11264 /* fall through */
11265 case 0x8: /* CMGT, CMGE */
11266 case 0x9: /* CMEQ, CMLE */
11267 case 0xb: /* ABS, NEG */
11268 if (size == 3 && !is_q) {
11269 unallocated_encoding(s);
11270 return;
11272 break;
11273 case 0x3: /* SUQADD, USQADD */
11274 if (size == 3 && !is_q) {
11275 unallocated_encoding(s);
11276 return;
11278 if (!fp_access_check(s)) {
11279 return;
11281 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11282 return;
11283 case 0x7: /* SQABS, SQNEG */
11284 if (size == 3 && !is_q) {
11285 unallocated_encoding(s);
11286 return;
11288 break;
11289 case 0xc ... 0xf:
11290 case 0x16 ... 0x1d:
11291 case 0x1f:
11293 /* Floating point: U, size[1] and opcode indicate operation;
11294 * size[0] indicates single or double precision.
11296 int is_double = extract32(size, 0, 1);
11297 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11298 size = is_double ? 3 : 2;
11299 switch (opcode) {
11300 case 0x2f: /* FABS */
11301 case 0x6f: /* FNEG */
11302 if (size == 3 && !is_q) {
11303 unallocated_encoding(s);
11304 return;
11306 break;
11307 case 0x1d: /* SCVTF */
11308 case 0x5d: /* UCVTF */
11310 bool is_signed = (opcode == 0x1d) ? true : false;
11311 int elements = is_double ? 2 : is_q ? 4 : 2;
11312 if (is_double && !is_q) {
11313 unallocated_encoding(s);
11314 return;
11316 if (!fp_access_check(s)) {
11317 return;
11319 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11320 return;
11322 case 0x2c: /* FCMGT (zero) */
11323 case 0x2d: /* FCMEQ (zero) */
11324 case 0x2e: /* FCMLT (zero) */
11325 case 0x6c: /* FCMGE (zero) */
11326 case 0x6d: /* FCMLE (zero) */
11327 if (size == 3 && !is_q) {
11328 unallocated_encoding(s);
11329 return;
11331 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11332 return;
11333 case 0x7f: /* FSQRT */
11334 if (size == 3 && !is_q) {
11335 unallocated_encoding(s);
11336 return;
11338 break;
11339 case 0x1a: /* FCVTNS */
11340 case 0x1b: /* FCVTMS */
11341 case 0x3a: /* FCVTPS */
11342 case 0x3b: /* FCVTZS */
11343 case 0x5a: /* FCVTNU */
11344 case 0x5b: /* FCVTMU */
11345 case 0x7a: /* FCVTPU */
11346 case 0x7b: /* FCVTZU */
11347 need_fpstatus = true;
11348 need_rmode = true;
11349 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11350 if (size == 3 && !is_q) {
11351 unallocated_encoding(s);
11352 return;
11354 break;
11355 case 0x5c: /* FCVTAU */
11356 case 0x1c: /* FCVTAS */
11357 need_fpstatus = true;
11358 need_rmode = true;
11359 rmode = FPROUNDING_TIEAWAY;
11360 if (size == 3 && !is_q) {
11361 unallocated_encoding(s);
11362 return;
11364 break;
11365 case 0x3c: /* URECPE */
11366 if (size == 3) {
11367 unallocated_encoding(s);
11368 return;
11370 /* fall through */
11371 case 0x3d: /* FRECPE */
11372 case 0x7d: /* FRSQRTE */
11373 if (size == 3 && !is_q) {
11374 unallocated_encoding(s);
11375 return;
11377 if (!fp_access_check(s)) {
11378 return;
11380 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11381 return;
11382 case 0x56: /* FCVTXN, FCVTXN2 */
11383 if (size == 2) {
11384 unallocated_encoding(s);
11385 return;
11387 /* fall through */
11388 case 0x16: /* FCVTN, FCVTN2 */
11389 /* handle_2misc_narrow does a 2*size -> size operation, but these
11390 * instructions encode the source size rather than dest size.
11392 if (!fp_access_check(s)) {
11393 return;
11395 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11396 return;
11397 case 0x17: /* FCVTL, FCVTL2 */
11398 if (!fp_access_check(s)) {
11399 return;
11401 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11402 return;
11403 case 0x18: /* FRINTN */
11404 case 0x19: /* FRINTM */
11405 case 0x38: /* FRINTP */
11406 case 0x39: /* FRINTZ */
11407 need_rmode = true;
11408 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11409 /* fall through */
11410 case 0x59: /* FRINTX */
11411 case 0x79: /* FRINTI */
11412 need_fpstatus = true;
11413 if (size == 3 && !is_q) {
11414 unallocated_encoding(s);
11415 return;
11417 break;
11418 case 0x58: /* FRINTA */
11419 need_rmode = true;
11420 rmode = FPROUNDING_TIEAWAY;
11421 need_fpstatus = true;
11422 if (size == 3 && !is_q) {
11423 unallocated_encoding(s);
11424 return;
11426 break;
11427 case 0x7c: /* URSQRTE */
11428 if (size == 3) {
11429 unallocated_encoding(s);
11430 return;
11432 need_fpstatus = true;
11433 break;
11434 default:
11435 unallocated_encoding(s);
11436 return;
11438 break;
11440 default:
11441 unallocated_encoding(s);
11442 return;
11445 if (!fp_access_check(s)) {
11446 return;
11449 if (need_fpstatus || need_rmode) {
11450 tcg_fpstatus = get_fpstatus_ptr(false);
11451 } else {
11452 tcg_fpstatus = NULL;
11454 if (need_rmode) {
11455 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11456 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11457 } else {
11458 tcg_rmode = NULL;
11461 switch (opcode) {
11462 case 0x5:
11463 if (u && size == 0) { /* NOT */
11464 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11465 return;
11467 break;
11468 case 0xb:
11469 if (u) { /* NEG */
11470 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11471 return;
11473 break;
11476 if (size == 3) {
11477 /* All 64-bit element operations can be shared with scalar 2misc */
11478 int pass;
11480 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
11481 TCGv_i64 tcg_op = tcg_temp_new_i64();
11482 TCGv_i64 tcg_res = tcg_temp_new_i64();
11484 read_vec_element(s, tcg_op, rn, pass, MO_64);
11486 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11487 tcg_rmode, tcg_fpstatus);
11489 write_vec_element(s, tcg_res, rd, pass, MO_64);
11491 tcg_temp_free_i64(tcg_res);
11492 tcg_temp_free_i64(tcg_op);
11494 } else {
11495 int pass;
11497 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11498 TCGv_i32 tcg_op = tcg_temp_new_i32();
11499 TCGv_i32 tcg_res = tcg_temp_new_i32();
11500 TCGCond cond;
11502 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11504 if (size == 2) {
11505 /* Special cases for 32 bit elements */
11506 switch (opcode) {
11507 case 0xa: /* CMLT */
11508 /* 32 bit integer comparison against zero, result is
11509 * test ? (2^32 - 1) : 0. We implement via setcond(test)
11510 * and inverting.
11512 cond = TCG_COND_LT;
11513 do_cmop:
11514 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
11515 tcg_gen_neg_i32(tcg_res, tcg_res);
11516 break;
11517 case 0x8: /* CMGT, CMGE */
11518 cond = u ? TCG_COND_GE : TCG_COND_GT;
11519 goto do_cmop;
11520 case 0x9: /* CMEQ, CMLE */
11521 cond = u ? TCG_COND_LE : TCG_COND_EQ;
11522 goto do_cmop;
11523 case 0x4: /* CLS */
11524 if (u) {
11525 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11526 } else {
11527 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11529 break;
11530 case 0x7: /* SQABS, SQNEG */
11531 if (u) {
11532 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
11533 } else {
11534 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
11536 break;
11537 case 0xb: /* ABS, NEG */
11538 if (u) {
11539 tcg_gen_neg_i32(tcg_res, tcg_op);
11540 } else {
11541 TCGv_i32 tcg_zero = tcg_const_i32(0);
11542 tcg_gen_neg_i32(tcg_res, tcg_op);
11543 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
11544 tcg_zero, tcg_op, tcg_res);
11545 tcg_temp_free_i32(tcg_zero);
11547 break;
11548 case 0x2f: /* FABS */
11549 gen_helper_vfp_abss(tcg_res, tcg_op);
11550 break;
11551 case 0x6f: /* FNEG */
11552 gen_helper_vfp_negs(tcg_res, tcg_op);
11553 break;
11554 case 0x7f: /* FSQRT */
11555 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
11556 break;
11557 case 0x1a: /* FCVTNS */
11558 case 0x1b: /* FCVTMS */
11559 case 0x1c: /* FCVTAS */
11560 case 0x3a: /* FCVTPS */
11561 case 0x3b: /* FCVTZS */
11563 TCGv_i32 tcg_shift = tcg_const_i32(0);
11564 gen_helper_vfp_tosls(tcg_res, tcg_op,
11565 tcg_shift, tcg_fpstatus);
11566 tcg_temp_free_i32(tcg_shift);
11567 break;
11569 case 0x5a: /* FCVTNU */
11570 case 0x5b: /* FCVTMU */
11571 case 0x5c: /* FCVTAU */
11572 case 0x7a: /* FCVTPU */
11573 case 0x7b: /* FCVTZU */
11575 TCGv_i32 tcg_shift = tcg_const_i32(0);
11576 gen_helper_vfp_touls(tcg_res, tcg_op,
11577 tcg_shift, tcg_fpstatus);
11578 tcg_temp_free_i32(tcg_shift);
11579 break;
11581 case 0x18: /* FRINTN */
11582 case 0x19: /* FRINTM */
11583 case 0x38: /* FRINTP */
11584 case 0x39: /* FRINTZ */
11585 case 0x58: /* FRINTA */
11586 case 0x79: /* FRINTI */
11587 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11588 break;
11589 case 0x59: /* FRINTX */
11590 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11591 break;
11592 case 0x7c: /* URSQRTE */
11593 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
11594 break;
11595 default:
11596 g_assert_not_reached();
11598 } else {
11599 /* Use helpers for 8 and 16 bit elements */
11600 switch (opcode) {
11601 case 0x5: /* CNT, RBIT */
11602 /* For these two insns size is part of the opcode specifier
11603 * (handled earlier); they always operate on byte elements.
11605 if (u) {
11606 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11607 } else {
11608 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11610 break;
11611 case 0x7: /* SQABS, SQNEG */
11613 NeonGenOneOpEnvFn *genfn;
11614 static NeonGenOneOpEnvFn * const fns[2][2] = {
11615 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11616 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11618 genfn = fns[size][u];
11619 genfn(tcg_res, cpu_env, tcg_op);
11620 break;
11622 case 0x8: /* CMGT, CMGE */
11623 case 0x9: /* CMEQ, CMLE */
11624 case 0xa: /* CMLT */
11626 static NeonGenTwoOpFn * const fns[3][2] = {
11627 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
11628 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
11629 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
11631 NeonGenTwoOpFn *genfn;
11632 int comp;
11633 bool reverse;
11634 TCGv_i32 tcg_zero = tcg_const_i32(0);
11636 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
11637 comp = (opcode - 0x8) * 2 + u;
11638 /* ...but LE, LT are implemented as reverse GE, GT */
11639 reverse = (comp > 2);
11640 if (reverse) {
11641 comp = 4 - comp;
11643 genfn = fns[comp][size];
11644 if (reverse) {
11645 genfn(tcg_res, tcg_zero, tcg_op);
11646 } else {
11647 genfn(tcg_res, tcg_op, tcg_zero);
11649 tcg_temp_free_i32(tcg_zero);
11650 break;
11652 case 0xb: /* ABS, NEG */
11653 if (u) {
11654 TCGv_i32 tcg_zero = tcg_const_i32(0);
11655 if (size) {
11656 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
11657 } else {
11658 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
11660 tcg_temp_free_i32(tcg_zero);
11661 } else {
11662 if (size) {
11663 gen_helper_neon_abs_s16(tcg_res, tcg_op);
11664 } else {
11665 gen_helper_neon_abs_s8(tcg_res, tcg_op);
11668 break;
11669 case 0x4: /* CLS, CLZ */
11670 if (u) {
11671 if (size == 0) {
11672 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11673 } else {
11674 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11676 } else {
11677 if (size == 0) {
11678 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11679 } else {
11680 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11683 break;
11684 default:
11685 g_assert_not_reached();
11689 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11691 tcg_temp_free_i32(tcg_res);
11692 tcg_temp_free_i32(tcg_op);
11695 clear_vec_high(s, is_q, rd);
11697 if (need_rmode) {
11698 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11699 tcg_temp_free_i32(tcg_rmode);
11701 if (need_fpstatus) {
11702 tcg_temp_free_ptr(tcg_fpstatus);
11706 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11708 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11709 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11710 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11711 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11712 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11713 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11715 * This actually covers two groups where scalar access is governed by
11716 * bit 28. A bunch of the instructions (float to integral) only exist
11717 * in the vector form and are un-allocated for the scalar decode. Also
11718 * in the scalar decode Q is always 1.
11720 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11722 int fpop, opcode, a, u;
11723 int rn, rd;
11724 bool is_q;
11725 bool is_scalar;
11726 bool only_in_vector = false;
11728 int pass;
11729 TCGv_i32 tcg_rmode = NULL;
11730 TCGv_ptr tcg_fpstatus = NULL;
11731 bool need_rmode = false;
11732 bool need_fpst = true;
11733 int rmode;
11735 if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
11736 unallocated_encoding(s);
11737 return;
11740 rd = extract32(insn, 0, 5);
11741 rn = extract32(insn, 5, 5);
11743 a = extract32(insn, 23, 1);
11744 u = extract32(insn, 29, 1);
11745 is_scalar = extract32(insn, 28, 1);
11746 is_q = extract32(insn, 30, 1);
11748 opcode = extract32(insn, 12, 5);
11749 fpop = deposit32(opcode, 5, 1, a);
11750 fpop = deposit32(fpop, 6, 1, u);
11752 rd = extract32(insn, 0, 5);
11753 rn = extract32(insn, 5, 5);
11755 switch (fpop) {
11756 case 0x1d: /* SCVTF */
11757 case 0x5d: /* UCVTF */
11759 int elements;
11761 if (is_scalar) {
11762 elements = 1;
11763 } else {
11764 elements = (is_q ? 8 : 4);
11767 if (!fp_access_check(s)) {
11768 return;
11770 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11771 return;
11773 break;
11774 case 0x2c: /* FCMGT (zero) */
11775 case 0x2d: /* FCMEQ (zero) */
11776 case 0x2e: /* FCMLT (zero) */
11777 case 0x6c: /* FCMGE (zero) */
11778 case 0x6d: /* FCMLE (zero) */
11779 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11780 return;
11781 case 0x3d: /* FRECPE */
11782 case 0x3f: /* FRECPX */
11783 break;
11784 case 0x18: /* FRINTN */
11785 need_rmode = true;
11786 only_in_vector = true;
11787 rmode = FPROUNDING_TIEEVEN;
11788 break;
11789 case 0x19: /* FRINTM */
11790 need_rmode = true;
11791 only_in_vector = true;
11792 rmode = FPROUNDING_NEGINF;
11793 break;
11794 case 0x38: /* FRINTP */
11795 need_rmode = true;
11796 only_in_vector = true;
11797 rmode = FPROUNDING_POSINF;
11798 break;
11799 case 0x39: /* FRINTZ */
11800 need_rmode = true;
11801 only_in_vector = true;
11802 rmode = FPROUNDING_ZERO;
11803 break;
11804 case 0x58: /* FRINTA */
11805 need_rmode = true;
11806 only_in_vector = true;
11807 rmode = FPROUNDING_TIEAWAY;
11808 break;
11809 case 0x59: /* FRINTX */
11810 case 0x79: /* FRINTI */
11811 only_in_vector = true;
11812 /* current rounding mode */
11813 break;
11814 case 0x1a: /* FCVTNS */
11815 need_rmode = true;
11816 rmode = FPROUNDING_TIEEVEN;
11817 break;
11818 case 0x1b: /* FCVTMS */
11819 need_rmode = true;
11820 rmode = FPROUNDING_NEGINF;
11821 break;
11822 case 0x1c: /* FCVTAS */
11823 need_rmode = true;
11824 rmode = FPROUNDING_TIEAWAY;
11825 break;
11826 case 0x3a: /* FCVTPS */
11827 need_rmode = true;
11828 rmode = FPROUNDING_POSINF;
11829 break;
11830 case 0x3b: /* FCVTZS */
11831 need_rmode = true;
11832 rmode = FPROUNDING_ZERO;
11833 break;
11834 case 0x5a: /* FCVTNU */
11835 need_rmode = true;
11836 rmode = FPROUNDING_TIEEVEN;
11837 break;
11838 case 0x5b: /* FCVTMU */
11839 need_rmode = true;
11840 rmode = FPROUNDING_NEGINF;
11841 break;
11842 case 0x5c: /* FCVTAU */
11843 need_rmode = true;
11844 rmode = FPROUNDING_TIEAWAY;
11845 break;
11846 case 0x7a: /* FCVTPU */
11847 need_rmode = true;
11848 rmode = FPROUNDING_POSINF;
11849 break;
11850 case 0x7b: /* FCVTZU */
11851 need_rmode = true;
11852 rmode = FPROUNDING_ZERO;
11853 break;
11854 case 0x2f: /* FABS */
11855 case 0x6f: /* FNEG */
11856 need_fpst = false;
11857 break;
11858 case 0x7d: /* FRSQRTE */
11859 case 0x7f: /* FSQRT (vector) */
11860 break;
11861 default:
11862 fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop);
11863 g_assert_not_reached();
11867 /* Check additional constraints for the scalar encoding */
11868 if (is_scalar) {
11869 if (!is_q) {
11870 unallocated_encoding(s);
11871 return;
11873 /* FRINTxx is only in the vector form */
11874 if (only_in_vector) {
11875 unallocated_encoding(s);
11876 return;
11880 if (!fp_access_check(s)) {
11881 return;
11884 if (need_rmode || need_fpst) {
11885 tcg_fpstatus = get_fpstatus_ptr(true);
11888 if (need_rmode) {
11889 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
11890 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11893 if (is_scalar) {
11894 TCGv_i32 tcg_op = tcg_temp_new_i32();
11895 TCGv_i32 tcg_res = tcg_temp_new_i32();
11897 read_vec_element_i32(s, tcg_op, rn, 0, MO_16);
11899 switch (fpop) {
11900 case 0x1a: /* FCVTNS */
11901 case 0x1b: /* FCVTMS */
11902 case 0x1c: /* FCVTAS */
11903 case 0x3a: /* FCVTPS */
11904 case 0x3b: /* FCVTZS */
11905 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11906 break;
11907 case 0x3d: /* FRECPE */
11908 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11909 break;
11910 case 0x3f: /* FRECPX */
11911 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11912 break;
11913 case 0x5a: /* FCVTNU */
11914 case 0x5b: /* FCVTMU */
11915 case 0x5c: /* FCVTAU */
11916 case 0x7a: /* FCVTPU */
11917 case 0x7b: /* FCVTZU */
11918 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11919 break;
11920 case 0x6f: /* FNEG */
11921 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11922 break;
11923 case 0x7d: /* FRSQRTE */
11924 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11925 break;
11926 default:
11927 g_assert_not_reached();
11930 /* limit any sign extension going on */
11931 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11932 write_fp_sreg(s, rd, tcg_res);
11934 tcg_temp_free_i32(tcg_res);
11935 tcg_temp_free_i32(tcg_op);
11936 } else {
11937 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11938 TCGv_i32 tcg_op = tcg_temp_new_i32();
11939 TCGv_i32 tcg_res = tcg_temp_new_i32();
11941 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11943 switch (fpop) {
11944 case 0x1a: /* FCVTNS */
11945 case 0x1b: /* FCVTMS */
11946 case 0x1c: /* FCVTAS */
11947 case 0x3a: /* FCVTPS */
11948 case 0x3b: /* FCVTZS */
11949 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11950 break;
11951 case 0x3d: /* FRECPE */
11952 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11953 break;
11954 case 0x5a: /* FCVTNU */
11955 case 0x5b: /* FCVTMU */
11956 case 0x5c: /* FCVTAU */
11957 case 0x7a: /* FCVTPU */
11958 case 0x7b: /* FCVTZU */
11959 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11960 break;
11961 case 0x18: /* FRINTN */
11962 case 0x19: /* FRINTM */
11963 case 0x38: /* FRINTP */
11964 case 0x39: /* FRINTZ */
11965 case 0x58: /* FRINTA */
11966 case 0x79: /* FRINTI */
11967 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11968 break;
11969 case 0x59: /* FRINTX */
11970 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11971 break;
11972 case 0x2f: /* FABS */
11973 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11974 break;
11975 case 0x6f: /* FNEG */
11976 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11977 break;
11978 case 0x7d: /* FRSQRTE */
11979 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11980 break;
11981 case 0x7f: /* FSQRT */
11982 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11983 break;
11984 default:
11985 g_assert_not_reached();
11988 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11990 tcg_temp_free_i32(tcg_res);
11991 tcg_temp_free_i32(tcg_op);
11994 clear_vec_high(s, is_q, rd);
11997 if (tcg_rmode) {
11998 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
11999 tcg_temp_free_i32(tcg_rmode);
12002 if (tcg_fpstatus) {
12003 tcg_temp_free_ptr(tcg_fpstatus);
12007 /* AdvSIMD scalar x indexed element
12008 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12009 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12010 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12011 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12012 * AdvSIMD vector x indexed element
12013 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12014 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12015 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12016 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12018 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12020 /* This encoding has two kinds of instruction:
12021 * normal, where we perform elt x idxelt => elt for each
12022 * element in the vector
12023 * long, where we perform elt x idxelt and generate a result of
12024 * double the width of the input element
12025 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12027 bool is_scalar = extract32(insn, 28, 1);
12028 bool is_q = extract32(insn, 30, 1);
12029 bool u = extract32(insn, 29, 1);
12030 int size = extract32(insn, 22, 2);
12031 int l = extract32(insn, 21, 1);
12032 int m = extract32(insn, 20, 1);
12033 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12034 int rm = extract32(insn, 16, 4);
12035 int opcode = extract32(insn, 12, 4);
12036 int h = extract32(insn, 11, 1);
12037 int rn = extract32(insn, 5, 5);
12038 int rd = extract32(insn, 0, 5);
12039 bool is_long = false;
12040 int is_fp = 0;
12041 bool is_fp16 = false;
12042 int index;
12043 TCGv_ptr fpst;
12045 switch (16 * u + opcode) {
12046 case 0x08: /* MUL */
12047 case 0x10: /* MLA */
12048 case 0x14: /* MLS */
12049 if (is_scalar) {
12050 unallocated_encoding(s);
12051 return;
12053 break;
12054 case 0x02: /* SMLAL, SMLAL2 */
12055 case 0x12: /* UMLAL, UMLAL2 */
12056 case 0x06: /* SMLSL, SMLSL2 */
12057 case 0x16: /* UMLSL, UMLSL2 */
12058 case 0x0a: /* SMULL, SMULL2 */
12059 case 0x1a: /* UMULL, UMULL2 */
12060 if (is_scalar) {
12061 unallocated_encoding(s);
12062 return;
12064 is_long = true;
12065 break;
12066 case 0x03: /* SQDMLAL, SQDMLAL2 */
12067 case 0x07: /* SQDMLSL, SQDMLSL2 */
12068 case 0x0b: /* SQDMULL, SQDMULL2 */
12069 is_long = true;
12070 break;
12071 case 0x0c: /* SQDMULH */
12072 case 0x0d: /* SQRDMULH */
12073 break;
12074 case 0x01: /* FMLA */
12075 case 0x05: /* FMLS */
12076 case 0x09: /* FMUL */
12077 case 0x19: /* FMULX */
12078 is_fp = 1;
12079 break;
12080 case 0x1d: /* SQRDMLAH */
12081 case 0x1f: /* SQRDMLSH */
12082 if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) {
12083 unallocated_encoding(s);
12084 return;
12086 break;
12087 case 0x11: /* FCMLA #0 */
12088 case 0x13: /* FCMLA #90 */
12089 case 0x15: /* FCMLA #180 */
12090 case 0x17: /* FCMLA #270 */
12091 if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) {
12092 unallocated_encoding(s);
12093 return;
12095 is_fp = 2;
12096 break;
12097 default:
12098 unallocated_encoding(s);
12099 return;
12102 switch (is_fp) {
12103 case 1: /* normal fp */
12104 /* convert insn encoded size to TCGMemOp size */
12105 switch (size) {
12106 case 0: /* half-precision */
12107 size = MO_16;
12108 is_fp16 = true;
12109 break;
12110 case MO_32: /* single precision */
12111 case MO_64: /* double precision */
12112 break;
12113 default:
12114 unallocated_encoding(s);
12115 return;
12117 break;
12119 case 2: /* complex fp */
12120 /* Each indexable element is a complex pair. */
12121 size <<= 1;
12122 switch (size) {
12123 case MO_32:
12124 if (h && !is_q) {
12125 unallocated_encoding(s);
12126 return;
12128 is_fp16 = true;
12129 break;
12130 case MO_64:
12131 break;
12132 default:
12133 unallocated_encoding(s);
12134 return;
12136 break;
12138 default: /* integer */
12139 switch (size) {
12140 case MO_8:
12141 case MO_64:
12142 unallocated_encoding(s);
12143 return;
12145 break;
12147 if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) {
12148 unallocated_encoding(s);
12149 return;
12152 /* Given TCGMemOp size, adjust register and indexing. */
12153 switch (size) {
12154 case MO_16:
12155 index = h << 2 | l << 1 | m;
12156 break;
12157 case MO_32:
12158 index = h << 1 | l;
12159 rm |= m << 4;
12160 break;
12161 case MO_64:
12162 if (l || !is_q) {
12163 unallocated_encoding(s);
12164 return;
12166 index = h;
12167 rm |= m << 4;
12168 break;
12169 default:
12170 g_assert_not_reached();
12173 if (!fp_access_check(s)) {
12174 return;
12177 if (is_fp) {
12178 fpst = get_fpstatus_ptr(is_fp16);
12179 } else {
12180 fpst = NULL;
12183 switch (16 * u + opcode) {
12184 case 0x11: /* FCMLA #0 */
12185 case 0x13: /* FCMLA #90 */
12186 case 0x15: /* FCMLA #180 */
12187 case 0x17: /* FCMLA #270 */
12188 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12189 vec_full_reg_offset(s, rn),
12190 vec_reg_offset(s, rm, index, size), fpst,
12191 is_q ? 16 : 8, vec_full_reg_size(s),
12192 extract32(insn, 13, 2), /* rot */
12193 size == MO_64
12194 ? gen_helper_gvec_fcmlas_idx
12195 : gen_helper_gvec_fcmlah_idx);
12196 tcg_temp_free_ptr(fpst);
12197 return;
12200 if (size == 3) {
12201 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12202 int pass;
12204 assert(is_fp && is_q && !is_long);
12206 read_vec_element(s, tcg_idx, rm, index, MO_64);
12208 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12209 TCGv_i64 tcg_op = tcg_temp_new_i64();
12210 TCGv_i64 tcg_res = tcg_temp_new_i64();
12212 read_vec_element(s, tcg_op, rn, pass, MO_64);
12214 switch (16 * u + opcode) {
12215 case 0x05: /* FMLS */
12216 /* As usual for ARM, separate negation for fused multiply-add */
12217 gen_helper_vfp_negd(tcg_op, tcg_op);
12218 /* fall through */
12219 case 0x01: /* FMLA */
12220 read_vec_element(s, tcg_res, rd, pass, MO_64);
12221 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12222 break;
12223 case 0x09: /* FMUL */
12224 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12225 break;
12226 case 0x19: /* FMULX */
12227 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
12228 break;
12229 default:
12230 g_assert_not_reached();
12233 write_vec_element(s, tcg_res, rd, pass, MO_64);
12234 tcg_temp_free_i64(tcg_op);
12235 tcg_temp_free_i64(tcg_res);
12238 tcg_temp_free_i64(tcg_idx);
12239 clear_vec_high(s, !is_scalar, rd);
12240 } else if (!is_long) {
12241 /* 32 bit floating point, or 16 or 32 bit integer.
12242 * For the 16 bit scalar case we use the usual Neon helpers and
12243 * rely on the fact that 0 op 0 == 0 with no side effects.
12245 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12246 int pass, maxpasses;
12248 if (is_scalar) {
12249 maxpasses = 1;
12250 } else {
12251 maxpasses = is_q ? 4 : 2;
12254 read_vec_element_i32(s, tcg_idx, rm, index, size);
12256 if (size == 1 && !is_scalar) {
12257 /* The simplest way to handle the 16x16 indexed ops is to duplicate
12258 * the index into both halves of the 32 bit tcg_idx and then use
12259 * the usual Neon helpers.
12261 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12264 for (pass = 0; pass < maxpasses; pass++) {
12265 TCGv_i32 tcg_op = tcg_temp_new_i32();
12266 TCGv_i32 tcg_res = tcg_temp_new_i32();
12268 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
12270 switch (16 * u + opcode) {
12271 case 0x08: /* MUL */
12272 case 0x10: /* MLA */
12273 case 0x14: /* MLS */
12275 static NeonGenTwoOpFn * const fns[2][2] = {
12276 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
12277 { tcg_gen_add_i32, tcg_gen_sub_i32 },
12279 NeonGenTwoOpFn *genfn;
12280 bool is_sub = opcode == 0x4;
12282 if (size == 1) {
12283 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
12284 } else {
12285 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
12287 if (opcode == 0x8) {
12288 break;
12290 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
12291 genfn = fns[size - 1][is_sub];
12292 genfn(tcg_res, tcg_op, tcg_res);
12293 break;
12295 case 0x05: /* FMLS */
12296 case 0x01: /* FMLA */
12297 read_vec_element_i32(s, tcg_res, rd, pass,
12298 is_scalar ? size : MO_32);
12299 switch (size) {
12300 case 1:
12301 if (opcode == 0x5) {
12302 /* As usual for ARM, separate negation for fused
12303 * multiply-add */
12304 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
12306 if (is_scalar) {
12307 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
12308 tcg_res, fpst);
12309 } else {
12310 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
12311 tcg_res, fpst);
12313 break;
12314 case 2:
12315 if (opcode == 0x5) {
12316 /* As usual for ARM, separate negation for
12317 * fused multiply-add */
12318 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
12320 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
12321 tcg_res, fpst);
12322 break;
12323 default:
12324 g_assert_not_reached();
12326 break;
12327 case 0x09: /* FMUL */
12328 switch (size) {
12329 case 1:
12330 if (is_scalar) {
12331 gen_helper_advsimd_mulh(tcg_res, tcg_op,
12332 tcg_idx, fpst);
12333 } else {
12334 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
12335 tcg_idx, fpst);
12337 break;
12338 case 2:
12339 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
12340 break;
12341 default:
12342 g_assert_not_reached();
12344 break;
12345 case 0x19: /* FMULX */
12346 switch (size) {
12347 case 1:
12348 if (is_scalar) {
12349 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
12350 tcg_idx, fpst);
12351 } else {
12352 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
12353 tcg_idx, fpst);
12355 break;
12356 case 2:
12357 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
12358 break;
12359 default:
12360 g_assert_not_reached();
12362 break;
12363 case 0x0c: /* SQDMULH */
12364 if (size == 1) {
12365 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
12366 tcg_op, tcg_idx);
12367 } else {
12368 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
12369 tcg_op, tcg_idx);
12371 break;
12372 case 0x0d: /* SQRDMULH */
12373 if (size == 1) {
12374 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
12375 tcg_op, tcg_idx);
12376 } else {
12377 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
12378 tcg_op, tcg_idx);
12380 break;
12381 case 0x1d: /* SQRDMLAH */
12382 read_vec_element_i32(s, tcg_res, rd, pass,
12383 is_scalar ? size : MO_32);
12384 if (size == 1) {
12385 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
12386 tcg_op, tcg_idx, tcg_res);
12387 } else {
12388 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
12389 tcg_op, tcg_idx, tcg_res);
12391 break;
12392 case 0x1f: /* SQRDMLSH */
12393 read_vec_element_i32(s, tcg_res, rd, pass,
12394 is_scalar ? size : MO_32);
12395 if (size == 1) {
12396 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
12397 tcg_op, tcg_idx, tcg_res);
12398 } else {
12399 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
12400 tcg_op, tcg_idx, tcg_res);
12402 break;
12403 default:
12404 g_assert_not_reached();
12407 if (is_scalar) {
12408 write_fp_sreg(s, rd, tcg_res);
12409 } else {
12410 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12413 tcg_temp_free_i32(tcg_op);
12414 tcg_temp_free_i32(tcg_res);
12417 tcg_temp_free_i32(tcg_idx);
12418 clear_vec_high(s, is_q, rd);
12419 } else {
12420 /* long ops: 16x16->32 or 32x32->64 */
12421 TCGv_i64 tcg_res[2];
12422 int pass;
12423 bool satop = extract32(opcode, 0, 1);
12424 TCGMemOp memop = MO_32;
12426 if (satop || !u) {
12427 memop |= MO_SIGN;
12430 if (size == 2) {
12431 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12433 read_vec_element(s, tcg_idx, rm, index, memop);
12435 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12436 TCGv_i64 tcg_op = tcg_temp_new_i64();
12437 TCGv_i64 tcg_passres;
12438 int passelt;
12440 if (is_scalar) {
12441 passelt = 0;
12442 } else {
12443 passelt = pass + (is_q * 2);
12446 read_vec_element(s, tcg_op, rn, passelt, memop);
12448 tcg_res[pass] = tcg_temp_new_i64();
12450 if (opcode == 0xa || opcode == 0xb) {
12451 /* Non-accumulating ops */
12452 tcg_passres = tcg_res[pass];
12453 } else {
12454 tcg_passres = tcg_temp_new_i64();
12457 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
12458 tcg_temp_free_i64(tcg_op);
12460 if (satop) {
12461 /* saturating, doubling */
12462 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
12463 tcg_passres, tcg_passres);
12466 if (opcode == 0xa || opcode == 0xb) {
12467 continue;
12470 /* Accumulating op: handle accumulate step */
12471 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12473 switch (opcode) {
12474 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12475 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12476 break;
12477 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12478 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
12479 break;
12480 case 0x7: /* SQDMLSL, SQDMLSL2 */
12481 tcg_gen_neg_i64(tcg_passres, tcg_passres);
12482 /* fall through */
12483 case 0x3: /* SQDMLAL, SQDMLAL2 */
12484 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
12485 tcg_res[pass],
12486 tcg_passres);
12487 break;
12488 default:
12489 g_assert_not_reached();
12491 tcg_temp_free_i64(tcg_passres);
12493 tcg_temp_free_i64(tcg_idx);
12495 clear_vec_high(s, !is_scalar, rd);
12496 } else {
12497 TCGv_i32 tcg_idx = tcg_temp_new_i32();
12499 assert(size == 1);
12500 read_vec_element_i32(s, tcg_idx, rm, index, size);
12502 if (!is_scalar) {
12503 /* The simplest way to handle the 16x16 indexed ops is to
12504 * duplicate the index into both halves of the 32 bit tcg_idx
12505 * and then use the usual Neon helpers.
12507 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
12510 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12511 TCGv_i32 tcg_op = tcg_temp_new_i32();
12512 TCGv_i64 tcg_passres;
12514 if (is_scalar) {
12515 read_vec_element_i32(s, tcg_op, rn, pass, size);
12516 } else {
12517 read_vec_element_i32(s, tcg_op, rn,
12518 pass + (is_q * 2), MO_32);
12521 tcg_res[pass] = tcg_temp_new_i64();
12523 if (opcode == 0xa || opcode == 0xb) {
12524 /* Non-accumulating ops */
12525 tcg_passres = tcg_res[pass];
12526 } else {
12527 tcg_passres = tcg_temp_new_i64();
12530 if (memop & MO_SIGN) {
12531 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
12532 } else {
12533 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
12535 if (satop) {
12536 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
12537 tcg_passres, tcg_passres);
12539 tcg_temp_free_i32(tcg_op);
12541 if (opcode == 0xa || opcode == 0xb) {
12542 continue;
12545 /* Accumulating op: handle accumulate step */
12546 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12548 switch (opcode) {
12549 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
12550 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
12551 tcg_passres);
12552 break;
12553 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
12554 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
12555 tcg_passres);
12556 break;
12557 case 0x7: /* SQDMLSL, SQDMLSL2 */
12558 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
12559 /* fall through */
12560 case 0x3: /* SQDMLAL, SQDMLAL2 */
12561 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
12562 tcg_res[pass],
12563 tcg_passres);
12564 break;
12565 default:
12566 g_assert_not_reached();
12568 tcg_temp_free_i64(tcg_passres);
12570 tcg_temp_free_i32(tcg_idx);
12572 if (is_scalar) {
12573 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
12577 if (is_scalar) {
12578 tcg_res[1] = tcg_const_i64(0);
12581 for (pass = 0; pass < 2; pass++) {
12582 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12583 tcg_temp_free_i64(tcg_res[pass]);
12587 if (fpst) {
12588 tcg_temp_free_ptr(fpst);
12592 /* Crypto AES
12593 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12594 * +-----------------+------+-----------+--------+-----+------+------+
12595 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12596 * +-----------------+------+-----------+--------+-----+------+------+
12598 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
12600 int size = extract32(insn, 22, 2);
12601 int opcode = extract32(insn, 12, 5);
12602 int rn = extract32(insn, 5, 5);
12603 int rd = extract32(insn, 0, 5);
12604 int decrypt;
12605 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12606 TCGv_i32 tcg_decrypt;
12607 CryptoThreeOpIntFn *genfn;
12609 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
12610 || size != 0) {
12611 unallocated_encoding(s);
12612 return;
12615 switch (opcode) {
12616 case 0x4: /* AESE */
12617 decrypt = 0;
12618 genfn = gen_helper_crypto_aese;
12619 break;
12620 case 0x6: /* AESMC */
12621 decrypt = 0;
12622 genfn = gen_helper_crypto_aesmc;
12623 break;
12624 case 0x5: /* AESD */
12625 decrypt = 1;
12626 genfn = gen_helper_crypto_aese;
12627 break;
12628 case 0x7: /* AESIMC */
12629 decrypt = 1;
12630 genfn = gen_helper_crypto_aesmc;
12631 break;
12632 default:
12633 unallocated_encoding(s);
12634 return;
12637 if (!fp_access_check(s)) {
12638 return;
12641 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12642 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12643 tcg_decrypt = tcg_const_i32(decrypt);
12645 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt);
12647 tcg_temp_free_ptr(tcg_rd_ptr);
12648 tcg_temp_free_ptr(tcg_rn_ptr);
12649 tcg_temp_free_i32(tcg_decrypt);
12652 /* Crypto three-reg SHA
12653 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
12654 * +-----------------+------+---+------+---+--------+-----+------+------+
12655 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
12656 * +-----------------+------+---+------+---+--------+-----+------+------+
12658 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
12660 int size = extract32(insn, 22, 2);
12661 int opcode = extract32(insn, 12, 3);
12662 int rm = extract32(insn, 16, 5);
12663 int rn = extract32(insn, 5, 5);
12664 int rd = extract32(insn, 0, 5);
12665 CryptoThreeOpFn *genfn;
12666 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12667 int feature = ARM_FEATURE_V8_SHA256;
12669 if (size != 0) {
12670 unallocated_encoding(s);
12671 return;
12674 switch (opcode) {
12675 case 0: /* SHA1C */
12676 case 1: /* SHA1P */
12677 case 2: /* SHA1M */
12678 case 3: /* SHA1SU0 */
12679 genfn = NULL;
12680 feature = ARM_FEATURE_V8_SHA1;
12681 break;
12682 case 4: /* SHA256H */
12683 genfn = gen_helper_crypto_sha256h;
12684 break;
12685 case 5: /* SHA256H2 */
12686 genfn = gen_helper_crypto_sha256h2;
12687 break;
12688 case 6: /* SHA256SU1 */
12689 genfn = gen_helper_crypto_sha256su1;
12690 break;
12691 default:
12692 unallocated_encoding(s);
12693 return;
12696 if (!arm_dc_feature(s, feature)) {
12697 unallocated_encoding(s);
12698 return;
12701 if (!fp_access_check(s)) {
12702 return;
12705 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12706 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12707 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12709 if (genfn) {
12710 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12711 } else {
12712 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
12714 gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr,
12715 tcg_rm_ptr, tcg_opcode);
12716 tcg_temp_free_i32(tcg_opcode);
12719 tcg_temp_free_ptr(tcg_rd_ptr);
12720 tcg_temp_free_ptr(tcg_rn_ptr);
12721 tcg_temp_free_ptr(tcg_rm_ptr);
12724 /* Crypto two-reg SHA
12725 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
12726 * +-----------------+------+-----------+--------+-----+------+------+
12727 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
12728 * +-----------------+------+-----------+--------+-----+------+------+
12730 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
12732 int size = extract32(insn, 22, 2);
12733 int opcode = extract32(insn, 12, 5);
12734 int rn = extract32(insn, 5, 5);
12735 int rd = extract32(insn, 0, 5);
12736 CryptoTwoOpFn *genfn;
12737 int feature;
12738 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12740 if (size != 0) {
12741 unallocated_encoding(s);
12742 return;
12745 switch (opcode) {
12746 case 0: /* SHA1H */
12747 feature = ARM_FEATURE_V8_SHA1;
12748 genfn = gen_helper_crypto_sha1h;
12749 break;
12750 case 1: /* SHA1SU1 */
12751 feature = ARM_FEATURE_V8_SHA1;
12752 genfn = gen_helper_crypto_sha1su1;
12753 break;
12754 case 2: /* SHA256SU0 */
12755 feature = ARM_FEATURE_V8_SHA256;
12756 genfn = gen_helper_crypto_sha256su0;
12757 break;
12758 default:
12759 unallocated_encoding(s);
12760 return;
12763 if (!arm_dc_feature(s, feature)) {
12764 unallocated_encoding(s);
12765 return;
12768 if (!fp_access_check(s)) {
12769 return;
12772 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12773 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12775 genfn(tcg_rd_ptr, tcg_rn_ptr);
12777 tcg_temp_free_ptr(tcg_rd_ptr);
12778 tcg_temp_free_ptr(tcg_rn_ptr);
12781 /* Crypto three-reg SHA512
12782 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
12783 * +-----------------------+------+---+---+-----+--------+------+------+
12784 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
12785 * +-----------------------+------+---+---+-----+--------+------+------+
12787 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
12789 int opcode = extract32(insn, 10, 2);
12790 int o = extract32(insn, 14, 1);
12791 int rm = extract32(insn, 16, 5);
12792 int rn = extract32(insn, 5, 5);
12793 int rd = extract32(insn, 0, 5);
12794 int feature;
12795 CryptoThreeOpFn *genfn;
12797 if (o == 0) {
12798 switch (opcode) {
12799 case 0: /* SHA512H */
12800 feature = ARM_FEATURE_V8_SHA512;
12801 genfn = gen_helper_crypto_sha512h;
12802 break;
12803 case 1: /* SHA512H2 */
12804 feature = ARM_FEATURE_V8_SHA512;
12805 genfn = gen_helper_crypto_sha512h2;
12806 break;
12807 case 2: /* SHA512SU1 */
12808 feature = ARM_FEATURE_V8_SHA512;
12809 genfn = gen_helper_crypto_sha512su1;
12810 break;
12811 case 3: /* RAX1 */
12812 feature = ARM_FEATURE_V8_SHA3;
12813 genfn = NULL;
12814 break;
12816 } else {
12817 switch (opcode) {
12818 case 0: /* SM3PARTW1 */
12819 feature = ARM_FEATURE_V8_SM3;
12820 genfn = gen_helper_crypto_sm3partw1;
12821 break;
12822 case 1: /* SM3PARTW2 */
12823 feature = ARM_FEATURE_V8_SM3;
12824 genfn = gen_helper_crypto_sm3partw2;
12825 break;
12826 case 2: /* SM4EKEY */
12827 feature = ARM_FEATURE_V8_SM4;
12828 genfn = gen_helper_crypto_sm4ekey;
12829 break;
12830 default:
12831 unallocated_encoding(s);
12832 return;
12836 if (!arm_dc_feature(s, feature)) {
12837 unallocated_encoding(s);
12838 return;
12841 if (!fp_access_check(s)) {
12842 return;
12845 if (genfn) {
12846 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
12848 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12849 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12850 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
12852 genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr);
12854 tcg_temp_free_ptr(tcg_rd_ptr);
12855 tcg_temp_free_ptr(tcg_rn_ptr);
12856 tcg_temp_free_ptr(tcg_rm_ptr);
12857 } else {
12858 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
12859 int pass;
12861 tcg_op1 = tcg_temp_new_i64();
12862 tcg_op2 = tcg_temp_new_i64();
12863 tcg_res[0] = tcg_temp_new_i64();
12864 tcg_res[1] = tcg_temp_new_i64();
12866 for (pass = 0; pass < 2; pass++) {
12867 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12868 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12870 tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1);
12871 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12873 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12874 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12876 tcg_temp_free_i64(tcg_op1);
12877 tcg_temp_free_i64(tcg_op2);
12878 tcg_temp_free_i64(tcg_res[0]);
12879 tcg_temp_free_i64(tcg_res[1]);
12883 /* Crypto two-reg SHA512
12884 * 31 12 11 10 9 5 4 0
12885 * +-----------------------------------------+--------+------+------+
12886 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
12887 * +-----------------------------------------+--------+------+------+
12889 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
12891 int opcode = extract32(insn, 10, 2);
12892 int rn = extract32(insn, 5, 5);
12893 int rd = extract32(insn, 0, 5);
12894 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr;
12895 int feature;
12896 CryptoTwoOpFn *genfn;
12898 switch (opcode) {
12899 case 0: /* SHA512SU0 */
12900 feature = ARM_FEATURE_V8_SHA512;
12901 genfn = gen_helper_crypto_sha512su0;
12902 break;
12903 case 1: /* SM4E */
12904 feature = ARM_FEATURE_V8_SM4;
12905 genfn = gen_helper_crypto_sm4e;
12906 break;
12907 default:
12908 unallocated_encoding(s);
12909 return;
12912 if (!arm_dc_feature(s, feature)) {
12913 unallocated_encoding(s);
12914 return;
12917 if (!fp_access_check(s)) {
12918 return;
12921 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
12922 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
12924 genfn(tcg_rd_ptr, tcg_rn_ptr);
12926 tcg_temp_free_ptr(tcg_rd_ptr);
12927 tcg_temp_free_ptr(tcg_rn_ptr);
12930 /* Crypto four-register
12931 * 31 23 22 21 20 16 15 14 10 9 5 4 0
12932 * +-------------------+-----+------+---+------+------+------+
12933 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
12934 * +-------------------+-----+------+---+------+------+------+
12936 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
12938 int op0 = extract32(insn, 21, 2);
12939 int rm = extract32(insn, 16, 5);
12940 int ra = extract32(insn, 10, 5);
12941 int rn = extract32(insn, 5, 5);
12942 int rd = extract32(insn, 0, 5);
12943 int feature;
12945 switch (op0) {
12946 case 0: /* EOR3 */
12947 case 1: /* BCAX */
12948 feature = ARM_FEATURE_V8_SHA3;
12949 break;
12950 case 2: /* SM3SS1 */
12951 feature = ARM_FEATURE_V8_SM3;
12952 break;
12953 default:
12954 unallocated_encoding(s);
12955 return;
12958 if (!arm_dc_feature(s, feature)) {
12959 unallocated_encoding(s);
12960 return;
12963 if (!fp_access_check(s)) {
12964 return;
12967 if (op0 < 2) {
12968 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
12969 int pass;
12971 tcg_op1 = tcg_temp_new_i64();
12972 tcg_op2 = tcg_temp_new_i64();
12973 tcg_op3 = tcg_temp_new_i64();
12974 tcg_res[0] = tcg_temp_new_i64();
12975 tcg_res[1] = tcg_temp_new_i64();
12977 for (pass = 0; pass < 2; pass++) {
12978 read_vec_element(s, tcg_op1, rn, pass, MO_64);
12979 read_vec_element(s, tcg_op2, rm, pass, MO_64);
12980 read_vec_element(s, tcg_op3, ra, pass, MO_64);
12982 if (op0 == 0) {
12983 /* EOR3 */
12984 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
12985 } else {
12986 /* BCAX */
12987 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
12989 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12991 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
12992 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
12994 tcg_temp_free_i64(tcg_op1);
12995 tcg_temp_free_i64(tcg_op2);
12996 tcg_temp_free_i64(tcg_op3);
12997 tcg_temp_free_i64(tcg_res[0]);
12998 tcg_temp_free_i64(tcg_res[1]);
12999 } else {
13000 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13002 tcg_op1 = tcg_temp_new_i32();
13003 tcg_op2 = tcg_temp_new_i32();
13004 tcg_op3 = tcg_temp_new_i32();
13005 tcg_res = tcg_temp_new_i32();
13006 tcg_zero = tcg_const_i32(0);
13008 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13009 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13010 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13012 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13013 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13014 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13015 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13017 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13018 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13019 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13020 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13022 tcg_temp_free_i32(tcg_op1);
13023 tcg_temp_free_i32(tcg_op2);
13024 tcg_temp_free_i32(tcg_op3);
13025 tcg_temp_free_i32(tcg_res);
13026 tcg_temp_free_i32(tcg_zero);
13030 /* Crypto XAR
13031 * 31 21 20 16 15 10 9 5 4 0
13032 * +-----------------------+------+--------+------+------+
13033 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13034 * +-----------------------+------+--------+------+------+
13036 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13038 int rm = extract32(insn, 16, 5);
13039 int imm6 = extract32(insn, 10, 6);
13040 int rn = extract32(insn, 5, 5);
13041 int rd = extract32(insn, 0, 5);
13042 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
13043 int pass;
13045 if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) {
13046 unallocated_encoding(s);
13047 return;
13050 if (!fp_access_check(s)) {
13051 return;
13054 tcg_op1 = tcg_temp_new_i64();
13055 tcg_op2 = tcg_temp_new_i64();
13056 tcg_res[0] = tcg_temp_new_i64();
13057 tcg_res[1] = tcg_temp_new_i64();
13059 for (pass = 0; pass < 2; pass++) {
13060 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13061 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13063 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
13064 tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6);
13066 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13067 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13069 tcg_temp_free_i64(tcg_op1);
13070 tcg_temp_free_i64(tcg_op2);
13071 tcg_temp_free_i64(tcg_res[0]);
13072 tcg_temp_free_i64(tcg_res[1]);
13075 /* Crypto three-reg imm2
13076 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13077 * +-----------------------+------+-----+------+--------+------+------+
13078 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13079 * +-----------------------+------+-----+------+--------+------+------+
13081 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13083 int opcode = extract32(insn, 10, 2);
13084 int imm2 = extract32(insn, 12, 2);
13085 int rm = extract32(insn, 16, 5);
13086 int rn = extract32(insn, 5, 5);
13087 int rd = extract32(insn, 0, 5);
13088 TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr;
13089 TCGv_i32 tcg_imm2, tcg_opcode;
13091 if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) {
13092 unallocated_encoding(s);
13093 return;
13096 if (!fp_access_check(s)) {
13097 return;
13100 tcg_rd_ptr = vec_full_reg_ptr(s, rd);
13101 tcg_rn_ptr = vec_full_reg_ptr(s, rn);
13102 tcg_rm_ptr = vec_full_reg_ptr(s, rm);
13103 tcg_imm2 = tcg_const_i32(imm2);
13104 tcg_opcode = tcg_const_i32(opcode);
13106 gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2,
13107 tcg_opcode);
13109 tcg_temp_free_ptr(tcg_rd_ptr);
13110 tcg_temp_free_ptr(tcg_rn_ptr);
13111 tcg_temp_free_ptr(tcg_rm_ptr);
13112 tcg_temp_free_i32(tcg_imm2);
13113 tcg_temp_free_i32(tcg_opcode);
13116 /* C3.6 Data processing - SIMD, inc Crypto
13118 * As the decode gets a little complex we are using a table based
13119 * approach for this part of the decode.
13121 static const AArch64DecodeTable data_proc_simd[] = {
13122 /* pattern , mask , fn */
13123 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13124 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13125 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13126 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13127 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13128 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13129 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13130 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13131 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13132 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13133 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13134 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13135 { 0x2e000000, 0xbf208400, disas_simd_ext },
13136 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13137 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13138 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13139 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13140 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13141 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13142 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13143 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13144 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13145 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13146 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13147 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13148 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13149 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13150 { 0xce800000, 0xffe00000, disas_crypto_xar },
13151 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13152 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13153 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13154 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13155 { 0x00000000, 0x00000000, NULL }
13158 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13160 /* Note that this is called with all non-FP cases from
13161 * table C3-6 so it must UNDEF for entries not specifically
13162 * allocated to instructions in that table.
13164 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13165 if (fn) {
13166 fn(s, insn);
13167 } else {
13168 unallocated_encoding(s);
13172 /* C3.6 Data processing - SIMD and floating point */
13173 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13175 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13176 disas_data_proc_fp(s, insn);
13177 } else {
13178 /* SIMD, including crypto */
13179 disas_data_proc_simd(s, insn);
13183 /* C3.1 A64 instruction index by encoding */
13184 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
13186 uint32_t insn;
13188 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
13189 s->insn = insn;
13190 s->pc += 4;
13192 s->fp_access_checked = false;
13194 switch (extract32(insn, 25, 4)) {
13195 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
13196 unallocated_encoding(s);
13197 break;
13198 case 0x8: case 0x9: /* Data processing - immediate */
13199 disas_data_proc_imm(s, insn);
13200 break;
13201 case 0xa: case 0xb: /* Branch, exception generation and system insns */
13202 disas_b_exc_sys(s, insn);
13203 break;
13204 case 0x4:
13205 case 0x6:
13206 case 0xc:
13207 case 0xe: /* Loads and stores */
13208 disas_ldst(s, insn);
13209 break;
13210 case 0x5:
13211 case 0xd: /* Data processing - register */
13212 disas_data_proc_reg(s, insn);
13213 break;
13214 case 0x7:
13215 case 0xf: /* Data processing - SIMD and floating point */
13216 disas_data_proc_simd_fp(s, insn);
13217 break;
13218 default:
13219 assert(FALSE); /* all 15 cases should be handled above */
13220 break;
13223 /* if we allocated any temporaries, free them here */
13224 free_tmp_a64(s);
13227 static int aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13228 CPUState *cpu, int max_insns)
13230 DisasContext *dc = container_of(dcbase, DisasContext, base);
13231 CPUARMState *env = cpu->env_ptr;
13232 ARMCPU *arm_cpu = arm_env_get_cpu(env);
13233 int bound;
13235 dc->pc = dc->base.pc_first;
13236 dc->condjmp = 0;
13238 dc->aarch64 = 1;
13239 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
13240 * there is no secure EL1, so we route exceptions to EL3.
13242 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
13243 !arm_el_is_aa64(env, 3);
13244 dc->thumb = 0;
13245 dc->sctlr_b = 0;
13246 dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE;
13247 dc->condexec_mask = 0;
13248 dc->condexec_cond = 0;
13249 dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags));
13250 dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags);
13251 dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags);
13252 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
13253 #if !defined(CONFIG_USER_ONLY)
13254 dc->user = (dc->current_el == 0);
13255 #endif
13256 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags);
13257 dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags);
13258 dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16;
13259 dc->vec_len = 0;
13260 dc->vec_stride = 0;
13261 dc->cp_regs = arm_cpu->cp_regs;
13262 dc->features = env->features;
13264 /* Single step state. The code-generation logic here is:
13265 * SS_ACTIVE == 0:
13266 * generate code with no special handling for single-stepping (except
13267 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
13268 * this happens anyway because those changes are all system register or
13269 * PSTATE writes).
13270 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
13271 * emit code for one insn
13272 * emit code to clear PSTATE.SS
13273 * emit code to generate software step exception for completed step
13274 * end TB (as usual for having generated an exception)
13275 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
13276 * emit code to generate a software step exception
13277 * end the TB
13279 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags);
13280 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags);
13281 dc->is_ldex = false;
13282 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
13284 /* Bound the number of insns to execute to those left on the page. */
13285 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
13287 /* If architectural single step active, limit to 1. */
13288 if (dc->ss_active) {
13289 bound = 1;
13291 max_insns = MIN(max_insns, bound);
13293 init_tmp_a64_array(dc);
13295 return max_insns;
13298 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
13300 tcg_clear_temp_count();
13303 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
13305 DisasContext *dc = container_of(dcbase, DisasContext, base);
13307 tcg_gen_insn_start(dc->pc, 0, 0);
13308 dc->insn_start = tcg_last_op();
13311 static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
13312 const CPUBreakpoint *bp)
13314 DisasContext *dc = container_of(dcbase, DisasContext, base);
13316 if (bp->flags & BP_CPU) {
13317 gen_a64_set_pc_im(dc->pc);
13318 gen_helper_check_breakpoints(cpu_env);
13319 /* End the TB early; it likely won't be executed */
13320 dc->base.is_jmp = DISAS_TOO_MANY;
13321 } else {
13322 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
13323 /* The address covered by the breakpoint must be
13324 included in [tb->pc, tb->pc + tb->size) in order
13325 to for it to be properly cleared -- thus we
13326 increment the PC here so that the logic setting
13327 tb->size below does the right thing. */
13328 dc->pc += 4;
13329 dc->base.is_jmp = DISAS_NORETURN;
13332 return true;
13335 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
13337 DisasContext *dc = container_of(dcbase, DisasContext, base);
13338 CPUARMState *env = cpu->env_ptr;
13340 if (dc->ss_active && !dc->pstate_ss) {
13341 /* Singlestep state is Active-pending.
13342 * If we're in this state at the start of a TB then either
13343 * a) we just took an exception to an EL which is being debugged
13344 * and this is the first insn in the exception handler
13345 * b) debug exceptions were masked and we just unmasked them
13346 * without changing EL (eg by clearing PSTATE.D)
13347 * In either case we're going to take a swstep exception in the
13348 * "did not step an insn" case, and so the syndrome ISV and EX
13349 * bits should be zero.
13351 assert(dc->base.num_insns == 1);
13352 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
13353 default_exception_el(dc));
13354 dc->base.is_jmp = DISAS_NORETURN;
13355 } else {
13356 disas_a64_insn(env, dc);
13359 dc->base.pc_next = dc->pc;
13360 translator_loop_temp_check(&dc->base);
13363 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
13365 DisasContext *dc = container_of(dcbase, DisasContext, base);
13367 if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) {
13368 /* Note that this means single stepping WFI doesn't halt the CPU.
13369 * For conditional branch insns this is harmless unreachable code as
13370 * gen_goto_tb() has already handled emitting the debug exception
13371 * (and thus a tb-jump is not possible when singlestepping).
13373 switch (dc->base.is_jmp) {
13374 default:
13375 gen_a64_set_pc_im(dc->pc);
13376 /* fall through */
13377 case DISAS_EXIT:
13378 case DISAS_JUMP:
13379 if (dc->base.singlestep_enabled) {
13380 gen_exception_internal(EXCP_DEBUG);
13381 } else {
13382 gen_step_complete_exception(dc);
13384 break;
13385 case DISAS_NORETURN:
13386 break;
13388 } else {
13389 switch (dc->base.is_jmp) {
13390 case DISAS_NEXT:
13391 case DISAS_TOO_MANY:
13392 gen_goto_tb(dc, 1, dc->pc);
13393 break;
13394 default:
13395 case DISAS_UPDATE:
13396 gen_a64_set_pc_im(dc->pc);
13397 /* fall through */
13398 case DISAS_EXIT:
13399 tcg_gen_exit_tb(0);
13400 break;
13401 case DISAS_JUMP:
13402 tcg_gen_lookup_and_goto_ptr();
13403 break;
13404 case DISAS_NORETURN:
13405 case DISAS_SWI:
13406 break;
13407 case DISAS_WFE:
13408 gen_a64_set_pc_im(dc->pc);
13409 gen_helper_wfe(cpu_env);
13410 break;
13411 case DISAS_YIELD:
13412 gen_a64_set_pc_im(dc->pc);
13413 gen_helper_yield(cpu_env);
13414 break;
13415 case DISAS_WFI:
13417 /* This is a special case because we don't want to just halt the CPU
13418 * if trying to debug across a WFI.
13420 TCGv_i32 tmp = tcg_const_i32(4);
13422 gen_a64_set_pc_im(dc->pc);
13423 gen_helper_wfi(cpu_env, tmp);
13424 tcg_temp_free_i32(tmp);
13425 /* The helper doesn't necessarily throw an exception, but we
13426 * must go back to the main loop to check for interrupts anyway.
13428 tcg_gen_exit_tb(0);
13429 break;
13434 /* Functions above can change dc->pc, so re-align db->pc_next */
13435 dc->base.pc_next = dc->pc;
13438 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
13439 CPUState *cpu)
13441 DisasContext *dc = container_of(dcbase, DisasContext, base);
13443 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
13444 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
13447 const TranslatorOps aarch64_translator_ops = {
13448 .init_disas_context = aarch64_tr_init_disas_context,
13449 .tb_start = aarch64_tr_tb_start,
13450 .insn_start = aarch64_tr_insn_start,
13451 .breakpoint_check = aarch64_tr_breakpoint_check,
13452 .translate_insn = aarch64_tr_translate_insn,
13453 .tb_stop = aarch64_tr_tb_stop,
13454 .disas_log = aarch64_tr_disas_log,