4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
25 #include "qemu/cutils.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #include "exec/memory.h"
40 #include "sysemu/dma.h"
41 #include "exec/address-spaces.h"
42 #if defined(CONFIG_USER_ONLY)
44 #else /* !CONFIG_USER_ONLY */
45 #include "sysemu/xen-mapcache.h"
48 #include "exec/cpu-all.h"
49 #include "qemu/rcu_queue.h"
50 #include "qemu/main-loop.h"
51 #include "translate-all.h"
52 #include "sysemu/replay.h"
54 #include "exec/memory-internal.h"
55 #include "exec/ram_addr.h"
58 #include "qemu/range.h"
60 #include "qemu/mmap-alloc.h"
63 //#define DEBUG_SUBPAGE
65 #if !defined(CONFIG_USER_ONLY)
66 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
69 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
71 static MemoryRegion
*system_memory
;
72 static MemoryRegion
*system_io
;
74 AddressSpace address_space_io
;
75 AddressSpace address_space_memory
;
77 MemoryRegion io_mem_rom
, io_mem_notdirty
;
78 static MemoryRegion io_mem_unassigned
;
80 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81 #define RAM_PREALLOC (1 << 0)
83 /* RAM is mmap-ed with MAP_SHARED */
84 #define RAM_SHARED (1 << 1)
86 /* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
89 #define RAM_RESIZEABLE (1 << 2)
93 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
94 /* current CPU in the current thread. It is only valid inside
96 __thread CPUState
*current_cpu
;
97 /* 0 = Do not count executed instructions.
98 1 = Precise instruction counting.
99 2 = Adaptive rate instruction counting. */
102 #if !defined(CONFIG_USER_ONLY)
104 typedef struct PhysPageEntry PhysPageEntry
;
106 struct PhysPageEntry
{
107 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
109 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
115 /* Size of the L2 (and L3, etc) page tables. */
116 #define ADDR_SPACE_BITS 64
119 #define P_L2_SIZE (1 << P_L2_BITS)
121 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
123 typedef PhysPageEntry Node
[P_L2_SIZE
];
125 typedef struct PhysPageMap
{
128 unsigned sections_nb
;
129 unsigned sections_nb_alloc
;
131 unsigned nodes_nb_alloc
;
133 MemoryRegionSection
*sections
;
136 struct AddressSpaceDispatch
{
139 MemoryRegionSection
*mru_section
;
140 /* This is a multi-level map on the physical address space.
141 * The bottom level has pointers to MemoryRegionSections.
143 PhysPageEntry phys_map
;
148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149 typedef struct subpage_t
{
153 uint16_t sub_section
[TARGET_PAGE_SIZE
];
156 #define PHYS_SECTION_UNASSIGNED 0
157 #define PHYS_SECTION_NOTDIRTY 1
158 #define PHYS_SECTION_ROM 2
159 #define PHYS_SECTION_WATCH 3
161 static void io_mem_init(void);
162 static void memory_map_init(void);
163 static void tcg_commit(MemoryListener
*listener
);
165 static MemoryRegion io_mem_watch
;
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 struct CPUAddressSpace
{
177 struct AddressSpaceDispatch
*memory_dispatch
;
178 MemoryListener tcg_as_listener
;
183 #if !defined(CONFIG_USER_ONLY)
185 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
187 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
188 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
189 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
190 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
194 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
201 ret
= map
->nodes_nb
++;
203 assert(ret
!= PHYS_MAP_NODE_NIL
);
204 assert(ret
!= map
->nodes_nb_alloc
);
206 e
.skip
= leaf
? 0 : 1;
207 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
208 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
209 memcpy(&p
[i
], &e
, sizeof(e
));
214 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
215 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
219 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
221 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
222 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
224 p
= map
->nodes
[lp
->ptr
];
225 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
227 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
228 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
234 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
240 static void phys_page_set(AddressSpaceDispatch
*d
,
241 hwaddr index
, hwaddr nb
,
244 /* Wildly overreserve - it doesn't matter much. */
245 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
247 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
250 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
251 * and update our entry so we can skip it and go directly to the destination.
253 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
255 unsigned valid_ptr
= P_L2_SIZE
;
260 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
265 for (i
= 0; i
< P_L2_SIZE
; i
++) {
266 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
273 phys_page_compact(&p
[i
], nodes
, compacted
);
277 /* We can only compress if there's only one child. */
282 assert(valid_ptr
< P_L2_SIZE
);
284 /* Don't compress if it won't fit in the # of bits we have. */
285 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
289 lp
->ptr
= p
[valid_ptr
].ptr
;
290 if (!p
[valid_ptr
].skip
) {
291 /* If our only child is a leaf, make this a leaf. */
292 /* By design, we should have made this node a leaf to begin with so we
293 * should never reach here.
294 * But since it's so simple to handle this, let's do it just in case we
299 lp
->skip
+= p
[valid_ptr
].skip
;
303 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
305 DECLARE_BITMAP(compacted
, nodes_nb
);
307 if (d
->phys_map
.skip
) {
308 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
312 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
315 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
316 * the section must cover the entire address space.
318 return section
->size
.hi
||
319 range_covers_byte(section
->offset_within_address_space
,
320 section
->size
.lo
, addr
);
323 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
324 Node
*nodes
, MemoryRegionSection
*sections
)
327 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
330 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
331 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
332 return §ions
[PHYS_SECTION_UNASSIGNED
];
335 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
338 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
339 return §ions
[lp
.ptr
];
341 return §ions
[PHYS_SECTION_UNASSIGNED
];
345 bool memory_region_is_unassigned(MemoryRegion
*mr
)
347 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
348 && mr
!= &io_mem_watch
;
351 /* Called from RCU critical section */
352 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
354 bool resolve_subpage
)
356 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
360 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
361 section_covers_addr(section
, addr
)) {
364 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
368 if (resolve_subpage
&& section
->mr
->subpage
) {
369 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
370 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
373 atomic_set(&d
->mru_section
, section
);
378 /* Called from RCU critical section */
379 static MemoryRegionSection
*
380 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
381 hwaddr
*plen
, bool resolve_subpage
)
383 MemoryRegionSection
*section
;
387 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
388 /* Compute offset within MemoryRegionSection */
389 addr
-= section
->offset_within_address_space
;
391 /* Compute offset within MemoryRegion */
392 *xlat
= addr
+ section
->offset_within_region
;
396 /* MMIO registers can be expected to perform full-width accesses based only
397 * on their address, without considering adjacent registers that could
398 * decode to completely different MemoryRegions. When such registers
399 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
400 * regions overlap wildly. For this reason we cannot clamp the accesses
403 * If the length is small (as is the case for address_space_ldl/stl),
404 * everything works fine. If the incoming length is large, however,
405 * the caller really has to do the clamping through memory_access_size.
407 if (memory_region_is_ram(mr
)) {
408 diff
= int128_sub(section
->size
, int128_make64(addr
));
409 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
414 /* Called from RCU critical section */
415 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
416 hwaddr
*xlat
, hwaddr
*plen
,
420 MemoryRegionSection
*section
;
424 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
425 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
428 if (!mr
->iommu_ops
) {
432 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
433 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
434 | (addr
& iotlb
.addr_mask
));
435 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
436 if (!(iotlb
.perm
& (1 << is_write
))) {
437 mr
= &io_mem_unassigned
;
441 as
= iotlb
.target_as
;
444 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
445 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
446 *plen
= MIN(page
, *plen
);
453 /* Called from RCU critical section */
454 MemoryRegionSection
*
455 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
456 hwaddr
*xlat
, hwaddr
*plen
)
458 MemoryRegionSection
*section
;
459 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
461 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
463 assert(!section
->mr
->iommu_ops
);
468 #if !defined(CONFIG_USER_ONLY)
470 static int cpu_common_post_load(void *opaque
, int version_id
)
472 CPUState
*cpu
= opaque
;
474 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
475 version_id is increased. */
476 cpu
->interrupt_request
&= ~0x01;
482 static int cpu_common_pre_load(void *opaque
)
484 CPUState
*cpu
= opaque
;
486 cpu
->exception_index
= -1;
491 static bool cpu_common_exception_index_needed(void *opaque
)
493 CPUState
*cpu
= opaque
;
495 return tcg_enabled() && cpu
->exception_index
!= -1;
498 static const VMStateDescription vmstate_cpu_common_exception_index
= {
499 .name
= "cpu_common/exception_index",
501 .minimum_version_id
= 1,
502 .needed
= cpu_common_exception_index_needed
,
503 .fields
= (VMStateField
[]) {
504 VMSTATE_INT32(exception_index
, CPUState
),
505 VMSTATE_END_OF_LIST()
509 static bool cpu_common_crash_occurred_needed(void *opaque
)
511 CPUState
*cpu
= opaque
;
513 return cpu
->crash_occurred
;
516 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
517 .name
= "cpu_common/crash_occurred",
519 .minimum_version_id
= 1,
520 .needed
= cpu_common_crash_occurred_needed
,
521 .fields
= (VMStateField
[]) {
522 VMSTATE_BOOL(crash_occurred
, CPUState
),
523 VMSTATE_END_OF_LIST()
527 const VMStateDescription vmstate_cpu_common
= {
528 .name
= "cpu_common",
530 .minimum_version_id
= 1,
531 .pre_load
= cpu_common_pre_load
,
532 .post_load
= cpu_common_post_load
,
533 .fields
= (VMStateField
[]) {
534 VMSTATE_UINT32(halted
, CPUState
),
535 VMSTATE_UINT32(interrupt_request
, CPUState
),
536 VMSTATE_END_OF_LIST()
538 .subsections
= (const VMStateDescription
*[]) {
539 &vmstate_cpu_common_exception_index
,
540 &vmstate_cpu_common_crash_occurred
,
547 CPUState
*qemu_get_cpu(int index
)
552 if (cpu
->cpu_index
== index
) {
560 #if !defined(CONFIG_USER_ONLY)
561 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
563 CPUAddressSpace
*newas
;
565 /* Target code should have set num_ases before calling us */
566 assert(asidx
< cpu
->num_ases
);
569 /* address space 0 gets the convenience alias */
573 /* KVM cannot currently support multiple address spaces. */
574 assert(asidx
== 0 || !kvm_enabled());
576 if (!cpu
->cpu_ases
) {
577 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
580 newas
= &cpu
->cpu_ases
[asidx
];
584 newas
->tcg_as_listener
.commit
= tcg_commit
;
585 memory_listener_register(&newas
->tcg_as_listener
, as
);
589 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
591 /* Return the AddressSpace corresponding to the specified index */
592 return cpu
->cpu_ases
[asidx
].as
;
596 #ifndef CONFIG_USER_ONLY
597 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
599 static int cpu_get_free_index(Error
**errp
)
601 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
603 if (cpu
>= MAX_CPUMASK_BITS
) {
604 error_setg(errp
, "Trying to use more CPUs than max of %d",
609 bitmap_set(cpu_index_map
, cpu
, 1);
613 void cpu_exec_exit(CPUState
*cpu
)
615 if (cpu
->cpu_index
== -1) {
616 /* cpu_index was never allocated by this @cpu or was already freed. */
620 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
625 static int cpu_get_free_index(Error
**errp
)
630 CPU_FOREACH(some_cpu
) {
636 void cpu_exec_exit(CPUState
*cpu
)
641 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
643 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
645 Error
*local_err
= NULL
;
650 #ifndef CONFIG_USER_ONLY
651 cpu
->thread_id
= qemu_get_thread_id();
653 /* This is a softmmu CPU object, so create a property for it
654 * so users can wire up its memory. (This can't go in qom/cpu.c
655 * because that file is compiled only once for both user-mode
656 * and system builds.) The default if no link is set up is to use
657 * the system address space.
659 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
660 (Object
**)&cpu
->memory
,
661 qdev_prop_allow_set_link_before_realize
,
662 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
664 cpu
->memory
= system_memory
;
665 object_ref(OBJECT(cpu
->memory
));
668 #if defined(CONFIG_USER_ONLY)
671 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
673 error_propagate(errp
, local_err
);
674 #if defined(CONFIG_USER_ONLY)
679 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
680 #if defined(CONFIG_USER_ONLY)
683 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
684 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
686 if (cc
->vmsd
!= NULL
) {
687 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
691 #if defined(CONFIG_USER_ONLY)
692 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
694 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
697 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
700 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
701 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
703 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
704 phys
| (pc
& ~TARGET_PAGE_MASK
));
709 #if defined(CONFIG_USER_ONLY)
710 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
715 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
721 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
725 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
726 int flags
, CPUWatchpoint
**watchpoint
)
731 /* Add a watchpoint. */
732 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
733 int flags
, CPUWatchpoint
**watchpoint
)
737 /* forbid ranges which are empty or run off the end of the address space */
738 if (len
== 0 || (addr
+ len
- 1) < addr
) {
739 error_report("tried to set invalid watchpoint at %"
740 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
743 wp
= g_malloc(sizeof(*wp
));
749 /* keep all GDB-injected watchpoints in front */
750 if (flags
& BP_GDB
) {
751 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
753 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
756 tlb_flush_page(cpu
, addr
);
763 /* Remove a specific watchpoint. */
764 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
769 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
770 if (addr
== wp
->vaddr
&& len
== wp
->len
771 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
772 cpu_watchpoint_remove_by_ref(cpu
, wp
);
779 /* Remove a specific watchpoint by reference. */
780 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
782 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
784 tlb_flush_page(cpu
, watchpoint
->vaddr
);
789 /* Remove all matching watchpoints. */
790 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
792 CPUWatchpoint
*wp
, *next
;
794 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
795 if (wp
->flags
& mask
) {
796 cpu_watchpoint_remove_by_ref(cpu
, wp
);
801 /* Return true if this watchpoint address matches the specified
802 * access (ie the address range covered by the watchpoint overlaps
803 * partially or completely with the address range covered by the
806 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
810 /* We know the lengths are non-zero, but a little caution is
811 * required to avoid errors in the case where the range ends
812 * exactly at the top of the address space and so addr + len
813 * wraps round to zero.
815 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
816 vaddr addrend
= addr
+ len
- 1;
818 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
823 /* Add a breakpoint. */
824 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
825 CPUBreakpoint
**breakpoint
)
829 bp
= g_malloc(sizeof(*bp
));
834 /* keep all GDB-injected breakpoints in front */
835 if (flags
& BP_GDB
) {
836 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
838 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
841 breakpoint_invalidate(cpu
, pc
);
849 /* Remove a specific breakpoint. */
850 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
854 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
855 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
856 cpu_breakpoint_remove_by_ref(cpu
, bp
);
863 /* Remove a specific breakpoint by reference. */
864 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
866 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
868 breakpoint_invalidate(cpu
, breakpoint
->pc
);
873 /* Remove all matching breakpoints. */
874 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
876 CPUBreakpoint
*bp
, *next
;
878 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
879 if (bp
->flags
& mask
) {
880 cpu_breakpoint_remove_by_ref(cpu
, bp
);
885 /* enable or disable single step mode. EXCP_DEBUG is returned by the
886 CPU loop after each instruction */
887 void cpu_single_step(CPUState
*cpu
, int enabled
)
889 if (cpu
->singlestep_enabled
!= enabled
) {
890 cpu
->singlestep_enabled
= enabled
;
892 kvm_update_guest_debug(cpu
, 0);
894 /* must flush all the translated code to avoid inconsistencies */
895 /* XXX: only flush what is necessary */
901 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
908 fprintf(stderr
, "qemu: fatal: ");
909 vfprintf(stderr
, fmt
, ap
);
910 fprintf(stderr
, "\n");
911 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
912 if (qemu_log_separate()) {
913 qemu_log("qemu: fatal: ");
914 qemu_log_vprintf(fmt
, ap2
);
916 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
923 #if defined(CONFIG_USER_ONLY)
925 struct sigaction act
;
926 sigfillset(&act
.sa_mask
);
927 act
.sa_handler
= SIG_DFL
;
928 sigaction(SIGABRT
, &act
, NULL
);
934 #if !defined(CONFIG_USER_ONLY)
935 /* Called from RCU critical section */
936 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
940 block
= atomic_rcu_read(&ram_list
.mru_block
);
941 if (block
&& addr
- block
->offset
< block
->max_length
) {
944 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
945 if (addr
- block
->offset
< block
->max_length
) {
950 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
954 /* It is safe to write mru_block outside the iothread lock. This
959 * xxx removed from list
963 * call_rcu(reclaim_ramblock, xxx);
966 * atomic_rcu_set is not needed here. The block was already published
967 * when it was placed into the list. Here we're just making an extra
968 * copy of the pointer.
970 ram_list
.mru_block
= block
;
974 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
981 end
= TARGET_PAGE_ALIGN(start
+ length
);
982 start
&= TARGET_PAGE_MASK
;
985 block
= qemu_get_ram_block(start
);
986 assert(block
== qemu_get_ram_block(end
- 1));
987 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
989 tlb_reset_dirty(cpu
, start1
, length
);
994 /* Note: start and end must be within the same ram block. */
995 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
999 DirtyMemoryBlocks
*blocks
;
1000 unsigned long end
, page
;
1007 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1008 page
= start
>> TARGET_PAGE_BITS
;
1012 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1014 while (page
< end
) {
1015 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1016 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1017 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1019 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1026 if (dirty
&& tcg_enabled()) {
1027 tlb_reset_dirty_range_all(start
, length
);
1033 /* Called from RCU critical section */
1034 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1035 MemoryRegionSection
*section
,
1037 hwaddr paddr
, hwaddr xlat
,
1039 target_ulong
*address
)
1044 if (memory_region_is_ram(section
->mr
)) {
1046 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1048 if (!section
->readonly
) {
1049 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1051 iotlb
|= PHYS_SECTION_ROM
;
1054 AddressSpaceDispatch
*d
;
1056 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1057 iotlb
= section
- d
->map
.sections
;
1061 /* Make accesses to pages with watchpoints go via the
1062 watchpoint trap routines. */
1063 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1064 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1065 /* Avoid trapping reads of pages with a write breakpoint. */
1066 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1067 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1068 *address
|= TLB_MMIO
;
1076 #endif /* defined(CONFIG_USER_ONLY) */
1078 #if !defined(CONFIG_USER_ONLY)
1080 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1082 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1084 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1085 qemu_anon_ram_alloc
;
1088 * Set a custom physical guest memory alloator.
1089 * Accelerators with unusual needs may need this. Hopefully, we can
1090 * get rid of it eventually.
1092 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1094 phys_mem_alloc
= alloc
;
1097 static uint16_t phys_section_add(PhysPageMap
*map
,
1098 MemoryRegionSection
*section
)
1100 /* The physical section number is ORed with a page-aligned
1101 * pointer to produce the iotlb entries. Thus it should
1102 * never overflow into the page-aligned value.
1104 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1106 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1107 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1108 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1109 map
->sections_nb_alloc
);
1111 map
->sections
[map
->sections_nb
] = *section
;
1112 memory_region_ref(section
->mr
);
1113 return map
->sections_nb
++;
1116 static void phys_section_destroy(MemoryRegion
*mr
)
1118 bool have_sub_page
= mr
->subpage
;
1120 memory_region_unref(mr
);
1122 if (have_sub_page
) {
1123 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1124 object_unref(OBJECT(&subpage
->iomem
));
1129 static void phys_sections_free(PhysPageMap
*map
)
1131 while (map
->sections_nb
> 0) {
1132 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1133 phys_section_destroy(section
->mr
);
1135 g_free(map
->sections
);
1139 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1142 hwaddr base
= section
->offset_within_address_space
1144 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1145 d
->map
.nodes
, d
->map
.sections
);
1146 MemoryRegionSection subsection
= {
1147 .offset_within_address_space
= base
,
1148 .size
= int128_make64(TARGET_PAGE_SIZE
),
1152 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1154 if (!(existing
->mr
->subpage
)) {
1155 subpage
= subpage_init(d
->as
, base
);
1156 subsection
.address_space
= d
->as
;
1157 subsection
.mr
= &subpage
->iomem
;
1158 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1159 phys_section_add(&d
->map
, &subsection
));
1161 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1163 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1164 end
= start
+ int128_get64(section
->size
) - 1;
1165 subpage_register(subpage
, start
, end
,
1166 phys_section_add(&d
->map
, section
));
1170 static void register_multipage(AddressSpaceDispatch
*d
,
1171 MemoryRegionSection
*section
)
1173 hwaddr start_addr
= section
->offset_within_address_space
;
1174 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1175 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1179 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1182 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1184 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1185 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1186 MemoryRegionSection now
= *section
, remain
= *section
;
1187 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1189 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1190 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1191 - now
.offset_within_address_space
;
1193 now
.size
= int128_min(int128_make64(left
), now
.size
);
1194 register_subpage(d
, &now
);
1196 now
.size
= int128_zero();
1198 while (int128_ne(remain
.size
, now
.size
)) {
1199 remain
.size
= int128_sub(remain
.size
, now
.size
);
1200 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1201 remain
.offset_within_region
+= int128_get64(now
.size
);
1203 if (int128_lt(remain
.size
, page_size
)) {
1204 register_subpage(d
, &now
);
1205 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1206 now
.size
= page_size
;
1207 register_subpage(d
, &now
);
1209 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1210 register_multipage(d
, &now
);
1215 void qemu_flush_coalesced_mmio_buffer(void)
1218 kvm_flush_coalesced_mmio_buffer();
1221 void qemu_mutex_lock_ramlist(void)
1223 qemu_mutex_lock(&ram_list
.mutex
);
1226 void qemu_mutex_unlock_ramlist(void)
1228 qemu_mutex_unlock(&ram_list
.mutex
);
1232 static void *file_ram_alloc(RAMBlock
*block
,
1237 bool unlink_on_error
= false;
1239 char *sanitized_name
;
1245 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1247 "host lacks kvm mmu notifiers, -mem-path unsupported");
1252 fd
= open(path
, O_RDWR
);
1254 /* @path names an existing file, use it */
1257 if (errno
== ENOENT
) {
1258 /* @path names a file that doesn't exist, create it */
1259 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1261 unlink_on_error
= true;
1264 } else if (errno
== EISDIR
) {
1265 /* @path names a directory, create a file there */
1266 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1267 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1268 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1274 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1276 g_free(sanitized_name
);
1278 fd
= mkstemp(filename
);
1286 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1287 error_setg_errno(errp
, errno
,
1288 "can't open backing store %s for guest RAM",
1293 * Try again on EINTR and EEXIST. The latter happens when
1294 * something else creates the file between our two open().
1298 page_size
= qemu_fd_getpagesize(fd
);
1299 block
->mr
->align
= page_size
;
1301 if (memory
< page_size
) {
1302 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1303 "or larger than page size 0x%" PRIx64
,
1308 memory
= ROUND_UP(memory
, page_size
);
1311 * ftruncate is not supported by hugetlbfs in older
1312 * hosts, so don't bother bailing out on errors.
1313 * If anything goes wrong with it under other filesystems,
1316 if (ftruncate(fd
, memory
)) {
1317 perror("ftruncate");
1320 area
= qemu_ram_mmap(fd
, memory
, page_size
, block
->flags
& RAM_SHARED
);
1321 if (area
== MAP_FAILED
) {
1322 error_setg_errno(errp
, errno
,
1323 "unable to map backing store for guest RAM");
1329 os_mem_prealloc(fd
, area
, memory
);
1336 if (unlink_on_error
) {
1344 /* Called with the ramlist lock held. */
1345 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1347 RAMBlock
*block
, *next_block
;
1348 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1350 assert(size
!= 0); /* it would hand out same offset multiple times */
1352 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1356 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1357 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1359 end
= block
->offset
+ block
->max_length
;
1361 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1362 if (next_block
->offset
>= end
) {
1363 next
= MIN(next
, next_block
->offset
);
1366 if (next
- end
>= size
&& next
- end
< mingap
) {
1368 mingap
= next
- end
;
1372 if (offset
== RAM_ADDR_MAX
) {
1373 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1381 ram_addr_t
last_ram_offset(void)
1384 ram_addr_t last
= 0;
1387 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1388 last
= MAX(last
, block
->offset
+ block
->max_length
);
1394 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1398 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1399 if (!machine_dump_guest_core(current_machine
)) {
1400 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1402 perror("qemu_madvise");
1403 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1404 "but dump_guest_core=off specified\n");
1409 /* Called within an RCU critical section, or while the ramlist lock
1412 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1416 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1417 if (block
->offset
== addr
) {
1425 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1430 /* Called with iothread lock held. */
1431 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1433 RAMBlock
*new_block
, *block
;
1436 new_block
= find_ram_block(addr
);
1438 assert(!new_block
->idstr
[0]);
1441 char *id
= qdev_get_dev_path(dev
);
1443 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1447 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1449 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1450 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1451 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1459 /* Called with iothread lock held. */
1460 void qemu_ram_unset_idstr(ram_addr_t addr
)
1464 /* FIXME: arch_init.c assumes that this is not called throughout
1465 * migration. Ignore the problem since hot-unplug during migration
1466 * does not work anyway.
1470 block
= find_ram_block(addr
);
1472 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1477 static int memory_try_enable_merging(void *addr
, size_t len
)
1479 if (!machine_mem_merge(current_machine
)) {
1480 /* disabled by the user */
1484 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1487 /* Only legal before guest might have detected the memory size: e.g. on
1488 * incoming migration, or right after reset.
1490 * As memory core doesn't know how is memory accessed, it is up to
1491 * resize callback to update device state and/or add assertions to detect
1492 * misuse, if necessary.
1494 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1496 RAMBlock
*block
= find_ram_block(base
);
1500 newsize
= HOST_PAGE_ALIGN(newsize
);
1502 if (block
->used_length
== newsize
) {
1506 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1507 error_setg_errno(errp
, EINVAL
,
1508 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1509 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1510 newsize
, block
->used_length
);
1514 if (block
->max_length
< newsize
) {
1515 error_setg_errno(errp
, EINVAL
,
1516 "Length too large: %s: 0x" RAM_ADDR_FMT
1517 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1518 newsize
, block
->max_length
);
1522 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1523 block
->used_length
= newsize
;
1524 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1526 memory_region_set_size(block
->mr
, newsize
);
1527 if (block
->resized
) {
1528 block
->resized(block
->idstr
, newsize
, block
->host
);
1533 /* Called with ram_list.mutex held */
1534 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1535 ram_addr_t new_ram_size
)
1537 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1538 DIRTY_MEMORY_BLOCK_SIZE
);
1539 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1540 DIRTY_MEMORY_BLOCK_SIZE
);
1543 /* Only need to extend if block count increased */
1544 if (new_num_blocks
<= old_num_blocks
) {
1548 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1549 DirtyMemoryBlocks
*old_blocks
;
1550 DirtyMemoryBlocks
*new_blocks
;
1553 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1554 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1555 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1557 if (old_num_blocks
) {
1558 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1559 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1562 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1563 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1566 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1569 g_free_rcu(old_blocks
, rcu
);
1574 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1577 RAMBlock
*last_block
= NULL
;
1578 ram_addr_t old_ram_size
, new_ram_size
;
1581 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1583 qemu_mutex_lock_ramlist();
1584 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1586 if (!new_block
->host
) {
1587 if (xen_enabled()) {
1588 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1589 new_block
->mr
, &err
);
1591 error_propagate(errp
, err
);
1592 qemu_mutex_unlock_ramlist();
1596 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1597 &new_block
->mr
->align
);
1598 if (!new_block
->host
) {
1599 error_setg_errno(errp
, errno
,
1600 "cannot set up guest memory '%s'",
1601 memory_region_name(new_block
->mr
));
1602 qemu_mutex_unlock_ramlist();
1605 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1609 new_ram_size
= MAX(old_ram_size
,
1610 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1611 if (new_ram_size
> old_ram_size
) {
1612 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1613 dirty_memory_extend(old_ram_size
, new_ram_size
);
1615 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1616 * QLIST (which has an RCU-friendly variant) does not have insertion at
1617 * tail, so save the last element in last_block.
1619 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1621 if (block
->max_length
< new_block
->max_length
) {
1626 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1627 } else if (last_block
) {
1628 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1629 } else { /* list is empty */
1630 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1632 ram_list
.mru_block
= NULL
;
1634 /* Write list before version */
1637 qemu_mutex_unlock_ramlist();
1639 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1640 new_block
->used_length
,
1643 if (new_block
->host
) {
1644 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1645 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1646 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1647 if (kvm_enabled()) {
1648 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1654 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1655 bool share
, const char *mem_path
,
1658 RAMBlock
*new_block
;
1659 Error
*local_err
= NULL
;
1661 if (xen_enabled()) {
1662 error_setg(errp
, "-mem-path not supported with Xen");
1666 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1668 * file_ram_alloc() needs to allocate just like
1669 * phys_mem_alloc, but we haven't bothered to provide
1673 "-mem-path not supported with this accelerator");
1677 size
= HOST_PAGE_ALIGN(size
);
1678 new_block
= g_malloc0(sizeof(*new_block
));
1680 new_block
->used_length
= size
;
1681 new_block
->max_length
= size
;
1682 new_block
->flags
= share
? RAM_SHARED
: 0;
1683 new_block
->host
= file_ram_alloc(new_block
, size
,
1685 if (!new_block
->host
) {
1690 ram_block_add(new_block
, &local_err
);
1693 error_propagate(errp
, local_err
);
1701 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1702 void (*resized
)(const char*,
1705 void *host
, bool resizeable
,
1706 MemoryRegion
*mr
, Error
**errp
)
1708 RAMBlock
*new_block
;
1709 Error
*local_err
= NULL
;
1711 size
= HOST_PAGE_ALIGN(size
);
1712 max_size
= HOST_PAGE_ALIGN(max_size
);
1713 new_block
= g_malloc0(sizeof(*new_block
));
1715 new_block
->resized
= resized
;
1716 new_block
->used_length
= size
;
1717 new_block
->max_length
= max_size
;
1718 assert(max_size
>= size
);
1720 new_block
->host
= host
;
1722 new_block
->flags
|= RAM_PREALLOC
;
1725 new_block
->flags
|= RAM_RESIZEABLE
;
1727 ram_block_add(new_block
, &local_err
);
1730 error_propagate(errp
, local_err
);
1736 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1737 MemoryRegion
*mr
, Error
**errp
)
1739 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1742 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1744 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1747 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1748 void (*resized
)(const char*,
1751 MemoryRegion
*mr
, Error
**errp
)
1753 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1756 static void reclaim_ramblock(RAMBlock
*block
)
1758 if (block
->flags
& RAM_PREALLOC
) {
1760 } else if (xen_enabled()) {
1761 xen_invalidate_map_cache_entry(block
->host
);
1763 } else if (block
->fd
>= 0) {
1764 qemu_ram_munmap(block
->host
, block
->max_length
);
1768 qemu_anon_ram_free(block
->host
, block
->max_length
);
1773 void qemu_ram_free(RAMBlock
*block
)
1775 qemu_mutex_lock_ramlist();
1776 QLIST_REMOVE_RCU(block
, next
);
1777 ram_list
.mru_block
= NULL
;
1778 /* Write list before version */
1781 call_rcu(block
, reclaim_ramblock
, rcu
);
1782 qemu_mutex_unlock_ramlist();
1786 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1793 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1794 offset
= addr
- block
->offset
;
1795 if (offset
< block
->max_length
) {
1796 vaddr
= ramblock_ptr(block
, offset
);
1797 if (block
->flags
& RAM_PREALLOC
) {
1799 } else if (xen_enabled()) {
1803 if (block
->fd
>= 0) {
1804 flags
|= (block
->flags
& RAM_SHARED
?
1805 MAP_SHARED
: MAP_PRIVATE
);
1806 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1807 flags
, block
->fd
, offset
);
1810 * Remap needs to match alloc. Accelerators that
1811 * set phys_mem_alloc never remap. If they did,
1812 * we'd need a remap hook here.
1814 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1816 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1817 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1820 if (area
!= vaddr
) {
1821 fprintf(stderr
, "Could not remap addr: "
1822 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1826 memory_try_enable_merging(vaddr
, length
);
1827 qemu_ram_setup_dump(vaddr
, length
);
1832 #endif /* !_WIN32 */
1834 int qemu_get_ram_fd(ram_addr_t addr
)
1840 block
= qemu_get_ram_block(addr
);
1846 void qemu_set_ram_fd(ram_addr_t addr
, int fd
)
1851 block
= qemu_get_ram_block(addr
);
1856 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1862 block
= qemu_get_ram_block(addr
);
1863 ptr
= ramblock_ptr(block
, 0);
1868 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1869 * This should not be used for general purpose DMA. Use address_space_map
1870 * or address_space_rw instead. For local memory (e.g. video ram) that the
1871 * device owns, use memory_region_get_ram_ptr.
1873 * Called within RCU critical section.
1875 void *qemu_get_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1877 RAMBlock
*block
= ram_block
;
1879 if (block
== NULL
) {
1880 block
= qemu_get_ram_block(addr
);
1883 if (xen_enabled() && block
->host
== NULL
) {
1884 /* We need to check if the requested address is in the RAM
1885 * because we don't want to map the entire memory in QEMU.
1886 * In that case just map until the end of the page.
1888 if (block
->offset
== 0) {
1889 return xen_map_cache(addr
, 0, 0);
1892 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1894 return ramblock_ptr(block
, addr
- block
->offset
);
1897 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1898 * but takes a size argument.
1900 * Called within RCU critical section.
1902 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1905 RAMBlock
*block
= ram_block
;
1906 ram_addr_t offset_inside_block
;
1911 if (block
== NULL
) {
1912 block
= qemu_get_ram_block(addr
);
1914 offset_inside_block
= addr
- block
->offset
;
1915 *size
= MIN(*size
, block
->max_length
- offset_inside_block
);
1917 if (xen_enabled() && block
->host
== NULL
) {
1918 /* We need to check if the requested address is in the RAM
1919 * because we don't want to map the entire memory in QEMU.
1920 * In that case just map the requested area.
1922 if (block
->offset
== 0) {
1923 return xen_map_cache(addr
, *size
, 1);
1926 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1929 return ramblock_ptr(block
, offset_inside_block
);
1933 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1936 * ptr: Host pointer to look up
1937 * round_offset: If true round the result offset down to a page boundary
1938 * *ram_addr: set to result ram_addr
1939 * *offset: set to result offset within the RAMBlock
1941 * Returns: RAMBlock (or NULL if not found)
1943 * By the time this function returns, the returned pointer is not protected
1944 * by RCU anymore. If the caller is not within an RCU critical section and
1945 * does not hold the iothread lock, it must have other means of protecting the
1946 * pointer, such as a reference to the region that includes the incoming
1949 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1950 ram_addr_t
*ram_addr
,
1954 uint8_t *host
= ptr
;
1956 if (xen_enabled()) {
1958 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1959 block
= qemu_get_ram_block(*ram_addr
);
1961 *offset
= (host
- block
->host
);
1968 block
= atomic_rcu_read(&ram_list
.mru_block
);
1969 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1973 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1974 /* This case append when the block is not mapped. */
1975 if (block
->host
== NULL
) {
1978 if (host
- block
->host
< block
->max_length
) {
1987 *offset
= (host
- block
->host
);
1989 *offset
&= TARGET_PAGE_MASK
;
1991 *ram_addr
= block
->offset
+ *offset
;
1997 * Finds the named RAMBlock
1999 * name: The name of RAMBlock to find
2001 * Returns: RAMBlock (or NULL if not found)
2003 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2007 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2008 if (!strcmp(name
, block
->idstr
)) {
2016 /* Some of the softmmu routines need to translate from a host pointer
2017 (typically a TLB entry) back to a ram offset. */
2018 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2021 ram_addr_t offset
; /* Not used */
2023 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
2032 /* Called within RCU critical section. */
2033 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2034 uint64_t val
, unsigned size
)
2036 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2037 tb_invalidate_phys_page_fast(ram_addr
, size
);
2041 stb_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2044 stw_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2047 stl_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2052 /* Set both VGA and migration bits for simplicity and to remove
2053 * the notdirty callback faster.
2055 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2056 DIRTY_CLIENTS_NOCODE
);
2057 /* we remove the notdirty callback only if the code has been
2059 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2060 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2064 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2065 unsigned size
, bool is_write
)
2070 static const MemoryRegionOps notdirty_mem_ops
= {
2071 .write
= notdirty_mem_write
,
2072 .valid
.accepts
= notdirty_mem_accepts
,
2073 .endianness
= DEVICE_NATIVE_ENDIAN
,
2076 /* Generate a debug exception if a watchpoint has been hit. */
2077 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2079 CPUState
*cpu
= current_cpu
;
2080 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2081 CPUArchState
*env
= cpu
->env_ptr
;
2082 target_ulong pc
, cs_base
;
2087 if (cpu
->watchpoint_hit
) {
2088 /* We re-entered the check after replacing the TB. Now raise
2089 * the debug interrupt so that is will trigger after the
2090 * current instruction. */
2091 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2094 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2095 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2096 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2097 && (wp
->flags
& flags
)) {
2098 if (flags
== BP_MEM_READ
) {
2099 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2101 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2103 wp
->hitaddr
= vaddr
;
2104 wp
->hitattrs
= attrs
;
2105 if (!cpu
->watchpoint_hit
) {
2106 if (wp
->flags
& BP_CPU
&&
2107 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2108 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2111 cpu
->watchpoint_hit
= wp
;
2112 tb_check_watchpoint(cpu
);
2113 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2114 cpu
->exception_index
= EXCP_DEBUG
;
2117 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2118 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2119 cpu_resume_from_signal(cpu
, NULL
);
2123 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2128 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2129 so these check for a hit then pass through to the normal out-of-line
2131 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2132 unsigned size
, MemTxAttrs attrs
)
2136 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2137 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2139 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2142 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2145 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2148 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2156 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2157 uint64_t val
, unsigned size
,
2161 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2162 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2164 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2167 address_space_stb(as
, addr
, val
, attrs
, &res
);
2170 address_space_stw(as
, addr
, val
, attrs
, &res
);
2173 address_space_stl(as
, addr
, val
, attrs
, &res
);
2180 static const MemoryRegionOps watch_mem_ops
= {
2181 .read_with_attrs
= watch_mem_read
,
2182 .write_with_attrs
= watch_mem_write
,
2183 .endianness
= DEVICE_NATIVE_ENDIAN
,
2186 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2187 unsigned len
, MemTxAttrs attrs
)
2189 subpage_t
*subpage
= opaque
;
2193 #if defined(DEBUG_SUBPAGE)
2194 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2195 subpage
, len
, addr
);
2197 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2204 *data
= ldub_p(buf
);
2207 *data
= lduw_p(buf
);
2220 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2221 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2223 subpage_t
*subpage
= opaque
;
2226 #if defined(DEBUG_SUBPAGE)
2227 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2228 " value %"PRIx64
"\n",
2229 __func__
, subpage
, len
, addr
, value
);
2247 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2251 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2252 unsigned len
, bool is_write
)
2254 subpage_t
*subpage
= opaque
;
2255 #if defined(DEBUG_SUBPAGE)
2256 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2257 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2260 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2264 static const MemoryRegionOps subpage_ops
= {
2265 .read_with_attrs
= subpage_read
,
2266 .write_with_attrs
= subpage_write
,
2267 .impl
.min_access_size
= 1,
2268 .impl
.max_access_size
= 8,
2269 .valid
.min_access_size
= 1,
2270 .valid
.max_access_size
= 8,
2271 .valid
.accepts
= subpage_accepts
,
2272 .endianness
= DEVICE_NATIVE_ENDIAN
,
2275 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2280 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2282 idx
= SUBPAGE_IDX(start
);
2283 eidx
= SUBPAGE_IDX(end
);
2284 #if defined(DEBUG_SUBPAGE)
2285 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2286 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2288 for (; idx
<= eidx
; idx
++) {
2289 mmio
->sub_section
[idx
] = section
;
2295 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2299 mmio
= g_malloc0(sizeof(subpage_t
));
2303 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2304 NULL
, TARGET_PAGE_SIZE
);
2305 mmio
->iomem
.subpage
= true;
2306 #if defined(DEBUG_SUBPAGE)
2307 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2308 mmio
, base
, TARGET_PAGE_SIZE
);
2310 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2315 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2319 MemoryRegionSection section
= {
2320 .address_space
= as
,
2322 .offset_within_address_space
= 0,
2323 .offset_within_region
= 0,
2324 .size
= int128_2_64(),
2327 return phys_section_add(map
, §ion
);
2330 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2332 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2333 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2334 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2335 MemoryRegionSection
*sections
= d
->map
.sections
;
2337 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2340 static void io_mem_init(void)
2342 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2343 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2345 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2347 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2351 static void mem_begin(MemoryListener
*listener
)
2353 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2354 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2357 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2358 assert(n
== PHYS_SECTION_UNASSIGNED
);
2359 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2360 assert(n
== PHYS_SECTION_NOTDIRTY
);
2361 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2362 assert(n
== PHYS_SECTION_ROM
);
2363 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2364 assert(n
== PHYS_SECTION_WATCH
);
2366 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2368 as
->next_dispatch
= d
;
2371 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2373 phys_sections_free(&d
->map
);
2377 static void mem_commit(MemoryListener
*listener
)
2379 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2380 AddressSpaceDispatch
*cur
= as
->dispatch
;
2381 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2383 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2385 atomic_rcu_set(&as
->dispatch
, next
);
2387 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2391 static void tcg_commit(MemoryListener
*listener
)
2393 CPUAddressSpace
*cpuas
;
2394 AddressSpaceDispatch
*d
;
2396 /* since each CPU stores ram addresses in its TLB cache, we must
2397 reset the modified entries */
2398 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2399 cpu_reloading_memory_map();
2400 /* The CPU and TLB are protected by the iothread lock.
2401 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2402 * may have split the RCU critical section.
2404 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2405 cpuas
->memory_dispatch
= d
;
2406 tlb_flush(cpuas
->cpu
, 1);
2409 void address_space_init_dispatch(AddressSpace
*as
)
2411 as
->dispatch
= NULL
;
2412 as
->dispatch_listener
= (MemoryListener
) {
2414 .commit
= mem_commit
,
2415 .region_add
= mem_add
,
2416 .region_nop
= mem_add
,
2419 memory_listener_register(&as
->dispatch_listener
, as
);
2422 void address_space_unregister(AddressSpace
*as
)
2424 memory_listener_unregister(&as
->dispatch_listener
);
2427 void address_space_destroy_dispatch(AddressSpace
*as
)
2429 AddressSpaceDispatch
*d
= as
->dispatch
;
2431 atomic_rcu_set(&as
->dispatch
, NULL
);
2433 call_rcu(d
, address_space_dispatch_free
, rcu
);
2437 static void memory_map_init(void)
2439 system_memory
= g_malloc(sizeof(*system_memory
));
2441 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2442 address_space_init(&address_space_memory
, system_memory
, "memory");
2444 system_io
= g_malloc(sizeof(*system_io
));
2445 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2447 address_space_init(&address_space_io
, system_io
, "I/O");
2450 MemoryRegion
*get_system_memory(void)
2452 return system_memory
;
2455 MemoryRegion
*get_system_io(void)
2460 #endif /* !defined(CONFIG_USER_ONLY) */
2462 /* physical memory access (slow version, mainly for debug) */
2463 #if defined(CONFIG_USER_ONLY)
2464 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2465 uint8_t *buf
, int len
, int is_write
)
2472 page
= addr
& TARGET_PAGE_MASK
;
2473 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2476 flags
= page_get_flags(page
);
2477 if (!(flags
& PAGE_VALID
))
2480 if (!(flags
& PAGE_WRITE
))
2482 /* XXX: this code should not depend on lock_user */
2483 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2486 unlock_user(p
, addr
, l
);
2488 if (!(flags
& PAGE_READ
))
2490 /* XXX: this code should not depend on lock_user */
2491 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2494 unlock_user(p
, addr
, 0);
2505 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2508 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2509 /* No early return if dirty_log_mask is or becomes 0, because
2510 * cpu_physical_memory_set_dirty_range will still call
2511 * xen_modified_memory.
2513 if (dirty_log_mask
) {
2515 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2517 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2518 tb_invalidate_phys_range(addr
, addr
+ length
);
2519 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2521 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2524 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2526 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2528 /* Regions are assumed to support 1-4 byte accesses unless
2529 otherwise specified. */
2530 if (access_size_max
== 0) {
2531 access_size_max
= 4;
2534 /* Bound the maximum access by the alignment of the address. */
2535 if (!mr
->ops
->impl
.unaligned
) {
2536 unsigned align_size_max
= addr
& -addr
;
2537 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2538 access_size_max
= align_size_max
;
2542 /* Don't attempt accesses larger than the maximum. */
2543 if (l
> access_size_max
) {
2544 l
= access_size_max
;
2551 static bool prepare_mmio_access(MemoryRegion
*mr
)
2553 bool unlocked
= !qemu_mutex_iothread_locked();
2554 bool release_lock
= false;
2556 if (unlocked
&& mr
->global_locking
) {
2557 qemu_mutex_lock_iothread();
2559 release_lock
= true;
2561 if (mr
->flush_coalesced_mmio
) {
2563 qemu_mutex_lock_iothread();
2565 qemu_flush_coalesced_mmio_buffer();
2567 qemu_mutex_unlock_iothread();
2571 return release_lock
;
2574 /* Called within RCU critical section. */
2575 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2578 int len
, hwaddr addr1
,
2579 hwaddr l
, MemoryRegion
*mr
)
2583 MemTxResult result
= MEMTX_OK
;
2584 bool release_lock
= false;
2587 if (!memory_access_is_direct(mr
, true)) {
2588 release_lock
|= prepare_mmio_access(mr
);
2589 l
= memory_access_size(mr
, l
, addr1
);
2590 /* XXX: could force current_cpu to NULL to avoid
2594 /* 64 bit write access */
2596 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2600 /* 32 bit write access */
2602 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2606 /* 16 bit write access */
2608 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2612 /* 8 bit write access */
2614 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2621 addr1
+= memory_region_get_ram_addr(mr
);
2623 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2624 memcpy(ptr
, buf
, l
);
2625 invalidate_and_set_dirty(mr
, addr1
, l
);
2629 qemu_mutex_unlock_iothread();
2630 release_lock
= false;
2642 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2648 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2649 const uint8_t *buf
, int len
)
2654 MemTxResult result
= MEMTX_OK
;
2659 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2660 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2668 /* Called within RCU critical section. */
2669 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2670 MemTxAttrs attrs
, uint8_t *buf
,
2671 int len
, hwaddr addr1
, hwaddr l
,
2676 MemTxResult result
= MEMTX_OK
;
2677 bool release_lock
= false;
2680 if (!memory_access_is_direct(mr
, false)) {
2682 release_lock
|= prepare_mmio_access(mr
);
2683 l
= memory_access_size(mr
, l
, addr1
);
2686 /* 64 bit read access */
2687 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2692 /* 32 bit read access */
2693 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2698 /* 16 bit read access */
2699 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2704 /* 8 bit read access */
2705 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2714 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
2715 memory_region_get_ram_addr(mr
) + addr1
);
2716 memcpy(buf
, ptr
, l
);
2720 qemu_mutex_unlock_iothread();
2721 release_lock
= false;
2733 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2739 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2740 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2745 MemTxResult result
= MEMTX_OK
;
2750 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2751 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2759 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2760 uint8_t *buf
, int len
, bool is_write
)
2763 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2765 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2769 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2770 int len
, int is_write
)
2772 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2773 buf
, len
, is_write
);
2776 enum write_rom_type
{
2781 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2782 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2792 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2794 if (!(memory_region_is_ram(mr
) ||
2795 memory_region_is_romd(mr
))) {
2796 l
= memory_access_size(mr
, l
, addr1
);
2798 addr1
+= memory_region_get_ram_addr(mr
);
2800 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2803 memcpy(ptr
, buf
, l
);
2804 invalidate_and_set_dirty(mr
, addr1
, l
);
2807 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2818 /* used for ROM loading : can write in RAM and ROM */
2819 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2820 const uint8_t *buf
, int len
)
2822 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2825 void cpu_flush_icache_range(hwaddr start
, int len
)
2828 * This function should do the same thing as an icache flush that was
2829 * triggered from within the guest. For TCG we are always cache coherent,
2830 * so there is no need to flush anything. For KVM / Xen we need to flush
2831 * the host's instruction cache at least.
2833 if (tcg_enabled()) {
2837 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2838 start
, NULL
, len
, FLUSH_CACHE
);
2849 static BounceBuffer bounce
;
2851 typedef struct MapClient
{
2853 QLIST_ENTRY(MapClient
) link
;
2856 QemuMutex map_client_list_lock
;
2857 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2858 = QLIST_HEAD_INITIALIZER(map_client_list
);
2860 static void cpu_unregister_map_client_do(MapClient
*client
)
2862 QLIST_REMOVE(client
, link
);
2866 static void cpu_notify_map_clients_locked(void)
2870 while (!QLIST_EMPTY(&map_client_list
)) {
2871 client
= QLIST_FIRST(&map_client_list
);
2872 qemu_bh_schedule(client
->bh
);
2873 cpu_unregister_map_client_do(client
);
2877 void cpu_register_map_client(QEMUBH
*bh
)
2879 MapClient
*client
= g_malloc(sizeof(*client
));
2881 qemu_mutex_lock(&map_client_list_lock
);
2883 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2884 if (!atomic_read(&bounce
.in_use
)) {
2885 cpu_notify_map_clients_locked();
2887 qemu_mutex_unlock(&map_client_list_lock
);
2890 void cpu_exec_init_all(void)
2892 qemu_mutex_init(&ram_list
.mutex
);
2895 qemu_mutex_init(&map_client_list_lock
);
2898 void cpu_unregister_map_client(QEMUBH
*bh
)
2902 qemu_mutex_lock(&map_client_list_lock
);
2903 QLIST_FOREACH(client
, &map_client_list
, link
) {
2904 if (client
->bh
== bh
) {
2905 cpu_unregister_map_client_do(client
);
2909 qemu_mutex_unlock(&map_client_list_lock
);
2912 static void cpu_notify_map_clients(void)
2914 qemu_mutex_lock(&map_client_list_lock
);
2915 cpu_notify_map_clients_locked();
2916 qemu_mutex_unlock(&map_client_list_lock
);
2919 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2927 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2928 if (!memory_access_is_direct(mr
, is_write
)) {
2929 l
= memory_access_size(mr
, l
, addr
);
2930 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2942 /* Map a physical memory region into a host virtual address.
2943 * May map a subset of the requested range, given by and returned in *plen.
2944 * May return NULL if resources needed to perform the mapping are exhausted.
2945 * Use only for reads OR writes - not for read-modify-write operations.
2946 * Use cpu_register_map_client() to know when retrying the map operation is
2947 * likely to succeed.
2949 void *address_space_map(AddressSpace
*as
,
2956 hwaddr l
, xlat
, base
;
2957 MemoryRegion
*mr
, *this_mr
;
2967 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2969 if (!memory_access_is_direct(mr
, is_write
)) {
2970 if (atomic_xchg(&bounce
.in_use
, true)) {
2974 /* Avoid unbounded allocations */
2975 l
= MIN(l
, TARGET_PAGE_SIZE
);
2976 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2980 memory_region_ref(mr
);
2983 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2989 return bounce
.buffer
;
2993 raddr
= memory_region_get_ram_addr(mr
);
3004 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3005 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3010 memory_region_ref(mr
);
3012 ptr
= qemu_ram_ptr_length(mr
->ram_block
, raddr
+ base
, plen
);
3018 /* Unmaps a memory region previously mapped by address_space_map().
3019 * Will also mark the memory as dirty if is_write == 1. access_len gives
3020 * the amount of memory that was actually read or written by the caller.
3022 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3023 int is_write
, hwaddr access_len
)
3025 if (buffer
!= bounce
.buffer
) {
3029 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
3032 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3034 if (xen_enabled()) {
3035 xen_invalidate_map_cache_entry(buffer
);
3037 memory_region_unref(mr
);
3041 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3042 bounce
.buffer
, access_len
);
3044 qemu_vfree(bounce
.buffer
);
3045 bounce
.buffer
= NULL
;
3046 memory_region_unref(bounce
.mr
);
3047 atomic_mb_set(&bounce
.in_use
, false);
3048 cpu_notify_map_clients();
3051 void *cpu_physical_memory_map(hwaddr addr
,
3055 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3058 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3059 int is_write
, hwaddr access_len
)
3061 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3064 /* warning: addr must be aligned */
3065 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3067 MemTxResult
*result
,
3068 enum device_endian endian
)
3076 bool release_lock
= false;
3079 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3080 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3081 release_lock
|= prepare_mmio_access(mr
);
3084 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3085 #if defined(TARGET_WORDS_BIGENDIAN)
3086 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3090 if (endian
== DEVICE_BIG_ENDIAN
) {
3096 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3097 (memory_region_get_ram_addr(mr
)
3101 case DEVICE_LITTLE_ENDIAN
:
3102 val
= ldl_le_p(ptr
);
3104 case DEVICE_BIG_ENDIAN
:
3105 val
= ldl_be_p(ptr
);
3117 qemu_mutex_unlock_iothread();
3123 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3124 MemTxAttrs attrs
, MemTxResult
*result
)
3126 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3127 DEVICE_NATIVE_ENDIAN
);
3130 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3131 MemTxAttrs attrs
, MemTxResult
*result
)
3133 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3134 DEVICE_LITTLE_ENDIAN
);
3137 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3138 MemTxAttrs attrs
, MemTxResult
*result
)
3140 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3144 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3146 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3149 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3151 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3154 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3156 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3159 /* warning: addr must be aligned */
3160 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3162 MemTxResult
*result
,
3163 enum device_endian endian
)
3171 bool release_lock
= false;
3174 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3176 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3177 release_lock
|= prepare_mmio_access(mr
);
3180 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3181 #if defined(TARGET_WORDS_BIGENDIAN)
3182 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3186 if (endian
== DEVICE_BIG_ENDIAN
) {
3192 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3193 (memory_region_get_ram_addr(mr
)
3197 case DEVICE_LITTLE_ENDIAN
:
3198 val
= ldq_le_p(ptr
);
3200 case DEVICE_BIG_ENDIAN
:
3201 val
= ldq_be_p(ptr
);
3213 qemu_mutex_unlock_iothread();
3219 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3220 MemTxAttrs attrs
, MemTxResult
*result
)
3222 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3223 DEVICE_NATIVE_ENDIAN
);
3226 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3227 MemTxAttrs attrs
, MemTxResult
*result
)
3229 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3230 DEVICE_LITTLE_ENDIAN
);
3233 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3234 MemTxAttrs attrs
, MemTxResult
*result
)
3236 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3240 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3242 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3245 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3247 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3250 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3252 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3256 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3257 MemTxAttrs attrs
, MemTxResult
*result
)
3262 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3269 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3271 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3274 /* warning: addr must be aligned */
3275 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3278 MemTxResult
*result
,
3279 enum device_endian endian
)
3287 bool release_lock
= false;
3290 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3292 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3293 release_lock
|= prepare_mmio_access(mr
);
3296 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3297 #if defined(TARGET_WORDS_BIGENDIAN)
3298 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3302 if (endian
== DEVICE_BIG_ENDIAN
) {
3308 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3309 (memory_region_get_ram_addr(mr
)
3313 case DEVICE_LITTLE_ENDIAN
:
3314 val
= lduw_le_p(ptr
);
3316 case DEVICE_BIG_ENDIAN
:
3317 val
= lduw_be_p(ptr
);
3329 qemu_mutex_unlock_iothread();
3335 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3336 MemTxAttrs attrs
, MemTxResult
*result
)
3338 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3339 DEVICE_NATIVE_ENDIAN
);
3342 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3343 MemTxAttrs attrs
, MemTxResult
*result
)
3345 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3346 DEVICE_LITTLE_ENDIAN
);
3349 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3350 MemTxAttrs attrs
, MemTxResult
*result
)
3352 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3356 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3358 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3361 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3363 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3366 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3368 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3371 /* warning: addr must be aligned. The ram page is not masked as dirty
3372 and the code inside is not invalidated. It is useful if the dirty
3373 bits are used to track modified PTEs */
3374 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3375 MemTxAttrs attrs
, MemTxResult
*result
)
3382 uint8_t dirty_log_mask
;
3383 bool release_lock
= false;
3386 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3388 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3389 release_lock
|= prepare_mmio_access(mr
);
3391 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3393 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3394 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3397 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3398 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3399 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3406 qemu_mutex_unlock_iothread();
3411 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3413 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3416 /* warning: addr must be aligned */
3417 static inline void address_space_stl_internal(AddressSpace
*as
,
3418 hwaddr addr
, uint32_t val
,
3420 MemTxResult
*result
,
3421 enum device_endian endian
)
3428 bool release_lock
= false;
3431 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3433 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3434 release_lock
|= prepare_mmio_access(mr
);
3436 #if defined(TARGET_WORDS_BIGENDIAN)
3437 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3441 if (endian
== DEVICE_BIG_ENDIAN
) {
3445 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3448 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3449 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3451 case DEVICE_LITTLE_ENDIAN
:
3454 case DEVICE_BIG_ENDIAN
:
3461 invalidate_and_set_dirty(mr
, addr1
, 4);
3468 qemu_mutex_unlock_iothread();
3473 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3474 MemTxAttrs attrs
, MemTxResult
*result
)
3476 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3477 DEVICE_NATIVE_ENDIAN
);
3480 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3481 MemTxAttrs attrs
, MemTxResult
*result
)
3483 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3484 DEVICE_LITTLE_ENDIAN
);
3487 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3488 MemTxAttrs attrs
, MemTxResult
*result
)
3490 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3494 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3496 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3499 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3501 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3504 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3506 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3510 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3511 MemTxAttrs attrs
, MemTxResult
*result
)
3516 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3522 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3524 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3527 /* warning: addr must be aligned */
3528 static inline void address_space_stw_internal(AddressSpace
*as
,
3529 hwaddr addr
, uint32_t val
,
3531 MemTxResult
*result
,
3532 enum device_endian endian
)
3539 bool release_lock
= false;
3542 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3543 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3544 release_lock
|= prepare_mmio_access(mr
);
3546 #if defined(TARGET_WORDS_BIGENDIAN)
3547 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3551 if (endian
== DEVICE_BIG_ENDIAN
) {
3555 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3558 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3559 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3561 case DEVICE_LITTLE_ENDIAN
:
3564 case DEVICE_BIG_ENDIAN
:
3571 invalidate_and_set_dirty(mr
, addr1
, 2);
3578 qemu_mutex_unlock_iothread();
3583 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3584 MemTxAttrs attrs
, MemTxResult
*result
)
3586 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3587 DEVICE_NATIVE_ENDIAN
);
3590 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3591 MemTxAttrs attrs
, MemTxResult
*result
)
3593 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3594 DEVICE_LITTLE_ENDIAN
);
3597 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3598 MemTxAttrs attrs
, MemTxResult
*result
)
3600 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3604 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3606 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3609 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3611 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3614 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3616 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3620 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3621 MemTxAttrs attrs
, MemTxResult
*result
)
3625 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3631 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3632 MemTxAttrs attrs
, MemTxResult
*result
)
3635 val
= cpu_to_le64(val
);
3636 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3641 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3642 MemTxAttrs attrs
, MemTxResult
*result
)
3645 val
= cpu_to_be64(val
);
3646 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3652 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3654 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3657 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3659 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3662 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3664 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3667 /* virtual memory access for debug (includes writing to ROM) */
3668 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3669 uint8_t *buf
, int len
, int is_write
)
3679 page
= addr
& TARGET_PAGE_MASK
;
3680 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3681 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3682 /* if no physical page mapped, return an error */
3683 if (phys_addr
== -1)
3685 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3688 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3690 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3693 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3694 MEMTXATTRS_UNSPECIFIED
,
3705 * Allows code that needs to deal with migration bitmaps etc to still be built
3706 * target independent.
3708 size_t qemu_target_page_bits(void)
3710 return TARGET_PAGE_BITS
;
3716 * A helper function for the _utterly broken_ virtio device model to find out if
3717 * it's running on a big endian machine. Don't do this at home kids!
3719 bool target_words_bigendian(void);
3720 bool target_words_bigendian(void)
3722 #if defined(TARGET_WORDS_BIGENDIAN)
3729 #ifndef CONFIG_USER_ONLY
3730 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3737 mr
= address_space_translate(&address_space_memory
,
3738 phys_addr
, &phys_addr
, &l
, false);
3740 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3745 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3751 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3752 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3753 block
->used_length
, opaque
);