arm_kvm: Do not assume particular GIC type in kvm_arch_irqchip_create()
[qemu/ar7.git] / hw / ppc / spapr.c
blob7f4f196e53e5315f5caa81487618a19b18cb3ccd
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
38 #include "kvm_ppc.h"
39 #include "migration/migration.h"
40 #include "mmu-hash64.h"
41 #include "qom/cpu.h"
43 #include "hw/boards.h"
44 #include "hw/ppc/ppc.h"
45 #include "hw/loader.h"
47 #include "hw/ppc/spapr.h"
48 #include "hw/ppc/spapr_vio.h"
49 #include "hw/pci-host/spapr.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/pci/msi.h"
53 #include "hw/pci/pci.h"
54 #include "hw/scsi/scsi.h"
55 #include "hw/virtio/virtio-scsi.h"
57 #include "exec/address-spaces.h"
58 #include "hw/usb.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "trace.h"
62 #include "hw/nmi.h"
64 #include "hw/compat.h"
65 #include "qemu-common.h"
67 #include <libfdt.h>
69 /* SLOF memory layout:
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
75 * and more
77 * We load our kernel at 4M, leaving space for SLOF initial image
79 #define FDT_MAX_SIZE 0x100000
80 #define RTAS_MAX_SIZE 0x10000
81 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
82 #define FW_MAX_SIZE 0x400000
83 #define FW_FILE_NAME "slof.bin"
84 #define FW_OVERHEAD 0x2800000
85 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87 #define MIN_RMA_SLOF 128UL
89 #define TIMEBASE_FREQ 512000000ULL
91 #define PHANDLE_XICP 0x00001111
93 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95 static XICSState *try_create_xics(const char *type, int nr_servers,
96 int nr_irqs, Error **errp)
98 Error *err = NULL;
99 DeviceState *dev;
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
105 if (err) {
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
108 return NULL;
110 return XICS_COMMON(dev);
113 static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
116 XICSState *icp = NULL;
118 if (kvm_enabled()) {
119 Error *err = NULL;
121 if (machine_kernel_irqchip_allowed(machine)) {
122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
124 if (machine_kernel_irqchip_required(machine) && !icp) {
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
130 if (!icp) {
131 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
134 return icp;
137 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
138 int smt_threads)
140 int i, ret = 0;
141 uint32_t servers_prop[smt_threads];
142 uint32_t gservers_prop[smt_threads * 2];
143 int index = ppc_get_vcpu_dt_id(cpu);
145 if (cpu->cpu_version) {
146 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
147 if (ret < 0) {
148 return ret;
152 /* Build interrupt servers and gservers properties */
153 for (i = 0; i < smt_threads; i++) {
154 servers_prop[i] = cpu_to_be32(index + i);
155 /* Hack, direct the group queues back to cpu 0 */
156 gservers_prop[i*2] = cpu_to_be32(index + i);
157 gservers_prop[i*2 + 1] = 0;
159 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
160 servers_prop, sizeof(servers_prop));
161 if (ret < 0) {
162 return ret;
164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
165 gservers_prop, sizeof(gservers_prop));
167 return ret;
170 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
172 int ret = 0;
173 PowerPCCPU *cpu = POWERPC_CPU(cs);
174 int index = ppc_get_vcpu_dt_id(cpu);
175 uint32_t associativity[] = {cpu_to_be32(0x5),
176 cpu_to_be32(0x0),
177 cpu_to_be32(0x0),
178 cpu_to_be32(0x0),
179 cpu_to_be32(cs->numa_node),
180 cpu_to_be32(index)};
182 /* Advertise NUMA via ibm,associativity */
183 if (nb_numa_nodes > 1) {
184 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
185 sizeof(associativity));
188 return ret;
191 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
193 int ret = 0, offset, cpus_offset;
194 CPUState *cs;
195 char cpu_model[32];
196 int smt = kvmppc_smt_threads();
197 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
199 CPU_FOREACH(cs) {
200 PowerPCCPU *cpu = POWERPC_CPU(cs);
201 DeviceClass *dc = DEVICE_GET_CLASS(cs);
202 int index = ppc_get_vcpu_dt_id(cpu);
204 if ((index % smt) != 0) {
205 continue;
208 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
210 cpus_offset = fdt_path_offset(fdt, "/cpus");
211 if (cpus_offset < 0) {
212 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
213 "cpus");
214 if (cpus_offset < 0) {
215 return cpus_offset;
218 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
219 if (offset < 0) {
220 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
221 if (offset < 0) {
222 return offset;
226 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
227 pft_size_prop, sizeof(pft_size_prop));
228 if (ret < 0) {
229 return ret;
232 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
233 if (ret < 0) {
234 return ret;
237 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
238 ppc_get_compat_smt_threads(cpu));
239 if (ret < 0) {
240 return ret;
243 return ret;
247 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
248 size_t maxsize)
250 size_t maxcells = maxsize / sizeof(uint32_t);
251 int i, j, count;
252 uint32_t *p = prop;
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
257 if (!sps->page_shift) {
258 break;
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
262 break;
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
266 break;
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 return (p - prop) * sizeof(uint32_t);
280 static hwaddr spapr_node0_size(void)
282 MachineState *machine = MACHINE(qdev_get_machine());
284 if (nb_numa_nodes) {
285 int i;
286 for (i = 0; i < nb_numa_nodes; ++i) {
287 if (numa_info[i].node_mem) {
288 return MIN(pow2floor(numa_info[i].node_mem),
289 machine->ram_size);
293 return machine->ram_size;
296 #define _FDT(exp) \
297 do { \
298 int ret = (exp); \
299 if (ret < 0) { \
300 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
301 #exp, fdt_strerror(ret)); \
302 exit(1); \
304 } while (0)
306 static void add_str(GString *s, const gchar *s1)
308 g_string_append_len(s, s1, strlen(s1) + 1);
311 static void *spapr_create_fdt_skel(hwaddr initrd_base,
312 hwaddr initrd_size,
313 hwaddr kernel_size,
314 bool little_endian,
315 const char *kernel_cmdline,
316 uint32_t epow_irq)
318 void *fdt;
319 uint32_t start_prop = cpu_to_be32(initrd_base);
320 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
321 GString *hypertas = g_string_sized_new(256);
322 GString *qemu_hypertas = g_string_sized_new(256);
323 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
324 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
325 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
326 char *buf;
328 add_str(hypertas, "hcall-pft");
329 add_str(hypertas, "hcall-term");
330 add_str(hypertas, "hcall-dabr");
331 add_str(hypertas, "hcall-interrupt");
332 add_str(hypertas, "hcall-tce");
333 add_str(hypertas, "hcall-vio");
334 add_str(hypertas, "hcall-splpar");
335 add_str(hypertas, "hcall-bulk");
336 add_str(hypertas, "hcall-set-mode");
337 add_str(qemu_hypertas, "hcall-memop1");
339 fdt = g_malloc0(FDT_MAX_SIZE);
340 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
342 if (kernel_size) {
343 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
345 if (initrd_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
348 _FDT((fdt_finish_reservemap(fdt)));
350 /* Root node */
351 _FDT((fdt_begin_node(fdt, "")));
352 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
353 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
354 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
379 if (qemu_get_vm_name()) {
380 _FDT((fdt_property_string(fdt, "ibm,partition-name",
381 qemu_get_vm_name())));
384 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
385 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
387 /* /chosen */
388 _FDT((fdt_begin_node(fdt, "chosen")));
390 /* Set Form1_affinity */
391 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
393 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
394 _FDT((fdt_property(fdt, "linux,initrd-start",
395 &start_prop, sizeof(start_prop))));
396 _FDT((fdt_property(fdt, "linux,initrd-end",
397 &end_prop, sizeof(end_prop))));
398 if (kernel_size) {
399 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
400 cpu_to_be64(kernel_size) };
402 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
403 if (little_endian) {
404 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
407 if (boot_menu) {
408 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
412 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
414 _FDT((fdt_end_node(fdt)));
416 /* RTAS */
417 _FDT((fdt_begin_node(fdt, "rtas")));
419 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
420 add_str(hypertas, "hcall-multi-tce");
422 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
423 hypertas->len)));
424 g_string_free(hypertas, TRUE);
425 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
426 qemu_hypertas->len)));
427 g_string_free(qemu_hypertas, TRUE);
429 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430 refpoints, sizeof(refpoints))));
432 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
433 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
434 RTAS_EVENT_SCAN_RATE)));
436 if (msi_supported) {
437 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
441 * According to PAPR, rtas ibm,os-term does not guarantee a return
442 * back to the guest cpu.
444 * While an additional ibm,extended-os-term property indicates that
445 * rtas call return will always occur. Set this property.
447 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
449 _FDT((fdt_end_node(fdt)));
451 /* interrupt controller */
452 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
454 _FDT((fdt_property_string(fdt, "device_type",
455 "PowerPC-External-Interrupt-Presentation")));
456 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
457 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
458 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
459 interrupt_server_ranges_prop,
460 sizeof(interrupt_server_ranges_prop))));
461 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
462 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
463 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
465 _FDT((fdt_end_node(fdt)));
467 /* vdevice */
468 _FDT((fdt_begin_node(fdt, "vdevice")));
470 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
471 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
472 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
473 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
474 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
475 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
477 _FDT((fdt_end_node(fdt)));
479 /* event-sources */
480 spapr_events_fdt_skel(fdt, epow_irq);
482 /* /hypervisor node */
483 if (kvm_enabled()) {
484 uint8_t hypercall[16];
486 /* indicate KVM hypercall interface */
487 _FDT((fdt_begin_node(fdt, "hypervisor")));
488 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
489 if (kvmppc_has_cap_fixup_hcalls()) {
491 * Older KVM versions with older guest kernels were broken with the
492 * magic page, don't allow the guest to map it.
494 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
495 sizeof(hypercall));
496 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
497 sizeof(hypercall))));
499 _FDT((fdt_end_node(fdt)));
502 _FDT((fdt_end_node(fdt))); /* close root node */
503 _FDT((fdt_finish(fdt)));
505 return fdt;
508 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
509 hwaddr size)
511 uint32_t associativity[] = {
512 cpu_to_be32(0x4), /* length */
513 cpu_to_be32(0x0), cpu_to_be32(0x0),
514 cpu_to_be32(0x0), cpu_to_be32(nodeid)
516 char mem_name[32];
517 uint64_t mem_reg_property[2];
518 int off;
520 mem_reg_property[0] = cpu_to_be64(start);
521 mem_reg_property[1] = cpu_to_be64(size);
523 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
524 off = fdt_add_subnode(fdt, 0, mem_name);
525 _FDT(off);
526 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
527 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
528 sizeof(mem_reg_property))));
529 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
530 sizeof(associativity))));
531 return off;
534 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
536 MachineState *machine = MACHINE(spapr);
537 hwaddr mem_start, node_size;
538 int i, nb_nodes = nb_numa_nodes;
539 NodeInfo *nodes = numa_info;
540 NodeInfo ramnode;
542 /* No NUMA nodes, assume there is just one node with whole RAM */
543 if (!nb_numa_nodes) {
544 nb_nodes = 1;
545 ramnode.node_mem = machine->ram_size;
546 nodes = &ramnode;
549 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
550 if (!nodes[i].node_mem) {
551 continue;
553 if (mem_start >= machine->ram_size) {
554 node_size = 0;
555 } else {
556 node_size = nodes[i].node_mem;
557 if (node_size > machine->ram_size - mem_start) {
558 node_size = machine->ram_size - mem_start;
561 if (!mem_start) {
562 /* ppc_spapr_init() checks for rma_size <= node0_size already */
563 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
564 mem_start += spapr->rma_size;
565 node_size -= spapr->rma_size;
567 for ( ; node_size; ) {
568 hwaddr sizetmp = pow2floor(node_size);
570 /* mem_start != 0 here */
571 if (ctzl(mem_start) < ctzl(sizetmp)) {
572 sizetmp = 1ULL << ctzl(mem_start);
575 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
576 node_size -= sizetmp;
577 mem_start += sizetmp;
581 return 0;
584 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
585 sPAPRMachineState *spapr)
587 PowerPCCPU *cpu = POWERPC_CPU(cs);
588 CPUPPCState *env = &cpu->env;
589 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
590 int index = ppc_get_vcpu_dt_id(cpu);
591 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
592 0xffffffff, 0xffffffff};
593 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
594 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
595 uint32_t page_sizes_prop[64];
596 size_t page_sizes_prop_size;
597 uint32_t vcpus_per_socket = smp_threads * smp_cores;
598 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
600 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
601 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
603 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
604 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
605 env->dcache_line_size)));
606 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
607 env->dcache_line_size)));
608 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
609 env->icache_line_size)));
610 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
611 env->icache_line_size)));
613 if (pcc->l1_dcache_size) {
614 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
615 pcc->l1_dcache_size)));
616 } else {
617 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
619 if (pcc->l1_icache_size) {
620 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
621 pcc->l1_icache_size)));
622 } else {
623 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
626 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
627 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
628 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
629 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
630 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
632 if (env->spr_cb[SPR_PURR].oea_read) {
633 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
636 if (env->mmu_model & POWERPC_MMU_1TSEG) {
637 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
638 segs, sizeof(segs))));
641 /* Advertise VMX/VSX (vector extensions) if available
642 * 0 / no property == no vector extensions
643 * 1 == VMX / Altivec available
644 * 2 == VSX available */
645 if (env->insns_flags & PPC_ALTIVEC) {
646 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
648 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
651 /* Advertise DFP (Decimal Floating Point) if available
652 * 0 / no property == no DFP
653 * 1 == DFP available */
654 if (env->insns_flags2 & PPC2_DFP) {
655 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
658 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
659 sizeof(page_sizes_prop));
660 if (page_sizes_prop_size) {
661 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
662 page_sizes_prop, page_sizes_prop_size)));
665 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
666 cs->cpu_index / vcpus_per_socket)));
668 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
669 pft_size_prop, sizeof(pft_size_prop))));
671 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
673 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
674 ppc_get_compat_smt_threads(cpu)));
677 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
679 CPUState *cs;
680 int cpus_offset;
681 char *nodename;
682 int smt = kvmppc_smt_threads();
684 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
685 _FDT(cpus_offset);
686 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
687 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
690 * We walk the CPUs in reverse order to ensure that CPU DT nodes
691 * created by fdt_add_subnode() end up in the right order in FDT
692 * for the guest kernel the enumerate the CPUs correctly.
694 CPU_FOREACH_REVERSE(cs) {
695 PowerPCCPU *cpu = POWERPC_CPU(cs);
696 int index = ppc_get_vcpu_dt_id(cpu);
697 DeviceClass *dc = DEVICE_GET_CLASS(cs);
698 int offset;
700 if ((index % smt) != 0) {
701 continue;
704 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
705 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
706 g_free(nodename);
707 _FDT(offset);
708 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
714 * Adds ibm,dynamic-reconfiguration-memory node.
715 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
716 * of this device tree node.
718 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
720 MachineState *machine = MACHINE(spapr);
721 int ret, i, offset;
722 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
723 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
724 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
725 uint32_t *int_buf, *cur_index, buf_len;
726 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
729 * Allocate enough buffer size to fit in ibm,dynamic-memory
730 * or ibm,associativity-lookup-arrays
732 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
733 * sizeof(uint32_t);
734 cur_index = int_buf = g_malloc0(buf_len);
736 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
738 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
739 sizeof(prop_lmb_size));
740 if (ret < 0) {
741 goto out;
744 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
745 if (ret < 0) {
746 goto out;
749 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
750 if (ret < 0) {
751 goto out;
754 /* ibm,dynamic-memory */
755 int_buf[0] = cpu_to_be32(nr_lmbs);
756 cur_index++;
757 for (i = 0; i < nr_lmbs; i++) {
758 sPAPRDRConnector *drc;
759 sPAPRDRConnectorClass *drck;
760 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
761 uint32_t *dynamic_memory = cur_index;
763 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
764 addr/lmb_size);
765 g_assert(drc);
766 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
768 dynamic_memory[0] = cpu_to_be32(addr >> 32);
769 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
770 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
771 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
772 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
773 if (addr < machine->ram_size ||
774 memory_region_present(get_system_memory(), addr)) {
775 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
776 } else {
777 dynamic_memory[5] = cpu_to_be32(0);
780 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
782 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
783 if (ret < 0) {
784 goto out;
787 /* ibm,associativity-lookup-arrays */
788 cur_index = int_buf;
789 int_buf[0] = cpu_to_be32(nr_nodes);
790 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
791 cur_index += 2;
792 for (i = 0; i < nr_nodes; i++) {
793 uint32_t associativity[] = {
794 cpu_to_be32(0x0),
795 cpu_to_be32(0x0),
796 cpu_to_be32(0x0),
797 cpu_to_be32(i)
799 memcpy(cur_index, associativity, sizeof(associativity));
800 cur_index += 4;
802 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
803 (cur_index - int_buf) * sizeof(uint32_t));
804 out:
805 g_free(int_buf);
806 return ret;
809 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
810 target_ulong addr, target_ulong size,
811 bool cpu_update, bool memory_update)
813 void *fdt, *fdt_skel;
814 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
815 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
817 size -= sizeof(hdr);
819 /* Create sceleton */
820 fdt_skel = g_malloc0(size);
821 _FDT((fdt_create(fdt_skel, size)));
822 _FDT((fdt_begin_node(fdt_skel, "")));
823 _FDT((fdt_end_node(fdt_skel)));
824 _FDT((fdt_finish(fdt_skel)));
825 fdt = g_malloc0(size);
826 _FDT((fdt_open_into(fdt_skel, fdt, size)));
827 g_free(fdt_skel);
829 /* Fixup cpu nodes */
830 if (cpu_update) {
831 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
834 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
835 if (memory_update && smc->dr_lmb_enabled) {
836 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
839 /* Pack resulting tree */
840 _FDT((fdt_pack(fdt)));
842 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
843 trace_spapr_cas_failed(size);
844 return -1;
847 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
848 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
849 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
850 g_free(fdt);
852 return 0;
855 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
856 hwaddr fdt_addr,
857 hwaddr rtas_addr,
858 hwaddr rtas_size)
860 MachineState *machine = MACHINE(qdev_get_machine());
861 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
862 const char *boot_device = machine->boot_order;
863 int ret, i;
864 size_t cb = 0;
865 char *bootlist;
866 void *fdt;
867 sPAPRPHBState *phb;
869 fdt = g_malloc(FDT_MAX_SIZE);
871 /* open out the base tree into a temp buffer for the final tweaks */
872 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
874 ret = spapr_populate_memory(spapr, fdt);
875 if (ret < 0) {
876 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
877 exit(1);
880 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
881 if (ret < 0) {
882 fprintf(stderr, "couldn't setup vio devices in fdt\n");
883 exit(1);
886 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
887 ret = spapr_rng_populate_dt(fdt);
888 if (ret < 0) {
889 fprintf(stderr, "could not set up rng device in the fdt\n");
890 exit(1);
894 QLIST_FOREACH(phb, &spapr->phbs, list) {
895 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
898 if (ret < 0) {
899 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
900 exit(1);
903 /* RTAS */
904 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
905 if (ret < 0) {
906 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
909 /* cpus */
910 spapr_populate_cpus_dt_node(fdt, spapr);
912 bootlist = get_boot_devices_list(&cb, true);
913 if (cb && bootlist) {
914 int offset = fdt_path_offset(fdt, "/chosen");
915 if (offset < 0) {
916 exit(1);
918 for (i = 0; i < cb; i++) {
919 if (bootlist[i] == '\n') {
920 bootlist[i] = ' ';
924 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
927 if (boot_device && strlen(boot_device)) {
928 int offset = fdt_path_offset(fdt, "/chosen");
930 if (offset < 0) {
931 exit(1);
933 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
936 if (!spapr->has_graphics) {
937 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
940 if (smc->dr_lmb_enabled) {
941 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
944 _FDT((fdt_pack(fdt)));
946 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
947 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
948 fdt_totalsize(fdt), FDT_MAX_SIZE);
949 exit(1);
952 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
953 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
955 g_free(bootlist);
956 g_free(fdt);
959 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
961 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
964 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
966 CPUPPCState *env = &cpu->env;
968 if (msr_pr) {
969 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
970 env->gpr[3] = H_PRIVILEGE;
971 } else {
972 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
976 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
977 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
978 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
979 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
980 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
982 static void spapr_reset_htab(sPAPRMachineState *spapr)
984 long shift;
985 int index;
987 /* allocate hash page table. For now we always make this 16mb,
988 * later we should probably make it scale to the size of guest
989 * RAM */
991 shift = kvmppc_reset_htab(spapr->htab_shift);
993 if (shift > 0) {
994 /* Kernel handles htab, we don't need to allocate one */
995 spapr->htab_shift = shift;
996 kvmppc_kern_htab = true;
998 /* Tell readers to update their file descriptor */
999 if (spapr->htab_fd >= 0) {
1000 spapr->htab_fd_stale = true;
1002 } else {
1003 if (!spapr->htab) {
1004 /* Allocate an htab if we don't yet have one */
1005 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1008 /* And clear it */
1009 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1011 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1012 DIRTY_HPTE(HPTE(spapr->htab, index));
1016 /* Update the RMA size if necessary */
1017 if (spapr->vrma_adjust) {
1018 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1019 spapr->htab_shift);
1023 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1025 bool matched = false;
1027 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1028 matched = true;
1031 if (!matched) {
1032 error_report("Device %s is not supported by this machine yet.",
1033 qdev_fw_name(DEVICE(sbdev)));
1034 exit(1);
1037 return 0;
1041 * A guest reset will cause spapr->htab_fd to become stale if being used.
1042 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1044 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
1046 int rc = 0;
1048 if (spapr->htab_fd_stale) {
1049 close(spapr->htab_fd);
1050 spapr->htab_fd = kvmppc_get_htab_fd(false);
1051 if (spapr->htab_fd < 0) {
1052 error_report("Unable to open fd for reading hash table from KVM: "
1053 "%s", strerror(errno));
1054 rc = -1;
1056 spapr->htab_fd_stale = false;
1059 return rc;
1062 static void ppc_spapr_reset(void)
1064 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1065 PowerPCCPU *first_ppc_cpu;
1066 uint32_t rtas_limit;
1068 /* Check for unknown sysbus devices */
1069 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1071 /* Reset the hash table & recalc the RMA */
1072 spapr_reset_htab(spapr);
1074 qemu_devices_reset();
1077 * We place the device tree and RTAS just below either the top of the RMA,
1078 * or just below 2GB, whichever is lowere, so that it can be
1079 * processed with 32-bit real mode code if necessary
1081 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1082 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1083 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1085 /* Load the fdt */
1086 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1087 spapr->rtas_size);
1089 /* Copy RTAS over */
1090 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1091 spapr->rtas_size);
1093 /* Set up the entry state */
1094 first_ppc_cpu = POWERPC_CPU(first_cpu);
1095 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1096 first_ppc_cpu->env.gpr[5] = 0;
1097 first_cpu->halted = 0;
1098 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1102 static void spapr_cpu_reset(void *opaque)
1104 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1105 PowerPCCPU *cpu = opaque;
1106 CPUState *cs = CPU(cpu);
1107 CPUPPCState *env = &cpu->env;
1109 cpu_reset(cs);
1111 /* All CPUs start halted. CPU0 is unhalted from the machine level
1112 * reset code and the rest are explicitly started up by the guest
1113 * using an RTAS call */
1114 cs->halted = 1;
1116 env->spr[SPR_HIOR] = 0;
1118 env->external_htab = (uint8_t *)spapr->htab;
1119 if (kvm_enabled() && !env->external_htab) {
1121 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1122 * functions do the right thing.
1124 env->external_htab = (void *)1;
1126 env->htab_base = -1;
1128 * htab_mask is the mask used to normalize hash value to PTEG index.
1129 * htab_shift is log2 of hash table size.
1130 * We have 8 hpte per group, and each hpte is 16 bytes.
1131 * ie have 128 bytes per hpte entry.
1133 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1134 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1135 (spapr->htab_shift - 18);
1138 static void spapr_create_nvram(sPAPRMachineState *spapr)
1140 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1141 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1143 if (dinfo) {
1144 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
1147 qdev_init_nofail(dev);
1149 spapr->nvram = (struct sPAPRNVRAM *)dev;
1152 static void spapr_rtc_create(sPAPRMachineState *spapr)
1154 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1156 qdev_init_nofail(dev);
1157 spapr->rtc = dev;
1159 object_property_add_alias(qdev_get_machine(), "rtc-time",
1160 OBJECT(spapr->rtc), "date", NULL);
1163 /* Returns whether we want to use VGA or not */
1164 static int spapr_vga_init(PCIBus *pci_bus)
1166 switch (vga_interface_type) {
1167 case VGA_NONE:
1168 return false;
1169 case VGA_DEVICE:
1170 return true;
1171 case VGA_STD:
1172 return pci_vga_init(pci_bus) != NULL;
1173 default:
1174 fprintf(stderr, "This vga model is not supported,"
1175 "currently it only supports -vga std\n");
1176 exit(0);
1180 static int spapr_post_load(void *opaque, int version_id)
1182 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1183 int err = 0;
1185 /* In earlier versions, there was no separate qdev for the PAPR
1186 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1187 * So when migrating from those versions, poke the incoming offset
1188 * value into the RTC device */
1189 if (version_id < 3) {
1190 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1193 return err;
1196 static bool version_before_3(void *opaque, int version_id)
1198 return version_id < 3;
1201 static const VMStateDescription vmstate_spapr = {
1202 .name = "spapr",
1203 .version_id = 3,
1204 .minimum_version_id = 1,
1205 .post_load = spapr_post_load,
1206 .fields = (VMStateField[]) {
1207 /* used to be @next_irq */
1208 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1210 /* RTC offset */
1211 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1213 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1214 VMSTATE_END_OF_LIST()
1218 static int htab_save_setup(QEMUFile *f, void *opaque)
1220 sPAPRMachineState *spapr = opaque;
1222 /* "Iteration" header */
1223 qemu_put_be32(f, spapr->htab_shift);
1225 if (spapr->htab) {
1226 spapr->htab_save_index = 0;
1227 spapr->htab_first_pass = true;
1228 } else {
1229 assert(kvm_enabled());
1231 spapr->htab_fd = kvmppc_get_htab_fd(false);
1232 spapr->htab_fd_stale = false;
1233 if (spapr->htab_fd < 0) {
1234 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1235 strerror(errno));
1236 return -1;
1241 return 0;
1244 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1245 int64_t max_ns)
1247 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1248 int index = spapr->htab_save_index;
1249 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1251 assert(spapr->htab_first_pass);
1253 do {
1254 int chunkstart;
1256 /* Consume invalid HPTEs */
1257 while ((index < htabslots)
1258 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1259 index++;
1260 CLEAN_HPTE(HPTE(spapr->htab, index));
1263 /* Consume valid HPTEs */
1264 chunkstart = index;
1265 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1266 && HPTE_VALID(HPTE(spapr->htab, index))) {
1267 index++;
1268 CLEAN_HPTE(HPTE(spapr->htab, index));
1271 if (index > chunkstart) {
1272 int n_valid = index - chunkstart;
1274 qemu_put_be32(f, chunkstart);
1275 qemu_put_be16(f, n_valid);
1276 qemu_put_be16(f, 0);
1277 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1278 HASH_PTE_SIZE_64 * n_valid);
1280 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1281 break;
1284 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1286 if (index >= htabslots) {
1287 assert(index == htabslots);
1288 index = 0;
1289 spapr->htab_first_pass = false;
1291 spapr->htab_save_index = index;
1294 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1295 int64_t max_ns)
1297 bool final = max_ns < 0;
1298 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1299 int examined = 0, sent = 0;
1300 int index = spapr->htab_save_index;
1301 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1303 assert(!spapr->htab_first_pass);
1305 do {
1306 int chunkstart, invalidstart;
1308 /* Consume non-dirty HPTEs */
1309 while ((index < htabslots)
1310 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1311 index++;
1312 examined++;
1315 chunkstart = index;
1316 /* Consume valid dirty HPTEs */
1317 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1318 && HPTE_DIRTY(HPTE(spapr->htab, index))
1319 && HPTE_VALID(HPTE(spapr->htab, index))) {
1320 CLEAN_HPTE(HPTE(spapr->htab, index));
1321 index++;
1322 examined++;
1325 invalidstart = index;
1326 /* Consume invalid dirty HPTEs */
1327 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1328 && HPTE_DIRTY(HPTE(spapr->htab, index))
1329 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1330 CLEAN_HPTE(HPTE(spapr->htab, index));
1331 index++;
1332 examined++;
1335 if (index > chunkstart) {
1336 int n_valid = invalidstart - chunkstart;
1337 int n_invalid = index - invalidstart;
1339 qemu_put_be32(f, chunkstart);
1340 qemu_put_be16(f, n_valid);
1341 qemu_put_be16(f, n_invalid);
1342 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1343 HASH_PTE_SIZE_64 * n_valid);
1344 sent += index - chunkstart;
1346 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1347 break;
1351 if (examined >= htabslots) {
1352 break;
1355 if (index >= htabslots) {
1356 assert(index == htabslots);
1357 index = 0;
1359 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1361 if (index >= htabslots) {
1362 assert(index == htabslots);
1363 index = 0;
1366 spapr->htab_save_index = index;
1368 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1371 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1372 #define MAX_KVM_BUF_SIZE 2048
1374 static int htab_save_iterate(QEMUFile *f, void *opaque)
1376 sPAPRMachineState *spapr = opaque;
1377 int rc = 0;
1379 /* Iteration header */
1380 qemu_put_be32(f, 0);
1382 if (!spapr->htab) {
1383 assert(kvm_enabled());
1385 rc = spapr_check_htab_fd(spapr);
1386 if (rc < 0) {
1387 return rc;
1390 rc = kvmppc_save_htab(f, spapr->htab_fd,
1391 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1392 if (rc < 0) {
1393 return rc;
1395 } else if (spapr->htab_first_pass) {
1396 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1397 } else {
1398 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1401 /* End marker */
1402 qemu_put_be32(f, 0);
1403 qemu_put_be16(f, 0);
1404 qemu_put_be16(f, 0);
1406 return rc;
1409 static int htab_save_complete(QEMUFile *f, void *opaque)
1411 sPAPRMachineState *spapr = opaque;
1413 /* Iteration header */
1414 qemu_put_be32(f, 0);
1416 if (!spapr->htab) {
1417 int rc;
1419 assert(kvm_enabled());
1421 rc = spapr_check_htab_fd(spapr);
1422 if (rc < 0) {
1423 return rc;
1426 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1427 if (rc < 0) {
1428 return rc;
1430 close(spapr->htab_fd);
1431 spapr->htab_fd = -1;
1432 } else {
1433 htab_save_later_pass(f, spapr, -1);
1436 /* End marker */
1437 qemu_put_be32(f, 0);
1438 qemu_put_be16(f, 0);
1439 qemu_put_be16(f, 0);
1441 return 0;
1444 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1446 sPAPRMachineState *spapr = opaque;
1447 uint32_t section_hdr;
1448 int fd = -1;
1450 if (version_id < 1 || version_id > 1) {
1451 fprintf(stderr, "htab_load() bad version\n");
1452 return -EINVAL;
1455 section_hdr = qemu_get_be32(f);
1457 if (section_hdr) {
1458 /* First section, just the hash shift */
1459 if (spapr->htab_shift != section_hdr) {
1460 error_report("htab_shift mismatch: source %d target %d",
1461 section_hdr, spapr->htab_shift);
1462 return -EINVAL;
1464 return 0;
1467 if (!spapr->htab) {
1468 assert(kvm_enabled());
1470 fd = kvmppc_get_htab_fd(true);
1471 if (fd < 0) {
1472 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1473 strerror(errno));
1477 while (true) {
1478 uint32_t index;
1479 uint16_t n_valid, n_invalid;
1481 index = qemu_get_be32(f);
1482 n_valid = qemu_get_be16(f);
1483 n_invalid = qemu_get_be16(f);
1485 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1486 /* End of Stream */
1487 break;
1490 if ((index + n_valid + n_invalid) >
1491 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1492 /* Bad index in stream */
1493 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1494 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1495 spapr->htab_shift);
1496 return -EINVAL;
1499 if (spapr->htab) {
1500 if (n_valid) {
1501 qemu_get_buffer(f, HPTE(spapr->htab, index),
1502 HASH_PTE_SIZE_64 * n_valid);
1504 if (n_invalid) {
1505 memset(HPTE(spapr->htab, index + n_valid), 0,
1506 HASH_PTE_SIZE_64 * n_invalid);
1508 } else {
1509 int rc;
1511 assert(fd >= 0);
1513 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1514 if (rc < 0) {
1515 return rc;
1520 if (!spapr->htab) {
1521 assert(fd >= 0);
1522 close(fd);
1525 return 0;
1528 static SaveVMHandlers savevm_htab_handlers = {
1529 .save_live_setup = htab_save_setup,
1530 .save_live_iterate = htab_save_iterate,
1531 .save_live_complete = htab_save_complete,
1532 .load_state = htab_load,
1535 static void spapr_boot_set(void *opaque, const char *boot_device,
1536 Error **errp)
1538 MachineState *machine = MACHINE(qdev_get_machine());
1539 machine->boot_order = g_strdup(boot_device);
1542 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1544 CPUPPCState *env = &cpu->env;
1546 /* Set time-base frequency to 512 MHz */
1547 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1549 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1550 * MSR[IP] should never be set.
1552 env->msr_mask &= ~(1 << 6);
1554 /* Tell KVM that we're in PAPR mode */
1555 if (kvm_enabled()) {
1556 kvmppc_set_papr(cpu);
1559 if (cpu->max_compat) {
1560 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1561 exit(1);
1565 xics_cpu_setup(spapr->icp, cpu);
1567 qemu_register_reset(spapr_cpu_reset, cpu);
1571 * Reset routine for LMB DR devices.
1573 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1574 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1575 * when it walks all its children devices. LMB devices reset occurs
1576 * as part of spapr_ppc_reset().
1578 static void spapr_drc_reset(void *opaque)
1580 sPAPRDRConnector *drc = opaque;
1581 DeviceState *d = DEVICE(drc);
1583 if (d) {
1584 device_reset(d);
1588 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1590 MachineState *machine = MACHINE(spapr);
1591 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1592 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1593 int i;
1595 for (i = 0; i < nr_lmbs; i++) {
1596 sPAPRDRConnector *drc;
1597 uint64_t addr;
1599 addr = i * lmb_size + spapr->hotplug_memory.base;
1600 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1601 addr/lmb_size);
1602 qemu_register_reset(spapr_drc_reset, drc);
1607 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1608 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1609 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1611 static void spapr_validate_node_memory(MachineState *machine)
1613 int i;
1615 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1616 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1617 error_report("Can't support memory configuration where RAM size "
1618 "0x" RAM_ADDR_FMT " or maxmem size "
1619 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1620 machine->ram_size, machine->maxram_size,
1621 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1622 exit(EXIT_FAILURE);
1625 for (i = 0; i < nb_numa_nodes; i++) {
1626 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1627 error_report("Can't support memory configuration where memory size"
1628 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1629 numa_info[i].node_mem, i,
1630 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1631 exit(EXIT_FAILURE);
1636 /* pSeries LPAR / sPAPR hardware init */
1637 static void ppc_spapr_init(MachineState *machine)
1639 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1640 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1641 const char *kernel_filename = machine->kernel_filename;
1642 const char *kernel_cmdline = machine->kernel_cmdline;
1643 const char *initrd_filename = machine->initrd_filename;
1644 PowerPCCPU *cpu;
1645 PCIHostState *phb;
1646 int i;
1647 MemoryRegion *sysmem = get_system_memory();
1648 MemoryRegion *ram = g_new(MemoryRegion, 1);
1649 MemoryRegion *rma_region;
1650 void *rma = NULL;
1651 hwaddr rma_alloc_size;
1652 hwaddr node0_size = spapr_node0_size();
1653 uint32_t initrd_base = 0;
1654 long kernel_size = 0, initrd_size = 0;
1655 long load_limit, fw_size;
1656 bool kernel_le = false;
1657 char *filename;
1659 msi_supported = true;
1661 QLIST_INIT(&spapr->phbs);
1663 cpu_ppc_hypercall = emulate_spapr_hypercall;
1665 /* Allocate RMA if necessary */
1666 rma_alloc_size = kvmppc_alloc_rma(&rma);
1668 if (rma_alloc_size == -1) {
1669 error_report("Unable to create RMA");
1670 exit(1);
1673 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1674 spapr->rma_size = rma_alloc_size;
1675 } else {
1676 spapr->rma_size = node0_size;
1678 /* With KVM, we don't actually know whether KVM supports an
1679 * unbounded RMA (PR KVM) or is limited by the hash table size
1680 * (HV KVM using VRMA), so we always assume the latter
1682 * In that case, we also limit the initial allocations for RTAS
1683 * etc... to 256M since we have no way to know what the VRMA size
1684 * is going to be as it depends on the size of the hash table
1685 * isn't determined yet.
1687 if (kvm_enabled()) {
1688 spapr->vrma_adjust = 1;
1689 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1693 if (spapr->rma_size > node0_size) {
1694 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1695 spapr->rma_size);
1696 exit(1);
1699 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1700 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1702 /* We aim for a hash table of size 1/128 the size of RAM. The
1703 * normal rule of thumb is 1/64 the size of RAM, but that's much
1704 * more than needed for the Linux guests we support. */
1705 spapr->htab_shift = 18; /* Minimum architected size */
1706 while (spapr->htab_shift <= 46) {
1707 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
1708 break;
1710 spapr->htab_shift++;
1713 /* Set up Interrupt Controller before we create the VCPUs */
1714 spapr->icp = xics_system_init(machine,
1715 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1716 smp_threads),
1717 XICS_IRQS);
1719 if (smc->dr_lmb_enabled) {
1720 spapr_validate_node_memory(machine);
1723 /* init CPUs */
1724 if (machine->cpu_model == NULL) {
1725 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1727 for (i = 0; i < smp_cpus; i++) {
1728 cpu = cpu_ppc_init(machine->cpu_model);
1729 if (cpu == NULL) {
1730 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1731 exit(1);
1733 spapr_cpu_init(spapr, cpu);
1736 if (kvm_enabled()) {
1737 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1738 kvmppc_enable_logical_ci_hcalls();
1739 kvmppc_enable_set_mode_hcall();
1742 /* allocate RAM */
1743 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1744 machine->ram_size);
1745 memory_region_add_subregion(sysmem, 0, ram);
1747 if (rma_alloc_size && rma) {
1748 rma_region = g_new(MemoryRegion, 1);
1749 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1750 rma_alloc_size, rma);
1751 vmstate_register_ram_global(rma_region);
1752 memory_region_add_subregion(sysmem, 0, rma_region);
1755 /* initialize hotplug memory address space */
1756 if (machine->ram_size < machine->maxram_size) {
1757 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1759 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1760 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1761 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1762 exit(EXIT_FAILURE);
1765 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1766 SPAPR_HOTPLUG_MEM_ALIGN);
1767 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1768 "hotplug-memory", hotplug_mem_size);
1769 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1770 &spapr->hotplug_memory.mr);
1773 if (smc->dr_lmb_enabled) {
1774 spapr_create_lmb_dr_connectors(spapr);
1777 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1778 if (!filename) {
1779 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1780 exit(1);
1782 spapr->rtas_size = get_image_size(filename);
1783 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1784 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1785 error_report("Could not load LPAR rtas '%s'", filename);
1786 exit(1);
1788 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1789 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1790 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1791 exit(1);
1793 g_free(filename);
1795 /* Set up EPOW events infrastructure */
1796 spapr_events_init(spapr);
1798 /* Set up the RTC RTAS interfaces */
1799 spapr_rtc_create(spapr);
1801 /* Set up VIO bus */
1802 spapr->vio_bus = spapr_vio_bus_init();
1804 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1805 if (serial_hds[i]) {
1806 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1810 /* We always have at least the nvram device on VIO */
1811 spapr_create_nvram(spapr);
1813 /* Set up PCI */
1814 spapr_pci_rtas_init();
1816 phb = spapr_create_phb(spapr, 0);
1818 for (i = 0; i < nb_nics; i++) {
1819 NICInfo *nd = &nd_table[i];
1821 if (!nd->model) {
1822 nd->model = g_strdup("ibmveth");
1825 if (strcmp(nd->model, "ibmveth") == 0) {
1826 spapr_vlan_create(spapr->vio_bus, nd);
1827 } else {
1828 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1832 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1833 spapr_vscsi_create(spapr->vio_bus);
1836 /* Graphics */
1837 if (spapr_vga_init(phb->bus)) {
1838 spapr->has_graphics = true;
1839 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1842 if (machine->usb) {
1843 pci_create_simple(phb->bus, -1, "pci-ohci");
1845 if (spapr->has_graphics) {
1846 USBBus *usb_bus = usb_bus_find(-1);
1848 usb_create_simple(usb_bus, "usb-kbd");
1849 usb_create_simple(usb_bus, "usb-mouse");
1853 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1854 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1855 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1856 exit(1);
1859 if (kernel_filename) {
1860 uint64_t lowaddr = 0;
1862 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1863 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1864 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1865 kernel_size = load_elf(kernel_filename,
1866 translate_kernel_address, NULL,
1867 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1868 kernel_le = kernel_size > 0;
1870 if (kernel_size < 0) {
1871 fprintf(stderr, "qemu: error loading %s: %s\n",
1872 kernel_filename, load_elf_strerror(kernel_size));
1873 exit(1);
1876 /* load initrd */
1877 if (initrd_filename) {
1878 /* Try to locate the initrd in the gap between the kernel
1879 * and the firmware. Add a bit of space just in case
1881 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1882 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1883 load_limit - initrd_base);
1884 if (initrd_size < 0) {
1885 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1886 initrd_filename);
1887 exit(1);
1889 } else {
1890 initrd_base = 0;
1891 initrd_size = 0;
1895 if (bios_name == NULL) {
1896 bios_name = FW_FILE_NAME;
1898 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1899 if (!filename) {
1900 error_report("Could not find LPAR firmware '%s'", bios_name);
1901 exit(1);
1903 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1904 if (fw_size <= 0) {
1905 error_report("Could not load LPAR firmware '%s'", filename);
1906 exit(1);
1908 g_free(filename);
1910 /* FIXME: Should register things through the MachineState's qdev
1911 * interface, this is a legacy from the sPAPREnvironment structure
1912 * which predated MachineState but had a similar function */
1913 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1914 register_savevm_live(NULL, "spapr/htab", -1, 1,
1915 &savevm_htab_handlers, spapr);
1917 /* Prepare the device tree */
1918 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1919 kernel_size, kernel_le,
1920 kernel_cmdline,
1921 spapr->check_exception_irq);
1922 assert(spapr->fdt_skel != NULL);
1924 /* used by RTAS */
1925 QTAILQ_INIT(&spapr->ccs_list);
1926 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1928 qemu_register_boot_set(spapr_boot_set, spapr);
1931 static int spapr_kvm_type(const char *vm_type)
1933 if (!vm_type) {
1934 return 0;
1937 if (!strcmp(vm_type, "HV")) {
1938 return 1;
1941 if (!strcmp(vm_type, "PR")) {
1942 return 2;
1945 error_report("Unknown kvm-type specified '%s'", vm_type);
1946 exit(1);
1950 * Implementation of an interface to adjust firmware path
1951 * for the bootindex property handling.
1953 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1954 DeviceState *dev)
1956 #define CAST(type, obj, name) \
1957 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1958 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1959 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1961 if (d) {
1962 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1963 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1964 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1966 if (spapr) {
1968 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1969 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1970 * in the top 16 bits of the 64-bit LUN
1972 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1973 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1974 (uint64_t)id << 48);
1975 } else if (virtio) {
1977 * We use SRP luns of the form 01000000 | (target << 8) | lun
1978 * in the top 32 bits of the 64-bit LUN
1979 * Note: the quote above is from SLOF and it is wrong,
1980 * the actual binding is:
1981 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1983 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1984 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1985 (uint64_t)id << 32);
1986 } else if (usb) {
1988 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1989 * in the top 32 bits of the 64-bit LUN
1991 unsigned usb_port = atoi(usb->port->path);
1992 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1993 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1994 (uint64_t)id << 32);
1998 if (phb) {
1999 /* Replace "pci" with "pci@800000020000000" */
2000 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2003 return NULL;
2006 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2008 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2010 return g_strdup(spapr->kvm_type);
2013 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2015 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2017 g_free(spapr->kvm_type);
2018 spapr->kvm_type = g_strdup(value);
2021 static void spapr_machine_initfn(Object *obj)
2023 object_property_add_str(obj, "kvm-type",
2024 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2025 object_property_set_description(obj, "kvm-type",
2026 "Specifies the KVM virtualization mode (HV, PR)",
2027 NULL);
2030 static void ppc_cpu_do_nmi_on_cpu(void *arg)
2032 CPUState *cs = arg;
2034 cpu_synchronize_state(cs);
2035 ppc_cpu_do_system_reset(cs);
2038 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2040 CPUState *cs;
2042 CPU_FOREACH(cs) {
2043 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2047 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2048 uint32_t node, Error **errp)
2050 sPAPRDRConnector *drc;
2051 sPAPRDRConnectorClass *drck;
2052 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2053 int i, fdt_offset, fdt_size;
2054 void *fdt;
2057 * Check for DRC connectors and send hotplug notification to the
2058 * guest only in case of hotplugged memory. This allows cold plugged
2059 * memory to be specified at boot time.
2061 if (!dev->hotplugged) {
2062 return;
2065 for (i = 0; i < nr_lmbs; i++) {
2066 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2067 addr/SPAPR_MEMORY_BLOCK_SIZE);
2068 g_assert(drc);
2070 fdt = create_device_tree(&fdt_size);
2071 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2072 SPAPR_MEMORY_BLOCK_SIZE);
2074 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2075 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2076 addr += SPAPR_MEMORY_BLOCK_SIZE;
2078 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2081 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2082 uint32_t node, Error **errp)
2084 Error *local_err = NULL;
2085 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2086 PCDIMMDevice *dimm = PC_DIMM(dev);
2087 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2088 MemoryRegion *mr = ddc->get_memory_region(dimm);
2089 uint64_t align = memory_region_get_alignment(mr);
2090 uint64_t size = memory_region_size(mr);
2091 uint64_t addr;
2093 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2094 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2095 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2096 goto out;
2099 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2100 if (local_err) {
2101 goto out;
2104 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2105 if (local_err) {
2106 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2107 goto out;
2110 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2112 out:
2113 error_propagate(errp, local_err);
2116 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2117 DeviceState *dev, Error **errp)
2119 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2121 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2122 int node;
2124 if (!smc->dr_lmb_enabled) {
2125 error_setg(errp, "Memory hotplug not supported for this machine");
2126 return;
2128 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2129 if (*errp) {
2130 return;
2134 * Currently PowerPC kernel doesn't allow hot-adding memory to
2135 * memory-less node, but instead will silently add the memory
2136 * to the first node that has some memory. This causes two
2137 * unexpected behaviours for the user.
2139 * - Memory gets hotplugged to a different node than what the user
2140 * specified.
2141 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2142 * to memory-less node, a reboot will set things accordingly
2143 * and the previously hotplugged memory now ends in the right node.
2144 * This appears as if some memory moved from one node to another.
2146 * So until kernel starts supporting memory hotplug to memory-less
2147 * nodes, just prevent such attempts upfront in QEMU.
2149 if (nb_numa_nodes && !numa_info[node].node_mem) {
2150 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2151 node);
2152 return;
2155 spapr_memory_plug(hotplug_dev, dev, node, errp);
2159 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2160 DeviceState *dev, Error **errp)
2162 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2163 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2167 static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2168 DeviceState *dev)
2170 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2171 return HOTPLUG_HANDLER(machine);
2173 return NULL;
2176 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2178 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2179 * socket means much for the paravirtualized PAPR platform) */
2180 return cpu_index / smp_threads / smp_cores;
2183 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2185 MachineClass *mc = MACHINE_CLASS(oc);
2186 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2187 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2188 NMIClass *nc = NMI_CLASS(oc);
2189 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2191 mc->init = ppc_spapr_init;
2192 mc->reset = ppc_spapr_reset;
2193 mc->block_default_type = IF_SCSI;
2194 mc->max_cpus = MAX_CPUMASK_BITS;
2195 mc->no_parallel = 1;
2196 mc->default_boot_order = "";
2197 mc->default_ram_size = 512 * M_BYTE;
2198 mc->kvm_type = spapr_kvm_type;
2199 mc->has_dynamic_sysbus = true;
2200 mc->pci_allow_0_address = true;
2201 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2202 hc->plug = spapr_machine_device_plug;
2203 hc->unplug = spapr_machine_device_unplug;
2204 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2206 smc->dr_lmb_enabled = false;
2207 fwc->get_dev_path = spapr_get_fw_dev_path;
2208 nc->nmi_monitor_handler = spapr_nmi;
2211 static const TypeInfo spapr_machine_info = {
2212 .name = TYPE_SPAPR_MACHINE,
2213 .parent = TYPE_MACHINE,
2214 .abstract = true,
2215 .instance_size = sizeof(sPAPRMachineState),
2216 .instance_init = spapr_machine_initfn,
2217 .class_size = sizeof(sPAPRMachineClass),
2218 .class_init = spapr_machine_class_init,
2219 .interfaces = (InterfaceInfo[]) {
2220 { TYPE_FW_PATH_PROVIDER },
2221 { TYPE_NMI },
2222 { TYPE_HOTPLUG_HANDLER },
2227 #define SPAPR_COMPAT_2_3 \
2228 HW_COMPAT_2_3 \
2230 .driver = "spapr-pci-host-bridge",\
2231 .property = "dynamic-reconfiguration",\
2232 .value = "off",\
2235 #define SPAPR_COMPAT_2_2 \
2236 SPAPR_COMPAT_2_3 \
2237 HW_COMPAT_2_2 \
2239 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2240 .property = "mem_win_size",\
2241 .value = "0x20000000",\
2244 #define SPAPR_COMPAT_2_1 \
2245 SPAPR_COMPAT_2_2 \
2246 HW_COMPAT_2_1
2248 static void spapr_compat_2_3(Object *obj)
2250 savevm_skip_section_footers();
2251 global_state_set_optional();
2254 static void spapr_compat_2_2(Object *obj)
2256 spapr_compat_2_3(obj);
2259 static void spapr_compat_2_1(Object *obj)
2261 spapr_compat_2_2(obj);
2264 static void spapr_machine_2_3_instance_init(Object *obj)
2266 spapr_compat_2_3(obj);
2267 spapr_machine_initfn(obj);
2270 static void spapr_machine_2_2_instance_init(Object *obj)
2272 spapr_compat_2_2(obj);
2273 spapr_machine_initfn(obj);
2276 static void spapr_machine_2_1_instance_init(Object *obj)
2278 spapr_compat_2_1(obj);
2279 spapr_machine_initfn(obj);
2282 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2284 MachineClass *mc = MACHINE_CLASS(oc);
2285 static GlobalProperty compat_props[] = {
2286 SPAPR_COMPAT_2_1
2287 { /* end of list */ }
2290 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
2291 mc->compat_props = compat_props;
2294 static const TypeInfo spapr_machine_2_1_info = {
2295 .name = MACHINE_TYPE_NAME("pseries-2.1"),
2296 .parent = TYPE_SPAPR_MACHINE,
2297 .class_init = spapr_machine_2_1_class_init,
2298 .instance_init = spapr_machine_2_1_instance_init,
2301 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2303 static GlobalProperty compat_props[] = {
2304 SPAPR_COMPAT_2_2
2305 { /* end of list */ }
2307 MachineClass *mc = MACHINE_CLASS(oc);
2309 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
2310 mc->compat_props = compat_props;
2313 static const TypeInfo spapr_machine_2_2_info = {
2314 .name = MACHINE_TYPE_NAME("pseries-2.2"),
2315 .parent = TYPE_SPAPR_MACHINE,
2316 .class_init = spapr_machine_2_2_class_init,
2317 .instance_init = spapr_machine_2_2_instance_init,
2320 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2322 static GlobalProperty compat_props[] = {
2323 SPAPR_COMPAT_2_3
2324 { /* end of list */ }
2326 MachineClass *mc = MACHINE_CLASS(oc);
2328 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
2329 mc->compat_props = compat_props;
2332 static const TypeInfo spapr_machine_2_3_info = {
2333 .name = MACHINE_TYPE_NAME("pseries-2.3"),
2334 .parent = TYPE_SPAPR_MACHINE,
2335 .class_init = spapr_machine_2_3_class_init,
2336 .instance_init = spapr_machine_2_3_instance_init,
2339 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2341 MachineClass *mc = MACHINE_CLASS(oc);
2343 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2344 mc->alias = "pseries";
2345 mc->is_default = 0;
2348 static const TypeInfo spapr_machine_2_4_info = {
2349 .name = MACHINE_TYPE_NAME("pseries-2.4"),
2350 .parent = TYPE_SPAPR_MACHINE,
2351 .class_init = spapr_machine_2_4_class_init,
2354 static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2356 MachineClass *mc = MACHINE_CLASS(oc);
2357 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2359 mc->name = "pseries-2.5";
2360 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2361 mc->alias = "pseries";
2362 mc->is_default = 1;
2363 smc->dr_lmb_enabled = true;
2366 static const TypeInfo spapr_machine_2_5_info = {
2367 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2368 .parent = TYPE_SPAPR_MACHINE,
2369 .class_init = spapr_machine_2_5_class_init,
2372 static void spapr_machine_register_types(void)
2374 type_register_static(&spapr_machine_info);
2375 type_register_static(&spapr_machine_2_1_info);
2376 type_register_static(&spapr_machine_2_2_info);
2377 type_register_static(&spapr_machine_2_3_info);
2378 type_register_static(&spapr_machine_2_4_info);
2379 type_register_static(&spapr_machine_2_5_info);
2382 type_init(spapr_machine_register_types)