net: pcnet: check rx/tx descriptor ring length
[qemu/ar7.git] / util / qemu-thread-win32.c
blob072806f7928ec5812069c24fb51b8d1a2db2ac77
1 /*
2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
6 * Author:
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "qemu/thread.h"
16 #include "qemu/notify.h"
17 #include <process.h>
19 static bool name_threads;
21 void qemu_thread_naming(bool enable)
23 /* But note we don't actually name them on Windows yet */
24 name_threads = enable;
26 fprintf(stderr, "qemu: thread naming not supported on this host\n");
29 static void error_exit(int err, const char *msg)
31 char *pstr;
33 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
34 NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
35 fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
36 LocalFree(pstr);
37 abort();
40 void qemu_mutex_init(QemuMutex *mutex)
42 mutex->owner = 0;
43 InitializeCriticalSection(&mutex->lock);
46 void qemu_mutex_destroy(QemuMutex *mutex)
48 assert(mutex->owner == 0);
49 DeleteCriticalSection(&mutex->lock);
52 void qemu_mutex_lock(QemuMutex *mutex)
54 EnterCriticalSection(&mutex->lock);
56 /* Win32 CRITICAL_SECTIONs are recursive. Assert that we're not
57 * using them as such.
59 assert(mutex->owner == 0);
60 mutex->owner = GetCurrentThreadId();
63 int qemu_mutex_trylock(QemuMutex *mutex)
65 int owned;
67 owned = TryEnterCriticalSection(&mutex->lock);
68 if (owned) {
69 assert(mutex->owner == 0);
70 mutex->owner = GetCurrentThreadId();
72 return !owned;
75 void qemu_mutex_unlock(QemuMutex *mutex)
77 assert(mutex->owner == GetCurrentThreadId());
78 mutex->owner = 0;
79 LeaveCriticalSection(&mutex->lock);
82 void qemu_cond_init(QemuCond *cond)
84 memset(cond, 0, sizeof(*cond));
86 cond->sema = CreateSemaphore(NULL, 0, LONG_MAX, NULL);
87 if (!cond->sema) {
88 error_exit(GetLastError(), __func__);
90 cond->continue_event = CreateEvent(NULL, /* security */
91 FALSE, /* auto-reset */
92 FALSE, /* not signaled */
93 NULL); /* name */
94 if (!cond->continue_event) {
95 error_exit(GetLastError(), __func__);
99 void qemu_cond_destroy(QemuCond *cond)
101 BOOL result;
102 result = CloseHandle(cond->continue_event);
103 if (!result) {
104 error_exit(GetLastError(), __func__);
106 cond->continue_event = 0;
107 result = CloseHandle(cond->sema);
108 if (!result) {
109 error_exit(GetLastError(), __func__);
111 cond->sema = 0;
114 void qemu_cond_signal(QemuCond *cond)
116 DWORD result;
119 * Signal only when there are waiters. cond->waiters is
120 * incremented by pthread_cond_wait under the external lock,
121 * so we are safe about that.
123 if (cond->waiters == 0) {
124 return;
128 * Waiting threads decrement it outside the external lock, but
129 * only if another thread is executing pthread_cond_broadcast and
130 * has the mutex. So, it also cannot be decremented concurrently
131 * with this particular access.
133 cond->target = cond->waiters - 1;
134 result = SignalObjectAndWait(cond->sema, cond->continue_event,
135 INFINITE, FALSE);
136 if (result == WAIT_ABANDONED || result == WAIT_FAILED) {
137 error_exit(GetLastError(), __func__);
141 void qemu_cond_broadcast(QemuCond *cond)
143 BOOLEAN result;
145 * As in pthread_cond_signal, access to cond->waiters and
146 * cond->target is locked via the external mutex.
148 if (cond->waiters == 0) {
149 return;
152 cond->target = 0;
153 result = ReleaseSemaphore(cond->sema, cond->waiters, NULL);
154 if (!result) {
155 error_exit(GetLastError(), __func__);
159 * At this point all waiters continue. Each one takes its
160 * slice of the semaphore. Now it's our turn to wait: Since
161 * the external mutex is held, no thread can leave cond_wait,
162 * yet. For this reason, we can be sure that no thread gets
163 * a chance to eat *more* than one slice. OTOH, it means
164 * that the last waiter must send us a wake-up.
166 WaitForSingleObject(cond->continue_event, INFINITE);
169 void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
172 * This access is protected under the mutex.
174 cond->waiters++;
177 * Unlock external mutex and wait for signal.
178 * NOTE: we've held mutex locked long enough to increment
179 * waiters count above, so there's no problem with
180 * leaving mutex unlocked before we wait on semaphore.
182 qemu_mutex_unlock(mutex);
183 WaitForSingleObject(cond->sema, INFINITE);
185 /* Now waiters must rendez-vous with the signaling thread and
186 * let it continue. For cond_broadcast this has heavy contention
187 * and triggers thundering herd. So goes life.
189 * Decrease waiters count. The mutex is not taken, so we have
190 * to do this atomically.
192 * All waiters contend for the mutex at the end of this function
193 * until the signaling thread relinquishes it. To ensure
194 * each waiter consumes exactly one slice of the semaphore,
195 * the signaling thread stops until it is told by the last
196 * waiter that it can go on.
198 if (InterlockedDecrement(&cond->waiters) == cond->target) {
199 SetEvent(cond->continue_event);
202 qemu_mutex_lock(mutex);
205 void qemu_sem_init(QemuSemaphore *sem, int init)
207 /* Manual reset. */
208 sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
211 void qemu_sem_destroy(QemuSemaphore *sem)
213 CloseHandle(sem->sema);
216 void qemu_sem_post(QemuSemaphore *sem)
218 ReleaseSemaphore(sem->sema, 1, NULL);
221 int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
223 int rc = WaitForSingleObject(sem->sema, ms);
224 if (rc == WAIT_OBJECT_0) {
225 return 0;
227 if (rc != WAIT_TIMEOUT) {
228 error_exit(GetLastError(), __func__);
230 return -1;
233 void qemu_sem_wait(QemuSemaphore *sem)
235 if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
236 error_exit(GetLastError(), __func__);
240 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
241 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
242 * sequence. Such a sequence is, indeed, how QemuEvents are used by
243 * RCU and other subsystems!
245 * Valid transitions:
246 * - free->set, when setting the event
247 * - busy->set, when setting the event, followed by futex_wake
248 * - set->free, when resetting the event
249 * - free->busy, when waiting
251 * set->busy does not happen (it can be observed from the outside but
252 * it really is set->free->busy).
254 * busy->free provably cannot happen; to enforce it, the set->free transition
255 * is done with an OR, which becomes a no-op if the event has concurrently
256 * transitioned to free or busy (and is faster than cmpxchg).
259 #define EV_SET 0
260 #define EV_FREE 1
261 #define EV_BUSY -1
263 void qemu_event_init(QemuEvent *ev, bool init)
265 /* Manual reset. */
266 ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
267 ev->value = (init ? EV_SET : EV_FREE);
270 void qemu_event_destroy(QemuEvent *ev)
272 CloseHandle(ev->event);
275 void qemu_event_set(QemuEvent *ev)
277 /* qemu_event_set has release semantics, but because it *loads*
278 * ev->value we need a full memory barrier here.
280 smp_mb();
281 if (atomic_read(&ev->value) != EV_SET) {
282 if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
283 /* There were waiters, wake them up. */
284 SetEvent(ev->event);
289 void qemu_event_reset(QemuEvent *ev)
291 unsigned value;
293 value = atomic_read(&ev->value);
294 smp_mb_acquire();
295 if (value == EV_SET) {
296 /* If there was a concurrent reset (or even reset+wait),
297 * do nothing. Otherwise change EV_SET->EV_FREE.
299 atomic_or(&ev->value, EV_FREE);
303 void qemu_event_wait(QemuEvent *ev)
305 unsigned value;
307 value = atomic_read(&ev->value);
308 smp_mb_acquire();
309 if (value != EV_SET) {
310 if (value == EV_FREE) {
311 /* qemu_event_set is not yet going to call SetEvent, but we are
312 * going to do another check for EV_SET below when setting EV_BUSY.
313 * At that point it is safe to call WaitForSingleObject.
315 ResetEvent(ev->event);
317 /* Tell qemu_event_set that there are waiters. No need to retry
318 * because there cannot be a concurent busy->free transition.
319 * After the CAS, the event will be either set or busy.
321 if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
322 value = EV_SET;
323 } else {
324 value = EV_BUSY;
327 if (value == EV_BUSY) {
328 WaitForSingleObject(ev->event, INFINITE);
333 struct QemuThreadData {
334 /* Passed to win32_start_routine. */
335 void *(*start_routine)(void *);
336 void *arg;
337 short mode;
338 NotifierList exit;
340 /* Only used for joinable threads. */
341 bool exited;
342 void *ret;
343 CRITICAL_SECTION cs;
346 static bool atexit_registered;
347 static NotifierList main_thread_exit;
349 static __thread QemuThreadData *qemu_thread_data;
351 static void run_main_thread_exit(void)
353 notifier_list_notify(&main_thread_exit, NULL);
356 void qemu_thread_atexit_add(Notifier *notifier)
358 if (!qemu_thread_data) {
359 if (!atexit_registered) {
360 atexit_registered = true;
361 atexit(run_main_thread_exit);
363 notifier_list_add(&main_thread_exit, notifier);
364 } else {
365 notifier_list_add(&qemu_thread_data->exit, notifier);
369 void qemu_thread_atexit_remove(Notifier *notifier)
371 notifier_remove(notifier);
374 static unsigned __stdcall win32_start_routine(void *arg)
376 QemuThreadData *data = (QemuThreadData *) arg;
377 void *(*start_routine)(void *) = data->start_routine;
378 void *thread_arg = data->arg;
380 qemu_thread_data = data;
381 qemu_thread_exit(start_routine(thread_arg));
382 abort();
385 void qemu_thread_exit(void *arg)
387 QemuThreadData *data = qemu_thread_data;
389 notifier_list_notify(&data->exit, NULL);
390 if (data->mode == QEMU_THREAD_JOINABLE) {
391 data->ret = arg;
392 EnterCriticalSection(&data->cs);
393 data->exited = true;
394 LeaveCriticalSection(&data->cs);
395 } else {
396 g_free(data);
398 _endthreadex(0);
401 void *qemu_thread_join(QemuThread *thread)
403 QemuThreadData *data;
404 void *ret;
405 HANDLE handle;
407 data = thread->data;
408 if (data->mode == QEMU_THREAD_DETACHED) {
409 return NULL;
413 * Because multiple copies of the QemuThread can exist via
414 * qemu_thread_get_self, we need to store a value that cannot
415 * leak there. The simplest, non racy way is to store the TID,
416 * discard the handle that _beginthreadex gives back, and
417 * get another copy of the handle here.
419 handle = qemu_thread_get_handle(thread);
420 if (handle) {
421 WaitForSingleObject(handle, INFINITE);
422 CloseHandle(handle);
424 ret = data->ret;
425 DeleteCriticalSection(&data->cs);
426 g_free(data);
427 return ret;
430 void qemu_thread_create(QemuThread *thread, const char *name,
431 void *(*start_routine)(void *),
432 void *arg, int mode)
434 HANDLE hThread;
435 struct QemuThreadData *data;
437 data = g_malloc(sizeof *data);
438 data->start_routine = start_routine;
439 data->arg = arg;
440 data->mode = mode;
441 data->exited = false;
442 notifier_list_init(&data->exit);
444 if (data->mode != QEMU_THREAD_DETACHED) {
445 InitializeCriticalSection(&data->cs);
448 hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
449 data, 0, &thread->tid);
450 if (!hThread) {
451 error_exit(GetLastError(), __func__);
453 CloseHandle(hThread);
454 thread->data = data;
457 void qemu_thread_get_self(QemuThread *thread)
459 thread->data = qemu_thread_data;
460 thread->tid = GetCurrentThreadId();
463 HANDLE qemu_thread_get_handle(QemuThread *thread)
465 QemuThreadData *data;
466 HANDLE handle;
468 data = thread->data;
469 if (data->mode == QEMU_THREAD_DETACHED) {
470 return NULL;
473 EnterCriticalSection(&data->cs);
474 if (!data->exited) {
475 handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME, FALSE,
476 thread->tid);
477 } else {
478 handle = NULL;
480 LeaveCriticalSection(&data->cs);
481 return handle;
484 bool qemu_thread_is_self(QemuThread *thread)
486 return GetCurrentThreadId() == thread->tid;