4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
32 #if defined(CONFIG_USER_ONLY)
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <machine/profile.h>
49 #include "exec/address-spaces.h"
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/timer.h"
59 //#define DEBUG_TB_INVALIDATE
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
69 #define SMC_BITMAP_USE_THRESHOLD 10
71 typedef struct PageDesc
{
72 /* list of TBs intersecting this ram page */
73 TranslationBlock
*first_tb
;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count
;
78 unsigned long *code_bitmap
;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
96 /* Size of the L2 (and L3, etc) page tables. */
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 uintptr_t qemu_host_page_size
;
101 intptr_t qemu_host_page_mask
;
104 * L1 Mapping properties
106 static int v_l1_size
;
107 static int v_l1_shift
;
108 static int v_l2_levels
;
110 /* The bottom level has pointers to PageDesc, and is indexed by
111 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
113 #define V_L1_MIN_BITS 4
114 #define V_L1_MAX_BITS (V_L2_BITS + 3)
115 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
117 static void *l1_map
[V_L1_MAX_SIZE
];
119 /* code generation context */
122 /* translation block context */
123 #ifdef CONFIG_USER_ONLY
124 __thread
int have_tb_lock
;
127 static void page_table_config_init(void)
131 assert(TARGET_PAGE_BITS
);
132 /* The bits remaining after N lower levels of page tables. */
133 v_l1_bits
= (L1_MAP_ADDR_SPACE_BITS
- TARGET_PAGE_BITS
) % V_L2_BITS
;
134 if (v_l1_bits
< V_L1_MIN_BITS
) {
135 v_l1_bits
+= V_L2_BITS
;
138 v_l1_size
= 1 << v_l1_bits
;
139 v_l1_shift
= L1_MAP_ADDR_SPACE_BITS
- TARGET_PAGE_BITS
- v_l1_bits
;
140 v_l2_levels
= v_l1_shift
/ V_L2_BITS
- 1;
142 assert(v_l1_bits
<= V_L1_MAX_BITS
);
143 assert(v_l1_shift
% V_L2_BITS
== 0);
144 assert(v_l2_levels
>= 0);
149 #ifdef CONFIG_USER_ONLY
150 assert(!have_tb_lock
);
151 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
158 #ifdef CONFIG_USER_ONLY
159 assert(have_tb_lock
);
161 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
165 void tb_lock_reset(void)
167 #ifdef CONFIG_USER_ONLY
169 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
175 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
);
177 void cpu_gen_init(void)
179 tcg_context_init(&tcg_ctx
);
182 /* Encode VAL as a signed leb128 sequence at P.
183 Return P incremented past the encoded value. */
184 static uint8_t *encode_sleb128(uint8_t *p
, target_long val
)
191 more
= !((val
== 0 && (byte
& 0x40) == 0)
192 || (val
== -1 && (byte
& 0x40) != 0));
202 /* Decode a signed leb128 sequence at *PP; increment *PP past the
203 decoded value. Return the decoded value. */
204 static target_long
decode_sleb128(uint8_t **pp
)
212 val
|= (target_ulong
)(byte
& 0x7f) << shift
;
214 } while (byte
& 0x80);
215 if (shift
< TARGET_LONG_BITS
&& (byte
& 0x40)) {
216 val
|= -(target_ulong
)1 << shift
;
223 /* Encode the data collected about the instructions while compiling TB.
224 Place the data at BLOCK, and return the number of bytes consumed.
226 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
227 which come from the target's insn_start data, followed by a uintptr_t
228 which comes from the host pc of the end of the code implementing the insn.
230 Each line of the table is encoded as sleb128 deltas from the previous
231 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
232 That is, the first column is seeded with the guest pc, the last column
233 with the host pc, and the middle columns with zeros. */
235 static int encode_search(TranslationBlock
*tb
, uint8_t *block
)
237 uint8_t *highwater
= tcg_ctx
.code_gen_highwater
;
241 tb
->tc_search
= block
;
243 for (i
= 0, n
= tb
->icount
; i
< n
; ++i
) {
246 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
248 prev
= (j
== 0 ? tb
->pc
: 0);
250 prev
= tcg_ctx
.gen_insn_data
[i
- 1][j
];
252 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_data
[i
][j
] - prev
);
254 prev
= (i
== 0 ? 0 : tcg_ctx
.gen_insn_end_off
[i
- 1]);
255 p
= encode_sleb128(p
, tcg_ctx
.gen_insn_end_off
[i
] - prev
);
257 /* Test for (pending) buffer overflow. The assumption is that any
258 one row beginning below the high water mark cannot overrun
259 the buffer completely. Thus we can test for overflow after
260 encoding a row without having to check during encoding. */
261 if (unlikely(p
> highwater
)) {
269 /* The cpu state corresponding to 'searched_pc' is restored. */
270 static int cpu_restore_state_from_tb(CPUState
*cpu
, TranslationBlock
*tb
,
271 uintptr_t searched_pc
)
273 target_ulong data
[TARGET_INSN_START_WORDS
] = { tb
->pc
};
274 uintptr_t host_pc
= (uintptr_t)tb
->tc_ptr
;
275 CPUArchState
*env
= cpu
->env_ptr
;
276 uint8_t *p
= tb
->tc_search
;
277 int i
, j
, num_insns
= tb
->icount
;
278 #ifdef CONFIG_PROFILER
279 int64_t ti
= profile_getclock();
282 searched_pc
-= GETPC_ADJ
;
284 if (searched_pc
< host_pc
) {
288 /* Reconstruct the stored insn data while looking for the point at
289 which the end of the insn exceeds the searched_pc. */
290 for (i
= 0; i
< num_insns
; ++i
) {
291 for (j
= 0; j
< TARGET_INSN_START_WORDS
; ++j
) {
292 data
[j
] += decode_sleb128(&p
);
294 host_pc
+= decode_sleb128(&p
);
295 if (host_pc
> searched_pc
) {
302 if (tb
->cflags
& CF_USE_ICOUNT
) {
304 /* Reset the cycle counter to the start of the block. */
305 cpu
->icount_decr
.u16
.low
+= num_insns
;
306 /* Clear the IO flag. */
309 cpu
->icount_decr
.u16
.low
-= i
;
310 restore_state_to_opc(env
, tb
, data
);
312 #ifdef CONFIG_PROFILER
313 tcg_ctx
.restore_time
+= profile_getclock() - ti
;
314 tcg_ctx
.restore_count
++;
319 bool cpu_restore_state(CPUState
*cpu
, uintptr_t retaddr
)
321 TranslationBlock
*tb
;
323 tb
= tb_find_pc(retaddr
);
325 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
326 if (tb
->cflags
& CF_NOCACHE
) {
327 /* one-shot translation, invalidate it immediately */
328 tb_phys_invalidate(tb
, -1);
336 void page_size_init(void)
338 /* NOTE: we can always suppose that qemu_host_page_size >=
340 qemu_real_host_page_size
= getpagesize();
341 qemu_real_host_page_mask
= -(intptr_t)qemu_real_host_page_size
;
342 if (qemu_host_page_size
== 0) {
343 qemu_host_page_size
= qemu_real_host_page_size
;
345 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
346 qemu_host_page_size
= TARGET_PAGE_SIZE
;
348 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
351 static void page_init(void)
354 page_table_config_init();
356 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
358 #ifdef HAVE_KINFO_GETVMMAP
359 struct kinfo_vmentry
*freep
;
362 freep
= kinfo_getvmmap(getpid(), &cnt
);
365 for (i
= 0; i
< cnt
; i
++) {
366 unsigned long startaddr
, endaddr
;
368 startaddr
= freep
[i
].kve_start
;
369 endaddr
= freep
[i
].kve_end
;
370 if (h2g_valid(startaddr
)) {
371 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
373 if (h2g_valid(endaddr
)) {
374 endaddr
= h2g(endaddr
);
375 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
377 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
379 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
390 last_brk
= (unsigned long)sbrk(0);
392 f
= fopen("/compat/linux/proc/self/maps", "r");
397 unsigned long startaddr
, endaddr
;
400 n
= fscanf(f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
402 if (n
== 2 && h2g_valid(startaddr
)) {
403 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
405 if (h2g_valid(endaddr
)) {
406 endaddr
= h2g(endaddr
);
410 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
423 * Called with mmap_lock held for user-mode emulation.
425 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
431 /* Level 1. Always allocated. */
432 lp
= l1_map
+ ((index
>> v_l1_shift
) & (v_l1_size
- 1));
435 for (i
= v_l2_levels
; i
> 0; i
--) {
436 void **p
= atomic_rcu_read(lp
);
442 p
= g_new0(void *, V_L2_SIZE
);
443 atomic_rcu_set(lp
, p
);
446 lp
= p
+ ((index
>> (i
* V_L2_BITS
)) & (V_L2_SIZE
- 1));
449 pd
= atomic_rcu_read(lp
);
454 pd
= g_new0(PageDesc
, V_L2_SIZE
);
455 atomic_rcu_set(lp
, pd
);
458 return pd
+ (index
& (V_L2_SIZE
- 1));
461 static inline PageDesc
*page_find(tb_page_addr_t index
)
463 return page_find_alloc(index
, 0);
466 #if defined(CONFIG_USER_ONLY)
467 /* Currently it is not recommended to allocate big chunks of data in
468 user mode. It will change when a dedicated libc will be used. */
469 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
470 region in which the guest needs to run. Revisit this. */
471 #define USE_STATIC_CODE_GEN_BUFFER
474 /* Minimum size of the code gen buffer. This number is randomly chosen,
475 but not so small that we can't have a fair number of TB's live. */
476 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
478 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
479 indicated, this is constrained by the range of direct branches on the
480 host cpu, as used by the TCG implementation of goto_tb. */
481 #if defined(__x86_64__)
482 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
483 #elif defined(__sparc__)
484 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
485 #elif defined(__powerpc64__)
486 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
487 #elif defined(__powerpc__)
488 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
489 #elif defined(__aarch64__)
490 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
491 #elif defined(__arm__)
492 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
493 #elif defined(__s390x__)
494 /* We have a +- 4GB range on the branches; leave some slop. */
495 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
496 #elif defined(__mips__)
497 /* We have a 256MB branch region, but leave room to make sure the
498 main executable is also within that region. */
499 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
501 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
504 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
506 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
507 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
508 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
510 static inline size_t size_code_gen_buffer(size_t tb_size
)
512 /* Size the buffer. */
514 #ifdef USE_STATIC_CODE_GEN_BUFFER
515 tb_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
517 /* ??? Needs adjustments. */
518 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
519 static buffer, we could size this on RESERVED_VA, on the text
520 segment size of the executable, or continue to use the default. */
521 tb_size
= (unsigned long)(ram_size
/ 4);
524 if (tb_size
< MIN_CODE_GEN_BUFFER_SIZE
) {
525 tb_size
= MIN_CODE_GEN_BUFFER_SIZE
;
527 if (tb_size
> MAX_CODE_GEN_BUFFER_SIZE
) {
528 tb_size
= MAX_CODE_GEN_BUFFER_SIZE
;
534 /* In order to use J and JAL within the code_gen_buffer, we require
535 that the buffer not cross a 256MB boundary. */
536 static inline bool cross_256mb(void *addr
, size_t size
)
538 return ((uintptr_t)addr
^ ((uintptr_t)addr
+ size
)) & ~0x0ffffffful
;
541 /* We weren't able to allocate a buffer without crossing that boundary,
542 so make do with the larger portion of the buffer that doesn't cross.
543 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
544 static inline void *split_cross_256mb(void *buf1
, size_t size1
)
546 void *buf2
= (void *)(((uintptr_t)buf1
+ size1
) & ~0x0ffffffful
);
547 size_t size2
= buf1
+ size1
- buf2
;
555 tcg_ctx
.code_gen_buffer_size
= size1
;
560 #ifdef USE_STATIC_CODE_GEN_BUFFER
561 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
562 __attribute__((aligned(CODE_GEN_ALIGN
)));
565 static inline void do_protect(void *addr
, long size
, int prot
)
568 VirtualProtect(addr
, size
, prot
, &old_protect
);
571 static inline void map_exec(void *addr
, long size
)
573 do_protect(addr
, size
, PAGE_EXECUTE_READWRITE
);
576 static inline void map_none(void *addr
, long size
)
578 do_protect(addr
, size
, PAGE_NOACCESS
);
581 static inline void do_protect(void *addr
, long size
, int prot
)
583 uintptr_t start
, end
;
585 start
= (uintptr_t)addr
;
586 start
&= qemu_real_host_page_mask
;
588 end
= (uintptr_t)addr
+ size
;
589 end
= ROUND_UP(end
, qemu_real_host_page_size
);
591 mprotect((void *)start
, end
- start
, prot
);
594 static inline void map_exec(void *addr
, long size
)
596 do_protect(addr
, size
, PROT_READ
| PROT_WRITE
| PROT_EXEC
);
599 static inline void map_none(void *addr
, long size
)
601 do_protect(addr
, size
, PROT_NONE
);
605 static inline void *alloc_code_gen_buffer(void)
607 void *buf
= static_code_gen_buffer
;
608 size_t full_size
, size
;
610 /* The size of the buffer, rounded down to end on a page boundary. */
611 full_size
= (((uintptr_t)buf
+ sizeof(static_code_gen_buffer
))
612 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
614 /* Reserve a guard page. */
615 size
= full_size
- qemu_real_host_page_size
;
617 /* Honor a command-line option limiting the size of the buffer. */
618 if (size
> tcg_ctx
.code_gen_buffer_size
) {
619 size
= (((uintptr_t)buf
+ tcg_ctx
.code_gen_buffer_size
)
620 & qemu_real_host_page_mask
) - (uintptr_t)buf
;
622 tcg_ctx
.code_gen_buffer_size
= size
;
625 if (cross_256mb(buf
, size
)) {
626 buf
= split_cross_256mb(buf
, size
);
627 size
= tcg_ctx
.code_gen_buffer_size
;
632 map_none(buf
+ size
, qemu_real_host_page_size
);
633 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
637 #elif defined(_WIN32)
638 static inline void *alloc_code_gen_buffer(void)
640 size_t size
= tcg_ctx
.code_gen_buffer_size
;
643 /* Perform the allocation in two steps, so that the guard page
644 is reserved but uncommitted. */
645 buf1
= VirtualAlloc(NULL
, size
+ qemu_real_host_page_size
,
646 MEM_RESERVE
, PAGE_NOACCESS
);
648 buf2
= VirtualAlloc(buf1
, size
, MEM_COMMIT
, PAGE_EXECUTE_READWRITE
);
649 assert(buf1
== buf2
);
655 static inline void *alloc_code_gen_buffer(void)
657 int flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
659 size_t size
= tcg_ctx
.code_gen_buffer_size
;
662 /* Constrain the position of the buffer based on the host cpu.
663 Note that these addresses are chosen in concert with the
664 addresses assigned in the relevant linker script file. */
665 # if defined(__PIE__) || defined(__PIC__)
666 /* Don't bother setting a preferred location if we're building
667 a position-independent executable. We're more likely to get
668 an address near the main executable if we let the kernel
669 choose the address. */
670 # elif defined(__x86_64__) && defined(MAP_32BIT)
671 /* Force the memory down into low memory with the executable.
672 Leave the choice of exact location with the kernel. */
674 /* Cannot expect to map more than 800MB in low memory. */
675 if (size
> 800u * 1024 * 1024) {
676 tcg_ctx
.code_gen_buffer_size
= size
= 800u * 1024 * 1024;
678 # elif defined(__sparc__)
679 start
= 0x40000000ul
;
680 # elif defined(__s390x__)
681 start
= 0x90000000ul
;
682 # elif defined(__mips__)
683 # if _MIPS_SIM == _ABI64
684 start
= 0x128000000ul
;
686 start
= 0x08000000ul
;
690 buf
= mmap((void *)start
, size
+ qemu_real_host_page_size
,
691 PROT_NONE
, flags
, -1, 0);
692 if (buf
== MAP_FAILED
) {
697 if (cross_256mb(buf
, size
)) {
698 /* Try again, with the original still mapped, to avoid re-acquiring
699 that 256mb crossing. This time don't specify an address. */
701 void *buf2
= mmap(NULL
, size
+ qemu_real_host_page_size
,
702 PROT_NONE
, flags
, -1, 0);
703 switch (buf2
!= MAP_FAILED
) {
705 if (!cross_256mb(buf2
, size
)) {
706 /* Success! Use the new buffer. */
707 munmap(buf
, size
+ qemu_real_host_page_size
);
710 /* Failure. Work with what we had. */
711 munmap(buf2
, size
+ qemu_real_host_page_size
);
714 /* Split the original buffer. Free the smaller half. */
715 buf2
= split_cross_256mb(buf
, size
);
716 size2
= tcg_ctx
.code_gen_buffer_size
;
718 munmap(buf
+ size2
+ qemu_real_host_page_size
, size
- size2
);
720 munmap(buf
, size
- size2
);
729 /* Make the final buffer accessible. The guard page at the end
730 will remain inaccessible with PROT_NONE. */
731 mprotect(buf
, size
, PROT_WRITE
| PROT_READ
| PROT_EXEC
);
733 /* Request large pages for the buffer. */
734 qemu_madvise(buf
, size
, QEMU_MADV_HUGEPAGE
);
738 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
740 static inline void code_gen_alloc(size_t tb_size
)
742 tcg_ctx
.code_gen_buffer_size
= size_code_gen_buffer(tb_size
);
743 tcg_ctx
.code_gen_buffer
= alloc_code_gen_buffer();
744 if (tcg_ctx
.code_gen_buffer
== NULL
) {
745 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
749 /* Estimate a good size for the number of TBs we can support. We
750 still haven't deducted the prologue from the buffer size here,
751 but that's minimal and won't affect the estimate much. */
752 tcg_ctx
.code_gen_max_blocks
753 = tcg_ctx
.code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
754 tcg_ctx
.tb_ctx
.tbs
= g_new(TranslationBlock
, tcg_ctx
.code_gen_max_blocks
);
756 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
759 static void tb_htable_init(void)
761 unsigned int mode
= QHT_MODE_AUTO_RESIZE
;
763 qht_init(&tcg_ctx
.tb_ctx
.htable
, CODE_GEN_HTABLE_SIZE
, mode
);
766 /* Must be called before using the QEMU cpus. 'tb_size' is the size
767 (in bytes) allocated to the translation buffer. Zero means default
769 void tcg_exec_init(unsigned long tb_size
)
774 code_gen_alloc(tb_size
);
775 #if defined(CONFIG_SOFTMMU)
776 /* There's no guest base to take into account, so go ahead and
777 initialize the prologue now. */
778 tcg_prologue_init(&tcg_ctx
);
782 bool tcg_enabled(void)
784 return tcg_ctx
.code_gen_buffer
!= NULL
;
787 /* Allocate a new translation block. Flush the translation buffer if
788 too many translation blocks or too much generated code. */
789 static TranslationBlock
*tb_alloc(target_ulong pc
)
791 TranslationBlock
*tb
;
793 if (tcg_ctx
.tb_ctx
.nb_tbs
>= tcg_ctx
.code_gen_max_blocks
) {
796 tb
= &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
++];
803 void tb_free(TranslationBlock
*tb
)
805 /* In practice this is mostly used for single use temporary TB
806 Ignore the hard cases and just back up if this TB happens to
807 be the last one generated. */
808 if (tcg_ctx
.tb_ctx
.nb_tbs
> 0 &&
809 tb
== &tcg_ctx
.tb_ctx
.tbs
[tcg_ctx
.tb_ctx
.nb_tbs
- 1]) {
810 tcg_ctx
.code_gen_ptr
= tb
->tc_ptr
;
811 tcg_ctx
.tb_ctx
.nb_tbs
--;
815 static inline void invalidate_page_bitmap(PageDesc
*p
)
817 #ifdef CONFIG_SOFTMMU
818 g_free(p
->code_bitmap
);
819 p
->code_bitmap
= NULL
;
820 p
->code_write_count
= 0;
824 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
825 static void page_flush_tb_1(int level
, void **lp
)
835 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
836 pd
[i
].first_tb
= NULL
;
837 invalidate_page_bitmap(pd
+ i
);
842 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
843 page_flush_tb_1(level
- 1, pp
+ i
);
848 static void page_flush_tb(void)
850 int i
, l1_sz
= v_l1_size
;
852 for (i
= 0; i
< l1_sz
; i
++) {
853 page_flush_tb_1(v_l2_levels
, l1_map
+ i
);
857 /* flush all the translation blocks */
858 static void do_tb_flush(CPUState
*cpu
, void *data
)
860 unsigned tb_flush_req
= (unsigned) (uintptr_t) data
;
864 /* If it's already been done on request of another CPU,
867 if (tcg_ctx
.tb_ctx
.tb_flush_count
!= tb_flush_req
) {
871 #if defined(DEBUG_FLUSH)
872 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
873 (unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
),
874 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.tb_ctx
.nb_tbs
> 0 ?
875 ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)) /
876 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
878 if ((unsigned long)(tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
)
879 > tcg_ctx
.code_gen_buffer_size
) {
880 cpu_abort(cpu
, "Internal error: code buffer overflow\n");
886 for (i
= 0; i
< TB_JMP_CACHE_SIZE
; ++i
) {
887 atomic_set(&cpu
->tb_jmp_cache
[i
], NULL
);
891 tcg_ctx
.tb_ctx
.nb_tbs
= 0;
892 qht_reset_size(&tcg_ctx
.tb_ctx
.htable
, CODE_GEN_HTABLE_SIZE
);
895 tcg_ctx
.code_gen_ptr
= tcg_ctx
.code_gen_buffer
;
896 /* XXX: flush processor icache at this point if cache flush is
898 atomic_mb_set(&tcg_ctx
.tb_ctx
.tb_flush_count
,
899 tcg_ctx
.tb_ctx
.tb_flush_count
+ 1);
905 void tb_flush(CPUState
*cpu
)
908 uintptr_t tb_flush_req
= atomic_mb_read(&tcg_ctx
.tb_ctx
.tb_flush_count
);
909 async_safe_run_on_cpu(cpu
, do_tb_flush
, (void *) tb_flush_req
);
913 #ifdef DEBUG_TB_CHECK
916 do_tb_invalidate_check(struct qht
*ht
, void *p
, uint32_t hash
, void *userp
)
918 TranslationBlock
*tb
= p
;
919 target_ulong addr
= *(target_ulong
*)userp
;
921 if (!(addr
+ TARGET_PAGE_SIZE
<= tb
->pc
|| addr
>= tb
->pc
+ tb
->size
)) {
922 printf("ERROR invalidate: address=" TARGET_FMT_lx
923 " PC=%08lx size=%04x\n", addr
, (long)tb
->pc
, tb
->size
);
927 static void tb_invalidate_check(target_ulong address
)
929 address
&= TARGET_PAGE_MASK
;
930 qht_iter(&tcg_ctx
.tb_ctx
.htable
, do_tb_invalidate_check
, &address
);
934 do_tb_page_check(struct qht
*ht
, void *p
, uint32_t hash
, void *userp
)
936 TranslationBlock
*tb
= p
;
939 flags1
= page_get_flags(tb
->pc
);
940 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
941 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
942 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
943 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
947 /* verify that all the pages have correct rights for code */
948 static void tb_page_check(void)
950 qht_iter(&tcg_ctx
.tb_ctx
.htable
, do_tb_page_check
, NULL
);
955 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
957 TranslationBlock
*tb1
;
962 n1
= (uintptr_t)tb1
& 3;
963 tb1
= (TranslationBlock
*)((uintptr_t)tb1
& ~3);
965 *ptb
= tb1
->page_next
[n1
];
968 ptb
= &tb1
->page_next
[n1
];
972 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
973 static inline void tb_remove_from_jmp_list(TranslationBlock
*tb
, int n
)
975 TranslationBlock
*tb1
;
979 ptb
= &tb
->jmp_list_next
[n
];
981 /* find tb(n) in circular list */
985 tb1
= (TranslationBlock
*)(ntb
& ~3);
986 if (n1
== n
&& tb1
== tb
) {
990 ptb
= &tb1
->jmp_list_first
;
992 ptb
= &tb1
->jmp_list_next
[n1
];
995 /* now we can suppress tb(n) from the list */
996 *ptb
= tb
->jmp_list_next
[n
];
998 tb
->jmp_list_next
[n
] = (uintptr_t)NULL
;
1002 /* reset the jump entry 'n' of a TB so that it is not chained to
1004 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
1006 uintptr_t addr
= (uintptr_t)(tb
->tc_ptr
+ tb
->jmp_reset_offset
[n
]);
1007 tb_set_jmp_target(tb
, n
, addr
);
1010 /* remove any jumps to the TB */
1011 static inline void tb_jmp_unlink(TranslationBlock
*tb
)
1013 TranslationBlock
*tb1
;
1014 uintptr_t *ptb
, ntb
;
1017 ptb
= &tb
->jmp_list_first
;
1021 tb1
= (TranslationBlock
*)(ntb
& ~3);
1025 tb_reset_jump(tb1
, n1
);
1026 *ptb
= tb1
->jmp_list_next
[n1
];
1027 tb1
->jmp_list_next
[n1
] = (uintptr_t)NULL
;
1031 /* invalidate one TB */
1032 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
1037 tb_page_addr_t phys_pc
;
1039 atomic_set(&tb
->invalid
, true);
1041 /* remove the TB from the hash list */
1042 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1043 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1044 qht_remove(&tcg_ctx
.tb_ctx
.htable
, tb
, h
);
1046 /* remove the TB from the page list */
1047 if (tb
->page_addr
[0] != page_addr
) {
1048 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
1049 tb_page_remove(&p
->first_tb
, tb
);
1050 invalidate_page_bitmap(p
);
1052 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
1053 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
1054 tb_page_remove(&p
->first_tb
, tb
);
1055 invalidate_page_bitmap(p
);
1058 /* remove the TB from the hash list */
1059 h
= tb_jmp_cache_hash_func(tb
->pc
);
1061 if (atomic_read(&cpu
->tb_jmp_cache
[h
]) == tb
) {
1062 atomic_set(&cpu
->tb_jmp_cache
[h
], NULL
);
1066 /* suppress this TB from the two jump lists */
1067 tb_remove_from_jmp_list(tb
, 0);
1068 tb_remove_from_jmp_list(tb
, 1);
1070 /* suppress any remaining jumps to this TB */
1073 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
++;
1076 #ifdef CONFIG_SOFTMMU
1077 static void build_page_bitmap(PageDesc
*p
)
1079 int n
, tb_start
, tb_end
;
1080 TranslationBlock
*tb
;
1082 p
->code_bitmap
= bitmap_new(TARGET_PAGE_SIZE
);
1085 while (tb
!= NULL
) {
1086 n
= (uintptr_t)tb
& 3;
1087 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1088 /* NOTE: this is subtle as a TB may span two physical pages */
1090 /* NOTE: tb_end may be after the end of the page, but
1091 it is not a problem */
1092 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
1093 tb_end
= tb_start
+ tb
->size
;
1094 if (tb_end
> TARGET_PAGE_SIZE
) {
1095 tb_end
= TARGET_PAGE_SIZE
;
1099 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1101 bitmap_set(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
1102 tb
= tb
->page_next
[n
];
1107 /* add the tb in the target page and protect it if necessary
1109 * Called with mmap_lock held for user-mode emulation.
1111 static inline void tb_alloc_page(TranslationBlock
*tb
,
1112 unsigned int n
, tb_page_addr_t page_addr
)
1115 #ifndef CONFIG_USER_ONLY
1116 bool page_already_protected
;
1119 tb
->page_addr
[n
] = page_addr
;
1120 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1121 tb
->page_next
[n
] = p
->first_tb
;
1122 #ifndef CONFIG_USER_ONLY
1123 page_already_protected
= p
->first_tb
!= NULL
;
1125 p
->first_tb
= (TranslationBlock
*)((uintptr_t)tb
| n
);
1126 invalidate_page_bitmap(p
);
1128 #if defined(CONFIG_USER_ONLY)
1129 if (p
->flags
& PAGE_WRITE
) {
1134 /* force the host page as non writable (writes will have a
1135 page fault + mprotect overhead) */
1136 page_addr
&= qemu_host_page_mask
;
1138 for (addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1139 addr
+= TARGET_PAGE_SIZE
) {
1141 p2
= page_find(addr
>> TARGET_PAGE_BITS
);
1146 p2
->flags
&= ~PAGE_WRITE
;
1148 mprotect(g2h(page_addr
), qemu_host_page_size
,
1149 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1150 #ifdef DEBUG_TB_INVALIDATE
1151 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1156 /* if some code is already present, then the pages are already
1157 protected. So we handle the case where only the first TB is
1158 allocated in a physical page */
1159 if (!page_already_protected
) {
1160 tlb_protect_code(page_addr
);
1165 /* add a new TB and link it to the physical page tables. phys_page2 is
1166 * (-1) to indicate that only one page contains the TB.
1168 * Called with mmap_lock held for user-mode emulation.
1170 static void tb_link_page(TranslationBlock
*tb
, tb_page_addr_t phys_pc
,
1171 tb_page_addr_t phys_page2
)
1175 /* add in the page list */
1176 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1177 if (phys_page2
!= -1) {
1178 tb_alloc_page(tb
, 1, phys_page2
);
1180 tb
->page_addr
[1] = -1;
1183 /* add in the hash table */
1184 h
= tb_hash_func(phys_pc
, tb
->pc
, tb
->flags
);
1185 qht_insert(&tcg_ctx
.tb_ctx
.htable
, tb
, h
);
1187 #ifdef DEBUG_TB_CHECK
1192 /* Called with mmap_lock held for user mode emulation. */
1193 TranslationBlock
*tb_gen_code(CPUState
*cpu
,
1194 target_ulong pc
, target_ulong cs_base
,
1195 uint32_t flags
, int cflags
)
1197 CPUArchState
*env
= cpu
->env_ptr
;
1198 TranslationBlock
*tb
;
1199 tb_page_addr_t phys_pc
, phys_page2
;
1200 target_ulong virt_page2
;
1201 tcg_insn_unit
*gen_code_buf
;
1202 int gen_code_size
, search_size
;
1203 #ifdef CONFIG_PROFILER
1207 phys_pc
= get_page_addr_code(env
, pc
);
1208 if (use_icount
&& !(cflags
& CF_IGNORE_ICOUNT
)) {
1209 cflags
|= CF_USE_ICOUNT
;
1213 if (unlikely(!tb
)) {
1215 /* flush must be done */
1221 gen_code_buf
= tcg_ctx
.code_gen_ptr
;
1222 tb
->tc_ptr
= gen_code_buf
;
1223 tb
->cs_base
= cs_base
;
1225 tb
->cflags
= cflags
;
1227 #ifdef CONFIG_PROFILER
1228 tcg_ctx
.tb_count1
++; /* includes aborted translations because of
1230 ti
= profile_getclock();
1233 tcg_func_start(&tcg_ctx
);
1235 tcg_ctx
.cpu
= ENV_GET_CPU(env
);
1236 gen_intermediate_code(env
, tb
);
1239 trace_translate_block(tb
, tb
->pc
, tb
->tc_ptr
);
1241 /* generate machine code */
1242 tb
->jmp_reset_offset
[0] = TB_JMP_RESET_OFFSET_INVALID
;
1243 tb
->jmp_reset_offset
[1] = TB_JMP_RESET_OFFSET_INVALID
;
1244 tcg_ctx
.tb_jmp_reset_offset
= tb
->jmp_reset_offset
;
1245 #ifdef USE_DIRECT_JUMP
1246 tcg_ctx
.tb_jmp_insn_offset
= tb
->jmp_insn_offset
;
1247 tcg_ctx
.tb_jmp_target_addr
= NULL
;
1249 tcg_ctx
.tb_jmp_insn_offset
= NULL
;
1250 tcg_ctx
.tb_jmp_target_addr
= tb
->jmp_target_addr
;
1253 #ifdef CONFIG_PROFILER
1255 tcg_ctx
.interm_time
+= profile_getclock() - ti
;
1256 tcg_ctx
.code_time
-= profile_getclock();
1259 /* ??? Overflow could be handled better here. In particular, we
1260 don't need to re-do gen_intermediate_code, nor should we re-do
1261 the tcg optimization currently hidden inside tcg_gen_code. All
1262 that should be required is to flush the TBs, allocate a new TB,
1263 re-initialize it per above, and re-do the actual code generation. */
1264 gen_code_size
= tcg_gen_code(&tcg_ctx
, tb
);
1265 if (unlikely(gen_code_size
< 0)) {
1266 goto buffer_overflow
;
1268 search_size
= encode_search(tb
, (void *)gen_code_buf
+ gen_code_size
);
1269 if (unlikely(search_size
< 0)) {
1270 goto buffer_overflow
;
1273 #ifdef CONFIG_PROFILER
1274 tcg_ctx
.code_time
+= profile_getclock();
1275 tcg_ctx
.code_in_len
+= tb
->size
;
1276 tcg_ctx
.code_out_len
+= gen_code_size
;
1277 tcg_ctx
.search_out_len
+= search_size
;
1281 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM
) &&
1282 qemu_log_in_addr_range(tb
->pc
)) {
1283 qemu_log("OUT: [size=%d]\n", gen_code_size
);
1284 log_disas(tb
->tc_ptr
, gen_code_size
);
1290 tcg_ctx
.code_gen_ptr
= (void *)
1291 ROUND_UP((uintptr_t)gen_code_buf
+ gen_code_size
+ search_size
,
1294 /* init jump list */
1295 assert(((uintptr_t)tb
& 3) == 0);
1296 tb
->jmp_list_first
= (uintptr_t)tb
| 2;
1297 tb
->jmp_list_next
[0] = (uintptr_t)NULL
;
1298 tb
->jmp_list_next
[1] = (uintptr_t)NULL
;
1300 /* init original jump addresses wich has been set during tcg_gen_code() */
1301 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1302 tb_reset_jump(tb
, 0);
1304 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1305 tb_reset_jump(tb
, 1);
1308 /* check next page if needed */
1309 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
1311 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
1312 phys_page2
= get_page_addr_code(env
, virt_page2
);
1314 /* As long as consistency of the TB stuff is provided by tb_lock in user
1315 * mode and is implicit in single-threaded softmmu emulation, no explicit
1316 * memory barrier is required before tb_link_page() makes the TB visible
1317 * through the physical hash table and physical page list.
1319 tb_link_page(tb
, phys_pc
, phys_page2
);
1324 * Invalidate all TBs which intersect with the target physical address range
1325 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1326 * 'is_cpu_write_access' should be true if called from a real cpu write
1327 * access: the virtual CPU will exit the current TB if code is modified inside
1330 * Called with mmap_lock held for user-mode emulation
1332 void tb_invalidate_phys_range(tb_page_addr_t start
, tb_page_addr_t end
)
1334 while (start
< end
) {
1335 tb_invalidate_phys_page_range(start
, end
, 0);
1336 start
&= TARGET_PAGE_MASK
;
1337 start
+= TARGET_PAGE_SIZE
;
1342 * Invalidate all TBs which intersect with the target physical address range
1343 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1344 * 'is_cpu_write_access' should be true if called from a real cpu write
1345 * access: the virtual CPU will exit the current TB if code is modified inside
1348 * Called with mmap_lock held for user-mode emulation
1350 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1351 int is_cpu_write_access
)
1353 TranslationBlock
*tb
, *tb_next
;
1354 #if defined(TARGET_HAS_PRECISE_SMC)
1355 CPUState
*cpu
= current_cpu
;
1356 CPUArchState
*env
= NULL
;
1358 tb_page_addr_t tb_start
, tb_end
;
1361 #ifdef TARGET_HAS_PRECISE_SMC
1362 int current_tb_not_found
= is_cpu_write_access
;
1363 TranslationBlock
*current_tb
= NULL
;
1364 int current_tb_modified
= 0;
1365 target_ulong current_pc
= 0;
1366 target_ulong current_cs_base
= 0;
1367 uint32_t current_flags
= 0;
1368 #endif /* TARGET_HAS_PRECISE_SMC */
1370 p
= page_find(start
>> TARGET_PAGE_BITS
);
1374 #if defined(TARGET_HAS_PRECISE_SMC)
1380 /* we remove all the TBs in the range [start, end[ */
1381 /* XXX: see if in some cases it could be faster to invalidate all
1384 while (tb
!= NULL
) {
1385 n
= (uintptr_t)tb
& 3;
1386 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1387 tb_next
= tb
->page_next
[n
];
1388 /* NOTE: this is subtle as a TB may span two physical pages */
1390 /* NOTE: tb_end may be after the end of the page, but
1391 it is not a problem */
1392 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1393 tb_end
= tb_start
+ tb
->size
;
1395 tb_start
= tb
->page_addr
[1];
1396 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1398 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1399 #ifdef TARGET_HAS_PRECISE_SMC
1400 if (current_tb_not_found
) {
1401 current_tb_not_found
= 0;
1403 if (cpu
->mem_io_pc
) {
1404 /* now we have a real cpu fault */
1405 current_tb
= tb_find_pc(cpu
->mem_io_pc
);
1408 if (current_tb
== tb
&&
1409 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1410 /* If we are modifying the current TB, we must stop
1411 its execution. We could be more precise by checking
1412 that the modification is after the current PC, but it
1413 would require a specialized function to partially
1414 restore the CPU state */
1416 current_tb_modified
= 1;
1417 cpu_restore_state_from_tb(cpu
, current_tb
, cpu
->mem_io_pc
);
1418 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1421 #endif /* TARGET_HAS_PRECISE_SMC */
1422 tb_phys_invalidate(tb
, -1);
1426 #if !defined(CONFIG_USER_ONLY)
1427 /* if no code remaining, no need to continue to use slow writes */
1429 invalidate_page_bitmap(p
);
1430 tlb_unprotect_code(start
);
1433 #ifdef TARGET_HAS_PRECISE_SMC
1434 if (current_tb_modified
) {
1435 /* we generate a block containing just the instruction
1436 modifying the memory. It will ensure that it cannot modify
1438 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1439 cpu_loop_exit_noexc(cpu
);
1444 #ifdef CONFIG_SOFTMMU
1445 /* len must be <= 8 and start must be a multiple of len */
1446 void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1452 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1453 cpu_single_env
->mem_io_vaddr
, len
,
1454 cpu_single_env
->eip
,
1455 cpu_single_env
->eip
+
1456 (intptr_t)cpu_single_env
->segs
[R_CS
].base
);
1459 p
= page_find(start
>> TARGET_PAGE_BITS
);
1463 if (!p
->code_bitmap
&&
1464 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
) {
1465 /* build code bitmap */
1466 build_page_bitmap(p
);
1468 if (p
->code_bitmap
) {
1472 nr
= start
& ~TARGET_PAGE_MASK
;
1473 b
= p
->code_bitmap
[BIT_WORD(nr
)] >> (nr
& (BITS_PER_LONG
- 1));
1474 if (b
& ((1 << len
) - 1)) {
1479 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1483 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1484 * host PC of the faulting store instruction that caused this invalidate.
1485 * Returns true if the caller needs to abort execution of the current
1486 * TB (because it was modified by this store and the guest CPU has
1487 * precise-SMC semantics).
1489 static bool tb_invalidate_phys_page(tb_page_addr_t addr
, uintptr_t pc
)
1491 TranslationBlock
*tb
;
1494 #ifdef TARGET_HAS_PRECISE_SMC
1495 TranslationBlock
*current_tb
= NULL
;
1496 CPUState
*cpu
= current_cpu
;
1497 CPUArchState
*env
= NULL
;
1498 int current_tb_modified
= 0;
1499 target_ulong current_pc
= 0;
1500 target_ulong current_cs_base
= 0;
1501 uint32_t current_flags
= 0;
1504 addr
&= TARGET_PAGE_MASK
;
1505 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1510 #ifdef TARGET_HAS_PRECISE_SMC
1511 if (tb
&& pc
!= 0) {
1512 current_tb
= tb_find_pc(pc
);
1518 while (tb
!= NULL
) {
1519 n
= (uintptr_t)tb
& 3;
1520 tb
= (TranslationBlock
*)((uintptr_t)tb
& ~3);
1521 #ifdef TARGET_HAS_PRECISE_SMC
1522 if (current_tb
== tb
&&
1523 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1524 /* If we are modifying the current TB, we must stop
1525 its execution. We could be more precise by checking
1526 that the modification is after the current PC, but it
1527 would require a specialized function to partially
1528 restore the CPU state */
1530 current_tb_modified
= 1;
1531 cpu_restore_state_from_tb(cpu
, current_tb
, pc
);
1532 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1535 #endif /* TARGET_HAS_PRECISE_SMC */
1536 tb_phys_invalidate(tb
, addr
);
1537 tb
= tb
->page_next
[n
];
1540 #ifdef TARGET_HAS_PRECISE_SMC
1541 if (current_tb_modified
) {
1542 /* we generate a block containing just the instruction
1543 modifying the memory. It will ensure that it cannot modify
1545 tb_gen_code(cpu
, current_pc
, current_cs_base
, current_flags
, 1);
1553 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1554 tb[1].tc_ptr. Return NULL if not found */
1555 static TranslationBlock
*tb_find_pc(uintptr_t tc_ptr
)
1557 int m_min
, m_max
, m
;
1559 TranslationBlock
*tb
;
1561 if (tcg_ctx
.tb_ctx
.nb_tbs
<= 0) {
1564 if (tc_ptr
< (uintptr_t)tcg_ctx
.code_gen_buffer
||
1565 tc_ptr
>= (uintptr_t)tcg_ctx
.code_gen_ptr
) {
1568 /* binary search (cf Knuth) */
1570 m_max
= tcg_ctx
.tb_ctx
.nb_tbs
- 1;
1571 while (m_min
<= m_max
) {
1572 m
= (m_min
+ m_max
) >> 1;
1573 tb
= &tcg_ctx
.tb_ctx
.tbs
[m
];
1574 v
= (uintptr_t)tb
->tc_ptr
;
1577 } else if (tc_ptr
< v
) {
1583 return &tcg_ctx
.tb_ctx
.tbs
[m_max
];
1586 #if !defined(CONFIG_USER_ONLY)
1587 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
)
1589 ram_addr_t ram_addr
;
1594 mr
= address_space_translate(as
, addr
, &addr
, &l
, false);
1595 if (!(memory_region_is_ram(mr
)
1596 || memory_region_is_romd(mr
))) {
1600 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1601 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1604 #endif /* !defined(CONFIG_USER_ONLY) */
1606 void tb_check_watchpoint(CPUState
*cpu
)
1608 TranslationBlock
*tb
;
1610 tb
= tb_find_pc(cpu
->mem_io_pc
);
1612 /* We can use retranslation to find the PC. */
1613 cpu_restore_state_from_tb(cpu
, tb
, cpu
->mem_io_pc
);
1614 tb_phys_invalidate(tb
, -1);
1616 /* The exception probably happened in a helper. The CPU state should
1617 have been saved before calling it. Fetch the PC from there. */
1618 CPUArchState
*env
= cpu
->env_ptr
;
1619 target_ulong pc
, cs_base
;
1620 tb_page_addr_t addr
;
1623 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
1624 addr
= get_page_addr_code(env
, pc
);
1625 tb_invalidate_phys_range(addr
, addr
+ 1);
1629 #ifndef CONFIG_USER_ONLY
1630 /* in deterministic execution mode, instructions doing device I/Os
1631 must be at the end of the TB */
1632 void cpu_io_recompile(CPUState
*cpu
, uintptr_t retaddr
)
1634 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1635 CPUArchState
*env
= cpu
->env_ptr
;
1637 TranslationBlock
*tb
;
1639 target_ulong pc
, cs_base
;
1642 tb
= tb_find_pc(retaddr
);
1644 cpu_abort(cpu
, "cpu_io_recompile: could not find TB for pc=%p",
1647 n
= cpu
->icount_decr
.u16
.low
+ tb
->icount
;
1648 cpu_restore_state_from_tb(cpu
, tb
, retaddr
);
1649 /* Calculate how many instructions had been executed before the fault
1651 n
= n
- cpu
->icount_decr
.u16
.low
;
1652 /* Generate a new TB ending on the I/O insn. */
1654 /* On MIPS and SH, delay slot instructions can only be restarted if
1655 they were already the first instruction in the TB. If this is not
1656 the first instruction in a TB then re-execute the preceding
1658 #if defined(TARGET_MIPS)
1659 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
1660 env
->active_tc
.PC
-= (env
->hflags
& MIPS_HFLAG_B16
? 2 : 4);
1661 cpu
->icount_decr
.u16
.low
++;
1662 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
1664 #elif defined(TARGET_SH4)
1665 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
1668 cpu
->icount_decr
.u16
.low
++;
1669 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
1672 /* This should never happen. */
1673 if (n
> CF_COUNT_MASK
) {
1674 cpu_abort(cpu
, "TB too big during recompile");
1677 cflags
= n
| CF_LAST_IO
;
1679 cs_base
= tb
->cs_base
;
1681 tb_phys_invalidate(tb
, -1);
1682 if (tb
->cflags
& CF_NOCACHE
) {
1684 /* Invalidate original TB if this TB was generated in
1685 * cpu_exec_nocache() */
1686 tb_phys_invalidate(tb
->orig_tb
, -1);
1690 /* FIXME: In theory this could raise an exception. In practice
1691 we have already translated the block once so it's probably ok. */
1692 tb_gen_code(cpu
, pc
, cs_base
, flags
, cflags
);
1693 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1694 the first in the TB) then we end up generating a whole new TB and
1695 repeating the fault, which is horribly inefficient.
1696 Better would be to execute just this insn uncached, or generate a
1698 cpu_loop_exit_noexc(cpu
);
1701 void tb_flush_jmp_cache(CPUState
*cpu
, target_ulong addr
)
1705 /* Discard jump cache entries for any tb which might potentially
1706 overlap the flushed page. */
1707 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1708 memset(&cpu
->tb_jmp_cache
[i
], 0,
1709 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1711 i
= tb_jmp_cache_hash_page(addr
);
1712 memset(&cpu
->tb_jmp_cache
[i
], 0,
1713 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1716 static void print_qht_statistics(FILE *f
, fprintf_function cpu_fprintf
,
1717 struct qht_stats hst
)
1719 uint32_t hgram_opts
;
1723 if (!hst
.head_buckets
) {
1726 cpu_fprintf(f
, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1727 hst
.used_head_buckets
, hst
.head_buckets
,
1728 (double)hst
.used_head_buckets
/ hst
.head_buckets
* 100);
1730 hgram_opts
= QDIST_PR_BORDER
| QDIST_PR_LABELS
;
1731 hgram_opts
|= QDIST_PR_100X
| QDIST_PR_PERCENT
;
1732 if (qdist_xmax(&hst
.occupancy
) - qdist_xmin(&hst
.occupancy
) == 1) {
1733 hgram_opts
|= QDIST_PR_NODECIMAL
;
1735 hgram
= qdist_pr(&hst
.occupancy
, 10, hgram_opts
);
1736 cpu_fprintf(f
, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1737 qdist_avg(&hst
.occupancy
) * 100, hgram
);
1740 hgram_opts
= QDIST_PR_BORDER
| QDIST_PR_LABELS
;
1741 hgram_bins
= qdist_xmax(&hst
.chain
) - qdist_xmin(&hst
.chain
);
1742 if (hgram_bins
> 10) {
1746 hgram_opts
|= QDIST_PR_NODECIMAL
| QDIST_PR_NOBINRANGE
;
1748 hgram
= qdist_pr(&hst
.chain
, hgram_bins
, hgram_opts
);
1749 cpu_fprintf(f
, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1750 qdist_avg(&hst
.chain
), hgram
);
1754 void dump_exec_info(FILE *f
, fprintf_function cpu_fprintf
)
1756 int i
, target_code_size
, max_target_code_size
;
1757 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
1758 TranslationBlock
*tb
;
1759 struct qht_stats hst
;
1761 target_code_size
= 0;
1762 max_target_code_size
= 0;
1764 direct_jmp_count
= 0;
1765 direct_jmp2_count
= 0;
1766 for (i
= 0; i
< tcg_ctx
.tb_ctx
.nb_tbs
; i
++) {
1767 tb
= &tcg_ctx
.tb_ctx
.tbs
[i
];
1768 target_code_size
+= tb
->size
;
1769 if (tb
->size
> max_target_code_size
) {
1770 max_target_code_size
= tb
->size
;
1772 if (tb
->page_addr
[1] != -1) {
1775 if (tb
->jmp_reset_offset
[0] != TB_JMP_RESET_OFFSET_INVALID
) {
1777 if (tb
->jmp_reset_offset
[1] != TB_JMP_RESET_OFFSET_INVALID
) {
1778 direct_jmp2_count
++;
1782 /* XXX: avoid using doubles ? */
1783 cpu_fprintf(f
, "Translation buffer state:\n");
1784 cpu_fprintf(f
, "gen code size %td/%zd\n",
1785 tcg_ctx
.code_gen_ptr
- tcg_ctx
.code_gen_buffer
,
1786 tcg_ctx
.code_gen_highwater
- tcg_ctx
.code_gen_buffer
);
1787 cpu_fprintf(f
, "TB count %d/%d\n",
1788 tcg_ctx
.tb_ctx
.nb_tbs
, tcg_ctx
.code_gen_max_blocks
);
1789 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
1790 tcg_ctx
.tb_ctx
.nb_tbs
? target_code_size
/
1791 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1792 max_target_code_size
);
1793 cpu_fprintf(f
, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1794 tcg_ctx
.tb_ctx
.nb_tbs
? (tcg_ctx
.code_gen_ptr
-
1795 tcg_ctx
.code_gen_buffer
) /
1796 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1797 target_code_size
? (double) (tcg_ctx
.code_gen_ptr
-
1798 tcg_ctx
.code_gen_buffer
) /
1799 target_code_size
: 0);
1800 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n", cross_page
,
1801 tcg_ctx
.tb_ctx
.nb_tbs
? (cross_page
* 100) /
1802 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1803 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1805 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp_count
* 100) /
1806 tcg_ctx
.tb_ctx
.nb_tbs
: 0,
1808 tcg_ctx
.tb_ctx
.nb_tbs
? (direct_jmp2_count
* 100) /
1809 tcg_ctx
.tb_ctx
.nb_tbs
: 0);
1811 qht_statistics_init(&tcg_ctx
.tb_ctx
.htable
, &hst
);
1812 print_qht_statistics(f
, cpu_fprintf
, hst
);
1813 qht_statistics_destroy(&hst
);
1815 cpu_fprintf(f
, "\nStatistics:\n");
1816 cpu_fprintf(f
, "TB flush count %u\n",
1817 atomic_read(&tcg_ctx
.tb_ctx
.tb_flush_count
));
1818 cpu_fprintf(f
, "TB invalidate count %d\n",
1819 tcg_ctx
.tb_ctx
.tb_phys_invalidate_count
);
1820 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
1821 tcg_dump_info(f
, cpu_fprintf
);
1824 void dump_opcount_info(FILE *f
, fprintf_function cpu_fprintf
)
1826 tcg_dump_op_count(f
, cpu_fprintf
);
1829 #else /* CONFIG_USER_ONLY */
1831 void cpu_interrupt(CPUState
*cpu
, int mask
)
1833 cpu
->interrupt_request
|= mask
;
1834 cpu
->tcg_exit_req
= 1;
1838 * Walks guest process memory "regions" one by one
1839 * and calls callback function 'fn' for each region.
1841 struct walk_memory_regions_data
{
1842 walk_memory_regions_fn fn
;
1848 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
1849 target_ulong end
, int new_prot
)
1851 if (data
->start
!= -1u) {
1852 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
1858 data
->start
= (new_prot
? end
: -1u);
1859 data
->prot
= new_prot
;
1864 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
1865 target_ulong base
, int level
, void **lp
)
1871 return walk_memory_regions_end(data
, base
, 0);
1877 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1878 int prot
= pd
[i
].flags
;
1880 pa
= base
| (i
<< TARGET_PAGE_BITS
);
1881 if (prot
!= data
->prot
) {
1882 rc
= walk_memory_regions_end(data
, pa
, prot
);
1891 for (i
= 0; i
< V_L2_SIZE
; ++i
) {
1892 pa
= base
| ((target_ulong
)i
<<
1893 (TARGET_PAGE_BITS
+ V_L2_BITS
* level
));
1894 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
1904 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
1906 struct walk_memory_regions_data data
;
1907 uintptr_t i
, l1_sz
= v_l1_size
;
1914 for (i
= 0; i
< l1_sz
; i
++) {
1915 target_ulong base
= i
<< (v_l1_shift
+ TARGET_PAGE_BITS
);
1916 int rc
= walk_memory_regions_1(&data
, base
, v_l2_levels
, l1_map
+ i
);
1922 return walk_memory_regions_end(&data
, 0, 0);
1925 static int dump_region(void *priv
, target_ulong start
,
1926 target_ulong end
, unsigned long prot
)
1928 FILE *f
= (FILE *)priv
;
1930 (void) fprintf(f
, TARGET_FMT_lx
"-"TARGET_FMT_lx
1931 " "TARGET_FMT_lx
" %c%c%c\n",
1932 start
, end
, end
- start
,
1933 ((prot
& PAGE_READ
) ? 'r' : '-'),
1934 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
1935 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
1940 /* dump memory mappings */
1941 void page_dump(FILE *f
)
1943 const int length
= sizeof(target_ulong
) * 2;
1944 (void) fprintf(f
, "%-*s %-*s %-*s %s\n",
1945 length
, "start", length
, "end", length
, "size", "prot");
1946 walk_memory_regions(f
, dump_region
);
1949 int page_get_flags(target_ulong address
)
1953 p
= page_find(address
>> TARGET_PAGE_BITS
);
1960 /* Modify the flags of a page and invalidate the code if necessary.
1961 The flag PAGE_WRITE_ORG is positioned automatically depending
1962 on PAGE_WRITE. The mmap_lock should already be held. */
1963 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
1965 target_ulong addr
, len
;
1967 /* This function should never be called with addresses outside the
1968 guest address space. If this assert fires, it probably indicates
1969 a missing call to h2g_valid. */
1970 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1971 assert(end
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
1973 assert(start
< end
);
1975 start
= start
& TARGET_PAGE_MASK
;
1976 end
= TARGET_PAGE_ALIGN(end
);
1978 if (flags
& PAGE_WRITE
) {
1979 flags
|= PAGE_WRITE_ORG
;
1982 for (addr
= start
, len
= end
- start
;
1984 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
1985 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
1987 /* If the write protection bit is set, then we invalidate
1989 if (!(p
->flags
& PAGE_WRITE
) &&
1990 (flags
& PAGE_WRITE
) &&
1992 tb_invalidate_phys_page(addr
, 0);
1998 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2004 /* This function should never be called with addresses outside the
2005 guest address space. If this assert fires, it probably indicates
2006 a missing call to h2g_valid. */
2007 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2008 assert(start
< ((target_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2014 if (start
+ len
- 1 < start
) {
2015 /* We've wrapped around. */
2019 /* must do before we loose bits in the next step */
2020 end
= TARGET_PAGE_ALIGN(start
+ len
);
2021 start
= start
& TARGET_PAGE_MASK
;
2023 for (addr
= start
, len
= end
- start
;
2025 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2026 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2030 if (!(p
->flags
& PAGE_VALID
)) {
2034 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
)) {
2037 if (flags
& PAGE_WRITE
) {
2038 if (!(p
->flags
& PAGE_WRITE_ORG
)) {
2041 /* unprotect the page if it was put read-only because it
2042 contains translated code */
2043 if (!(p
->flags
& PAGE_WRITE
)) {
2044 if (!page_unprotect(addr
, 0)) {
2053 /* called from signal handler: invalidate the code and unprotect the
2054 * page. Return 0 if the fault was not handled, 1 if it was handled,
2055 * and 2 if it was handled but the caller must cause the TB to be
2056 * immediately exited. (We can only return 2 if the 'pc' argument is
2059 int page_unprotect(target_ulong address
, uintptr_t pc
)
2062 bool current_tb_invalidated
;
2064 target_ulong host_start
, host_end
, addr
;
2066 /* Technically this isn't safe inside a signal handler. However we
2067 know this only ever happens in a synchronous SEGV handler, so in
2068 practice it seems to be ok. */
2071 p
= page_find(address
>> TARGET_PAGE_BITS
);
2077 /* if the page was really writable, then we change its
2078 protection back to writable */
2079 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2080 host_start
= address
& qemu_host_page_mask
;
2081 host_end
= host_start
+ qemu_host_page_size
;
2084 current_tb_invalidated
= false;
2085 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2086 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2087 p
->flags
|= PAGE_WRITE
;
2090 /* and since the content will be modified, we must invalidate
2091 the corresponding translated code. */
2092 current_tb_invalidated
|= tb_invalidate_phys_page(addr
, pc
);
2093 #ifdef DEBUG_TB_CHECK
2094 tb_invalidate_check(addr
);
2097 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2101 /* If current TB was invalidated return to main loop */
2102 return current_tb_invalidated
? 2 : 1;
2107 #endif /* CONFIG_USER_ONLY */