Merge remote-tracking branch 'qemu-kvm/uq/master' into staging
[qemu/ar7.git] / main-loop.c
blob54f38ae1aeef9985c0caf12df2f6157cfe23d0cf
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu-common.h"
26 #include "qemu/timer.h"
27 #include "slirp/slirp.h"
28 #include "qemu/main-loop.h"
29 #include "block/aio.h"
31 #ifndef _WIN32
33 #include "qemu/compatfd.h"
35 /* If we have signalfd, we mask out the signals we want to handle and then
36 * use signalfd to listen for them. We rely on whatever the current signal
37 * handler is to dispatch the signals when we receive them.
39 static void sigfd_handler(void *opaque)
41 int fd = (intptr_t)opaque;
42 struct qemu_signalfd_siginfo info;
43 struct sigaction action;
44 ssize_t len;
46 while (1) {
47 do {
48 len = read(fd, &info, sizeof(info));
49 } while (len == -1 && errno == EINTR);
51 if (len == -1 && errno == EAGAIN) {
52 break;
55 if (len != sizeof(info)) {
56 printf("read from sigfd returned %zd: %m\n", len);
57 return;
60 sigaction(info.ssi_signo, NULL, &action);
61 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
62 action.sa_sigaction(info.ssi_signo,
63 (siginfo_t *)&info, NULL);
64 } else if (action.sa_handler) {
65 action.sa_handler(info.ssi_signo);
70 static int qemu_signal_init(void)
72 int sigfd;
73 sigset_t set;
76 * SIG_IPI must be blocked in the main thread and must not be caught
77 * by sigwait() in the signal thread. Otherwise, the cpu thread will
78 * not catch it reliably.
80 sigemptyset(&set);
81 sigaddset(&set, SIG_IPI);
82 sigaddset(&set, SIGIO);
83 sigaddset(&set, SIGALRM);
84 sigaddset(&set, SIGBUS);
85 pthread_sigmask(SIG_BLOCK, &set, NULL);
87 sigdelset(&set, SIG_IPI);
88 sigfd = qemu_signalfd(&set);
89 if (sigfd == -1) {
90 fprintf(stderr, "failed to create signalfd\n");
91 return -errno;
94 fcntl_setfl(sigfd, O_NONBLOCK);
96 qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
97 (void *)(intptr_t)sigfd);
99 return 0;
102 #else /* _WIN32 */
104 static int qemu_signal_init(void)
106 return 0;
108 #endif
110 static AioContext *qemu_aio_context;
112 void qemu_notify_event(void)
114 if (!qemu_aio_context) {
115 return;
117 aio_notify(qemu_aio_context);
120 int qemu_init_main_loop(void)
122 int ret;
123 GSource *src;
125 init_clocks();
126 if (init_timer_alarm() < 0) {
127 fprintf(stderr, "could not initialize alarm timer\n");
128 exit(1);
131 ret = qemu_signal_init();
132 if (ret) {
133 return ret;
136 qemu_aio_context = aio_context_new();
137 src = aio_get_g_source(qemu_aio_context);
138 g_source_attach(src, NULL);
139 g_source_unref(src);
140 return 0;
143 static fd_set rfds, wfds, xfds;
144 static int nfds;
145 static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
146 static int n_poll_fds;
147 static int max_priority;
149 #ifndef _WIN32
150 static void glib_select_fill(int *max_fd, fd_set *rfds, fd_set *wfds,
151 fd_set *xfds, uint32_t *cur_timeout)
153 GMainContext *context = g_main_context_default();
154 int i;
155 int timeout = 0;
157 g_main_context_prepare(context, &max_priority);
159 n_poll_fds = g_main_context_query(context, max_priority, &timeout,
160 poll_fds, ARRAY_SIZE(poll_fds));
161 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
163 for (i = 0; i < n_poll_fds; i++) {
164 GPollFD *p = &poll_fds[i];
166 if ((p->events & G_IO_IN)) {
167 FD_SET(p->fd, rfds);
168 *max_fd = MAX(*max_fd, p->fd);
170 if ((p->events & G_IO_OUT)) {
171 FD_SET(p->fd, wfds);
172 *max_fd = MAX(*max_fd, p->fd);
174 if ((p->events & G_IO_ERR)) {
175 FD_SET(p->fd, xfds);
176 *max_fd = MAX(*max_fd, p->fd);
180 if (timeout >= 0 && timeout < *cur_timeout) {
181 *cur_timeout = timeout;
185 static void glib_select_poll(fd_set *rfds, fd_set *wfds, fd_set *xfds,
186 bool err)
188 GMainContext *context = g_main_context_default();
190 if (!err) {
191 int i;
193 for (i = 0; i < n_poll_fds; i++) {
194 GPollFD *p = &poll_fds[i];
196 if ((p->events & G_IO_IN) && FD_ISSET(p->fd, rfds)) {
197 p->revents |= G_IO_IN;
199 if ((p->events & G_IO_OUT) && FD_ISSET(p->fd, wfds)) {
200 p->revents |= G_IO_OUT;
202 if ((p->events & G_IO_ERR) && FD_ISSET(p->fd, xfds)) {
203 p->revents |= G_IO_ERR;
208 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
209 g_main_context_dispatch(context);
213 static int os_host_main_loop_wait(uint32_t timeout)
215 struct timeval tv, *tvarg = NULL;
216 int ret;
218 glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout);
220 if (timeout < UINT32_MAX) {
221 tvarg = &tv;
222 tv.tv_sec = timeout / 1000;
223 tv.tv_usec = (timeout % 1000) * 1000;
226 if (timeout > 0) {
227 qemu_mutex_unlock_iothread();
230 ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg);
232 if (timeout > 0) {
233 qemu_mutex_lock_iothread();
236 glib_select_poll(&rfds, &wfds, &xfds, (ret < 0));
237 return ret;
239 #else
240 /***********************************************************/
241 /* Polling handling */
243 typedef struct PollingEntry {
244 PollingFunc *func;
245 void *opaque;
246 struct PollingEntry *next;
247 } PollingEntry;
249 static PollingEntry *first_polling_entry;
251 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
253 PollingEntry **ppe, *pe;
254 pe = g_malloc0(sizeof(PollingEntry));
255 pe->func = func;
256 pe->opaque = opaque;
257 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
258 *ppe = pe;
259 return 0;
262 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
264 PollingEntry **ppe, *pe;
265 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
266 pe = *ppe;
267 if (pe->func == func && pe->opaque == opaque) {
268 *ppe = pe->next;
269 g_free(pe);
270 break;
275 /***********************************************************/
276 /* Wait objects support */
277 typedef struct WaitObjects {
278 int num;
279 int revents[MAXIMUM_WAIT_OBJECTS + 1];
280 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
281 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
282 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
283 } WaitObjects;
285 static WaitObjects wait_objects = {0};
287 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
289 WaitObjects *w = &wait_objects;
290 if (w->num >= MAXIMUM_WAIT_OBJECTS) {
291 return -1;
293 w->events[w->num] = handle;
294 w->func[w->num] = func;
295 w->opaque[w->num] = opaque;
296 w->revents[w->num] = 0;
297 w->num++;
298 return 0;
301 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
303 int i, found;
304 WaitObjects *w = &wait_objects;
306 found = 0;
307 for (i = 0; i < w->num; i++) {
308 if (w->events[i] == handle) {
309 found = 1;
311 if (found) {
312 w->events[i] = w->events[i + 1];
313 w->func[i] = w->func[i + 1];
314 w->opaque[i] = w->opaque[i + 1];
315 w->revents[i] = w->revents[i + 1];
318 if (found) {
319 w->num--;
323 void qemu_fd_register(int fd)
325 WSAEventSelect(fd, event_notifier_get_handle(&qemu_aio_context->notifier),
326 FD_READ | FD_ACCEPT | FD_CLOSE |
327 FD_CONNECT | FD_WRITE | FD_OOB);
330 static int os_host_main_loop_wait(uint32_t timeout)
332 GMainContext *context = g_main_context_default();
333 int ret, i;
334 PollingEntry *pe;
335 WaitObjects *w = &wait_objects;
336 gint poll_timeout;
337 static struct timeval tv0;
339 /* XXX: need to suppress polling by better using win32 events */
340 ret = 0;
341 for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
342 ret |= pe->func(pe->opaque);
344 if (ret != 0) {
345 return ret;
348 if (nfds >= 0) {
349 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
350 if (ret != 0) {
351 timeout = 0;
355 g_main_context_prepare(context, &max_priority);
356 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
357 poll_fds, ARRAY_SIZE(poll_fds));
358 g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds));
360 for (i = 0; i < w->num; i++) {
361 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
362 poll_fds[n_poll_fds + i].events = G_IO_IN;
365 if (poll_timeout < 0 || timeout < poll_timeout) {
366 poll_timeout = timeout;
369 qemu_mutex_unlock_iothread();
370 ret = g_poll(poll_fds, n_poll_fds + w->num, poll_timeout);
371 qemu_mutex_lock_iothread();
372 if (ret > 0) {
373 for (i = 0; i < w->num; i++) {
374 w->revents[i] = poll_fds[n_poll_fds + i].revents;
376 for (i = 0; i < w->num; i++) {
377 if (w->revents[i] && w->func[i]) {
378 w->func[i](w->opaque[i]);
383 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
384 g_main_context_dispatch(context);
387 /* If an edge-triggered socket event occurred, select will return a
388 * positive result on the next iteration. We do not need to do anything
389 * here.
392 return ret;
394 #endif
396 int main_loop_wait(int nonblocking)
398 int ret;
399 uint32_t timeout = UINT32_MAX;
401 if (nonblocking) {
402 timeout = 0;
405 /* poll any events */
406 /* XXX: separate device handlers from system ones */
407 nfds = -1;
408 FD_ZERO(&rfds);
409 FD_ZERO(&wfds);
410 FD_ZERO(&xfds);
412 #ifdef CONFIG_SLIRP
413 slirp_update_timeout(&timeout);
414 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
415 #endif
416 qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds);
417 ret = os_host_main_loop_wait(timeout);
418 qemu_iohandler_poll(&rfds, &wfds, &xfds, ret);
419 #ifdef CONFIG_SLIRP
420 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
421 #endif
423 qemu_run_all_timers();
425 return ret;
428 /* Functions to operate on the main QEMU AioContext. */
430 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
432 return aio_bh_new(qemu_aio_context, cb, opaque);
435 bool qemu_aio_wait(void)
437 return aio_poll(qemu_aio_context, true);
440 #ifdef CONFIG_POSIX
441 void qemu_aio_set_fd_handler(int fd,
442 IOHandler *io_read,
443 IOHandler *io_write,
444 AioFlushHandler *io_flush,
445 void *opaque)
447 aio_set_fd_handler(qemu_aio_context, fd, io_read, io_write, io_flush,
448 opaque);
450 #endif
452 void qemu_aio_set_event_notifier(EventNotifier *notifier,
453 EventNotifierHandler *io_read,
454 AioFlushEventNotifierHandler *io_flush)
456 aio_set_event_notifier(qemu_aio_context, notifier, io_read, io_flush);