xhci: Fix memory leak in xhci_kick_epctx when poweroff GuestOS
[qemu/ar7.git] / qemu-options.hx
blobd4b73ef60c1d4589148169ac658a34eee5f54522
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
35 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
36 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
37 " mem-merge=on|off controls memory merge support (default: on)\n"
38 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
39 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
40 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
41 " nvdimm=on|off controls NVDIMM support (default=off)\n"
42 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
43 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
44 " hmat=on|off controls ACPI HMAT support (default=off)\n",
45 QEMU_ARCH_ALL)
46 STEXI
47 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
48 @findex -machine
49 Select the emulated machine by @var{name}. Use @code{-machine help} to list
50 available machines.
52 For architectures which aim to support live migration compatibility
53 across releases, each release will introduce a new versioned machine
54 type. For example, the 2.8.0 release introduced machine types
55 ``pc-i440fx-2.8'' and ``pc-q35-2.8'' for the x86_64/i686 architectures.
57 To allow live migration of guests from QEMU version 2.8.0, to QEMU
58 version 2.9.0, the 2.9.0 version must support the ``pc-i440fx-2.8''
59 and ``pc-q35-2.8'' machines too. To allow users live migrating VMs
60 to skip multiple intermediate releases when upgrading, new releases
61 of QEMU will support machine types from many previous versions.
63 Supported machine properties are:
64 @table @option
65 @item accel=@var{accels1}[:@var{accels2}[:...]]
66 This is used to enable an accelerator. Depending on the target architecture,
67 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
68 more than one accelerator specified, the next one is used if the previous one
69 fails to initialize.
70 @item vmport=on|off|auto
71 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
72 value based on accel. For accel=xen the default is off otherwise the default
73 is on.
74 @item dump-guest-core=on|off
75 Include guest memory in a core dump. The default is on.
76 @item mem-merge=on|off
77 Enables or disables memory merge support. This feature, when supported by
78 the host, de-duplicates identical memory pages among VMs instances
79 (enabled by default).
80 @item aes-key-wrap=on|off
81 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
82 controls whether AES wrapping keys will be created to allow
83 execution of AES cryptographic functions. The default is on.
84 @item dea-key-wrap=on|off
85 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
86 controls whether DEA wrapping keys will be created to allow
87 execution of DEA cryptographic functions. The default is on.
88 @item nvdimm=on|off
89 Enables or disables NVDIMM support. The default is off.
90 @item enforce-config-section=on|off
91 If @option{enforce-config-section} is set to @var{on}, force migration
92 code to send configuration section even if the machine-type sets the
93 @option{migration.send-configuration} property to @var{off}.
94 NOTE: this parameter is deprecated. Please use @option{-global}
95 @option{migration.send-configuration}=@var{on|off} instead.
96 @item memory-encryption=@var{}
97 Memory encryption object to use. The default is none.
98 @item hmat=on|off
99 Enables or disables ACPI Heterogeneous Memory Attribute Table (HMAT) support.
100 The default is off.
101 @end table
102 ETEXI
104 HXCOMM Deprecated by -machine
105 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
107 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
108 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
109 STEXI
110 @item -cpu @var{model}
111 @findex -cpu
112 Select CPU model (@code{-cpu help} for list and additional feature selection)
113 ETEXI
115 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
116 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
117 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
118 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
119 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
120 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
121 " tb-size=n (TCG translation block cache size)\n"
122 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
123 STEXI
124 @item -accel @var{name}[,prop=@var{value}[,...]]
125 @findex -accel
126 This is used to enable an accelerator. Depending on the target architecture,
127 kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If there is
128 more than one accelerator specified, the next one is used if the previous one
129 fails to initialize.
130 @table @option
131 @item igd-passthru=on|off
132 When Xen is in use, this option controls whether Intel integrated graphics
133 devices can be passed through to the guest (default=off)
134 @item kernel-irqchip=on|off|split
135 Controls KVM in-kernel irqchip support. The default is full acceleration of the
136 interrupt controllers. On x86, split irqchip reduces the kernel attack
137 surface, at a performance cost for non-MSI interrupts. Disabling the in-kernel
138 irqchip completely is not recommended except for debugging purposes.
139 @item kvm-shadow-mem=size
140 Defines the size of the KVM shadow MMU.
141 @item tb-size=@var{n}
142 Controls the size (in MiB) of the TCG translation block cache.
143 @item thread=single|multi
144 Controls number of TCG threads. When the TCG is multi-threaded there will be one
145 thread per vCPU therefor taking advantage of additional host cores. The default
146 is to enable multi-threading where both the back-end and front-ends support it and
147 no incompatible TCG features have been enabled (e.g. icount/replay).
148 @end table
149 ETEXI
151 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
152 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
153 " set the number of CPUs to 'n' [default=1]\n"
154 " maxcpus= maximum number of total cpus, including\n"
155 " offline CPUs for hotplug, etc\n"
156 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
157 " threads= number of threads on one CPU core\n"
158 " dies= number of CPU dies on one socket (for PC only)\n"
159 " sockets= number of discrete sockets in the system\n",
160 QEMU_ARCH_ALL)
161 STEXI
162 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,dies=dies][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
163 @findex -smp
164 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
165 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
166 to 4.
167 For the PC target, the number of @var{cores} per die, the number of @var{threads}
168 per cores, the number of @var{dies} per packages and the total number of
169 @var{sockets} can be specified. Missing values will be computed.
170 If any on the three values is given, the total number of CPUs @var{n} can be omitted.
171 @var{maxcpus} specifies the maximum number of hotpluggable CPUs.
172 ETEXI
174 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
175 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
176 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
177 "-numa dist,src=source,dst=destination,val=distance\n"
178 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
179 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
180 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
181 QEMU_ARCH_ALL)
182 STEXI
183 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
184 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}][,initiator=@var{initiator}]
185 @itemx -numa dist,src=@var{source},dst=@var{destination},val=@var{distance}
186 @itemx -numa cpu,node-id=@var{node}[,socket-id=@var{x}][,core-id=@var{y}][,thread-id=@var{z}]
187 @itemx -numa hmat-lb,initiator=@var{node},target=@var{node},hierarchy=@var{hierarchy},data-type=@var{tpye}[,latency=@var{lat}][,bandwidth=@var{bw}]
188 @itemx -numa hmat-cache,node-id=@var{node},size=@var{size},level=@var{level}[,associativity=@var{str}][,policy=@var{str}][,line=@var{size}]
189 @findex -numa
190 Define a NUMA node and assign RAM and VCPUs to it.
191 Set the NUMA distance from a source node to a destination node.
192 Set the ACPI Heterogeneous Memory Attributes for the given nodes.
194 Legacy VCPU assignment uses @samp{cpus} option where
195 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
196 @samp{cpus} option represent a contiguous range of CPU indexes
197 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
198 set of VCPUs can be represented by providing multiple @samp{cpus}
199 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
200 split between them.
202 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
203 a NUMA node:
204 @example
205 -numa node,cpus=0-2,cpus=5
206 @end example
208 @samp{cpu} option is a new alternative to @samp{cpus} option
209 which uses @samp{socket-id|core-id|thread-id} properties to assign
210 CPU objects to a @var{node} using topology layout properties of CPU.
211 The set of properties is machine specific, and depends on used
212 machine type/@samp{smp} options. It could be queried with
213 @samp{hotpluggable-cpus} monitor command.
214 @samp{node-id} property specifies @var{node} to which CPU object
215 will be assigned, it's required for @var{node} to be declared
216 with @samp{node} option before it's used with @samp{cpu} option.
218 For example:
219 @example
220 -M pc \
221 -smp 1,sockets=2,maxcpus=2 \
222 -numa node,nodeid=0 -numa node,nodeid=1 \
223 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
224 @end example
226 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
227 assigns RAM from a given memory backend device to a node. If
228 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
229 split equally between them.
231 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
232 if one node uses @samp{memdev}, all of them have to use it.
234 @samp{initiator} is an additional option that points to an @var{initiator}
235 NUMA node that has best performance (the lowest latency or largest bandwidth)
236 to this NUMA @var{node}. Note that this option can be set only when
237 the machine property 'hmat' is set to 'on'.
239 Following example creates a machine with 2 NUMA nodes, node 0 has CPU.
240 node 1 has only memory, and its initiator is node 0. Note that because
241 node 0 has CPU, by default the initiator of node 0 is itself and must be
242 itself.
243 @example
244 -machine hmat=on \
245 -m 2G,slots=2,maxmem=4G \
246 -object memory-backend-ram,size=1G,id=m0 \
247 -object memory-backend-ram,size=1G,id=m1 \
248 -numa node,nodeid=0,memdev=m0 \
249 -numa node,nodeid=1,memdev=m1,initiator=0 \
250 -smp 2,sockets=2,maxcpus=2 \
251 -numa cpu,node-id=0,socket-id=0 \
252 -numa cpu,node-id=0,socket-id=1
253 @end example
255 @var{source} and @var{destination} are NUMA node IDs.
256 @var{distance} is the NUMA distance from @var{source} to @var{destination}.
257 The distance from a node to itself is always 10. If any pair of nodes is
258 given a distance, then all pairs must be given distances. Although, when
259 distances are only given in one direction for each pair of nodes, then
260 the distances in the opposite directions are assumed to be the same. If,
261 however, an asymmetrical pair of distances is given for even one node
262 pair, then all node pairs must be provided distance values for both
263 directions, even when they are symmetrical. When a node is unreachable
264 from another node, set the pair's distance to 255.
266 Note that the -@option{numa} option doesn't allocate any of the
267 specified resources, it just assigns existing resources to NUMA
268 nodes. This means that one still has to use the @option{-m},
269 @option{-smp} options to allocate RAM and VCPUs respectively.
271 Use @samp{hmat-lb} to set System Locality Latency and Bandwidth Information
272 between initiator and target NUMA nodes in ACPI Heterogeneous Attribute Memory Table (HMAT).
273 Initiator NUMA node can create memory requests, usually it has one or more processors.
274 Target NUMA node contains addressable memory.
276 In @samp{hmat-lb} option, @var{node} are NUMA node IDs. @var{hierarchy} is the memory
277 hierarchy of the target NUMA node: if @var{hierarchy} is 'memory', the structure
278 represents the memory performance; if @var{hierarchy} is 'first-level|second-level|third-level',
279 this structure represents aggregated performance of memory side caches for each domain.
280 @var{type} of 'data-type' is type of data represented by this structure instance:
281 if 'hierarchy' is 'memory', 'data-type' is 'access|read|write' latency or 'access|read|write'
282 bandwidth of the target memory; if 'hierarchy' is 'first-level|second-level|third-level',
283 'data-type' is 'access|read|write' hit latency or 'access|read|write' hit bandwidth of the
284 target memory side cache.
286 @var{lat} is latency value in nanoseconds. @var{bw} is bandwidth value,
287 the possible value and units are NUM[M|G|T], mean that the bandwidth value are
288 NUM byte per second (or MB/s, GB/s or TB/s depending on used suffix).
289 Note that if latency or bandwidth value is 0, means the corresponding latency or
290 bandwidth information is not provided.
292 In @samp{hmat-cache} option, @var{node-id} is the NUMA-id of the memory belongs.
293 @var{size} is the size of memory side cache in bytes. @var{level} is the cache
294 level described in this structure, note that the cache level 0 should not be used
295 with @samp{hmat-cache} option. @var{associativity} is the cache associativity,
296 the possible value is 'none/direct(direct-mapped)/complex(complex cache indexing)'.
297 @var{policy} is the write policy. @var{line} is the cache Line size in bytes.
299 For example, the following options describe 2 NUMA nodes. Node 0 has 2 cpus and
300 a ram, node 1 has only a ram. The processors in node 0 access memory in node
301 0 with access-latency 5 nanoseconds, access-bandwidth is 200 MB/s;
302 The processors in NUMA node 0 access memory in NUMA node 1 with access-latency 10
303 nanoseconds, access-bandwidth is 100 MB/s.
304 And for memory side cache information, NUMA node 0 and 1 both have 1 level memory
305 cache, size is 10KB, policy is write-back, the cache Line size is 8 bytes:
306 @example
307 -machine hmat=on \
308 -m 2G \
309 -object memory-backend-ram,size=1G,id=m0 \
310 -object memory-backend-ram,size=1G,id=m1 \
311 -smp 2 \
312 -numa node,nodeid=0,memdev=m0 \
313 -numa node,nodeid=1,memdev=m1,initiator=0 \
314 -numa cpu,node-id=0,socket-id=0 \
315 -numa cpu,node-id=0,socket-id=1 \
316 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
317 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
318 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
319 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
320 -numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
321 -numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8
322 @end example
324 ETEXI
326 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
327 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
328 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
329 STEXI
330 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
331 @findex -add-fd
333 Add a file descriptor to an fd set. Valid options are:
335 @table @option
336 @item fd=@var{fd}
337 This option defines the file descriptor of which a duplicate is added to fd set.
338 The file descriptor cannot be stdin, stdout, or stderr.
339 @item set=@var{set}
340 This option defines the ID of the fd set to add the file descriptor to.
341 @item opaque=@var{opaque}
342 This option defines a free-form string that can be used to describe @var{fd}.
343 @end table
345 You can open an image using pre-opened file descriptors from an fd set:
346 @example
347 @value{qemu_system} \
348 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
349 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
350 -drive file=/dev/fdset/2,index=0,media=disk
351 @end example
352 ETEXI
354 DEF("set", HAS_ARG, QEMU_OPTION_set,
355 "-set group.id.arg=value\n"
356 " set <arg> parameter for item <id> of type <group>\n"
357 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
358 STEXI
359 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
360 @findex -set
361 Set parameter @var{arg} for item @var{id} of type @var{group}
362 ETEXI
364 DEF("global", HAS_ARG, QEMU_OPTION_global,
365 "-global driver.property=value\n"
366 "-global driver=driver,property=property,value=value\n"
367 " set a global default for a driver property\n",
368 QEMU_ARCH_ALL)
369 STEXI
370 @item -global @var{driver}.@var{prop}=@var{value}
371 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
372 @findex -global
373 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
375 @example
376 @value{qemu_system_x86} -global ide-hd.physical_block_size=4096 disk-image.img
377 @end example
379 In particular, you can use this to set driver properties for devices which are
380 created automatically by the machine model. To create a device which is not
381 created automatically and set properties on it, use -@option{device}.
383 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
384 driver=@var{driver},property=@var{prop},value=@var{value}. The
385 longhand syntax works even when @var{driver} contains a dot.
386 ETEXI
388 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
389 "-boot [order=drives][,once=drives][,menu=on|off]\n"
390 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
391 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
392 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
393 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
394 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
395 QEMU_ARCH_ALL)
396 STEXI
397 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
398 @findex -boot
399 Specify boot order @var{drives} as a string of drive letters. Valid
400 drive letters depend on the target architecture. The x86 PC uses: a, b
401 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
402 from network adapter 1-4), hard disk boot is the default. To apply a
403 particular boot order only on the first startup, specify it via
404 @option{once}. Note that the @option{order} or @option{once} parameter
405 should not be used together with the @option{bootindex} property of
406 devices, since the firmware implementations normally do not support both
407 at the same time.
409 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
410 as firmware/BIOS supports them. The default is non-interactive boot.
412 A splash picture could be passed to bios, enabling user to show it as logo,
413 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
414 supports them. Currently Seabios for X86 system support it.
415 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
416 format(true color). The resolution should be supported by the SVGA mode, so
417 the recommended is 320x240, 640x480, 800x640.
419 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
420 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
421 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
422 system support it.
424 Do strict boot via @option{strict=on} as far as firmware/BIOS
425 supports it. This only effects when boot priority is changed by
426 bootindex options. The default is non-strict boot.
428 @example
429 # try to boot from network first, then from hard disk
430 @value{qemu_system_x86} -boot order=nc
431 # boot from CD-ROM first, switch back to default order after reboot
432 @value{qemu_system_x86} -boot once=d
433 # boot with a splash picture for 5 seconds.
434 @value{qemu_system_x86} -boot menu=on,splash=/root/boot.bmp,splash-time=5000
435 @end example
437 Note: The legacy format '-boot @var{drives}' is still supported but its
438 use is discouraged as it may be removed from future versions.
439 ETEXI
441 DEF("m", HAS_ARG, QEMU_OPTION_m,
442 "-m [size=]megs[,slots=n,maxmem=size]\n"
443 " configure guest RAM\n"
444 " size: initial amount of guest memory\n"
445 " slots: number of hotplug slots (default: none)\n"
446 " maxmem: maximum amount of guest memory (default: none)\n"
447 "NOTE: Some architectures might enforce a specific granularity\n",
448 QEMU_ARCH_ALL)
449 STEXI
450 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
451 @findex -m
452 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
453 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
454 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
455 could be used to set amount of hotpluggable memory slots and maximum amount of
456 memory. Note that @var{maxmem} must be aligned to the page size.
458 For example, the following command-line sets the guest startup RAM size to
459 1GB, creates 3 slots to hotplug additional memory and sets the maximum
460 memory the guest can reach to 4GB:
462 @example
463 @value{qemu_system} -m 1G,slots=3,maxmem=4G
464 @end example
466 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
467 be enabled and the guest startup RAM will never increase.
468 ETEXI
470 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
471 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
472 STEXI
473 @item -mem-path @var{path}
474 @findex -mem-path
475 Allocate guest RAM from a temporarily created file in @var{path}.
476 ETEXI
478 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
479 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
480 QEMU_ARCH_ALL)
481 STEXI
482 @item -mem-prealloc
483 @findex -mem-prealloc
484 Preallocate memory when using -mem-path.
485 ETEXI
487 DEF("k", HAS_ARG, QEMU_OPTION_k,
488 "-k language use keyboard layout (for example 'fr' for French)\n",
489 QEMU_ARCH_ALL)
490 STEXI
491 @item -k @var{language}
492 @findex -k
493 Use keyboard layout @var{language} (for example @code{fr} for
494 French). This option is only needed where it is not easy to get raw PC
495 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
496 display). You don't normally need to use it on PC/Linux or PC/Windows
497 hosts.
499 The available layouts are:
500 @example
501 ar de-ch es fo fr-ca hu ja mk no pt-br sv
502 da en-gb et fr fr-ch is lt nl pl ru th
503 de en-us fi fr-be hr it lv nl-be pt sl tr
504 @end example
506 The default is @code{en-us}.
507 ETEXI
510 HXCOMM Deprecated by -audiodev
511 DEF("audio-help", 0, QEMU_OPTION_audio_help,
512 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
513 QEMU_ARCH_ALL)
514 STEXI
515 @item -audio-help
516 @findex -audio-help
517 Will show the -audiodev equivalent of the currently specified
518 (deprecated) environment variables.
519 ETEXI
521 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
522 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
523 " specifies the audio backend to use\n"
524 " id= identifier of the backend\n"
525 " timer-period= timer period in microseconds\n"
526 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
527 " in|out.fixed-settings= use fixed settings for host audio\n"
528 " in|out.frequency= frequency to use with fixed settings\n"
529 " in|out.channels= number of channels to use with fixed settings\n"
530 " in|out.format= sample format to use with fixed settings\n"
531 " valid values: s8, s16, s32, u8, u16, u32\n"
532 " in|out.voices= number of voices to use\n"
533 " in|out.buffer-length= length of buffer in microseconds\n"
534 "-audiodev none,id=id,[,prop[=value][,...]]\n"
535 " dummy driver that discards all output\n"
536 #ifdef CONFIG_AUDIO_ALSA
537 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
538 " in|out.dev= name of the audio device to use\n"
539 " in|out.period-length= length of period in microseconds\n"
540 " in|out.try-poll= attempt to use poll mode\n"
541 " threshold= threshold (in microseconds) when playback starts\n"
542 #endif
543 #ifdef CONFIG_AUDIO_COREAUDIO
544 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
545 " in|out.buffer-count= number of buffers\n"
546 #endif
547 #ifdef CONFIG_AUDIO_DSOUND
548 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
549 " latency= add extra latency to playback in microseconds\n"
550 #endif
551 #ifdef CONFIG_AUDIO_OSS
552 "-audiodev oss,id=id[,prop[=value][,...]]\n"
553 " in|out.dev= path of the audio device to use\n"
554 " in|out.buffer-count= number of buffers\n"
555 " in|out.try-poll= attempt to use poll mode\n"
556 " try-mmap= try using memory mapped access\n"
557 " exclusive= open device in exclusive mode\n"
558 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
559 #endif
560 #ifdef CONFIG_AUDIO_PA
561 "-audiodev pa,id=id[,prop[=value][,...]]\n"
562 " server= PulseAudio server address\n"
563 " in|out.name= source/sink device name\n"
564 " in|out.latency= desired latency in microseconds\n"
565 #endif
566 #ifdef CONFIG_AUDIO_SDL
567 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
568 #endif
569 #ifdef CONFIG_SPICE
570 "-audiodev spice,id=id[,prop[=value][,...]]\n"
571 #endif
572 "-audiodev wav,id=id[,prop[=value][,...]]\n"
573 " path= path of wav file to record\n",
574 QEMU_ARCH_ALL)
575 STEXI
576 @item -audiodev [driver=]@var{driver},id=@var{id}[,@var{prop}[=@var{value}][,...]]
577 @findex -audiodev
578 Adds a new audio backend @var{driver} identified by @var{id}. There are
579 global and driver specific properties. Some values can be set
580 differently for input and output, they're marked with @code{in|out.}.
581 You can set the input's property with @code{in.@var{prop}} and the
582 output's property with @code{out.@var{prop}}. For example:
583 @example
584 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
585 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
586 @end example
588 NOTE: parameter validation is known to be incomplete, in many cases
589 specifying an invalid option causes QEMU to print an error message and
590 continue emulation without sound.
592 Valid global options are:
594 @table @option
595 @item id=@var{identifier}
596 Identifies the audio backend.
598 @item timer-period=@var{period}
599 Sets the timer @var{period} used by the audio subsystem in microseconds.
600 Default is 10000 (10 ms).
602 @item in|out.mixing-engine=on|off
603 Use QEMU's mixing engine to mix all streams inside QEMU and convert
604 audio formats when not supported by the backend. When off,
605 @var{fixed-settings} must be off too. Note that disabling this option
606 means that the selected backend must support multiple streams and the
607 audio formats used by the virtual cards, otherwise you'll get no sound.
608 It's not recommended to disable this option unless you want to use 5.1
609 or 7.1 audio, as mixing engine only supports mono and stereo audio.
610 Default is on.
612 @item in|out.fixed-settings=on|off
613 Use fixed settings for host audio. When off, it will change based on
614 how the guest opens the sound card. In this case you must not specify
615 @var{frequency}, @var{channels} or @var{format}. Default is on.
617 @item in|out.frequency=@var{frequency}
618 Specify the @var{frequency} to use when using @var{fixed-settings}.
619 Default is 44100Hz.
621 @item in|out.channels=@var{channels}
622 Specify the number of @var{channels} to use when using
623 @var{fixed-settings}. Default is 2 (stereo).
625 @item in|out.format=@var{format}
626 Specify the sample @var{format} to use when using @var{fixed-settings}.
627 Valid values are: @code{s8}, @code{s16}, @code{s32}, @code{u8},
628 @code{u16}, @code{u32}. Default is @code{s16}.
630 @item in|out.voices=@var{voices}
631 Specify the number of @var{voices} to use. Default is 1.
633 @item in|out.buffer-length=@var{usecs}
634 Sets the size of the buffer in microseconds.
636 @end table
638 @item -audiodev none,id=@var{id}[,@var{prop}[=@var{value}][,...]]
639 Creates a dummy backend that discards all outputs. This backend has no
640 backend specific properties.
642 @item -audiodev alsa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
643 Creates backend using the ALSA. This backend is only available on
644 Linux.
646 ALSA specific options are:
648 @table @option
650 @item in|out.dev=@var{device}
651 Specify the ALSA @var{device} to use for input and/or output. Default
652 is @code{default}.
654 @item in|out.period-length=@var{usecs}
655 Sets the period length in microseconds.
657 @item in|out.try-poll=on|off
658 Attempt to use poll mode with the device. Default is on.
660 @item threshold=@var{threshold}
661 Threshold (in microseconds) when playback starts. Default is 0.
663 @end table
665 @item -audiodev coreaudio,id=@var{id}[,@var{prop}[=@var{value}][,...]]
666 Creates a backend using Apple's Core Audio. This backend is only
667 available on Mac OS and only supports playback.
669 Core Audio specific options are:
671 @table @option
673 @item in|out.buffer-count=@var{count}
674 Sets the @var{count} of the buffers.
676 @end table
678 @item -audiodev dsound,id=@var{id}[,@var{prop}[=@var{value}][,...]]
679 Creates a backend using Microsoft's DirectSound. This backend is only
680 available on Windows and only supports playback.
682 DirectSound specific options are:
684 @table @option
686 @item latency=@var{usecs}
687 Add extra @var{usecs} microseconds latency to playback. Default is
688 10000 (10 ms).
690 @end table
692 @item -audiodev oss,id=@var{id}[,@var{prop}[=@var{value}][,...]]
693 Creates a backend using OSS. This backend is available on most
694 Unix-like systems.
696 OSS specific options are:
698 @table @option
700 @item in|out.dev=@var{device}
701 Specify the file name of the OSS @var{device} to use. Default is
702 @code{/dev/dsp}.
704 @item in|out.buffer-count=@var{count}
705 Sets the @var{count} of the buffers.
707 @item in|out.try-poll=on|of
708 Attempt to use poll mode with the device. Default is on.
710 @item try-mmap=on|off
711 Try using memory mapped device access. Default is off.
713 @item exclusive=on|off
714 Open the device in exclusive mode (vmix won't work in this case).
715 Default is off.
717 @item dsp-policy=@var{policy}
718 Sets the timing policy (between 0 and 10, where smaller number means
719 smaller latency but higher CPU usage). Use -1 to use buffer sizes
720 specified by @code{buffer} and @code{buffer-count}. This option is
721 ignored if you do not have OSS 4. Default is 5.
723 @end table
725 @item -audiodev pa,id=@var{id}[,@var{prop}[=@var{value}][,...]]
726 Creates a backend using PulseAudio. This backend is available on most
727 systems.
729 PulseAudio specific options are:
731 @table @option
733 @item server=@var{server}
734 Sets the PulseAudio @var{server} to connect to.
736 @item in|out.name=@var{sink}
737 Use the specified source/sink for recording/playback.
739 @item in|out.latency=@var{usecs}
740 Desired latency in microseconds. The PulseAudio server will try to honor this
741 value but actual latencies may be lower or higher.
743 @end table
745 @item -audiodev sdl,id=@var{id}[,@var{prop}[=@var{value}][,...]]
746 Creates a backend using SDL. This backend is available on most systems,
747 but you should use your platform's native backend if possible. This
748 backend has no backend specific properties.
750 @item -audiodev spice,id=@var{id}[,@var{prop}[=@var{value}][,...]]
751 Creates a backend that sends audio through SPICE. This backend requires
752 @code{-spice} and automatically selected in that case, so usually you
753 can ignore this option. This backend has no backend specific
754 properties.
756 @item -audiodev wav,id=@var{id}[,@var{prop}[=@var{value}][,...]]
757 Creates a backend that writes audio to a WAV file.
759 Backend specific options are:
761 @table @option
763 @item path=@var{path}
764 Write recorded audio into the specified file. Default is
765 @code{qemu.wav}.
767 @end table
768 ETEXI
770 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
771 "-soundhw c1,... enable audio support\n"
772 " and only specified sound cards (comma separated list)\n"
773 " use '-soundhw help' to get the list of supported cards\n"
774 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
775 STEXI
776 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
777 @findex -soundhw
778 Enable audio and selected sound hardware. Use 'help' to print all
779 available sound hardware. For example:
781 @example
782 @value{qemu_system_x86} -soundhw sb16,adlib disk.img
783 @value{qemu_system_x86} -soundhw es1370 disk.img
784 @value{qemu_system_x86} -soundhw ac97 disk.img
785 @value{qemu_system_x86} -soundhw hda disk.img
786 @value{qemu_system_x86} -soundhw all disk.img
787 @value{qemu_system_x86} -soundhw help
788 @end example
790 Note that Linux's i810_audio OSS kernel (for AC97) module might
791 require manually specifying clocking.
793 @example
794 modprobe i810_audio clocking=48000
795 @end example
796 ETEXI
798 DEF("device", HAS_ARG, QEMU_OPTION_device,
799 "-device driver[,prop[=value][,...]]\n"
800 " add device (based on driver)\n"
801 " prop=value,... sets driver properties\n"
802 " use '-device help' to print all possible drivers\n"
803 " use '-device driver,help' to print all possible properties\n",
804 QEMU_ARCH_ALL)
805 STEXI
806 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
807 @findex -device
808 Add device @var{driver}. @var{prop}=@var{value} sets driver
809 properties. Valid properties depend on the driver. To get help on
810 possible drivers and properties, use @code{-device help} and
811 @code{-device @var{driver},help}.
813 Some drivers are:
814 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}][,sdrfile=@var{file}][,furareasize=@var{val}][,furdatafile=@var{file}][,guid=@var{uuid}]
816 Add an IPMI BMC. This is a simulation of a hardware management
817 interface processor that normally sits on a system. It provides
818 a watchdog and the ability to reset and power control the system.
819 You need to connect this to an IPMI interface to make it useful
821 The IPMI slave address to use for the BMC. The default is 0x20.
822 This address is the BMC's address on the I2C network of management
823 controllers. If you don't know what this means, it is safe to ignore
826 @table @option
827 @item id=@var{id}
828 The BMC id for interfaces to use this device.
829 @item slave_addr=@var{val}
830 Define slave address to use for the BMC. The default is 0x20.
831 @item sdrfile=@var{file}
832 file containing raw Sensor Data Records (SDR) data. The default is none.
833 @item fruareasize=@var{val}
834 size of a Field Replaceable Unit (FRU) area. The default is 1024.
835 @item frudatafile=@var{file}
836 file containing raw Field Replaceable Unit (FRU) inventory data. The default is none.
837 @item guid=@var{uuid}
838 value for the GUID for the BMC, in standard UUID format. If this is set,
839 get "Get GUID" command to the BMC will return it. Otherwise "Get GUID"
840 will return an error.
841 @end table
843 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
845 Add a connection to an external IPMI BMC simulator. Instead of
846 locally emulating the BMC like the above item, instead connect
847 to an external entity that provides the IPMI services.
849 A connection is made to an external BMC simulator. If you do this, it
850 is strongly recommended that you use the "reconnect=" chardev option
851 to reconnect to the simulator if the connection is lost. Note that if
852 this is not used carefully, it can be a security issue, as the
853 interface has the ability to send resets, NMIs, and power off the VM.
854 It's best if QEMU makes a connection to an external simulator running
855 on a secure port on localhost, so neither the simulator nor QEMU is
856 exposed to any outside network.
858 See the "lanserv/README.vm" file in the OpenIPMI library for more
859 details on the external interface.
861 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
863 Add a KCS IPMI interafce on the ISA bus. This also adds a
864 corresponding ACPI and SMBIOS entries, if appropriate.
866 @table @option
867 @item bmc=@var{id}
868 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
869 @item ioport=@var{val}
870 Define the I/O address of the interface. The default is 0xca0 for KCS.
871 @item irq=@var{val}
872 Define the interrupt to use. The default is 5. To disable interrupts,
873 set this to 0.
874 @end table
876 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
878 Like the KCS interface, but defines a BT interface. The default port is
879 0xe4 and the default interrupt is 5.
881 ETEXI
883 DEF("name", HAS_ARG, QEMU_OPTION_name,
884 "-name string1[,process=string2][,debug-threads=on|off]\n"
885 " set the name of the guest\n"
886 " string1 sets the window title and string2 the process name\n"
887 " When debug-threads is enabled, individual threads are given a separate name\n"
888 " NOTE: The thread names are for debugging and not a stable API.\n",
889 QEMU_ARCH_ALL)
890 STEXI
891 @item -name @var{name}
892 @findex -name
893 Sets the @var{name} of the guest.
894 This name will be displayed in the SDL window caption.
895 The @var{name} will also be used for the VNC server.
896 Also optionally set the top visible process name in Linux.
897 Naming of individual threads can also be enabled on Linux to aid debugging.
898 ETEXI
900 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
901 "-uuid %08x-%04x-%04x-%04x-%012x\n"
902 " specify machine UUID\n", QEMU_ARCH_ALL)
903 STEXI
904 @item -uuid @var{uuid}
905 @findex -uuid
906 Set system UUID.
907 ETEXI
909 STEXI
910 @end table
911 ETEXI
912 DEFHEADING()
914 DEFHEADING(Block device options:)
915 STEXI
916 @table @option
917 ETEXI
919 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
920 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
921 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
922 STEXI
923 @item -fda @var{file}
924 @itemx -fdb @var{file}
925 @findex -fda
926 @findex -fdb
927 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
928 ETEXI
930 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
931 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
932 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
933 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
934 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
935 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
936 STEXI
937 @item -hda @var{file}
938 @itemx -hdb @var{file}
939 @itemx -hdc @var{file}
940 @itemx -hdd @var{file}
941 @findex -hda
942 @findex -hdb
943 @findex -hdc
944 @findex -hdd
945 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
946 ETEXI
948 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
949 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
950 QEMU_ARCH_ALL)
951 STEXI
952 @item -cdrom @var{file}
953 @findex -cdrom
954 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
955 @option{-cdrom} at the same time). You can use the host CD-ROM by
956 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
957 ETEXI
959 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
960 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
961 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
962 " [,read-only=on|off][,auto-read-only=on|off]\n"
963 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
964 " [,driver specific parameters...]\n"
965 " configure a block backend\n", QEMU_ARCH_ALL)
966 STEXI
967 @item -blockdev @var{option}[,@var{option}[,@var{option}[,...]]]
968 @findex -blockdev
970 Define a new block driver node. Some of the options apply to all block drivers,
971 other options are only accepted for a specific block driver. See below for a
972 list of generic options and options for the most common block drivers.
974 Options that expect a reference to another node (e.g. @code{file}) can be
975 given in two ways. Either you specify the node name of an already existing node
976 (file=@var{node-name}), or you define a new node inline, adding options
977 for the referenced node after a dot (file.filename=@var{path},file.aio=native).
979 A block driver node created with @option{-blockdev} can be used for a guest
980 device by specifying its node name for the @code{drive} property in a
981 @option{-device} argument that defines a block device.
983 @table @option
984 @item Valid options for any block driver node:
986 @table @code
987 @item driver
988 Specifies the block driver to use for the given node.
989 @item node-name
990 This defines the name of the block driver node by which it will be referenced
991 later. The name must be unique, i.e. it must not match the name of a different
992 block driver node, or (if you use @option{-drive} as well) the ID of a drive.
994 If no node name is specified, it is automatically generated. The generated node
995 name is not intended to be predictable and changes between QEMU invocations.
996 For the top level, an explicit node name must be specified.
997 @item read-only
998 Open the node read-only. Guest write attempts will fail.
1000 Note that some block drivers support only read-only access, either generally or
1001 in certain configurations. In this case, the default value
1002 @option{read-only=off} does not work and the option must be specified
1003 explicitly.
1004 @item auto-read-only
1005 If @option{auto-read-only=on} is set, QEMU may fall back to read-only usage
1006 even when @option{read-only=off} is requested, or even switch between modes as
1007 needed, e.g. depending on whether the image file is writable or whether a
1008 writing user is attached to the node.
1009 @item force-share
1010 Override the image locking system of QEMU by forcing the node to utilize
1011 weaker shared access for permissions where it would normally request exclusive
1012 access. When there is the potential for multiple instances to have the same
1013 file open (whether this invocation of QEMU is the first or the second
1014 instance), both instances must permit shared access for the second instance to
1015 succeed at opening the file.
1017 Enabling @option{force-share=on} requires @option{read-only=on}.
1018 @item cache.direct
1019 The host page cache can be avoided with @option{cache.direct=on}. This will
1020 attempt to do disk IO directly to the guest's memory. QEMU may still perform an
1021 internal copy of the data.
1022 @item cache.no-flush
1023 In case you don't care about data integrity over host failures, you can use
1024 @option{cache.no-flush=on}. This option tells QEMU that it never needs to write
1025 any data to the disk but can instead keep things in cache. If anything goes
1026 wrong, like your host losing power, the disk storage getting disconnected
1027 accidentally, etc. your image will most probably be rendered unusable.
1028 @item discard=@var{discard}
1029 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls
1030 whether @code{discard} (also known as @code{trim} or @code{unmap}) requests are
1031 ignored or passed to the filesystem. Some machine types may not support
1032 discard requests.
1033 @item detect-zeroes=@var{detect-zeroes}
1034 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
1035 conversion of plain zero writes by the OS to driver specific optimized
1036 zero write commands. You may even choose "unmap" if @var{discard} is set
1037 to "unmap" to allow a zero write to be converted to an @code{unmap} operation.
1038 @end table
1040 @item Driver-specific options for @code{file}
1042 This is the protocol-level block driver for accessing regular files.
1044 @table @code
1045 @item filename
1046 The path to the image file in the local filesystem
1047 @item aio
1048 Specifies the AIO backend (threads/native, default: threads)
1049 @item locking
1050 Specifies whether the image file is protected with Linux OFD / POSIX locks. The
1051 default is to use the Linux Open File Descriptor API if available, otherwise no
1052 lock is applied. (auto/on/off, default: auto)
1053 @end table
1054 Example:
1055 @example
1056 -blockdev driver=file,node-name=disk,filename=disk.img
1057 @end example
1059 @item Driver-specific options for @code{raw}
1061 This is the image format block driver for raw images. It is usually
1062 stacked on top of a protocol level block driver such as @code{file}.
1064 @table @code
1065 @item file
1066 Reference to or definition of the data source block driver node
1067 (e.g. a @code{file} driver node)
1068 @end table
1069 Example 1:
1070 @example
1071 -blockdev driver=file,node-name=disk_file,filename=disk.img
1072 -blockdev driver=raw,node-name=disk,file=disk_file
1073 @end example
1074 Example 2:
1075 @example
1076 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1077 @end example
1079 @item Driver-specific options for @code{qcow2}
1081 This is the image format block driver for qcow2 images. It is usually
1082 stacked on top of a protocol level block driver such as @code{file}.
1084 @table @code
1085 @item file
1086 Reference to or definition of the data source block driver node
1087 (e.g. a @code{file} driver node)
1089 @item backing
1090 Reference to or definition of the backing file block device (default is taken
1091 from the image file). It is allowed to pass @code{null} here in order to disable
1092 the default backing file.
1094 @item lazy-refcounts
1095 Whether to enable the lazy refcounts feature (on/off; default is taken from the
1096 image file)
1098 @item cache-size
1099 The maximum total size of the L2 table and refcount block caches in bytes
1100 (default: the sum of l2-cache-size and refcount-cache-size)
1102 @item l2-cache-size
1103 The maximum size of the L2 table cache in bytes
1104 (default: if cache-size is not specified - 32M on Linux platforms, and 8M on
1105 non-Linux platforms; otherwise, as large as possible within the cache-size,
1106 while permitting the requested or the minimal refcount cache size)
1108 @item refcount-cache-size
1109 The maximum size of the refcount block cache in bytes
1110 (default: 4 times the cluster size; or if cache-size is specified, the part of
1111 it which is not used for the L2 cache)
1113 @item cache-clean-interval
1114 Clean unused entries in the L2 and refcount caches. The interval is in seconds.
1115 The default value is 600 on supporting platforms, and 0 on other platforms.
1116 Setting it to 0 disables this feature.
1118 @item pass-discard-request
1119 Whether discard requests to the qcow2 device should be forwarded to the data
1120 source (on/off; default: on if discard=unmap is specified, off otherwise)
1122 @item pass-discard-snapshot
1123 Whether discard requests for the data source should be issued when a snapshot
1124 operation (e.g. deleting a snapshot) frees clusters in the qcow2 file (on/off;
1125 default: on)
1127 @item pass-discard-other
1128 Whether discard requests for the data source should be issued on other
1129 occasions where a cluster gets freed (on/off; default: off)
1131 @item overlap-check
1132 Which overlap checks to perform for writes to the image
1133 (none/constant/cached/all; default: cached). For details or finer
1134 granularity control refer to the QAPI documentation of @code{blockdev-add}.
1135 @end table
1137 Example 1:
1138 @example
1139 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1140 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1141 @end example
1142 Example 2:
1143 @example
1144 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1145 @end example
1147 @item Driver-specific options for other drivers
1148 Please refer to the QAPI documentation of the @code{blockdev-add} QMP command.
1150 @end table
1152 ETEXI
1154 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1155 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1156 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1157 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1158 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
1159 " [,readonly=on|off][,copy-on-read=on|off]\n"
1160 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1161 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1162 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1163 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1164 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1165 " [[,iops_size=is]]\n"
1166 " [[,group=g]]\n"
1167 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1168 STEXI
1169 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
1170 @findex -drive
1172 Define a new drive. This includes creating a block driver node (the backend) as
1173 well as a guest device, and is mostly a shortcut for defining the corresponding
1174 @option{-blockdev} and @option{-device} options.
1176 @option{-drive} accepts all options that are accepted by @option{-blockdev}. In
1177 addition, it knows the following options:
1179 @table @option
1180 @item file=@var{file}
1181 This option defines which disk image (@pxref{disk_images}) to use with
1182 this drive. If the filename contains comma, you must double it
1183 (for instance, "file=my,,file" to use file "my,file").
1185 Special files such as iSCSI devices can be specified using protocol
1186 specific URLs. See the section for "Device URL Syntax" for more information.
1187 @item if=@var{interface}
1188 This option defines on which type on interface the drive is connected.
1189 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
1190 @item bus=@var{bus},unit=@var{unit}
1191 These options define where is connected the drive by defining the bus number and
1192 the unit id.
1193 @item index=@var{index}
1194 This option defines where is connected the drive by using an index in the list
1195 of available connectors of a given interface type.
1196 @item media=@var{media}
1197 This option defines the type of the media: disk or cdrom.
1198 @item snapshot=@var{snapshot}
1199 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
1200 (see @option{-snapshot}).
1201 @item cache=@var{cache}
1202 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough"
1203 and controls how the host cache is used to access block data. This is a
1204 shortcut that sets the @option{cache.direct} and @option{cache.no-flush}
1205 options (as in @option{-blockdev}), and additionally @option{cache.writeback},
1206 which provides a default for the @option{write-cache} option of block guest
1207 devices (as in @option{-device}). The modes correspond to the following
1208 settings:
1210 @c Our texi2pod.pl script doesn't support @multitable, so fall back to using
1211 @c plain ASCII art (well, UTF-8 art really). This looks okay both in the manpage
1212 @c and the HTML output.
1213 @example
1214 @ │ cache.writeback cache.direct cache.no-flush
1215 ─────────────┼─────────────────────────────────────────────────
1216 writeback │ on off off
1217 none │ on on off
1218 writethrough │ off off off
1219 directsync │ off on off
1220 unsafe │ on off on
1221 @end example
1223 The default mode is @option{cache=writeback}.
1225 @item aio=@var{aio}
1226 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
1227 @item format=@var{format}
1228 Specify which disk @var{format} will be used rather than detecting
1229 the format. Can be used to specify format=raw to avoid interpreting
1230 an untrusted format header.
1231 @item werror=@var{action},rerror=@var{action}
1232 Specify which @var{action} to take on write and read errors. Valid actions are:
1233 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
1234 "report" (report the error to the guest), "enospc" (pause QEMU only if the
1235 host disk is full; report the error to the guest otherwise).
1236 The default setting is @option{werror=enospc} and @option{rerror=report}.
1237 @item copy-on-read=@var{copy-on-read}
1238 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
1239 file sectors into the image file.
1240 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
1241 Specify bandwidth throttling limits in bytes per second, either for all request
1242 types or for reads or writes only. Small values can lead to timeouts or hangs
1243 inside the guest. A safe minimum for disks is 2 MB/s.
1244 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
1245 Specify bursts in bytes per second, either for all request types or for reads
1246 or writes only. Bursts allow the guest I/O to spike above the limit
1247 temporarily.
1248 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
1249 Specify request rate limits in requests per second, either for all request
1250 types or for reads or writes only.
1251 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
1252 Specify bursts in requests per second, either for all request types or for reads
1253 or writes only. Bursts allow the guest I/O to spike above the limit
1254 temporarily.
1255 @item iops_size=@var{is}
1256 Let every @var{is} bytes of a request count as a new request for iops
1257 throttling purposes. Use this option to prevent guests from circumventing iops
1258 limits by sending fewer but larger requests.
1259 @item group=@var{g}
1260 Join a throttling quota group with given name @var{g}. All drives that are
1261 members of the same group are accounted for together. Use this option to
1262 prevent guests from circumventing throttling limits by using many small disks
1263 instead of a single larger disk.
1264 @end table
1266 By default, the @option{cache.writeback=on} mode is used. It will report data
1267 writes as completed as soon as the data is present in the host page cache.
1268 This is safe as long as your guest OS makes sure to correctly flush disk caches
1269 where needed. If your guest OS does not handle volatile disk write caches
1270 correctly and your host crashes or loses power, then the guest may experience
1271 data corruption.
1273 For such guests, you should consider using @option{cache.writeback=off}. This
1274 means that the host page cache will be used to read and write data, but write
1275 notification will be sent to the guest only after QEMU has made sure to flush
1276 each write to the disk. Be aware that this has a major impact on performance.
1278 When using the @option{-snapshot} option, unsafe caching is always used.
1280 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
1281 useful when the backing file is over a slow network. By default copy-on-read
1282 is off.
1284 Instead of @option{-cdrom} you can use:
1285 @example
1286 @value{qemu_system} -drive file=file,index=2,media=cdrom
1287 @end example
1289 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
1290 use:
1291 @example
1292 @value{qemu_system} -drive file=file,index=0,media=disk
1293 @value{qemu_system} -drive file=file,index=1,media=disk
1294 @value{qemu_system} -drive file=file,index=2,media=disk
1295 @value{qemu_system} -drive file=file,index=3,media=disk
1296 @end example
1298 You can open an image using pre-opened file descriptors from an fd set:
1299 @example
1300 @value{qemu_system} \
1301 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
1302 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
1303 -drive file=/dev/fdset/2,index=0,media=disk
1304 @end example
1306 You can connect a CDROM to the slave of ide0:
1307 @example
1308 @value{qemu_system_x86} -drive file=file,if=ide,index=1,media=cdrom
1309 @end example
1311 If you don't specify the "file=" argument, you define an empty drive:
1312 @example
1313 @value{qemu_system_x86} -drive if=ide,index=1,media=cdrom
1314 @end example
1316 Instead of @option{-fda}, @option{-fdb}, you can use:
1317 @example
1318 @value{qemu_system_x86} -drive file=file,index=0,if=floppy
1319 @value{qemu_system_x86} -drive file=file,index=1,if=floppy
1320 @end example
1322 By default, @var{interface} is "ide" and @var{index} is automatically
1323 incremented:
1324 @example
1325 @value{qemu_system_x86} -drive file=a -drive file=b"
1326 @end example
1327 is interpreted like:
1328 @example
1329 @value{qemu_system_x86} -hda a -hdb b
1330 @end example
1331 ETEXI
1333 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1334 "-mtdblock file use 'file' as on-board Flash memory image\n",
1335 QEMU_ARCH_ALL)
1336 STEXI
1337 @item -mtdblock @var{file}
1338 @findex -mtdblock
1339 Use @var{file} as on-board Flash memory image.
1340 ETEXI
1342 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1343 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1344 STEXI
1345 @item -sd @var{file}
1346 @findex -sd
1347 Use @var{file} as SecureDigital card image.
1348 ETEXI
1350 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1351 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1352 STEXI
1353 @item -pflash @var{file}
1354 @findex -pflash
1355 Use @var{file} as a parallel flash image.
1356 ETEXI
1358 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1359 "-snapshot write to temporary files instead of disk image files\n",
1360 QEMU_ARCH_ALL)
1361 STEXI
1362 @item -snapshot
1363 @findex -snapshot
1364 Write to temporary files instead of disk image files. In this case,
1365 the raw disk image you use is not written back. You can however force
1366 the write back by pressing @key{C-a s} (@pxref{disk_images}).
1367 ETEXI
1369 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1370 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1371 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1372 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1373 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1374 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1375 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1376 " [[,throttling.iops-size=is]]\n"
1377 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1378 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1379 "-fsdev synth,id=id\n",
1380 QEMU_ARCH_ALL)
1382 STEXI
1384 @item -fsdev local,id=@var{id},path=@var{path},security_model=@var{security_model} [,writeout=@var{writeout}][,readonly][,fmode=@var{fmode}][,dmode=@var{dmode}] [,throttling.@var{option}=@var{value}[,throttling.@var{option}=@var{value}[,...]]]
1385 @itemx -fsdev proxy,id=@var{id},socket=@var{socket}[,writeout=@var{writeout}][,readonly]
1386 @itemx -fsdev proxy,id=@var{id},sock_fd=@var{sock_fd}[,writeout=@var{writeout}][,readonly]
1387 @itemx -fsdev synth,id=@var{id}[,readonly]
1388 @findex -fsdev
1389 Define a new file system device. Valid options are:
1390 @table @option
1391 @item local
1392 Accesses to the filesystem are done by QEMU.
1393 @item proxy
1394 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1395 @item synth
1396 Synthetic filesystem, only used by QTests.
1397 @item id=@var{id}
1398 Specifies identifier for this device.
1399 @item path=@var{path}
1400 Specifies the export path for the file system device. Files under
1401 this path will be available to the 9p client on the guest.
1402 @item security_model=@var{security_model}
1403 Specifies the security model to be used for this export path.
1404 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1405 In "passthrough" security model, files are stored using the same
1406 credentials as they are created on the guest. This requires QEMU
1407 to run as root. In "mapped-xattr" security model, some of the file
1408 attributes like uid, gid, mode bits and link target are stored as
1409 file attributes. For "mapped-file" these attributes are stored in the
1410 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1411 interact with other unix tools. "none" security model is same as
1412 passthrough except the sever won't report failures if it fails to
1413 set file attributes like ownership. Security model is mandatory
1414 only for local fsdriver. Other fsdrivers (like proxy) don't take
1415 security model as a parameter.
1416 @item writeout=@var{writeout}
1417 This is an optional argument. The only supported value is "immediate".
1418 This means that host page cache will be used to read and write data but
1419 write notification will be sent to the guest only when the data has been
1420 reported as written by the storage subsystem.
1421 @item readonly
1422 Enables exporting 9p share as a readonly mount for guests. By default
1423 read-write access is given.
1424 @item socket=@var{socket}
1425 Enables proxy filesystem driver to use passed socket file for communicating
1426 with virtfs-proxy-helper(1).
1427 @item sock_fd=@var{sock_fd}
1428 Enables proxy filesystem driver to use passed socket descriptor for
1429 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1430 will create socketpair and pass one of the fds as sock_fd.
1431 @item fmode=@var{fmode}
1432 Specifies the default mode for newly created files on the host. Works only
1433 with security models "mapped-xattr" and "mapped-file".
1434 @item dmode=@var{dmode}
1435 Specifies the default mode for newly created directories on the host. Works
1436 only with security models "mapped-xattr" and "mapped-file".
1437 @item throttling.bps-total=@var{b},throttling.bps-read=@var{r},throttling.bps-write=@var{w}
1438 Specify bandwidth throttling limits in bytes per second, either for all request
1439 types or for reads or writes only.
1440 @item throttling.bps-total-max=@var{bm},bps-read-max=@var{rm},bps-write-max=@var{wm}
1441 Specify bursts in bytes per second, either for all request types or for reads
1442 or writes only. Bursts allow the guest I/O to spike above the limit
1443 temporarily.
1444 @item throttling.iops-total=@var{i},throttling.iops-read=@var{r}, throttling.iops-write=@var{w}
1445 Specify request rate limits in requests per second, either for all request
1446 types or for reads or writes only.
1447 @item throttling.iops-total-max=@var{im},throttling.iops-read-max=@var{irm}, throttling.iops-write-max=@var{iwm}
1448 Specify bursts in requests per second, either for all request types or for reads
1449 or writes only. Bursts allow the guest I/O to spike above the limit temporarily.
1450 @item throttling.iops-size=@var{is}
1451 Let every @var{is} bytes of a request count as a new request for iops
1452 throttling purposes.
1453 @end table
1455 -fsdev option is used along with -device driver "virtio-9p-...".
1456 @item -device virtio-9p-@var{type},fsdev=@var{id},mount_tag=@var{mount_tag}
1457 Options for virtio-9p-... driver are:
1458 @table @option
1459 @item @var{type}
1460 Specifies the variant to be used. Supported values are "pci", "ccw" or "device",
1461 depending on the machine type.
1462 @item fsdev=@var{id}
1463 Specifies the id value specified along with -fsdev option.
1464 @item mount_tag=@var{mount_tag}
1465 Specifies the tag name to be used by the guest to mount this export point.
1466 @end table
1468 ETEXI
1470 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1471 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1472 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1473 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1474 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1475 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1476 QEMU_ARCH_ALL)
1478 STEXI
1480 @item -virtfs local,path=@var{path},mount_tag=@var{mount_tag} ,security_model=@var{security_model}[,writeout=@var{writeout}][,readonly] [,fmode=@var{fmode}][,dmode=@var{dmode}][,multidevs=@var{multidevs}]
1481 @itemx -virtfs proxy,socket=@var{socket},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1482 @itemx -virtfs proxy,sock_fd=@var{sock_fd},mount_tag=@var{mount_tag} [,writeout=@var{writeout}][,readonly]
1483 @itemx -virtfs synth,mount_tag=@var{mount_tag}
1484 @findex -virtfs
1486 Define a new filesystem device and expose it to the guest using a virtio-9p-device. The general form of a Virtual File system pass-through options are:
1487 @table @option
1488 @item local
1489 Accesses to the filesystem are done by QEMU.
1490 @item proxy
1491 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1492 @item synth
1493 Synthetic filesystem, only used by QTests.
1494 @item id=@var{id}
1495 Specifies identifier for the filesystem device
1496 @item path=@var{path}
1497 Specifies the export path for the file system device. Files under
1498 this path will be available to the 9p client on the guest.
1499 @item security_model=@var{security_model}
1500 Specifies the security model to be used for this export path.
1501 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
1502 In "passthrough" security model, files are stored using the same
1503 credentials as they are created on the guest. This requires QEMU
1504 to run as root. In "mapped-xattr" security model, some of the file
1505 attributes like uid, gid, mode bits and link target are stored as
1506 file attributes. For "mapped-file" these attributes are stored in the
1507 hidden .virtfs_metadata directory. Directories exported by this security model cannot
1508 interact with other unix tools. "none" security model is same as
1509 passthrough except the sever won't report failures if it fails to
1510 set file attributes like ownership. Security model is mandatory only
1511 for local fsdriver. Other fsdrivers (like proxy) don't take security
1512 model as a parameter.
1513 @item writeout=@var{writeout}
1514 This is an optional argument. The only supported value is "immediate".
1515 This means that host page cache will be used to read and write data but
1516 write notification will be sent to the guest only when the data has been
1517 reported as written by the storage subsystem.
1518 @item readonly
1519 Enables exporting 9p share as a readonly mount for guests. By default
1520 read-write access is given.
1521 @item socket=@var{socket}
1522 Enables proxy filesystem driver to use passed socket file for
1523 communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
1524 will create socketpair and pass one of the fds as sock_fd.
1525 @item sock_fd
1526 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
1527 descriptor for interfacing with virtfs-proxy-helper(1).
1528 @item fmode=@var{fmode}
1529 Specifies the default mode for newly created files on the host. Works only
1530 with security models "mapped-xattr" and "mapped-file".
1531 @item dmode=@var{dmode}
1532 Specifies the default mode for newly created directories on the host. Works
1533 only with security models "mapped-xattr" and "mapped-file".
1534 @item mount_tag=@var{mount_tag}
1535 Specifies the tag name to be used by the guest to mount this export point.
1536 @item multidevs=@var{multidevs}
1537 Specifies how to deal with multiple devices being shared with a 9p export.
1538 Supported behaviours are either "remap", "forbid" or "warn". The latter is
1539 the default behaviour on which virtfs 9p expects only one device to be
1540 shared with the same export, and if more than one device is shared and
1541 accessed via the same 9p export then only a warning message is logged
1542 (once) by qemu on host side. In order to avoid file ID collisions on guest
1543 you should either create a separate virtfs export for each device to be
1544 shared with guests (recommended way) or you might use "remap" instead which
1545 allows you to share multiple devices with only one export instead, which is
1546 achieved by remapping the original inode numbers from host to guest in a
1547 way that would prevent such collisions. Remapping inodes in such use cases
1548 is required because the original device IDs from host are never passed and
1549 exposed on guest. Instead all files of an export shared with virtfs always
1550 share the same device id on guest. So two files with identical inode
1551 numbers but from actually different devices on host would otherwise cause a
1552 file ID collision and hence potential misbehaviours on guest. "forbid" on
1553 the other hand assumes like "warn" that only one device is shared by the
1554 same export, however it will not only log a warning message but also
1555 deny access to additional devices on guest. Note though that "forbid" does
1556 currently not block all possible file access operations (e.g. readdir()
1557 would still return entries from other devices).
1558 @end table
1559 ETEXI
1561 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1562 "-iscsi [user=user][,password=password]\n"
1563 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1564 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1565 " [,timeout=timeout]\n"
1566 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1568 STEXI
1569 @item -iscsi
1570 @findex -iscsi
1571 Configure iSCSI session parameters.
1572 ETEXI
1574 STEXI
1575 @end table
1576 ETEXI
1577 DEFHEADING()
1579 DEFHEADING(USB options:)
1580 STEXI
1581 @table @option
1582 ETEXI
1584 DEF("usb", 0, QEMU_OPTION_usb,
1585 "-usb enable on-board USB host controller (if not enabled by default)\n",
1586 QEMU_ARCH_ALL)
1587 STEXI
1588 @item -usb
1589 @findex -usb
1590 Enable USB emulation on machine types with an on-board USB host controller (if
1591 not enabled by default). Note that on-board USB host controllers may not
1592 support USB 3.0. In this case @option{-device qemu-xhci} can be used instead
1593 on machines with PCI.
1594 ETEXI
1596 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1597 "-usbdevice name add the host or guest USB device 'name'\n",
1598 QEMU_ARCH_ALL)
1599 STEXI
1601 @item -usbdevice @var{devname}
1602 @findex -usbdevice
1603 Add the USB device @var{devname}. Note that this option is deprecated,
1604 please use @code{-device usb-...} instead. @xref{usb_devices}.
1606 @table @option
1608 @item mouse
1609 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1611 @item tablet
1612 Pointer device that uses absolute coordinates (like a touchscreen). This
1613 means QEMU is able to report the mouse position without having to grab the
1614 mouse. Also overrides the PS/2 mouse emulation when activated.
1616 @item braille
1617 Braille device. This will use BrlAPI to display the braille output on a real
1618 or fake device.
1620 @end table
1621 ETEXI
1623 STEXI
1624 @end table
1625 ETEXI
1626 DEFHEADING()
1628 DEFHEADING(Display options:)
1629 STEXI
1630 @table @option
1631 ETEXI
1633 DEF("display", HAS_ARG, QEMU_OPTION_display,
1634 #if defined(CONFIG_SPICE)
1635 "-display spice-app[,gl=on|off]\n"
1636 #endif
1637 #if defined(CONFIG_SDL)
1638 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1639 " [,window_close=on|off][,gl=on|core|es|off]\n"
1640 #endif
1641 #if defined(CONFIG_GTK)
1642 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1643 #endif
1644 #if defined(CONFIG_VNC)
1645 "-display vnc=<display>[,<optargs>]\n"
1646 #endif
1647 #if defined(CONFIG_CURSES)
1648 "-display curses[,charset=<encoding>]\n"
1649 #endif
1650 #if defined(CONFIG_OPENGL)
1651 "-display egl-headless[,rendernode=<file>]\n"
1652 #endif
1653 "-display none\n"
1654 " select display backend type\n"
1655 " The default display is equivalent to\n "
1656 #if defined(CONFIG_GTK)
1657 "\"-display gtk\"\n"
1658 #elif defined(CONFIG_SDL)
1659 "\"-display sdl\"\n"
1660 #elif defined(CONFIG_COCOA)
1661 "\"-display cocoa\"\n"
1662 #elif defined(CONFIG_VNC)
1663 "\"-vnc localhost:0,to=99,id=default\"\n"
1664 #else
1665 "\"-display none\"\n"
1666 #endif
1667 , QEMU_ARCH_ALL)
1668 STEXI
1669 @item -display @var{type}
1670 @findex -display
1671 Select type of display to use. This option is a replacement for the
1672 old style -sdl/-curses/... options. Valid values for @var{type} are
1673 @table @option
1674 @item sdl
1675 Display video output via SDL (usually in a separate graphics
1676 window; see the SDL documentation for other possibilities).
1677 @item curses
1678 Display video output via curses. For graphics device models which
1679 support a text mode, QEMU can display this output using a
1680 curses/ncurses interface. Nothing is displayed when the graphics
1681 device is in graphical mode or if the graphics device does not support
1682 a text mode. Generally only the VGA device models support text mode.
1683 The font charset used by the guest can be specified with the
1684 @code{charset} option, for example @code{charset=CP850} for IBM CP850
1685 encoding. The default is @code{CP437}.
1686 @item none
1687 Do not display video output. The guest will still see an emulated
1688 graphics card, but its output will not be displayed to the QEMU
1689 user. This option differs from the -nographic option in that it
1690 only affects what is done with video output; -nographic also changes
1691 the destination of the serial and parallel port data.
1692 @item gtk
1693 Display video output in a GTK window. This interface provides drop-down
1694 menus and other UI elements to configure and control the VM during
1695 runtime.
1696 @item vnc
1697 Start a VNC server on display <arg>
1698 @item egl-headless
1699 Offload all OpenGL operations to a local DRI device. For any graphical display,
1700 this display needs to be paired with either VNC or SPICE displays.
1701 @item spice-app
1702 Start QEMU as a Spice server and launch the default Spice client
1703 application. The Spice server will redirect the serial consoles and
1704 QEMU monitors. (Since 4.0)
1705 @end table
1706 ETEXI
1708 DEF("nographic", 0, QEMU_OPTION_nographic,
1709 "-nographic disable graphical output and redirect serial I/Os to console\n",
1710 QEMU_ARCH_ALL)
1711 STEXI
1712 @item -nographic
1713 @findex -nographic
1714 Normally, if QEMU is compiled with graphical window support, it displays
1715 output such as guest graphics, guest console, and the QEMU monitor in a
1716 window. With this option, you can totally disable graphical output so
1717 that QEMU is a simple command line application. The emulated serial port
1718 is redirected on the console and muxed with the monitor (unless
1719 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1720 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1721 switching between the console and monitor.
1722 ETEXI
1724 DEF("curses", 0, QEMU_OPTION_curses,
1725 "-curses shorthand for -display curses\n",
1726 QEMU_ARCH_ALL)
1727 STEXI
1728 @item -curses
1729 @findex -curses
1730 Normally, if QEMU is compiled with graphical window support, it displays
1731 output such as guest graphics, guest console, and the QEMU monitor in a
1732 window. With this option, QEMU can display the VGA output when in text
1733 mode using a curses/ncurses interface. Nothing is displayed in graphical
1734 mode.
1735 ETEXI
1737 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1738 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1739 QEMU_ARCH_ALL)
1740 STEXI
1741 @item -alt-grab
1742 @findex -alt-grab
1743 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1744 affects the special keys (for fullscreen, monitor-mode switching, etc).
1745 ETEXI
1747 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1748 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1749 QEMU_ARCH_ALL)
1750 STEXI
1751 @item -ctrl-grab
1752 @findex -ctrl-grab
1753 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1754 affects the special keys (for fullscreen, monitor-mode switching, etc).
1755 ETEXI
1757 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1758 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1759 STEXI
1760 @item -no-quit
1761 @findex -no-quit
1762 Disable SDL window close capability.
1763 ETEXI
1765 DEF("sdl", 0, QEMU_OPTION_sdl,
1766 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1767 STEXI
1768 @item -sdl
1769 @findex -sdl
1770 Enable SDL.
1771 ETEXI
1773 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1774 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1775 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1776 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1777 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1778 " [,tls-ciphers=<list>]\n"
1779 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1780 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1781 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1782 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1783 " [,jpeg-wan-compression=[auto|never|always]]\n"
1784 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1785 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1786 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1787 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1788 " [,gl=[on|off]][,rendernode=<file>]\n"
1789 " enable spice\n"
1790 " at least one of {port, tls-port} is mandatory\n",
1791 QEMU_ARCH_ALL)
1792 STEXI
1793 @item -spice @var{option}[,@var{option}[,...]]
1794 @findex -spice
1795 Enable the spice remote desktop protocol. Valid options are
1797 @table @option
1799 @item port=<nr>
1800 Set the TCP port spice is listening on for plaintext channels.
1802 @item addr=<addr>
1803 Set the IP address spice is listening on. Default is any address.
1805 @item ipv4
1806 @itemx ipv6
1807 @itemx unix
1808 Force using the specified IP version.
1810 @item password=<secret>
1811 Set the password you need to authenticate.
1813 @item sasl
1814 Require that the client use SASL to authenticate with the spice.
1815 The exact choice of authentication method used is controlled from the
1816 system / user's SASL configuration file for the 'qemu' service. This
1817 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1818 unprivileged user, an environment variable SASL_CONF_PATH can be used
1819 to make it search alternate locations for the service config.
1820 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1821 it is recommended that SASL always be combined with the 'tls' and
1822 'x509' settings to enable use of SSL and server certificates. This
1823 ensures a data encryption preventing compromise of authentication
1824 credentials.
1826 @item disable-ticketing
1827 Allow client connects without authentication.
1829 @item disable-copy-paste
1830 Disable copy paste between the client and the guest.
1832 @item disable-agent-file-xfer
1833 Disable spice-vdagent based file-xfer between the client and the guest.
1835 @item tls-port=<nr>
1836 Set the TCP port spice is listening on for encrypted channels.
1838 @item x509-dir=<dir>
1839 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1841 @item x509-key-file=<file>
1842 @itemx x509-key-password=<file>
1843 @itemx x509-cert-file=<file>
1844 @itemx x509-cacert-file=<file>
1845 @itemx x509-dh-key-file=<file>
1846 The x509 file names can also be configured individually.
1848 @item tls-ciphers=<list>
1849 Specify which ciphers to use.
1851 @item tls-channel=[main|display|cursor|inputs|record|playback]
1852 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1853 Force specific channel to be used with or without TLS encryption. The
1854 options can be specified multiple times to configure multiple
1855 channels. The special name "default" can be used to set the default
1856 mode. For channels which are not explicitly forced into one mode the
1857 spice client is allowed to pick tls/plaintext as he pleases.
1859 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1860 Configure image compression (lossless).
1861 Default is auto_glz.
1863 @item jpeg-wan-compression=[auto|never|always]
1864 @itemx zlib-glz-wan-compression=[auto|never|always]
1865 Configure wan image compression (lossy for slow links).
1866 Default is auto.
1868 @item streaming-video=[off|all|filter]
1869 Configure video stream detection. Default is off.
1871 @item agent-mouse=[on|off]
1872 Enable/disable passing mouse events via vdagent. Default is on.
1874 @item playback-compression=[on|off]
1875 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1877 @item seamless-migration=[on|off]
1878 Enable/disable spice seamless migration. Default is off.
1880 @item gl=[on|off]
1881 Enable/disable OpenGL context. Default is off.
1883 @item rendernode=<file>
1884 DRM render node for OpenGL rendering. If not specified, it will pick
1885 the first available. (Since 2.9)
1887 @end table
1888 ETEXI
1890 DEF("portrait", 0, QEMU_OPTION_portrait,
1891 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1892 QEMU_ARCH_ALL)
1893 STEXI
1894 @item -portrait
1895 @findex -portrait
1896 Rotate graphical output 90 deg left (only PXA LCD).
1897 ETEXI
1899 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1900 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1901 QEMU_ARCH_ALL)
1902 STEXI
1903 @item -rotate @var{deg}
1904 @findex -rotate
1905 Rotate graphical output some deg left (only PXA LCD).
1906 ETEXI
1908 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1909 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1910 " select video card type\n", QEMU_ARCH_ALL)
1911 STEXI
1912 @item -vga @var{type}
1913 @findex -vga
1914 Select type of VGA card to emulate. Valid values for @var{type} are
1915 @table @option
1916 @item cirrus
1917 Cirrus Logic GD5446 Video card. All Windows versions starting from
1918 Windows 95 should recognize and use this graphic card. For optimal
1919 performances, use 16 bit color depth in the guest and the host OS.
1920 (This card was the default before QEMU 2.2)
1921 @item std
1922 Standard VGA card with Bochs VBE extensions. If your guest OS
1923 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1924 to use high resolution modes (>= 1280x1024x16) then you should use
1925 this option. (This card is the default since QEMU 2.2)
1926 @item vmware
1927 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1928 recent XFree86/XOrg server or Windows guest with a driver for this
1929 card.
1930 @item qxl
1931 QXL paravirtual graphic card. It is VGA compatible (including VESA
1932 2.0 VBE support). Works best with qxl guest drivers installed though.
1933 Recommended choice when using the spice protocol.
1934 @item tcx
1935 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1936 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1937 fixed resolution of 1024x768.
1938 @item cg3
1939 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1940 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1941 resolutions aimed at people wishing to run older Solaris versions.
1942 @item virtio
1943 Virtio VGA card.
1944 @item none
1945 Disable VGA card.
1946 @end table
1947 ETEXI
1949 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1950 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1951 STEXI
1952 @item -full-screen
1953 @findex -full-screen
1954 Start in full screen.
1955 ETEXI
1957 DEF("g", 1, QEMU_OPTION_g ,
1958 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1959 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
1960 STEXI
1961 @item -g @var{width}x@var{height}[x@var{depth}]
1962 @findex -g
1963 Set the initial graphical resolution and depth (PPC, SPARC only).
1964 ETEXI
1966 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1967 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1968 STEXI
1969 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1970 @findex -vnc
1971 Normally, if QEMU is compiled with graphical window support, it displays
1972 output such as guest graphics, guest console, and the QEMU monitor in a
1973 window. With this option, you can have QEMU listen on VNC display
1974 @var{display} and redirect the VGA display over the VNC session. It is
1975 very useful to enable the usb tablet device when using this option
1976 (option @option{-device usb-tablet}). When using the VNC display, you
1977 must use the @option{-k} parameter to set the keyboard layout if you are
1978 not using en-us. Valid syntax for the @var{display} is
1980 @table @option
1982 @item to=@var{L}
1984 With this option, QEMU will try next available VNC @var{display}s, until the
1985 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1986 available, e.g. port 5900+@var{display} is already used by another
1987 application. By default, to=0.
1989 @item @var{host}:@var{d}
1991 TCP connections will only be allowed from @var{host} on display @var{d}.
1992 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1993 be omitted in which case the server will accept connections from any host.
1995 @item unix:@var{path}
1997 Connections will be allowed over UNIX domain sockets where @var{path} is the
1998 location of a unix socket to listen for connections on.
2000 @item none
2002 VNC is initialized but not started. The monitor @code{change} command
2003 can be used to later start the VNC server.
2005 @end table
2007 Following the @var{display} value there may be one or more @var{option} flags
2008 separated by commas. Valid options are
2010 @table @option
2012 @item reverse
2014 Connect to a listening VNC client via a ``reverse'' connection. The
2015 client is specified by the @var{display}. For reverse network
2016 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
2017 is a TCP port number, not a display number.
2019 @item websocket
2021 Opens an additional TCP listening port dedicated to VNC Websocket connections.
2022 If a bare @var{websocket} option is given, the Websocket port is
2023 5700+@var{display}. An alternative port can be specified with the
2024 syntax @code{websocket}=@var{port}.
2026 If @var{host} is specified connections will only be allowed from this host.
2027 It is possible to control the websocket listen address independently, using
2028 the syntax @code{websocket}=@var{host}:@var{port}.
2030 If no TLS credentials are provided, the websocket connection runs in
2031 unencrypted mode. If TLS credentials are provided, the websocket connection
2032 requires encrypted client connections.
2034 @item password
2036 Require that password based authentication is used for client connections.
2038 The password must be set separately using the @code{set_password} command in
2039 the @ref{pcsys_monitor}. The syntax to change your password is:
2040 @code{set_password <protocol> <password>} where <protocol> could be either
2041 "vnc" or "spice".
2043 If you would like to change <protocol> password expiration, you should use
2044 @code{expire_password <protocol> <expiration-time>} where expiration time could
2045 be one of the following options: now, never, +seconds or UNIX time of
2046 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
2047 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
2048 date and time).
2050 You can also use keywords "now" or "never" for the expiration time to
2051 allow <protocol> password to expire immediately or never expire.
2053 @item tls-creds=@var{ID}
2055 Provides the ID of a set of TLS credentials to use to secure the
2056 VNC server. They will apply to both the normal VNC server socket
2057 and the websocket socket (if enabled). Setting TLS credentials
2058 will cause the VNC server socket to enable the VeNCrypt auth
2059 mechanism. The credentials should have been previously created
2060 using the @option{-object tls-creds} argument.
2062 @item tls-authz=@var{ID}
2064 Provides the ID of the QAuthZ authorization object against which
2065 the client's x509 distinguished name will validated. This object is
2066 only resolved at time of use, so can be deleted and recreated on the
2067 fly while the VNC server is active. If missing, it will default
2068 to denying access.
2070 @item sasl
2072 Require that the client use SASL to authenticate with the VNC server.
2073 The exact choice of authentication method used is controlled from the
2074 system / user's SASL configuration file for the 'qemu' service. This
2075 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
2076 unprivileged user, an environment variable SASL_CONF_PATH can be used
2077 to make it search alternate locations for the service config.
2078 While some SASL auth methods can also provide data encryption (eg GSSAPI),
2079 it is recommended that SASL always be combined with the 'tls' and
2080 'x509' settings to enable use of SSL and server certificates. This
2081 ensures a data encryption preventing compromise of authentication
2082 credentials. See the @ref{vnc_security} section for details on using
2083 SASL authentication.
2085 @item sasl-authz=@var{ID}
2087 Provides the ID of the QAuthZ authorization object against which
2088 the client's SASL username will validated. This object is
2089 only resolved at time of use, so can be deleted and recreated on the
2090 fly while the VNC server is active. If missing, it will default
2091 to denying access.
2093 @item acl
2095 Legacy method for enabling authorization of clients against the
2096 x509 distinguished name and SASL username. It results in the creation
2097 of two @code{authz-list} objects with IDs of @code{vnc.username} and
2098 @code{vnc.x509dname}. The rules for these objects must be configured
2099 with the HMP ACL commands.
2101 This option is deprecated and should no longer be used. The new
2102 @option{sasl-authz} and @option{tls-authz} options are a
2103 replacement.
2105 @item lossy
2107 Enable lossy compression methods (gradient, JPEG, ...). If this
2108 option is set, VNC client may receive lossy framebuffer updates
2109 depending on its encoding settings. Enabling this option can save
2110 a lot of bandwidth at the expense of quality.
2112 @item non-adaptive
2114 Disable adaptive encodings. Adaptive encodings are enabled by default.
2115 An adaptive encoding will try to detect frequently updated screen regions,
2116 and send updates in these regions using a lossy encoding (like JPEG).
2117 This can be really helpful to save bandwidth when playing videos. Disabling
2118 adaptive encodings restores the original static behavior of encodings
2119 like Tight.
2121 @item share=[allow-exclusive|force-shared|ignore]
2123 Set display sharing policy. 'allow-exclusive' allows clients to ask
2124 for exclusive access. As suggested by the rfb spec this is
2125 implemented by dropping other connections. Connecting multiple
2126 clients in parallel requires all clients asking for a shared session
2127 (vncviewer: -shared switch). This is the default. 'force-shared'
2128 disables exclusive client access. Useful for shared desktop sessions,
2129 where you don't want someone forgetting specify -shared disconnect
2130 everybody else. 'ignore' completely ignores the shared flag and
2131 allows everybody connect unconditionally. Doesn't conform to the rfb
2132 spec but is traditional QEMU behavior.
2134 @item key-delay-ms
2136 Set keyboard delay, for key down and key up events, in milliseconds.
2137 Default is 10. Keyboards are low-bandwidth devices, so this slowdown
2138 can help the device and guest to keep up and not lose events in case
2139 events are arriving in bulk. Possible causes for the latter are flaky
2140 network connections, or scripts for automated testing.
2142 @item audiodev=@var{audiodev}
2144 Use the specified @var{audiodev} when the VNC client requests audio
2145 transmission. When not using an -audiodev argument, this option must
2146 be omitted, otherwise is must be present and specify a valid audiodev.
2148 @end table
2149 ETEXI
2151 STEXI
2152 @end table
2153 ETEXI
2154 ARCHHEADING(, QEMU_ARCH_I386)
2156 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
2157 STEXI
2158 @table @option
2159 ETEXI
2161 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2162 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2163 QEMU_ARCH_I386)
2164 STEXI
2165 @item -win2k-hack
2166 @findex -win2k-hack
2167 Use it when installing Windows 2000 to avoid a disk full bug. After
2168 Windows 2000 is installed, you no longer need this option (this option
2169 slows down the IDE transfers).
2170 ETEXI
2172 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2173 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2174 QEMU_ARCH_I386)
2175 STEXI
2176 @item -no-fd-bootchk
2177 @findex -no-fd-bootchk
2178 Disable boot signature checking for floppy disks in BIOS. May
2179 be needed to boot from old floppy disks.
2180 ETEXI
2182 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2183 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2184 STEXI
2185 @item -no-acpi
2186 @findex -no-acpi
2187 Disable ACPI (Advanced Configuration and Power Interface) support. Use
2188 it if your guest OS complains about ACPI problems (PC target machine
2189 only).
2190 ETEXI
2192 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2193 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2194 STEXI
2195 @item -no-hpet
2196 @findex -no-hpet
2197 Disable HPET support.
2198 ETEXI
2200 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2201 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2202 " ACPI table description\n", QEMU_ARCH_I386)
2203 STEXI
2204 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
2205 @findex -acpitable
2206 Add ACPI table with specified header fields and context from specified files.
2207 For file=, take whole ACPI table from the specified files, including all
2208 ACPI headers (possible overridden by other options).
2209 For data=, only data
2210 portion of the table is used, all header information is specified in the
2211 command line.
2212 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
2213 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
2214 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
2215 spec.
2216 ETEXI
2218 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2219 "-smbios file=binary\n"
2220 " load SMBIOS entry from binary file\n"
2221 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2222 " [,uefi=on|off]\n"
2223 " specify SMBIOS type 0 fields\n"
2224 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2225 " [,uuid=uuid][,sku=str][,family=str]\n"
2226 " specify SMBIOS type 1 fields\n"
2227 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2228 " [,asset=str][,location=str]\n"
2229 " specify SMBIOS type 2 fields\n"
2230 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2231 " [,sku=str]\n"
2232 " specify SMBIOS type 3 fields\n"
2233 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2234 " [,asset=str][,part=str]\n"
2235 " specify SMBIOS type 4 fields\n"
2236 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2237 " [,asset=str][,part=str][,speed=%d]\n"
2238 " specify SMBIOS type 17 fields\n",
2239 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2240 STEXI
2241 @item -smbios file=@var{binary}
2242 @findex -smbios
2243 Load SMBIOS entry from binary file.
2245 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
2246 Specify SMBIOS type 0 fields
2248 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
2249 Specify SMBIOS type 1 fields
2251 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}]
2252 Specify SMBIOS type 2 fields
2254 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
2255 Specify SMBIOS type 3 fields
2257 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
2258 Specify SMBIOS type 4 fields
2260 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
2261 Specify SMBIOS type 17 fields
2262 ETEXI
2264 STEXI
2265 @end table
2266 ETEXI
2267 DEFHEADING()
2269 DEFHEADING(Network options:)
2270 STEXI
2271 @table @option
2272 ETEXI
2274 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2275 #ifdef CONFIG_SLIRP
2276 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2277 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2278 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2279 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2280 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2281 #ifndef _WIN32
2282 "[,smb=dir[,smbserver=addr]]\n"
2283 #endif
2284 " configure a user mode network backend with ID 'str',\n"
2285 " its DHCP server and optional services\n"
2286 #endif
2287 #ifdef _WIN32
2288 "-netdev tap,id=str,ifname=name\n"
2289 " configure a host TAP network backend with ID 'str'\n"
2290 #else
2291 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2292 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2293 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2294 " [,poll-us=n]\n"
2295 " configure a host TAP network backend with ID 'str'\n"
2296 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2297 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2298 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2299 " to deconfigure it\n"
2300 " use '[down]script=no' to disable script execution\n"
2301 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2302 " configure it\n"
2303 " use 'fd=h' to connect to an already opened TAP interface\n"
2304 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2305 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2306 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2307 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2308 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2309 " use vhost=on to enable experimental in kernel accelerator\n"
2310 " (only has effect for virtio guests which use MSIX)\n"
2311 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2312 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2313 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2314 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2315 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
2316 " spent on busy polling for vhost net\n"
2317 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2318 " configure a host TAP network backend with ID 'str' that is\n"
2319 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2320 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2321 #endif
2322 #ifdef __linux__
2323 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2324 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2325 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2326 " [,rxcookie=rxcookie][,offset=offset]\n"
2327 " configure a network backend with ID 'str' connected to\n"
2328 " an Ethernet over L2TPv3 pseudowire.\n"
2329 " Linux kernel 3.3+ as well as most routers can talk\n"
2330 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2331 " VM to a router and even VM to Host. It is a nearly-universal\n"
2332 " standard (RFC3391). Note - this implementation uses static\n"
2333 " pre-configured tunnels (same as the Linux kernel).\n"
2334 " use 'src=' to specify source address\n"
2335 " use 'dst=' to specify destination address\n"
2336 " use 'udp=on' to specify udp encapsulation\n"
2337 " use 'srcport=' to specify source udp port\n"
2338 " use 'dstport=' to specify destination udp port\n"
2339 " use 'ipv6=on' to force v6\n"
2340 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2341 " well as a weak security measure\n"
2342 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2343 " use 'txcookie=0x012345678' to specify a txcookie\n"
2344 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2345 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2346 " use 'pincounter=on' to work around broken counter handling in peer\n"
2347 " use 'offset=X' to add an extra offset between header and data\n"
2348 #endif
2349 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2350 " configure a network backend to connect to another network\n"
2351 " using a socket connection\n"
2352 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2353 " configure a network backend to connect to a multicast maddr and port\n"
2354 " use 'localaddr=addr' to specify the host address to send packets from\n"
2355 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2356 " configure a network backend to connect to another network\n"
2357 " using an UDP tunnel\n"
2358 #ifdef CONFIG_VDE
2359 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2360 " configure a network backend to connect to port 'n' of a vde switch\n"
2361 " running on host and listening for incoming connections on 'socketpath'.\n"
2362 " Use group 'groupname' and mode 'octalmode' to change default\n"
2363 " ownership and permissions for communication port.\n"
2364 #endif
2365 #ifdef CONFIG_NETMAP
2366 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2367 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2368 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2369 " netmap device, defaults to '/dev/netmap')\n"
2370 #endif
2371 #ifdef CONFIG_POSIX
2372 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2373 " configure a vhost-user network, backed by a chardev 'dev'\n"
2374 #endif
2375 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2376 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2377 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2378 "-nic [tap|bridge|"
2379 #ifdef CONFIG_SLIRP
2380 "user|"
2381 #endif
2382 #ifdef __linux__
2383 "l2tpv3|"
2384 #endif
2385 #ifdef CONFIG_VDE
2386 "vde|"
2387 #endif
2388 #ifdef CONFIG_NETMAP
2389 "netmap|"
2390 #endif
2391 #ifdef CONFIG_POSIX
2392 "vhost-user|"
2393 #endif
2394 "socket][,option][,...][mac=macaddr]\n"
2395 " initialize an on-board / default host NIC (using MAC address\n"
2396 " macaddr) and connect it to the given host network backend\n"
2397 "-nic none use it alone to have zero network devices (the default is to\n"
2398 " provided a 'user' network connection)\n",
2399 QEMU_ARCH_ALL)
2400 DEF("net", HAS_ARG, QEMU_OPTION_net,
2401 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2402 " configure or create an on-board (or machine default) NIC and\n"
2403 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2404 "-net ["
2405 #ifdef CONFIG_SLIRP
2406 "user|"
2407 #endif
2408 "tap|"
2409 "bridge|"
2410 #ifdef CONFIG_VDE
2411 "vde|"
2412 #endif
2413 #ifdef CONFIG_NETMAP
2414 "netmap|"
2415 #endif
2416 "socket][,option][,option][,...]\n"
2417 " old way to initialize a host network interface\n"
2418 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2419 STEXI
2420 @item -nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]
2421 @findex -nic
2422 This option is a shortcut for configuring both the on-board (default) guest
2423 NIC hardware and the host network backend in one go. The host backend options
2424 are the same as with the corresponding @option{-netdev} options below.
2425 The guest NIC model can be set with @option{model=@var{modelname}}.
2426 Use @option{model=help} to list the available device types.
2427 The hardware MAC address can be set with @option{mac=@var{macaddr}}.
2429 The following two example do exactly the same, to show how @option{-nic} can
2430 be used to shorten the command line length (note that the e1000 is the default
2431 on i386, so the @option{model=e1000} parameter could even be omitted here, too):
2432 @example
2433 @value{qemu_system} -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2434 @value{qemu_system} -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2435 @end example
2437 @item -nic none
2438 Indicate that no network devices should be configured. It is used to override
2439 the default configuration (default NIC with ``user'' host network backend)
2440 which is activated if no other networking options are provided.
2442 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
2443 @findex -netdev
2444 Configure user mode host network backend which requires no administrator
2445 privilege to run. Valid options are:
2447 @table @option
2448 @item id=@var{id}
2449 Assign symbolic name for use in monitor commands.
2451 @item ipv4=on|off and ipv6=on|off
2452 Specify that either IPv4 or IPv6 must be enabled. If neither is specified
2453 both protocols are enabled.
2455 @item net=@var{addr}[/@var{mask}]
2456 Set IP network address the guest will see. Optionally specify the netmask,
2457 either in the form a.b.c.d or as number of valid top-most bits. Default is
2458 10.0.2.0/24.
2460 @item host=@var{addr}
2461 Specify the guest-visible address of the host. Default is the 2nd IP in the
2462 guest network, i.e. x.x.x.2.
2464 @item ipv6-net=@var{addr}[/@var{int}]
2465 Set IPv6 network address the guest will see (default is fec0::/64). The
2466 network prefix is given in the usual hexadecimal IPv6 address
2467 notation. The prefix size is optional, and is given as the number of
2468 valid top-most bits (default is 64).
2470 @item ipv6-host=@var{addr}
2471 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
2472 the guest network, i.e. xxxx::2.
2474 @item restrict=on|off
2475 If this option is enabled, the guest will be isolated, i.e. it will not be
2476 able to contact the host and no guest IP packets will be routed over the host
2477 to the outside. This option does not affect any explicitly set forwarding rules.
2479 @item hostname=@var{name}
2480 Specifies the client hostname reported by the built-in DHCP server.
2482 @item dhcpstart=@var{addr}
2483 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
2484 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
2486 @item dns=@var{addr}
2487 Specify the guest-visible address of the virtual nameserver. The address must
2488 be different from the host address. Default is the 3rd IP in the guest network,
2489 i.e. x.x.x.3.
2491 @item ipv6-dns=@var{addr}
2492 Specify the guest-visible address of the IPv6 virtual nameserver. The address
2493 must be different from the host address. Default is the 3rd IP in the guest
2494 network, i.e. xxxx::3.
2496 @item dnssearch=@var{domain}
2497 Provides an entry for the domain-search list sent by the built-in
2498 DHCP server. More than one domain suffix can be transmitted by specifying
2499 this option multiple times. If supported, this will cause the guest to
2500 automatically try to append the given domain suffix(es) in case a domain name
2501 can not be resolved.
2503 Example:
2504 @example
2505 @value{qemu_system} -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2506 @end example
2508 @item domainname=@var{domain}
2509 Specifies the client domain name reported by the built-in DHCP server.
2511 @item tftp=@var{dir}
2512 When using the user mode network stack, activate a built-in TFTP
2513 server. The files in @var{dir} will be exposed as the root of a TFTP server.
2514 The TFTP client on the guest must be configured in binary mode (use the command
2515 @code{bin} of the Unix TFTP client).
2517 @item tftp-server-name=@var{name}
2518 In BOOTP reply, broadcast @var{name} as the "TFTP server name" (RFC2132 option
2519 66). This can be used to advise the guest to load boot files or configurations
2520 from a different server than the host address.
2522 @item bootfile=@var{file}
2523 When using the user mode network stack, broadcast @var{file} as the BOOTP
2524 filename. In conjunction with @option{tftp}, this can be used to network boot
2525 a guest from a local directory.
2527 Example (using pxelinux):
2528 @example
2529 @value{qemu_system} -hda linux.img -boot n -device e1000,netdev=n1 \
2530 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2531 @end example
2533 @item smb=@var{dir}[,smbserver=@var{addr}]
2534 When using the user mode network stack, activate a built-in SMB
2535 server so that Windows OSes can access to the host files in @file{@var{dir}}
2536 transparently. The IP address of the SMB server can be set to @var{addr}. By
2537 default the 4th IP in the guest network is used, i.e. x.x.x.4.
2539 In the guest Windows OS, the line:
2540 @example
2541 10.0.2.4 smbserver
2542 @end example
2543 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
2544 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
2546 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2548 Note that a SAMBA server must be installed on the host OS.
2550 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
2551 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
2552 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
2553 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
2554 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
2555 be bound to a specific host interface. If no connection type is set, TCP is
2556 used. This option can be given multiple times.
2558 For example, to redirect host X11 connection from screen 1 to guest
2559 screen 0, use the following:
2561 @example
2562 # on the host
2563 @value{qemu_system} -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2564 # this host xterm should open in the guest X11 server
2565 xterm -display :1
2566 @end example
2568 To redirect telnet connections from host port 5555 to telnet port on
2569 the guest, use the following:
2571 @example
2572 # on the host
2573 @value{qemu_system} -nic user,hostfwd=tcp::5555-:23
2574 telnet localhost 5555
2575 @end example
2577 Then when you use on the host @code{telnet localhost 5555}, you
2578 connect to the guest telnet server.
2580 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
2581 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
2582 Forward guest TCP connections to the IP address @var{server} on port @var{port}
2583 to the character device @var{dev} or to a program executed by @var{cmd:command}
2584 which gets spawned for each connection. This option can be given multiple times.
2586 You can either use a chardev directly and have that one used throughout QEMU's
2587 lifetime, like in the following example:
2589 @example
2590 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2591 # the guest accesses it
2592 @value{qemu_system} -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2593 @end example
2595 Or you can execute a command on every TCP connection established by the guest,
2596 so that QEMU behaves similar to an inetd process for that virtual server:
2598 @example
2599 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2600 # and connect the TCP stream to its stdin/stdout
2601 @value{qemu_system} -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2602 @end example
2604 @end table
2606 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
2607 Configure a host TAP network backend with ID @var{id}.
2609 Use the network script @var{file} to configure it and the network script
2610 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
2611 automatically provides one. The default network configure script is
2612 @file{/etc/qemu-ifup} and the default network deconfigure script is
2613 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
2614 to disable script execution.
2616 If running QEMU as an unprivileged user, use the network helper
2617 @var{helper} to configure the TAP interface and attach it to the bridge.
2618 The default network helper executable is @file{/path/to/qemu-bridge-helper}
2619 and the default bridge device is @file{br0}.
2621 @option{fd}=@var{h} can be used to specify the handle of an already
2622 opened host TAP interface.
2624 Examples:
2626 @example
2627 #launch a QEMU instance with the default network script
2628 @value{qemu_system} linux.img -nic tap
2629 @end example
2631 @example
2632 #launch a QEMU instance with two NICs, each one connected
2633 #to a TAP device
2634 @value{qemu_system} linux.img \
2635 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
2636 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2637 @end example
2639 @example
2640 #launch a QEMU instance with the default network helper to
2641 #connect a TAP device to bridge br0
2642 @value{qemu_system} linux.img -device virtio-net-pci,netdev=n1 \
2643 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2644 @end example
2646 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2647 Connect a host TAP network interface to a host bridge device.
2649 Use the network helper @var{helper} to configure the TAP interface and
2650 attach it to the bridge. The default network helper executable is
2651 @file{/path/to/qemu-bridge-helper} and the default bridge
2652 device is @file{br0}.
2654 Examples:
2656 @example
2657 #launch a QEMU instance with the default network helper to
2658 #connect a TAP device to bridge br0
2659 @value{qemu_system} linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2660 @end example
2662 @example
2663 #launch a QEMU instance with the default network helper to
2664 #connect a TAP device to bridge qemubr0
2665 @value{qemu_system} linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2666 @end example
2668 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2670 This host network backend can be used to connect the guest's network to
2671 another QEMU virtual machine using a TCP socket connection. If @option{listen}
2672 is specified, QEMU waits for incoming connections on @var{port}
2673 (@var{host} is optional). @option{connect} is used to connect to
2674 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2675 specifies an already opened TCP socket.
2677 Example:
2678 @example
2679 # launch a first QEMU instance
2680 @value{qemu_system} linux.img \
2681 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2682 -netdev socket,id=n1,listen=:1234
2683 # connect the network of this instance to the network of the first instance
2684 @value{qemu_system} linux.img \
2685 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2686 -netdev socket,id=n2,connect=127.0.0.1:1234
2687 @end example
2689 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2691 Configure a socket host network backend to share the guest's network traffic
2692 with another QEMU virtual machines using a UDP multicast socket, effectively
2693 making a bus for every QEMU with same multicast address @var{maddr} and @var{port}.
2694 NOTES:
2695 @enumerate
2696 @item
2697 Several QEMU can be running on different hosts and share same bus (assuming
2698 correct multicast setup for these hosts).
2699 @item
2700 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2701 @url{http://user-mode-linux.sf.net}.
2702 @item
2703 Use @option{fd=h} to specify an already opened UDP multicast socket.
2704 @end enumerate
2706 Example:
2707 @example
2708 # launch one QEMU instance
2709 @value{qemu_system} linux.img \
2710 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2711 -netdev socket,id=n1,mcast=230.0.0.1:1234
2712 # launch another QEMU instance on same "bus"
2713 @value{qemu_system} linux.img \
2714 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2715 -netdev socket,id=n2,mcast=230.0.0.1:1234
2716 # launch yet another QEMU instance on same "bus"
2717 @value{qemu_system} linux.img \
2718 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \
2719 -netdev socket,id=n3,mcast=230.0.0.1:1234
2720 @end example
2722 Example (User Mode Linux compat.):
2723 @example
2724 # launch QEMU instance (note mcast address selected is UML's default)
2725 @value{qemu_system} linux.img \
2726 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2727 -netdev socket,id=n1,mcast=239.192.168.1:1102
2728 # launch UML
2729 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2730 @end example
2732 Example (send packets from host's 1.2.3.4):
2733 @example
2734 @value{qemu_system} linux.img \
2735 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2736 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2737 @end example
2739 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2740 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
2741 popular protocol to transport Ethernet (and other Layer 2) data frames between
2742 two systems. It is present in routers, firewalls and the Linux kernel
2743 (from version 3.3 onwards).
2745 This transport allows a VM to communicate to another VM, router or firewall directly.
2747 @table @option
2748 @item src=@var{srcaddr}
2749 source address (mandatory)
2750 @item dst=@var{dstaddr}
2751 destination address (mandatory)
2752 @item udp
2753 select udp encapsulation (default is ip).
2754 @item srcport=@var{srcport}
2755 source udp port.
2756 @item dstport=@var{dstport}
2757 destination udp port.
2758 @item ipv6
2759 force v6, otherwise defaults to v4.
2760 @item rxcookie=@var{rxcookie}
2761 @itemx txcookie=@var{txcookie}
2762 Cookies are a weak form of security in the l2tpv3 specification.
2763 Their function is mostly to prevent misconfiguration. By default they are 32
2764 bit.
2765 @item cookie64
2766 Set cookie size to 64 bit instead of the default 32
2767 @item counter=off
2768 Force a 'cut-down' L2TPv3 with no counter as in
2769 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2770 @item pincounter=on
2771 Work around broken counter handling in peer. This may also help on
2772 networks which have packet reorder.
2773 @item offset=@var{offset}
2774 Add an extra offset between header and data
2775 @end table
2777 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2778 on the remote Linux host 1.2.3.4:
2779 @example
2780 # Setup tunnel on linux host using raw ip as encapsulation
2781 # on 1.2.3.4
2782 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2783 encap udp udp_sport 16384 udp_dport 16384
2784 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2785 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2786 ifconfig vmtunnel0 mtu 1500
2787 ifconfig vmtunnel0 up
2788 brctl addif br-lan vmtunnel0
2791 # on 4.3.2.1
2792 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2794 @value{qemu_system} linux.img -device e1000,netdev=n1 \
2795 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2797 @end example
2799 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2800 Configure VDE backend to connect to PORT @var{n} of a vde switch running on host and
2801 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2802 and MODE @var{octalmode} to change default ownership and permissions for
2803 communication port. This option is only available if QEMU has been compiled
2804 with vde support enabled.
2806 Example:
2807 @example
2808 # launch vde switch
2809 vde_switch -F -sock /tmp/myswitch
2810 # launch QEMU instance
2811 @value{qemu_system} linux.img -nic vde,sock=/tmp/myswitch
2812 @end example
2814 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2816 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2817 be a unix domain socket backed one. The vhost-user uses a specifically defined
2818 protocol to pass vhost ioctl replacement messages to an application on the other
2819 end of the socket. On non-MSIX guests, the feature can be forced with
2820 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2821 be created for multiqueue vhost-user.
2823 Example:
2824 @example
2825 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2826 -numa node,memdev=mem \
2827 -chardev socket,id=chr0,path=/path/to/socket \
2828 -netdev type=vhost-user,id=net0,chardev=chr0 \
2829 -device virtio-net-pci,netdev=net0
2830 @end example
2832 @item -netdev hubport,id=@var{id},hubid=@var{hubid}[,netdev=@var{nd}]
2834 Create a hub port on the emulated hub with ID @var{hubid}.
2836 The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
2837 single netdev. Alternatively, you can also connect the hubport to another
2838 netdev with ID @var{nd} by using the @option{netdev=@var{nd}} option.
2840 @item -net nic[,netdev=@var{nd}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
2841 @findex -net
2842 Legacy option to configure or create an on-board (or machine default) Network
2843 Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e.
2844 the default hub), or to the netdev @var{nd}.
2845 The NIC is an e1000 by default on the PC target. Optionally, the MAC address
2846 can be changed to @var{mac}, the device address set to @var{addr} (PCI cards
2847 only), and a @var{name} can be assigned for use in monitor commands.
2848 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
2849 that the card should have; this option currently only affects virtio cards; set
2850 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
2851 NIC is created. QEMU can emulate several different models of network card.
2852 Use @code{-net nic,model=help} for a list of available devices for your target.
2854 @item -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=@var{name}]
2855 Configure a host network backend (with the options corresponding to the same
2856 @option{-netdev} option) and connect it to the emulated hub 0 (the default
2857 hub). Use @var{name} to specify the name of the hub port.
2858 ETEXI
2860 STEXI
2861 @end table
2862 ETEXI
2863 DEFHEADING()
2865 DEFHEADING(Character device options:)
2867 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2868 "-chardev help\n"
2869 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2870 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2871 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2872 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2873 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2874 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2875 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2876 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2877 " [,logfile=PATH][,logappend=on|off]\n"
2878 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2879 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2880 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2881 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2882 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2883 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2884 #ifdef _WIN32
2885 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2886 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2887 #else
2888 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2889 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2890 #endif
2891 #ifdef CONFIG_BRLAPI
2892 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2893 #endif
2894 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2895 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2896 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2897 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2898 #endif
2899 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2900 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2901 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2902 #endif
2903 #if defined(CONFIG_SPICE)
2904 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2905 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2906 #endif
2907 , QEMU_ARCH_ALL
2910 STEXI
2912 The general form of a character device option is:
2913 @table @option
2914 @item -chardev @var{backend},id=@var{id}[,mux=on|off][,@var{options}]
2915 @findex -chardev
2916 Backend is one of:
2917 @option{null},
2918 @option{socket},
2919 @option{udp},
2920 @option{msmouse},
2921 @option{vc},
2922 @option{ringbuf},
2923 @option{file},
2924 @option{pipe},
2925 @option{console},
2926 @option{serial},
2927 @option{pty},
2928 @option{stdio},
2929 @option{braille},
2930 @option{tty},
2931 @option{parallel},
2932 @option{parport},
2933 @option{spicevmc},
2934 @option{spiceport}.
2935 The specific backend will determine the applicable options.
2937 Use @code{-chardev help} to print all available chardev backend types.
2939 All devices must have an id, which can be any string up to 127 characters long.
2940 It is used to uniquely identify this device in other command line directives.
2942 A character device may be used in multiplexing mode by multiple front-ends.
2943 Specify @option{mux=on} to enable this mode.
2944 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2945 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2946 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2947 create a multiplexer with your specified ID, and you can then configure multiple
2948 front ends to use that chardev ID for their input/output. Up to four different
2949 front ends can be connected to a single multiplexed chardev. (Without
2950 multiplexing enabled, a chardev can only be used by a single front end.)
2951 For instance you could use this to allow a single stdio chardev to be used by
2952 two serial ports and the QEMU monitor:
2954 @example
2955 -chardev stdio,mux=on,id=char0 \
2956 -mon chardev=char0,mode=readline \
2957 -serial chardev:char0 \
2958 -serial chardev:char0
2959 @end example
2961 You can have more than one multiplexer in a system configuration; for instance
2962 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2963 multiplexed between the QEMU monitor and a parallel port:
2965 @example
2966 -chardev stdio,mux=on,id=char0 \
2967 -mon chardev=char0,mode=readline \
2968 -parallel chardev:char0 \
2969 -chardev tcp,...,mux=on,id=char1 \
2970 -serial chardev:char1 \
2971 -serial chardev:char1
2972 @end example
2974 When you're using a multiplexed character device, some escape sequences are
2975 interpreted in the input. @xref{mux_keys, Keys in the character backend
2976 multiplexer}.
2978 Note that some other command line options may implicitly create multiplexed
2979 character backends; for instance @option{-serial mon:stdio} creates a
2980 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2981 and @option{-nographic} also multiplexes the console and the monitor to
2982 stdio.
2984 There is currently no support for multiplexing in the other direction
2985 (where a single QEMU front end takes input and output from multiple chardevs).
2987 Every backend supports the @option{logfile} option, which supplies the path
2988 to a file to record all data transmitted via the backend. The @option{logappend}
2989 option controls whether the log file will be truncated or appended to when
2990 opened.
2992 @end table
2994 The available backends are:
2996 @table @option
2997 @item -chardev null,id=@var{id}
2998 A void device. This device will not emit any data, and will drop any data it
2999 receives. The null backend does not take any options.
3001 @item -chardev socket,id=@var{id}[,@var{TCP options} or @var{unix options}][,server][,nowait][,telnet][,websocket][,reconnect=@var{seconds}][,tls-creds=@var{id}][,tls-authz=@var{id}]
3003 Create a two-way stream socket, which can be either a TCP or a unix socket. A
3004 unix socket will be created if @option{path} is specified. Behaviour is
3005 undefined if TCP options are specified for a unix socket.
3007 @option{server} specifies that the socket shall be a listening socket.
3009 @option{nowait} specifies that QEMU should not block waiting for a client to
3010 connect to a listening socket.
3012 @option{telnet} specifies that traffic on the socket should interpret telnet
3013 escape sequences.
3015 @option{websocket} specifies that the socket uses WebSocket protocol for
3016 communication.
3018 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
3019 the remote end goes away. qemu will delay this many seconds and then attempt
3020 to reconnect. Zero disables reconnecting, and is the default.
3022 @option{tls-creds} requests enablement of the TLS protocol for encryption,
3023 and specifies the id of the TLS credentials to use for the handshake. The
3024 credentials must be previously created with the @option{-object tls-creds}
3025 argument.
3027 @option{tls-auth} provides the ID of the QAuthZ authorization object against
3028 which the client's x509 distinguished name will be validated. This object is
3029 only resolved at time of use, so can be deleted and recreated on the fly
3030 while the chardev server is active. If missing, it will default to denying
3031 access.
3033 TCP and unix socket options are given below:
3035 @table @option
3037 @item TCP options: port=@var{port}[,host=@var{host}][,to=@var{to}][,ipv4][,ipv6][,nodelay]
3039 @option{host} for a listening socket specifies the local address to be bound.
3040 For a connecting socket species the remote host to connect to. @option{host} is
3041 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
3043 @option{port} for a listening socket specifies the local port to be bound. For a
3044 connecting socket specifies the port on the remote host to connect to.
3045 @option{port} can be given as either a port number or a service name.
3046 @option{port} is required.
3048 @option{to} is only relevant to listening sockets. If it is specified, and
3049 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
3050 to and including @option{to} until it succeeds. @option{to} must be specified
3051 as a port number.
3053 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3054 If neither is specified the socket may use either protocol.
3056 @option{nodelay} disables the Nagle algorithm.
3058 @item unix options: path=@var{path}
3060 @option{path} specifies the local path of the unix socket. @option{path} is
3061 required.
3063 @end table
3065 @item -chardev udp,id=@var{id}[,host=@var{host}],port=@var{port}[,localaddr=@var{localaddr}][,localport=@var{localport}][,ipv4][,ipv6]
3067 Sends all traffic from the guest to a remote host over UDP.
3069 @option{host} specifies the remote host to connect to. If not specified it
3070 defaults to @code{localhost}.
3072 @option{port} specifies the port on the remote host to connect to. @option{port}
3073 is required.
3075 @option{localaddr} specifies the local address to bind to. If not specified it
3076 defaults to @code{0.0.0.0}.
3078 @option{localport} specifies the local port to bind to. If not specified any
3079 available local port will be used.
3081 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
3082 If neither is specified the device may use either protocol.
3084 @item -chardev msmouse,id=@var{id}
3086 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
3087 take any options.
3089 @item -chardev vc,id=@var{id}[[,width=@var{width}][,height=@var{height}]][[,cols=@var{cols}][,rows=@var{rows}]]
3091 Connect to a QEMU text console. @option{vc} may optionally be given a specific
3092 size.
3094 @option{width} and @option{height} specify the width and height respectively of
3095 the console, in pixels.
3097 @option{cols} and @option{rows} specify that the console be sized to fit a text
3098 console with the given dimensions.
3100 @item -chardev ringbuf,id=@var{id}[,size=@var{size}]
3102 Create a ring buffer with fixed size @option{size}.
3103 @var{size} must be a power of two and defaults to @code{64K}.
3105 @item -chardev file,id=@var{id},path=@var{path}
3107 Log all traffic received from the guest to a file.
3109 @option{path} specifies the path of the file to be opened. This file will be
3110 created if it does not already exist, and overwritten if it does. @option{path}
3111 is required.
3113 @item -chardev pipe,id=@var{id},path=@var{path}
3115 Create a two-way connection to the guest. The behaviour differs slightly between
3116 Windows hosts and other hosts:
3118 On Windows, a single duplex pipe will be created at
3119 @file{\\.pipe\@option{path}}.
3121 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
3122 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
3123 received by the guest. Data written by the guest can be read from
3124 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
3125 be present.
3127 @option{path} forms part of the pipe path as described above. @option{path} is
3128 required.
3130 @item -chardev console,id=@var{id}
3132 Send traffic from the guest to QEMU's standard output. @option{console} does not
3133 take any options.
3135 @option{console} is only available on Windows hosts.
3137 @item -chardev serial,id=@var{id},path=@option{path}
3139 Send traffic from the guest to a serial device on the host.
3141 On Unix hosts serial will actually accept any tty device,
3142 not only serial lines.
3144 @option{path} specifies the name of the serial device to open.
3146 @item -chardev pty,id=@var{id}
3148 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
3149 not take any options.
3151 @option{pty} is not available on Windows hosts.
3153 @item -chardev stdio,id=@var{id}[,signal=on|off]
3154 Connect to standard input and standard output of the QEMU process.
3156 @option{signal} controls if signals are enabled on the terminal, that includes
3157 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
3158 default, use @option{signal=off} to disable it.
3160 @item -chardev braille,id=@var{id}
3162 Connect to a local BrlAPI server. @option{braille} does not take any options.
3164 @item -chardev tty,id=@var{id},path=@var{path}
3166 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
3167 DragonFlyBSD hosts. It is an alias for @option{serial}.
3169 @option{path} specifies the path to the tty. @option{path} is required.
3171 @item -chardev parallel,id=@var{id},path=@var{path}
3172 @itemx -chardev parport,id=@var{id},path=@var{path}
3174 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
3176 Connect to a local parallel port.
3178 @option{path} specifies the path to the parallel port device. @option{path} is
3179 required.
3181 @item -chardev spicevmc,id=@var{id},debug=@var{debug},name=@var{name}
3183 @option{spicevmc} is only available when spice support is built in.
3185 @option{debug} debug level for spicevmc
3187 @option{name} name of spice channel to connect to
3189 Connect to a spice virtual machine channel, such as vdiport.
3191 @item -chardev spiceport,id=@var{id},debug=@var{debug},name=@var{name}
3193 @option{spiceport} is only available when spice support is built in.
3195 @option{debug} debug level for spicevmc
3197 @option{name} name of spice port to connect to
3199 Connect to a spice port, allowing a Spice client to handle the traffic
3200 identified by a name (preferably a fqdn).
3201 ETEXI
3203 STEXI
3204 @end table
3205 ETEXI
3206 DEFHEADING()
3208 #ifdef CONFIG_TPM
3209 DEFHEADING(TPM device options:)
3211 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3212 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3213 " use path to provide path to a character device; default is /dev/tpm0\n"
3214 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3215 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3216 "-tpmdev emulator,id=id,chardev=dev\n"
3217 " configure the TPM device using chardev backend\n",
3218 QEMU_ARCH_ALL)
3219 STEXI
3221 The general form of a TPM device option is:
3222 @table @option
3224 @item -tpmdev @var{backend},id=@var{id}[,@var{options}]
3225 @findex -tpmdev
3227 The specific backend type will determine the applicable options.
3228 The @code{-tpmdev} option creates the TPM backend and requires a
3229 @code{-device} option that specifies the TPM frontend interface model.
3231 Use @code{-tpmdev help} to print all available TPM backend types.
3233 @end table
3235 The available backends are:
3237 @table @option
3239 @item -tpmdev passthrough,id=@var{id},path=@var{path},cancel-path=@var{cancel-path}
3241 (Linux-host only) Enable access to the host's TPM using the passthrough
3242 driver.
3244 @option{path} specifies the path to the host's TPM device, i.e., on
3245 a Linux host this would be @code{/dev/tpm0}.
3246 @option{path} is optional and by default @code{/dev/tpm0} is used.
3248 @option{cancel-path} specifies the path to the host TPM device's sysfs
3249 entry allowing for cancellation of an ongoing TPM command.
3250 @option{cancel-path} is optional and by default QEMU will search for the
3251 sysfs entry to use.
3253 Some notes about using the host's TPM with the passthrough driver:
3255 The TPM device accessed by the passthrough driver must not be
3256 used by any other application on the host.
3258 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
3259 the VM's firmware (BIOS/UEFI) will not be able to initialize the
3260 TPM again and may therefore not show a TPM-specific menu that would
3261 otherwise allow the user to configure the TPM, e.g., allow the user to
3262 enable/disable or activate/deactivate the TPM.
3263 Further, if TPM ownership is released from within a VM then the host's TPM
3264 will get disabled and deactivated. To enable and activate the
3265 TPM again afterwards, the host has to be rebooted and the user is
3266 required to enter the firmware's menu to enable and activate the TPM.
3267 If the TPM is left disabled and/or deactivated most TPM commands will fail.
3269 To create a passthrough TPM use the following two options:
3270 @example
3271 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3272 @end example
3273 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
3274 @code{tpmdev=tpm0} in the device option.
3276 @item -tpmdev emulator,id=@var{id},chardev=@var{dev}
3278 (Linux-host only) Enable access to a TPM emulator using Unix domain socket based
3279 chardev backend.
3281 @option{chardev} specifies the unique ID of a character device backend that provides connection to the software TPM server.
3283 To create a TPM emulator backend device with chardev socket backend:
3284 @example
3286 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3288 @end example
3290 ETEXI
3292 STEXI
3293 @end table
3294 ETEXI
3295 DEFHEADING()
3297 #endif
3299 DEFHEADING(Linux/Multiboot boot specific:)
3300 STEXI
3302 When using these options, you can use a given Linux or Multiboot
3303 kernel without installing it in the disk image. It can be useful
3304 for easier testing of various kernels.
3306 @table @option
3307 ETEXI
3309 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3310 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3311 STEXI
3312 @item -kernel @var{bzImage}
3313 @findex -kernel
3314 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
3315 or in multiboot format.
3316 ETEXI
3318 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3319 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3320 STEXI
3321 @item -append @var{cmdline}
3322 @findex -append
3323 Use @var{cmdline} as kernel command line
3324 ETEXI
3326 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3327 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3328 STEXI
3329 @item -initrd @var{file}
3330 @findex -initrd
3331 Use @var{file} as initial ram disk.
3333 @item -initrd "@var{file1} arg=foo,@var{file2}"
3335 This syntax is only available with multiboot.
3337 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
3338 first module.
3339 ETEXI
3341 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3342 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3343 STEXI
3344 @item -dtb @var{file}
3345 @findex -dtb
3346 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
3347 on boot.
3348 ETEXI
3350 STEXI
3351 @end table
3352 ETEXI
3353 DEFHEADING()
3355 DEFHEADING(Debug/Expert options:)
3356 STEXI
3357 @table @option
3358 ETEXI
3360 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3361 "-fw_cfg [name=]<name>,file=<file>\n"
3362 " add named fw_cfg entry with contents from file\n"
3363 "-fw_cfg [name=]<name>,string=<str>\n"
3364 " add named fw_cfg entry with contents from string\n",
3365 QEMU_ARCH_ALL)
3366 STEXI
3368 @item -fw_cfg [name=]@var{name},file=@var{file}
3369 @findex -fw_cfg
3370 Add named fw_cfg entry with contents from file @var{file}.
3372 @item -fw_cfg [name=]@var{name},string=@var{str}
3373 Add named fw_cfg entry with contents from string @var{str}.
3375 The terminating NUL character of the contents of @var{str} will not be
3376 included as part of the fw_cfg item data. To insert contents with
3377 embedded NUL characters, you have to use the @var{file} parameter.
3379 The fw_cfg entries are passed by QEMU through to the guest.
3381 Example:
3382 @example
3383 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3384 @end example
3385 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3386 from ./my_blob.bin.
3388 ETEXI
3390 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3391 "-serial dev redirect the serial port to char device 'dev'\n",
3392 QEMU_ARCH_ALL)
3393 STEXI
3394 @item -serial @var{dev}
3395 @findex -serial
3396 Redirect the virtual serial port to host character device
3397 @var{dev}. The default device is @code{vc} in graphical mode and
3398 @code{stdio} in non graphical mode.
3400 This option can be used several times to simulate up to 4 serial
3401 ports.
3403 Use @code{-serial none} to disable all serial ports.
3405 Available character devices are:
3406 @table @option
3407 @item vc[:@var{W}x@var{H}]
3408 Virtual console. Optionally, a width and height can be given in pixel with
3409 @example
3410 vc:800x600
3411 @end example
3412 It is also possible to specify width or height in characters:
3413 @example
3414 vc:80Cx24C
3415 @end example
3416 @item pty
3417 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3418 @item none
3419 No device is allocated.
3420 @item null
3421 void device
3422 @item chardev:@var{id}
3423 Use a named character device defined with the @code{-chardev} option.
3424 @item /dev/XXX
3425 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3426 parameters are set according to the emulated ones.
3427 @item /dev/parport@var{N}
3428 [Linux only, parallel port only] Use host parallel port
3429 @var{N}. Currently SPP and EPP parallel port features can be used.
3430 @item file:@var{filename}
3431 Write output to @var{filename}. No character can be read.
3432 @item stdio
3433 [Unix only] standard input/output
3434 @item pipe:@var{filename}
3435 name pipe @var{filename}
3436 @item COM@var{n}
3437 [Windows only] Use host serial port @var{n}
3438 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3439 This implements UDP Net Console.
3440 When @var{remote_host} or @var{src_ip} are not specified
3441 they default to @code{0.0.0.0}.
3442 When not using a specified @var{src_port} a random port is automatically chosen.
3444 If you just want a simple readonly console you can use @code{netcat} or
3445 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3446 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3447 will appear in the netconsole session.
3449 If you plan to send characters back via netconsole or you want to stop
3450 and start QEMU a lot of times, you should have QEMU use the same
3451 source port each time by using something like @code{-serial
3452 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3453 version of netcat which can listen to a TCP port and send and receive
3454 characters via udp. If you have a patched version of netcat which
3455 activates telnet remote echo and single char transfer, then you can
3456 use the following options to set up a netcat redirector to allow
3457 telnet on port 5555 to access the QEMU port.
3458 @table @code
3459 @item QEMU Options:
3460 -serial udp::4555@@:4556
3461 @item netcat options:
3462 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3463 @item telnet options:
3464 localhost 5555
3465 @end table
3467 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3468 The TCP Net Console has two modes of operation. It can send the serial
3469 I/O to a location or wait for a connection from a location. By default
3470 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3471 the @var{server} option QEMU will wait for a client socket application
3472 to connect to the port before continuing, unless the @code{nowait}
3473 option was specified. The @code{nodelay} option disables the Nagle buffering
3474 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3475 set, if the connection goes down it will attempt to reconnect at the
3476 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3477 one TCP connection at a time is accepted. You can use @code{telnet} to
3478 connect to the corresponding character device.
3479 @table @code
3480 @item Example to send tcp console to 192.168.0.2 port 4444
3481 -serial tcp:192.168.0.2:4444
3482 @item Example to listen and wait on port 4444 for connection
3483 -serial tcp::4444,server
3484 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3485 -serial tcp:192.168.0.100:4444,server,nowait
3486 @end table
3488 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3489 The telnet protocol is used instead of raw tcp sockets. The options
3490 work the same as if you had specified @code{-serial tcp}. The
3491 difference is that the port acts like a telnet server or client using
3492 telnet option negotiation. This will also allow you to send the
3493 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3494 sequence. Typically in unix telnet you do it with Control-] and then
3495 type "send break" followed by pressing the enter key.
3497 @item websocket:@var{host}:@var{port},server[,nowait][,nodelay]
3498 The WebSocket protocol is used instead of raw tcp socket. The port acts as
3499 a WebSocket server. Client mode is not supported.
3501 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3502 A unix domain socket is used instead of a tcp socket. The option works the
3503 same as if you had specified @code{-serial tcp} except the unix domain socket
3504 @var{path} is used for connections.
3506 @item mon:@var{dev_string}
3507 This is a special option to allow the monitor to be multiplexed onto
3508 another serial port. The monitor is accessed with key sequence of
3509 @key{Control-a} and then pressing @key{c}.
3510 @var{dev_string} should be any one of the serial devices specified
3511 above. An example to multiplex the monitor onto a telnet server
3512 listening on port 4444 would be:
3513 @table @code
3514 @item -serial mon:telnet::4444,server,nowait
3515 @end table
3516 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3517 QEMU any more but will be passed to the guest instead.
3519 @item braille
3520 Braille device. This will use BrlAPI to display the braille output on a real
3521 or fake device.
3523 @item msmouse
3524 Three button serial mouse. Configure the guest to use Microsoft protocol.
3525 @end table
3526 ETEXI
3528 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3529 "-parallel dev redirect the parallel port to char device 'dev'\n",
3530 QEMU_ARCH_ALL)
3531 STEXI
3532 @item -parallel @var{dev}
3533 @findex -parallel
3534 Redirect the virtual parallel port to host device @var{dev} (same
3535 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3536 be used to use hardware devices connected on the corresponding host
3537 parallel port.
3539 This option can be used several times to simulate up to 3 parallel
3540 ports.
3542 Use @code{-parallel none} to disable all parallel ports.
3543 ETEXI
3545 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3546 "-monitor dev redirect the monitor to char device 'dev'\n",
3547 QEMU_ARCH_ALL)
3548 STEXI
3549 @item -monitor @var{dev}
3550 @findex -monitor
3551 Redirect the monitor to host device @var{dev} (same devices as the
3552 serial port).
3553 The default device is @code{vc} in graphical mode and @code{stdio} in
3554 non graphical mode.
3555 Use @code{-monitor none} to disable the default monitor.
3556 ETEXI
3557 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3558 "-qmp dev like -monitor but opens in 'control' mode\n",
3559 QEMU_ARCH_ALL)
3560 STEXI
3561 @item -qmp @var{dev}
3562 @findex -qmp
3563 Like -monitor but opens in 'control' mode.
3564 ETEXI
3565 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3566 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3567 QEMU_ARCH_ALL)
3568 STEXI
3569 @item -qmp-pretty @var{dev}
3570 @findex -qmp-pretty
3571 Like -qmp but uses pretty JSON formatting.
3572 ETEXI
3574 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3575 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3576 STEXI
3577 @item -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
3578 @findex -mon
3579 Setup monitor on chardev @var{name}. @code{pretty} turns on JSON pretty printing
3580 easing human reading and debugging.
3581 ETEXI
3583 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3584 "-debugcon dev redirect the debug console to char device 'dev'\n",
3585 QEMU_ARCH_ALL)
3586 STEXI
3587 @item -debugcon @var{dev}
3588 @findex -debugcon
3589 Redirect the debug console to host device @var{dev} (same devices as the
3590 serial port). The debug console is an I/O port which is typically port
3591 0xe9; writing to that I/O port sends output to this device.
3592 The default device is @code{vc} in graphical mode and @code{stdio} in
3593 non graphical mode.
3594 ETEXI
3596 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3597 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3598 STEXI
3599 @item -pidfile @var{file}
3600 @findex -pidfile
3601 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3602 from a script.
3603 ETEXI
3605 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3606 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3607 STEXI
3608 @item -singlestep
3609 @findex -singlestep
3610 Run the emulation in single step mode.
3611 ETEXI
3613 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3614 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3615 QEMU_ARCH_ALL)
3616 STEXI
3617 @item --preconfig
3618 @findex --preconfig
3619 Pause QEMU for interactive configuration before the machine is created,
3620 which allows querying and configuring properties that will affect
3621 machine initialization. Use QMP command 'x-exit-preconfig' to exit
3622 the preconfig state and move to the next state (i.e. run guest if -S
3623 isn't used or pause the second time if -S is used). This option is
3624 experimental.
3625 ETEXI
3627 DEF("S", 0, QEMU_OPTION_S, \
3628 "-S freeze CPU at startup (use 'c' to start execution)\n",
3629 QEMU_ARCH_ALL)
3630 STEXI
3631 @item -S
3632 @findex -S
3633 Do not start CPU at startup (you must type 'c' in the monitor).
3634 ETEXI
3636 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3637 "-realtime [mlock=on|off]\n"
3638 " run qemu with realtime features\n"
3639 " mlock=on|off controls mlock support (default: on)\n",
3640 QEMU_ARCH_ALL)
3641 STEXI
3642 @item -realtime mlock=on|off
3643 @findex -realtime
3644 Run qemu with realtime features.
3645 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3646 (enabled by default).
3647 ETEXI
3649 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3650 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3651 " run qemu with overcommit hints\n"
3652 " mem-lock=on|off controls memory lock support (default: off)\n"
3653 " cpu-pm=on|off controls cpu power management (default: off)\n",
3654 QEMU_ARCH_ALL)
3655 STEXI
3656 @item -overcommit mem-lock=on|off
3657 @item -overcommit cpu-pm=on|off
3658 @findex -overcommit
3659 Run qemu with hints about host resource overcommit. The default is
3660 to assume that host overcommits all resources.
3662 Locking qemu and guest memory can be enabled via @option{mem-lock=on} (disabled
3663 by default). This works when host memory is not overcommitted and reduces the
3664 worst-case latency for guest. This is equivalent to @option{realtime}.
3666 Guest ability to manage power state of host cpus (increasing latency for other
3667 processes on the same host cpu, but decreasing latency for guest) can be
3668 enabled via @option{cpu-pm=on} (disabled by default). This works best when
3669 host CPU is not overcommitted. When used, host estimates of CPU cycle and power
3670 utilization will be incorrect, not taking into account guest idle time.
3671 ETEXI
3673 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3674 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3675 STEXI
3676 @item -gdb @var{dev}
3677 @findex -gdb
3678 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3679 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3680 stdio are reasonable use case. The latter is allowing to start QEMU from
3681 within gdb and establish the connection via a pipe:
3682 @example
3683 (gdb) target remote | exec @value{qemu_system} -gdb stdio ...
3684 @end example
3685 ETEXI
3687 DEF("s", 0, QEMU_OPTION_s, \
3688 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3689 QEMU_ARCH_ALL)
3690 STEXI
3691 @item -s
3692 @findex -s
3693 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3694 (@pxref{gdb_usage}).
3695 ETEXI
3697 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3698 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3699 QEMU_ARCH_ALL)
3700 STEXI
3701 @item -d @var{item1}[,...]
3702 @findex -d
3703 Enable logging of specified items. Use '-d help' for a list of log items.
3704 ETEXI
3706 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3707 "-D logfile output log to logfile (default stderr)\n",
3708 QEMU_ARCH_ALL)
3709 STEXI
3710 @item -D @var{logfile}
3711 @findex -D
3712 Output log in @var{logfile} instead of to stderr
3713 ETEXI
3715 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3716 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3717 QEMU_ARCH_ALL)
3718 STEXI
3719 @item -dfilter @var{range1}[,...]
3720 @findex -dfilter
3721 Filter debug output to that relevant to a range of target addresses. The filter
3722 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3723 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3724 addresses and sizes required. For example:
3725 @example
3726 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3727 @end example
3728 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3729 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3730 block starting at 0xffffffc00005f000.
3731 ETEXI
3733 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3734 "-seed number seed the pseudo-random number generator\n",
3735 QEMU_ARCH_ALL)
3736 STEXI
3737 @item -seed @var{number}
3738 @findex -seed
3739 Force the guest to use a deterministic pseudo-random number generator, seeded
3740 with @var{number}. This does not affect crypto routines within the host.
3741 ETEXI
3743 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3744 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3745 QEMU_ARCH_ALL)
3746 STEXI
3747 @item -L @var{path}
3748 @findex -L
3749 Set the directory for the BIOS, VGA BIOS and keymaps.
3751 To list all the data directories, use @code{-L help}.
3752 ETEXI
3754 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3755 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3756 STEXI
3757 @item -bios @var{file}
3758 @findex -bios
3759 Set the filename for the BIOS.
3760 ETEXI
3762 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3763 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3764 STEXI
3765 @item -enable-kvm
3766 @findex -enable-kvm
3767 Enable KVM full virtualization support. This option is only available
3768 if KVM support is enabled when compiling.
3769 ETEXI
3771 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3772 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3773 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3774 "-xen-attach attach to existing xen domain\n"
3775 " libxl will use this when starting QEMU\n",
3776 QEMU_ARCH_ALL)
3777 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3778 "-xen-domid-restrict restrict set of available xen operations\n"
3779 " to specified domain id. (Does not affect\n"
3780 " xenpv machine type).\n",
3781 QEMU_ARCH_ALL)
3782 STEXI
3783 @item -xen-domid @var{id}
3784 @findex -xen-domid
3785 Specify xen guest domain @var{id} (XEN only).
3786 @item -xen-attach
3787 @findex -xen-attach
3788 Attach to existing xen domain.
3789 libxl will use this when starting QEMU (XEN only).
3790 @findex -xen-domid-restrict
3791 Restrict set of available xen operations to specified domain id (XEN only).
3792 ETEXI
3794 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3795 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3796 STEXI
3797 @item -no-reboot
3798 @findex -no-reboot
3799 Exit instead of rebooting.
3800 ETEXI
3802 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3803 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3804 STEXI
3805 @item -no-shutdown
3806 @findex -no-shutdown
3807 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3808 This allows for instance switching to monitor to commit changes to the
3809 disk image.
3810 ETEXI
3812 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3813 "-loadvm [tag|id]\n" \
3814 " start right away with a saved state (loadvm in monitor)\n",
3815 QEMU_ARCH_ALL)
3816 STEXI
3817 @item -loadvm @var{file}
3818 @findex -loadvm
3819 Start right away with a saved state (@code{loadvm} in monitor)
3820 ETEXI
3822 #ifndef _WIN32
3823 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3824 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3825 #endif
3826 STEXI
3827 @item -daemonize
3828 @findex -daemonize
3829 Daemonize the QEMU process after initialization. QEMU will not detach from
3830 standard IO until it is ready to receive connections on any of its devices.
3831 This option is a useful way for external programs to launch QEMU without having
3832 to cope with initialization race conditions.
3833 ETEXI
3835 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3836 "-option-rom rom load a file, rom, into the option ROM space\n",
3837 QEMU_ARCH_ALL)
3838 STEXI
3839 @item -option-rom @var{file}
3840 @findex -option-rom
3841 Load the contents of @var{file} as an option ROM.
3842 This option is useful to load things like EtherBoot.
3843 ETEXI
3845 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3846 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3847 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3848 QEMU_ARCH_ALL)
3850 STEXI
3852 @item -rtc [base=utc|localtime|@var{datetime}][,clock=host|rt|vm][,driftfix=none|slew]
3853 @findex -rtc
3854 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3855 UTC or local time, respectively. @code{localtime} is required for correct date in
3856 MS-DOS or Windows. To start at a specific point in time, provide @var{datetime} in the
3857 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3859 By default the RTC is driven by the host system time. This allows using of the
3860 RTC as accurate reference clock inside the guest, specifically if the host
3861 time is smoothly following an accurate external reference clock, e.g. via NTP.
3862 If you want to isolate the guest time from the host, you can set @option{clock}
3863 to @code{rt} instead, which provides a host monotonic clock if host support it.
3864 To even prevent the RTC from progressing during suspension, you can set @option{clock}
3865 to @code{vm} (virtual clock). @samp{clock=vm} is recommended especially in
3866 icount mode in order to preserve determinism; however, note that in icount mode
3867 the speed of the virtual clock is variable and can in general differ from the
3868 host clock.
3870 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3871 specifically with Windows' ACPI HAL. This option will try to figure out how
3872 many timer interrupts were not processed by the Windows guest and will
3873 re-inject them.
3874 ETEXI
3876 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3877 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3878 " enable virtual instruction counter with 2^N clock ticks per\n" \
3879 " instruction, enable aligning the host and virtual clocks\n" \
3880 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3881 STEXI
3882 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3883 @findex -icount
3884 Enable virtual instruction counter. The virtual cpu will execute one
3885 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3886 then the virtual cpu speed will be automatically adjusted to keep virtual
3887 time within a few seconds of real time.
3889 When the virtual cpu is sleeping, the virtual time will advance at default
3890 speed unless @option{sleep=on|off} is specified.
3891 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3892 instantly whenever the virtual cpu goes to sleep mode and will not advance
3893 if no timer is enabled. This behavior give deterministic execution times from
3894 the guest point of view.
3896 Note that while this option can give deterministic behavior, it does not
3897 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3898 order cores with complex cache hierarchies. The number of instructions
3899 executed often has little or no correlation with actual performance.
3901 @option{align=on} will activate the delay algorithm which will try
3902 to synchronise the host clock and the virtual clock. The goal is to
3903 have a guest running at the real frequency imposed by the shift option.
3904 Whenever the guest clock is behind the host clock and if
3905 @option{align=on} is specified then we print a message to the user
3906 to inform about the delay.
3907 Currently this option does not work when @option{shift} is @code{auto}.
3908 Note: The sync algorithm will work for those shift values for which
3909 the guest clock runs ahead of the host clock. Typically this happens
3910 when the shift value is high (how high depends on the host machine).
3912 When @option{rr} option is specified deterministic record/replay is enabled.
3913 Replay log is written into @var{filename} file in record mode and
3914 read from this file in replay mode.
3916 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3917 at the start of execution recording. In replay mode this option is used
3918 to load the initial VM state.
3919 ETEXI
3921 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3922 "-watchdog model\n" \
3923 " enable virtual hardware watchdog [default=none]\n",
3924 QEMU_ARCH_ALL)
3925 STEXI
3926 @item -watchdog @var{model}
3927 @findex -watchdog
3928 Create a virtual hardware watchdog device. Once enabled (by a guest
3929 action), the watchdog must be periodically polled by an agent inside
3930 the guest or else the guest will be restarted. Choose a model for
3931 which your guest has drivers.
3933 The @var{model} is the model of hardware watchdog to emulate. Use
3934 @code{-watchdog help} to list available hardware models. Only one
3935 watchdog can be enabled for a guest.
3937 The following models may be available:
3938 @table @option
3939 @item ib700
3940 iBASE 700 is a very simple ISA watchdog with a single timer.
3941 @item i6300esb
3942 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3943 dual-timer watchdog.
3944 @item diag288
3945 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3946 (currently KVM only).
3947 @end table
3948 ETEXI
3950 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3951 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3952 " action when watchdog fires [default=reset]\n",
3953 QEMU_ARCH_ALL)
3954 STEXI
3955 @item -watchdog-action @var{action}
3956 @findex -watchdog-action
3958 The @var{action} controls what QEMU will do when the watchdog timer
3959 expires.
3960 The default is
3961 @code{reset} (forcefully reset the guest).
3962 Other possible actions are:
3963 @code{shutdown} (attempt to gracefully shutdown the guest),
3964 @code{poweroff} (forcefully poweroff the guest),
3965 @code{inject-nmi} (inject a NMI into the guest),
3966 @code{pause} (pause the guest),
3967 @code{debug} (print a debug message and continue), or
3968 @code{none} (do nothing).
3970 Note that the @code{shutdown} action requires that the guest responds
3971 to ACPI signals, which it may not be able to do in the sort of
3972 situations where the watchdog would have expired, and thus
3973 @code{-watchdog-action shutdown} is not recommended for production use.
3975 Examples:
3977 @table @code
3978 @item -watchdog i6300esb -watchdog-action pause
3979 @itemx -watchdog ib700
3980 @end table
3981 ETEXI
3983 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3984 "-echr chr set terminal escape character instead of ctrl-a\n",
3985 QEMU_ARCH_ALL)
3986 STEXI
3988 @item -echr @var{numeric_ascii_value}
3989 @findex -echr
3990 Change the escape character used for switching to the monitor when using
3991 monitor and serial sharing. The default is @code{0x01} when using the
3992 @code{-nographic} option. @code{0x01} is equal to pressing
3993 @code{Control-a}. You can select a different character from the ascii
3994 control keys where 1 through 26 map to Control-a through Control-z. For
3995 instance you could use the either of the following to change the escape
3996 character to Control-t.
3997 @table @code
3998 @item -echr 0x14
3999 @itemx -echr 20
4000 @end table
4001 ETEXI
4003 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
4004 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
4005 STEXI
4006 @item -show-cursor
4007 @findex -show-cursor
4008 Show cursor.
4009 ETEXI
4011 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
4012 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4013 STEXI
4014 @item -tb-size @var{n}
4015 @findex -tb-size
4016 Set TCG translation block cache size. Deprecated, use @samp{-accel tcg,tb-size=@var{n}}
4017 instead.
4018 ETEXI
4020 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4021 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4022 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4023 "-incoming unix:socketpath\n" \
4024 " prepare for incoming migration, listen on\n" \
4025 " specified protocol and socket address\n" \
4026 "-incoming fd:fd\n" \
4027 "-incoming exec:cmdline\n" \
4028 " accept incoming migration on given file descriptor\n" \
4029 " or from given external command\n" \
4030 "-incoming defer\n" \
4031 " wait for the URI to be specified via migrate_incoming\n",
4032 QEMU_ARCH_ALL)
4033 STEXI
4034 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
4035 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
4036 @findex -incoming
4037 Prepare for incoming migration, listen on a given tcp port.
4039 @item -incoming unix:@var{socketpath}
4040 Prepare for incoming migration, listen on a given unix socket.
4042 @item -incoming fd:@var{fd}
4043 Accept incoming migration from a given filedescriptor.
4045 @item -incoming exec:@var{cmdline}
4046 Accept incoming migration as an output from specified external command.
4048 @item -incoming defer
4049 Wait for the URI to be specified via migrate_incoming. The monitor can
4050 be used to change settings (such as migration parameters) prior to issuing
4051 the migrate_incoming to allow the migration to begin.
4052 ETEXI
4054 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4055 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4056 STEXI
4057 @item -only-migratable
4058 @findex -only-migratable
4059 Only allow migratable devices. Devices will not be allowed to enter an
4060 unmigratable state.
4061 ETEXI
4063 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4064 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
4065 STEXI
4066 @item -nodefaults
4067 @findex -nodefaults
4068 Don't create default devices. Normally, QEMU sets the default devices like serial
4069 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
4070 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
4071 default devices.
4072 ETEXI
4074 #ifndef _WIN32
4075 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4076 "-chroot dir chroot to dir just before starting the VM\n",
4077 QEMU_ARCH_ALL)
4078 #endif
4079 STEXI
4080 @item -chroot @var{dir}
4081 @findex -chroot
4082 Immediately before starting guest execution, chroot to the specified
4083 directory. Especially useful in combination with -runas.
4084 ETEXI
4086 #ifndef _WIN32
4087 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4088 "-runas user change to user id user just before starting the VM\n" \
4089 " user can be numeric uid:gid instead\n",
4090 QEMU_ARCH_ALL)
4091 #endif
4092 STEXI
4093 @item -runas @var{user}
4094 @findex -runas
4095 Immediately before starting guest execution, drop root privileges, switching
4096 to the specified user.
4097 ETEXI
4099 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4100 "-prom-env variable=value\n"
4101 " set OpenBIOS nvram variables\n",
4102 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4103 STEXI
4104 @item -prom-env @var{variable}=@var{value}
4105 @findex -prom-env
4106 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
4107 ETEXI
4108 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4109 "-semihosting semihosting mode\n",
4110 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4111 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4112 STEXI
4113 @item -semihosting
4114 @findex -semihosting
4115 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4116 ETEXI
4117 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4118 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4119 " semihosting configuration\n",
4120 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4121 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4122 STEXI
4123 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
4124 @findex -semihosting-config
4125 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).
4126 @table @option
4127 @item target=@code{native|gdb|auto}
4128 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
4129 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
4130 during debug sessions and @code{native} otherwise.
4131 @item chardev=@var{str1}
4132 Send the output to a chardev backend output for native or auto output when not in gdb
4133 @item arg=@var{str1},arg=@var{str2},...
4134 Allows the user to pass input arguments, and can be used multiple times to build
4135 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
4136 command line is still supported for backward compatibility. If both the
4137 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
4138 specified, the former is passed to semihosting as it always takes precedence.
4139 @end table
4140 ETEXI
4141 DEF("old-param", 0, QEMU_OPTION_old_param,
4142 "-old-param old param mode\n", QEMU_ARCH_ARM)
4143 STEXI
4144 @item -old-param
4145 @findex -old-param (ARM)
4146 Old param mode (ARM only).
4147 ETEXI
4149 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4150 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4151 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4152 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4153 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4154 " by the kernel, but typically no longer used by modern\n" \
4155 " C library implementations.\n" \
4156 " use 'elevateprivileges' to allow or deny QEMU process to elevate\n" \
4157 " its privileges by blacklisting all set*uid|gid system calls.\n" \
4158 " The value 'children' will deny set*uid|gid system calls for\n" \
4159 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4160 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4161 " blacklisting *fork and execve\n" \
4162 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4163 QEMU_ARCH_ALL)
4164 STEXI
4165 @item -sandbox @var{arg}[,obsolete=@var{string}][,elevateprivileges=@var{string}][,spawn=@var{string}][,resourcecontrol=@var{string}]
4166 @findex -sandbox
4167 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
4168 disable it. The default is 'off'.
4169 @table @option
4170 @item obsolete=@var{string}
4171 Enable Obsolete system calls
4172 @item elevateprivileges=@var{string}
4173 Disable set*uid|gid system calls
4174 @item spawn=@var{string}
4175 Disable *fork and execve
4176 @item resourcecontrol=@var{string}
4177 Disable process affinity and schedular priority
4178 @end table
4179 ETEXI
4181 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4182 "-readconfig <file>\n", QEMU_ARCH_ALL)
4183 STEXI
4184 @item -readconfig @var{file}
4185 @findex -readconfig
4186 Read device configuration from @var{file}. This approach is useful when you want to spawn
4187 QEMU process with many command line options but you don't want to exceed the command line
4188 character limit.
4189 ETEXI
4190 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4191 "-writeconfig <file>\n"
4192 " read/write config file\n", QEMU_ARCH_ALL)
4193 STEXI
4194 @item -writeconfig @var{file}
4195 @findex -writeconfig
4196 Write device configuration to @var{file}. The @var{file} can be either filename to save
4197 command line and device configuration into file or dash @code{-}) character to print the
4198 output to stdout. This can be later used as input file for @code{-readconfig} option.
4199 ETEXI
4201 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4202 "-no-user-config\n"
4203 " do not load default user-provided config files at startup\n",
4204 QEMU_ARCH_ALL)
4205 STEXI
4206 @item -no-user-config
4207 @findex -no-user-config
4208 The @code{-no-user-config} option makes QEMU not load any of the user-provided
4209 config files on @var{sysconfdir}.
4210 ETEXI
4212 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4213 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4214 " specify tracing options\n",
4215 QEMU_ARCH_ALL)
4216 STEXI
4217 HXCOMM This line is not accurate, as some sub-options are backend-specific but
4218 HXCOMM HX does not support conditional compilation of text.
4219 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
4220 @findex -trace
4221 @include qemu-option-trace.texi
4222 ETEXI
4223 DEF("plugin", HAS_ARG, QEMU_OPTION_plugin,
4224 "-plugin [file=]<file>[,arg=<string>]\n"
4225 " load a plugin\n",
4226 QEMU_ARCH_ALL)
4227 STEXI
4228 @item -plugin file=@var{file}[,arg=@var{string}]
4229 @findex -plugin
4231 Load a plugin.
4233 @table @option
4234 @item file=@var{file}
4235 Load the given plugin from a shared library file.
4236 @item arg=@var{string}
4237 Argument string passed to the plugin. (Can be given multiple times.)
4238 @end table
4239 ETEXI
4241 HXCOMM Internal use
4242 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4243 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4245 #ifdef __linux__
4246 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4247 "-enable-fips enable FIPS 140-2 compliance\n",
4248 QEMU_ARCH_ALL)
4249 #endif
4250 STEXI
4251 @item -enable-fips
4252 @findex -enable-fips
4253 Enable FIPS 140-2 compliance mode.
4254 ETEXI
4256 HXCOMM Deprecated by -accel tcg
4257 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4259 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4260 "-msg timestamp[=on|off]\n"
4261 " control error message format\n"
4262 " timestamp=on enables timestamps (default: off)\n",
4263 QEMU_ARCH_ALL)
4264 STEXI
4265 @item -msg timestamp[=on|off]
4266 @findex -msg
4267 Control error message format.
4268 @table @option
4269 @item timestamp=on|off
4270 Prefix messages with a timestamp. Default is off.
4271 @end table
4272 ETEXI
4274 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4275 "-dump-vmstate <file>\n"
4276 " Output vmstate information in JSON format to file.\n"
4277 " Use the scripts/vmstate-static-checker.py file to\n"
4278 " check for possible regressions in migration code\n"
4279 " by comparing two such vmstate dumps.\n",
4280 QEMU_ARCH_ALL)
4281 STEXI
4282 @item -dump-vmstate @var{file}
4283 @findex -dump-vmstate
4284 Dump json-encoded vmstate information for current machine type to file
4285 in @var{file}
4286 ETEXI
4288 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4289 "-enable-sync-profile\n"
4290 " enable synchronization profiling\n",
4291 QEMU_ARCH_ALL)
4292 STEXI
4293 @item -enable-sync-profile
4294 @findex -enable-sync-profile
4295 Enable synchronization profiling.
4296 ETEXI
4298 STEXI
4299 @end table
4300 ETEXI
4301 DEFHEADING()
4303 DEFHEADING(Generic object creation:)
4304 STEXI
4305 @table @option
4306 ETEXI
4308 DEF("object", HAS_ARG, QEMU_OPTION_object,
4309 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4310 " create a new object of type TYPENAME setting properties\n"
4311 " in the order they are specified. Note that the 'id'\n"
4312 " property must be set. These objects are placed in the\n"
4313 " '/objects' path.\n",
4314 QEMU_ARCH_ALL)
4315 STEXI
4316 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
4317 @findex -object
4318 Create a new object of type @var{typename} setting properties
4319 in the order they are specified. Note that the 'id'
4320 property must be set. These objects are placed in the
4321 '/objects' path.
4323 @table @option
4325 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off},discard-data=@var{on|off},merge=@var{on|off},dump=@var{on|off},prealloc=@var{on|off},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},align=@var{align}
4327 Creates a memory file backend object, which can be used to back
4328 the guest RAM with huge pages.
4330 The @option{id} parameter is a unique ID that will be used to reference this
4331 memory region when configuring the @option{-numa} argument.
4333 The @option{size} option provides the size of the memory region, and accepts
4334 common suffixes, eg @option{500M}.
4336 The @option{mem-path} provides the path to either a shared memory or huge page
4337 filesystem mount.
4339 The @option{share} boolean option determines whether the memory
4340 region is marked as private to QEMU, or shared. The latter allows
4341 a co-operating external process to access the QEMU memory region.
4343 The @option{share} is also required for pvrdma devices due to
4344 limitations in the RDMA API provided by Linux.
4346 Setting share=on might affect the ability to configure NUMA
4347 bindings for the memory backend under some circumstances, see
4348 Documentation/vm/numa_memory_policy.txt on the Linux kernel
4349 source tree for additional details.
4351 Setting the @option{discard-data} boolean option to @var{on}
4352 indicates that file contents can be destroyed when QEMU exits,
4353 to avoid unnecessarily flushing data to the backing file. Note
4354 that @option{discard-data} is only an optimization, and QEMU
4355 might not discard file contents if it aborts unexpectedly or is
4356 terminated using SIGKILL.
4358 The @option{merge} boolean option enables memory merge, also known as
4359 MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
4360 memory deduplication.
4362 Setting the @option{dump} boolean option to @var{off} excludes the memory from
4363 core dumps. This feature is also known as MADV_DONTDUMP.
4365 The @option{prealloc} boolean option enables memory preallocation.
4367 The @option{host-nodes} option binds the memory range to a list of NUMA host
4368 nodes.
4370 The @option{policy} option sets the NUMA policy to one of the following values:
4372 @table @option
4373 @item @var{default}
4374 default host policy
4376 @item @var{preferred}
4377 prefer the given host node list for allocation
4379 @item @var{bind}
4380 restrict memory allocation to the given host node list
4382 @item @var{interleave}
4383 interleave memory allocations across the given host node list
4384 @end table
4386 The @option{align} option specifies the base address alignment when
4387 QEMU mmap(2) @option{mem-path}, and accepts common suffixes, eg
4388 @option{2M}. Some backend store specified by @option{mem-path}
4389 requires an alignment different than the default one used by QEMU, eg
4390 the device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4391 such cases, users can specify the required alignment via this option.
4393 The @option{pmem} option specifies whether the backing file specified
4394 by @option{mem-path} is in host persistent memory that can be accessed
4395 using the SNIA NVM programming model (e.g. Intel NVDIMM).
4396 If @option{pmem} is set to 'on', QEMU will take necessary operations to
4397 guarantee the persistence of its own writes to @option{mem-path}
4398 (e.g. in vNVDIMM label emulation and live migration).
4399 Also, we will map the backend-file with MAP_SYNC flag, which ensures the
4400 file metadata is in sync for @option{mem-path} in case of host crash
4401 or a power failure. MAP_SYNC requires support from both the host kernel
4402 (since Linux kernel 4.15) and the filesystem of @option{mem-path} mounted
4403 with DAX option.
4405 @item -object memory-backend-ram,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave}
4407 Creates a memory backend object, which can be used to back the guest RAM.
4408 Memory backend objects offer more control than the @option{-m} option that is
4409 traditionally used to define guest RAM. Please refer to
4410 @option{memory-backend-file} for a description of the options.
4412 @item -object memory-backend-memfd,id=@var{id},merge=@var{on|off},dump=@var{on|off},share=@var{on|off},prealloc=@var{on|off},size=@var{size},host-nodes=@var{host-nodes},policy=@var{default|preferred|bind|interleave},seal=@var{on|off},hugetlb=@var{on|off},hugetlbsize=@var{size}
4414 Creates an anonymous memory file backend object, which allows QEMU to
4415 share the memory with an external process (e.g. when using
4416 vhost-user). The memory is allocated with memfd and optional
4417 sealing. (Linux only)
4419 The @option{seal} option creates a sealed-file, that will block
4420 further resizing the memory ('on' by default).
4422 The @option{hugetlb} option specify the file to be created resides in
4423 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction with
4424 the @option{hugetlb} option, the @option{hugetlbsize} option specify
4425 the hugetlb page size on systems that support multiple hugetlb page
4426 sizes (it must be a power of 2 value supported by the system).
4428 In some versions of Linux, the @option{hugetlb} option is incompatible
4429 with the @option{seal} option (requires at least Linux 4.16).
4431 Please refer to @option{memory-backend-file} for a description of the
4432 other options.
4434 The @option{share} boolean option is @var{on} by default with memfd.
4436 @item -object rng-builtin,id=@var{id}
4438 Creates a random number generator backend which obtains entropy from
4439 QEMU builtin functions. The @option{id} parameter is a unique ID that
4440 will be used to reference this entropy backend from the @option{virtio-rng}
4441 device. By default, the @option{virtio-rng} device uses this RNG backend.
4443 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
4445 Creates a random number generator backend which obtains entropy from
4446 a device on the host. The @option{id} parameter is a unique ID that
4447 will be used to reference this entropy backend from the @option{virtio-rng}
4448 device. The @option{filename} parameter specifies which file to obtain
4449 entropy from and if omitted defaults to @option{/dev/urandom}.
4451 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
4453 Creates a random number generator backend which obtains entropy from
4454 an external daemon running on the host. The @option{id} parameter is
4455 a unique ID that will be used to reference this entropy backend from
4456 the @option{virtio-rng} device. The @option{chardev} parameter is
4457 the unique ID of a character device backend that provides the connection
4458 to the RNG daemon.
4460 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
4462 Creates a TLS anonymous credentials object, which can be used to provide
4463 TLS support on network backends. The @option{id} parameter is a unique
4464 ID which network backends will use to access the credentials. The
4465 @option{endpoint} is either @option{server} or @option{client} depending
4466 on whether the QEMU network backend that uses the credentials will be
4467 acting as a client or as a server. If @option{verify-peer} is enabled
4468 (the default) then once the handshake is completed, the peer credentials
4469 will be verified, though this is a no-op for anonymous credentials.
4471 The @var{dir} parameter tells QEMU where to find the credential
4472 files. For server endpoints, this directory may contain a file
4473 @var{dh-params.pem} providing diffie-hellman parameters to use
4474 for the TLS server. If the file is missing, QEMU will generate
4475 a set of DH parameters at startup. This is a computationally
4476 expensive operation that consumes random pool entropy, so it is
4477 recommended that a persistent set of parameters be generated
4478 upfront and saved.
4480 @item -object tls-creds-psk,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/keys/dir}[,username=@var{username}]
4482 Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used to provide
4483 TLS support on network backends. The @option{id} parameter is a unique
4484 ID which network backends will use to access the credentials. The
4485 @option{endpoint} is either @option{server} or @option{client} depending
4486 on whether the QEMU network backend that uses the credentials will be
4487 acting as a client or as a server. For clients only, @option{username}
4488 is the username which will be sent to the server. If omitted
4489 it defaults to ``qemu''.
4491 The @var{dir} parameter tells QEMU where to find the keys file.
4492 It is called ``@var{dir}/keys.psk'' and contains ``username:key''
4493 pairs. This file can most easily be created using the GnuTLS
4494 @code{psktool} program.
4496 For server endpoints, @var{dir} may also contain a file
4497 @var{dh-params.pem} providing diffie-hellman parameters to use
4498 for the TLS server. If the file is missing, QEMU will generate
4499 a set of DH parameters at startup. This is a computationally
4500 expensive operation that consumes random pool entropy, so it is
4501 recommended that a persistent set of parameters be generated
4502 up front and saved.
4504 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},priority=@var{priority},verify-peer=@var{on|off},passwordid=@var{id}
4506 Creates a TLS anonymous credentials object, which can be used to provide
4507 TLS support on network backends. The @option{id} parameter is a unique
4508 ID which network backends will use to access the credentials. The
4509 @option{endpoint} is either @option{server} or @option{client} depending
4510 on whether the QEMU network backend that uses the credentials will be
4511 acting as a client or as a server. If @option{verify-peer} is enabled
4512 (the default) then once the handshake is completed, the peer credentials
4513 will be verified. With x509 certificates, this implies that the clients
4514 must be provided with valid client certificates too.
4516 The @var{dir} parameter tells QEMU where to find the credential
4517 files. For server endpoints, this directory may contain a file
4518 @var{dh-params.pem} providing diffie-hellman parameters to use
4519 for the TLS server. If the file is missing, QEMU will generate
4520 a set of DH parameters at startup. This is a computationally
4521 expensive operation that consumes random pool entropy, so it is
4522 recommended that a persistent set of parameters be generated
4523 upfront and saved.
4525 For x509 certificate credentials the directory will contain further files
4526 providing the x509 certificates. The certificates must be stored
4527 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
4528 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
4529 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
4531 For the @var{server-key.pem} and @var{client-key.pem} files which
4532 contain sensitive private keys, it is possible to use an encrypted
4533 version by providing the @var{passwordid} parameter. This provides
4534 the ID of a previously created @code{secret} object containing the
4535 password for decryption.
4537 The @var{priority} parameter allows to override the global default
4538 priority used by gnutls. This can be useful if the system administrator
4539 needs to use a weaker set of crypto priorities for QEMU without
4540 potentially forcing the weakness onto all applications. Or conversely
4541 if one wants wants a stronger default for QEMU than for all other
4542 applications, they can do this through this parameter. Its format is
4543 a gnutls priority string as described at
4544 @url{https://gnutls.org/manual/html_node/Priority-Strings.html}.
4546 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
4548 Interval @var{t} can't be 0, this filter batches the packet delivery: all
4549 packets arriving in a given interval on netdev @var{netdevid} are delayed
4550 until the end of the interval. Interval is in microseconds.
4551 @option{status} is optional that indicate whether the netfilter is
4552 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
4554 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
4556 @option{all}: the filter is attached both to the receive and the transmit
4557 queue of the netdev (default).
4559 @option{rx}: the filter is attached to the receive queue of the netdev,
4560 where it will receive packets sent to the netdev.
4562 @option{tx}: the filter is attached to the transmit queue of the netdev,
4563 where it will receive packets sent by the netdev.
4565 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4567 filter-mirror on netdev @var{netdevid},mirror net packet to chardev@var{chardevid}, if it has the vnet_hdr_support flag, filter-mirror will mirror packet with vnet_hdr_len.
4569 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},outdev=@var{chardevid},queue=@var{all|rx|tx}[,vnet_hdr_support]
4571 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4572 @var{chardevid},and redirect indev's packet to filter.if it has the vnet_hdr_support flag,
4573 filter-redirector will redirect packet with vnet_hdr_len.
4574 Create a filter-redirector we need to differ outdev id from indev id, id can not
4575 be the same. we can just use indev or outdev, but at least one of indev or outdev
4576 need to be specified.
4578 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},queue=@var{all|rx|tx},[vnet_hdr_support]
4580 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4581 secondary from primary to keep secondary tcp connection,and rewrite
4582 tcp packet to primary from secondary make tcp packet can be handled by
4583 client.if it has the vnet_hdr_support flag, we can parse packet with vnet header.
4585 usage:
4586 colo secondary:
4587 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4588 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4589 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4591 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4593 Dump the network traffic on netdev @var{dev} to the file specified by
4594 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4595 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4596 or Wireshark.
4598 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},outdev=@var{chardevid},iothread=@var{id}[,vnet_hdr_support][,notify_dev=@var{id}]
4600 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4601 secondary packet. If the packets are same, we will output primary
4602 packet to outdev@var{chardevid}, else we will notify colo-frame
4603 do checkpoint and send primary packet to outdev@var{chardevid}.
4604 In order to improve efficiency, we need to put the task of comparison
4605 in another thread. If it has the vnet_hdr_support flag, colo compare
4606 will send/recv packet with vnet_hdr_len.
4607 If you want to use Xen COLO, will need the notify_dev to notify Xen
4608 colo-frame to do checkpoint.
4610 we must use it with the help of filter-mirror and filter-redirector.
4612 @example
4614 KVM COLO
4616 primary:
4617 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4618 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4619 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4620 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4621 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4622 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4623 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4624 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4625 -object iothread,id=iothread1
4626 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4627 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4628 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4629 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4631 secondary:
4632 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4633 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4634 -chardev socket,id=red0,host=3.3.3.3,port=9003
4635 -chardev socket,id=red1,host=3.3.3.3,port=9004
4636 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4637 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4640 Xen COLO
4642 primary:
4643 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4644 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4645 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4646 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4647 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4648 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4649 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4650 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4651 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4652 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4653 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4654 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4655 -object iothread,id=iothread1
4656 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4658 secondary:
4659 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4660 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4661 -chardev socket,id=red0,host=3.3.3.3,port=9003
4662 -chardev socket,id=red1,host=3.3.3.3,port=9004
4663 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4664 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4666 @end example
4668 If you want to know the detail of above command line, you can read
4669 the colo-compare git log.
4671 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4673 Creates a cryptodev backend which executes crypto opreation from
4674 the QEMU cipher APIS. The @var{id} parameter is
4675 a unique ID that will be used to reference this cryptodev backend from
4676 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4677 which specify the queue number of cryptodev backend, the default of
4678 @var{queues} is 1.
4680 @example
4682 # @value{qemu_system} \
4683 [...] \
4684 -object cryptodev-backend-builtin,id=cryptodev0 \
4685 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4686 [...]
4687 @end example
4689 @item -object cryptodev-vhost-user,id=@var{id},chardev=@var{chardevid}[,queues=@var{queues}]
4691 Creates a vhost-user cryptodev backend, backed by a chardev @var{chardevid}.
4692 The @var{id} parameter is a unique ID that will be used to reference this
4693 cryptodev backend from the @option{virtio-crypto} device.
4694 The chardev should be a unix domain socket backed one. The vhost-user uses
4695 a specifically defined protocol to pass vhost ioctl replacement messages
4696 to an application on the other end of the socket.
4697 The @var{queues} parameter is optional, which specify the queue number
4698 of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1.
4700 @example
4702 # @value{qemu_system} \
4703 [...] \
4704 -chardev socket,id=chardev0,path=/path/to/socket \
4705 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4706 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4707 [...]
4708 @end example
4710 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4711 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4713 Defines a secret to store a password, encryption key, or some other sensitive
4714 data. The sensitive data can either be passed directly via the @var{data}
4715 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4716 parameter is insecure unless the sensitive data is encrypted.
4718 The sensitive data can be provided in raw format (the default), or base64.
4719 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4720 so base64 is recommended for sending binary data. QEMU will convert from
4721 which ever format is provided to the format it needs internally. eg, an
4722 RBD password can be provided in raw format, even though it will be base64
4723 encoded when passed onto the RBD sever.
4725 For added protection, it is possible to encrypt the data associated with
4726 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4727 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4728 parameter provides the ID of a previously defined secret that contains
4729 the AES-256 decryption key. This key should be 32-bytes long and be
4730 base64 encoded. The @var{iv} parameter provides the random initialization
4731 vector used for encryption of this particular secret and should be a
4732 base64 encrypted string of the 16-byte IV.
4734 The simplest (insecure) usage is to provide the secret inline
4736 @example
4738 # @value{qemu_system} -object secret,id=sec0,data=letmein,format=raw
4740 @end example
4742 The simplest secure usage is to provide the secret via a file
4744 # printf "letmein" > mypasswd.txt
4745 # @value{qemu_system} -object secret,id=sec0,file=mypasswd.txt,format=raw
4747 For greater security, AES-256-CBC should be used. To illustrate usage,
4748 consider the openssl command line tool which can encrypt the data. Note
4749 that when encrypting, the plaintext must be padded to the cipher block
4750 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4752 First a master key needs to be created in base64 encoding:
4754 @example
4755 # openssl rand -base64 32 > key.b64
4756 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4757 @end example
4759 Each secret to be encrypted needs to have a random initialization vector
4760 generated. These do not need to be kept secret
4762 @example
4763 # openssl rand -base64 16 > iv.b64
4764 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4765 @end example
4767 The secret to be defined can now be encrypted, in this case we're
4768 telling openssl to base64 encode the result, but it could be left
4769 as raw bytes if desired.
4771 @example
4772 # SECRET=$(printf "letmein" |
4773 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4774 @end example
4776 When launching QEMU, create a master secret pointing to @code{key.b64}
4777 and specify that to be used to decrypt the user password. Pass the
4778 contents of @code{iv.b64} to the second secret
4780 @example
4781 # @value{qemu_system} \
4782 -object secret,id=secmaster0,format=base64,file=key.b64 \
4783 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4784 data=$SECRET,iv=$(<iv.b64)
4785 @end example
4787 @item -object sev-guest,id=@var{id},cbitpos=@var{cbitpos},reduced-phys-bits=@var{val},[sev-device=@var{string},policy=@var{policy},handle=@var{handle},dh-cert-file=@var{file},session-file=@var{file}]
4789 Create a Secure Encrypted Virtualization (SEV) guest object, which can be used
4790 to provide the guest memory encryption support on AMD processors.
4792 When memory encryption is enabled, one of the physical address bit (aka the
4793 C-bit) is utilized to mark if a memory page is protected. The @option{cbitpos}
4794 is used to provide the C-bit position. The C-bit position is Host family dependent
4795 hence user must provide this value. On EPYC, the value should be 47.
4797 When memory encryption is enabled, we loose certain bits in physical address space.
4798 The @option{reduced-phys-bits} is used to provide the number of bits we loose in
4799 physical address space. Similar to C-bit, the value is Host family dependent.
4800 On EPYC, the value should be 5.
4802 The @option{sev-device} provides the device file to use for communicating with
4803 the SEV firmware running inside AMD Secure Processor. The default device is
4804 '/dev/sev'. If hardware supports memory encryption then /dev/sev devices are
4805 created by CCP driver.
4807 The @option{policy} provides the guest policy to be enforced by the SEV firmware
4808 and restrict what configuration and operational commands can be performed on this
4809 guest by the hypervisor. The policy should be provided by the guest owner and is
4810 bound to the guest and cannot be changed throughout the lifetime of the guest.
4811 The default is 0.
4813 If guest @option{policy} allows sharing the key with another SEV guest then
4814 @option{handle} can be use to provide handle of the guest from which to share
4815 the key.
4817 The @option{dh-cert-file} and @option{session-file} provides the guest owner's
4818 Public Diffie-Hillman key defined in SEV spec. The PDH and session parameters
4819 are used for establishing a cryptographic session with the guest owner to
4820 negotiate keys used for attestation. The file must be encoded in base64.
4822 e.g to launch a SEV guest
4823 @example
4824 # @value{qemu_system_x86} \
4825 ......
4826 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4827 -machine ...,memory-encryption=sev0
4828 .....
4830 @end example
4833 @item -object authz-simple,id=@var{id},identity=@var{string}
4835 Create an authorization object that will control access to network services.
4837 The @option{identity} parameter is identifies the user and its format
4838 depends on the network service that authorization object is associated
4839 with. For authorizing based on TLS x509 certificates, the identity must
4840 be the x509 distinguished name. Note that care must be taken to escape
4841 any commas in the distinguished name.
4843 An example authorization object to validate a x509 distinguished name
4844 would look like:
4845 @example
4846 # @value{qemu_system} \
4848 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4850 @end example
4852 Note the use of quotes due to the x509 distinguished name containing
4853 whitespace, and escaping of ','.
4855 @item -object authz-listfile,id=@var{id},filename=@var{path},refresh=@var{yes|no}
4857 Create an authorization object that will control access to network services.
4859 The @option{filename} parameter is the fully qualified path to a file
4860 containing the access control list rules in JSON format.
4862 An example set of rules that match against SASL usernames might look
4863 like:
4865 @example
4867 "rules": [
4868 @{ "match": "fred", "policy": "allow", "format": "exact" @},
4869 @{ "match": "bob", "policy": "allow", "format": "exact" @},
4870 @{ "match": "danb", "policy": "deny", "format": "glob" @},
4871 @{ "match": "dan*", "policy": "allow", "format": "exact" @},
4873 "policy": "deny"
4875 @end example
4877 When checking access the object will iterate over all the rules and
4878 the first rule to match will have its @option{policy} value returned
4879 as the result. If no rules match, then the default @option{policy}
4880 value is returned.
4882 The rules can either be an exact string match, or they can use the
4883 simple UNIX glob pattern matching to allow wildcards to be used.
4885 If @option{refresh} is set to true the file will be monitored
4886 and automatically reloaded whenever its content changes.
4888 As with the @code{authz-simple} object, the format of the identity
4889 strings being matched depends on the network service, but is usually
4890 a TLS x509 distinguished name, or a SASL username.
4892 An example authorization object to validate a SASL username
4893 would look like:
4894 @example
4895 # @value{qemu_system} \
4897 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4899 @end example
4901 @item -object authz-pam,id=@var{id},service=@var{string}
4903 Create an authorization object that will control access to network services.
4905 The @option{service} parameter provides the name of a PAM service to use
4906 for authorization. It requires that a file @code{/etc/pam.d/@var{service}}
4907 exist to provide the configuration for the @code{account} subsystem.
4909 An example authorization object to validate a TLS x509 distinguished
4910 name would look like:
4912 @example
4913 # @value{qemu_system} \
4915 -object authz-pam,id=auth0,service=qemu-vnc
4917 @end example
4919 There would then be a corresponding config file for PAM at
4920 @code{/etc/pam.d/qemu-vnc} that contains:
4922 @example
4923 account requisite pam_listfile.so item=user sense=allow \
4924 file=/etc/qemu/vnc.allow
4925 @end example
4927 Finally the @code{/etc/qemu/vnc.allow} file would contain
4928 the list of x509 distingished names that are permitted
4929 access
4931 @example
4932 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4933 @end example
4935 @item -object iothread,id=@var{id},poll-max-ns=@var{poll-max-ns},poll-grow=@var{poll-grow},poll-shrink=@var{poll-shrink}
4937 Creates a dedicated event loop thread that devices can be assigned to. This is
4938 known as an IOThread. By default device emulation happens in vCPU threads or
4939 the main event loop thread. This can become a scalability bottleneck.
4940 IOThreads allow device emulation and I/O to run on other host CPUs.
4942 The @option{id} parameter is a unique ID that will be used to reference this
4943 IOThread from @option{-device ...,iothread=@var{id}}. Multiple devices can be
4944 assigned to an IOThread. Note that not all devices support an
4945 @option{iothread} parameter.
4947 The @code{query-iothreads} QMP command lists IOThreads and reports their thread
4948 IDs so that the user can configure host CPU pinning/affinity.
4950 IOThreads use an adaptive polling algorithm to reduce event loop latency.
4951 Instead of entering a blocking system call to monitor file descriptors and then
4952 pay the cost of being woken up when an event occurs, the polling algorithm
4953 spins waiting for events for a short time. The algorithm's default parameters
4954 are suitable for many cases but can be adjusted based on knowledge of the
4955 workload and/or host device latency.
4957 The @option{poll-max-ns} parameter is the maximum number of nanoseconds to busy
4958 wait for events. Polling can be disabled by setting this value to 0.
4960 The @option{poll-grow} parameter is the multiplier used to increase the polling
4961 time when the algorithm detects it is missing events due to not polling long
4962 enough.
4964 The @option{poll-shrink} parameter is the divisor used to decrease the polling
4965 time when the algorithm detects it is spending too long polling without
4966 encountering events.
4968 The polling parameters can be modified at run-time using the @code{qom-set} command (where @code{iothread1} is the IOThread's @code{id}):
4970 @example
4971 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
4972 @end example
4974 @end table
4976 ETEXI
4979 HXCOMM This is the last statement. Insert new options before this line!
4980 STEXI
4981 @end table
4982 ETEXI