2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "hw/sysbus.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/pci/pci_host.h"
31 #include "hw/ppc/spapr.h"
32 #include "hw/pci-host/spapr.h"
33 #include "exec/address-spaces.h"
36 #include "qemu/error-report.h"
37 #include "qapi/qmp/qerror.h"
39 #include "hw/pci/pci_bridge.h"
40 #include "hw/pci/pci_bus.h"
41 #include "hw/ppc/spapr_drc.h"
42 #include "sysemu/device_tree.h"
44 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
45 #define RTAS_QUERY_FN 0
46 #define RTAS_CHANGE_FN 1
47 #define RTAS_RESET_FN 2
48 #define RTAS_CHANGE_MSI_FN 3
49 #define RTAS_CHANGE_MSIX_FN 4
51 /* Interrupt types to return on RTAS_CHANGE_* */
52 #define RTAS_TYPE_MSI 1
53 #define RTAS_TYPE_MSIX 2
55 #define FDT_NAME_MAX 128
65 sPAPRPHBState
*spapr_pci_find_phb(sPAPRMachineState
*spapr
, uint64_t buid
)
69 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
70 if (sphb
->buid
!= buid
) {
79 PCIDevice
*spapr_pci_find_dev(sPAPRMachineState
*spapr
, uint64_t buid
,
82 sPAPRPHBState
*sphb
= spapr_pci_find_phb(spapr
, buid
);
83 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
84 int bus_num
= (config_addr
>> 16) & 0xFF;
85 int devfn
= (config_addr
>> 8) & 0xFF;
91 return pci_find_device(phb
->bus
, bus_num
, devfn
);
94 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
96 /* This handles the encoding of extended config space addresses */
97 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
100 static void finish_read_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
101 uint32_t addr
, uint32_t size
,
107 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
108 /* access must be 1, 2 or 4 bytes */
109 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
113 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
114 addr
= rtas_pci_cfgaddr(addr
);
116 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
117 /* Access must be to a valid device, within bounds and
118 * naturally aligned */
119 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
123 val
= pci_host_config_read_common(pci_dev
, addr
,
124 pci_config_size(pci_dev
), size
);
126 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
127 rtas_st(rets
, 1, val
);
130 static void rtas_ibm_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
131 uint32_t token
, uint32_t nargs
,
133 uint32_t nret
, target_ulong rets
)
138 if ((nargs
!= 4) || (nret
!= 2)) {
139 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
143 buid
= rtas_ldq(args
, 1);
144 size
= rtas_ld(args
, 3);
145 addr
= rtas_ld(args
, 0);
147 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
150 static void rtas_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
151 uint32_t token
, uint32_t nargs
,
153 uint32_t nret
, target_ulong rets
)
157 if ((nargs
!= 2) || (nret
!= 2)) {
158 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
162 size
= rtas_ld(args
, 1);
163 addr
= rtas_ld(args
, 0);
165 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
168 static void finish_write_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
169 uint32_t addr
, uint32_t size
,
170 uint32_t val
, target_ulong rets
)
174 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
175 /* access must be 1, 2 or 4 bytes */
176 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
180 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
181 addr
= rtas_pci_cfgaddr(addr
);
183 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
184 /* Access must be to a valid device, within bounds and
185 * naturally aligned */
186 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
190 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
193 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
196 static void rtas_ibm_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
197 uint32_t token
, uint32_t nargs
,
199 uint32_t nret
, target_ulong rets
)
202 uint32_t val
, size
, addr
;
204 if ((nargs
!= 5) || (nret
!= 1)) {
205 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
209 buid
= rtas_ldq(args
, 1);
210 val
= rtas_ld(args
, 4);
211 size
= rtas_ld(args
, 3);
212 addr
= rtas_ld(args
, 0);
214 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
217 static void rtas_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
218 uint32_t token
, uint32_t nargs
,
220 uint32_t nret
, target_ulong rets
)
222 uint32_t val
, size
, addr
;
224 if ((nargs
!= 3) || (nret
!= 1)) {
225 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
230 val
= rtas_ld(args
, 2);
231 size
= rtas_ld(args
, 1);
232 addr
= rtas_ld(args
, 0);
234 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
238 * Set MSI/MSIX message data.
239 * This is required for msi_notify()/msix_notify() which
240 * will write at the addresses via spapr_msi_write().
242 * If hwaddr == 0, all entries will have .data == first_irq i.e.
243 * table will be reset.
245 static void spapr_msi_setmsg(PCIDevice
*pdev
, hwaddr addr
, bool msix
,
246 unsigned first_irq
, unsigned req_num
)
249 MSIMessage msg
= { .address
= addr
, .data
= first_irq
};
252 msi_set_message(pdev
, msg
);
253 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
257 for (i
= 0; i
< req_num
; ++i
) {
258 msix_set_message(pdev
, i
, msg
);
259 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
266 static void rtas_ibm_change_msi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
267 uint32_t token
, uint32_t nargs
,
268 target_ulong args
, uint32_t nret
,
271 uint32_t config_addr
= rtas_ld(args
, 0);
272 uint64_t buid
= rtas_ldq(args
, 1);
273 unsigned int func
= rtas_ld(args
, 3);
274 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
275 unsigned int seq_num
= rtas_ld(args
, 5);
276 unsigned int ret_intr_type
;
277 unsigned int irq
, max_irqs
= 0, num
= 0;
278 sPAPRPHBState
*phb
= NULL
;
279 PCIDevice
*pdev
= NULL
;
281 int *config_addr_key
;
284 case RTAS_CHANGE_MSI_FN
:
286 ret_intr_type
= RTAS_TYPE_MSI
;
288 case RTAS_CHANGE_MSIX_FN
:
289 ret_intr_type
= RTAS_TYPE_MSIX
;
292 error_report("rtas_ibm_change_msi(%u) is not implemented", func
);
293 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
297 /* Fins sPAPRPHBState */
298 phb
= spapr_pci_find_phb(spapr
, buid
);
300 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
303 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
309 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
311 trace_spapr_pci_msi("Releasing wrong config", config_addr
);
312 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
316 xics_free(spapr
->icp
, msi
->first_irq
, msi
->num
);
317 if (msi_present(pdev
)) {
318 spapr_msi_setmsg(pdev
, 0, false, 0, num
);
320 if (msix_present(pdev
)) {
321 spapr_msi_setmsg(pdev
, 0, true, 0, num
);
323 g_hash_table_remove(phb
->msi
, &config_addr
);
325 trace_spapr_pci_msi("Released MSIs", config_addr
);
326 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
333 /* Check if the device supports as many IRQs as requested */
334 if (ret_intr_type
== RTAS_TYPE_MSI
) {
335 max_irqs
= msi_nr_vectors_allocated(pdev
);
336 } else if (ret_intr_type
== RTAS_TYPE_MSIX
) {
337 max_irqs
= pdev
->msix_entries_nr
;
340 error_report("Requested interrupt type %d is not enabled for device %x",
341 ret_intr_type
, config_addr
);
342 rtas_st(rets
, 0, -1); /* Hardware error */
345 /* Correct the number if the guest asked for too many */
346 if (req_num
> max_irqs
) {
347 trace_spapr_pci_msi_retry(config_addr
, req_num
, max_irqs
);
349 irq
= 0; /* to avoid misleading trace */
354 irq
= xics_alloc_block(spapr
->icp
, 0, req_num
, false,
355 ret_intr_type
== RTAS_TYPE_MSI
);
357 error_report("Cannot allocate MSIs for device %x", config_addr
);
358 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
362 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
363 spapr_msi_setmsg(pdev
, SPAPR_PCI_MSI_WINDOW
, ret_intr_type
== RTAS_TYPE_MSIX
,
366 /* Add MSI device to cache */
367 msi
= g_new(spapr_pci_msi
, 1);
368 msi
->first_irq
= irq
;
370 config_addr_key
= g_new(int, 1);
371 *config_addr_key
= config_addr
;
372 g_hash_table_insert(phb
->msi
, config_addr_key
, msi
);
375 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
376 rtas_st(rets
, 1, req_num
);
377 rtas_st(rets
, 2, ++seq_num
);
379 rtas_st(rets
, 3, ret_intr_type
);
382 trace_spapr_pci_rtas_ibm_change_msi(config_addr
, func
, req_num
, irq
);
385 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU
*cpu
,
386 sPAPRMachineState
*spapr
,
393 uint32_t config_addr
= rtas_ld(args
, 0);
394 uint64_t buid
= rtas_ldq(args
, 1);
395 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
396 sPAPRPHBState
*phb
= NULL
;
397 PCIDevice
*pdev
= NULL
;
400 /* Find sPAPRPHBState */
401 phb
= spapr_pci_find_phb(spapr
, buid
);
403 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
406 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
410 /* Find device descriptor and start IRQ */
411 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
412 if (!msi
|| !msi
->first_irq
|| !msi
->num
|| (ioa_intr_num
>= msi
->num
)) {
413 trace_spapr_pci_msi("Failed to return vector", config_addr
);
414 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
417 intr_src_num
= msi
->first_irq
+ ioa_intr_num
;
418 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
421 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
422 rtas_st(rets
, 1, intr_src_num
);
423 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
426 static void rtas_ibm_set_eeh_option(PowerPCCPU
*cpu
,
427 sPAPRMachineState
*spapr
,
428 uint32_t token
, uint32_t nargs
,
429 target_ulong args
, uint32_t nret
,
434 uint32_t addr
, option
;
438 if ((nargs
!= 4) || (nret
!= 1)) {
439 goto param_error_exit
;
442 buid
= rtas_ldq(args
, 1);
443 addr
= rtas_ld(args
, 0);
444 option
= rtas_ld(args
, 3);
446 sphb
= spapr_pci_find_phb(spapr
, buid
);
448 goto param_error_exit
;
451 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
452 if (!spc
->eeh_set_option
) {
453 goto param_error_exit
;
456 ret
= spc
->eeh_set_option(sphb
, addr
, option
);
457 rtas_st(rets
, 0, ret
);
461 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
464 static void rtas_ibm_get_config_addr_info2(PowerPCCPU
*cpu
,
465 sPAPRMachineState
*spapr
,
466 uint32_t token
, uint32_t nargs
,
467 target_ulong args
, uint32_t nret
,
473 uint32_t addr
, option
;
476 if ((nargs
!= 4) || (nret
!= 2)) {
477 goto param_error_exit
;
480 buid
= rtas_ldq(args
, 1);
481 sphb
= spapr_pci_find_phb(spapr
, buid
);
483 goto param_error_exit
;
486 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
487 if (!spc
->eeh_set_option
) {
488 goto param_error_exit
;
492 * We always have PE address of form "00BB0001". "BB"
493 * represents the bus number of PE's primary bus.
495 option
= rtas_ld(args
, 3);
497 case RTAS_GET_PE_ADDR
:
498 addr
= rtas_ld(args
, 0);
499 pdev
= spapr_pci_find_dev(spapr
, buid
, addr
);
501 goto param_error_exit
;
504 rtas_st(rets
, 1, (pci_bus_num(pdev
->bus
) << 16) + 1);
506 case RTAS_GET_PE_MODE
:
507 rtas_st(rets
, 1, RTAS_PE_MODE_SHARED
);
510 goto param_error_exit
;
513 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
517 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
520 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU
*cpu
,
521 sPAPRMachineState
*spapr
,
522 uint32_t token
, uint32_t nargs
,
523 target_ulong args
, uint32_t nret
,
531 if ((nargs
!= 3) || (nret
!= 4 && nret
!= 5)) {
532 goto param_error_exit
;
535 buid
= rtas_ldq(args
, 1);
536 sphb
= spapr_pci_find_phb(spapr
, buid
);
538 goto param_error_exit
;
541 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
542 if (!spc
->eeh_get_state
) {
543 goto param_error_exit
;
546 ret
= spc
->eeh_get_state(sphb
, &state
);
547 rtas_st(rets
, 0, ret
);
548 if (ret
!= RTAS_OUT_SUCCESS
) {
552 rtas_st(rets
, 1, state
);
553 rtas_st(rets
, 2, RTAS_EEH_SUPPORT
);
554 rtas_st(rets
, 3, RTAS_EEH_PE_UNAVAIL_INFO
);
556 rtas_st(rets
, 4, RTAS_EEH_PE_RECOVER_INFO
);
561 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
564 static void rtas_ibm_set_slot_reset(PowerPCCPU
*cpu
,
565 sPAPRMachineState
*spapr
,
566 uint32_t token
, uint32_t nargs
,
567 target_ulong args
, uint32_t nret
,
576 if ((nargs
!= 4) || (nret
!= 1)) {
577 goto param_error_exit
;
580 buid
= rtas_ldq(args
, 1);
581 option
= rtas_ld(args
, 3);
582 sphb
= spapr_pci_find_phb(spapr
, buid
);
584 goto param_error_exit
;
587 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
588 if (!spc
->eeh_reset
) {
589 goto param_error_exit
;
592 ret
= spc
->eeh_reset(sphb
, option
);
593 rtas_st(rets
, 0, ret
);
597 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
600 static void rtas_ibm_configure_pe(PowerPCCPU
*cpu
,
601 sPAPRMachineState
*spapr
,
602 uint32_t token
, uint32_t nargs
,
603 target_ulong args
, uint32_t nret
,
611 if ((nargs
!= 3) || (nret
!= 1)) {
612 goto param_error_exit
;
615 buid
= rtas_ldq(args
, 1);
616 sphb
= spapr_pci_find_phb(spapr
, buid
);
618 goto param_error_exit
;
621 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
622 if (!spc
->eeh_configure
) {
623 goto param_error_exit
;
626 ret
= spc
->eeh_configure(sphb
);
627 rtas_st(rets
, 0, ret
);
631 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
634 /* To support it later */
635 static void rtas_ibm_slot_error_detail(PowerPCCPU
*cpu
,
636 sPAPRMachineState
*spapr
,
637 uint32_t token
, uint32_t nargs
,
638 target_ulong args
, uint32_t nret
,
646 if ((nargs
!= 8) || (nret
!= 1)) {
647 goto param_error_exit
;
650 buid
= rtas_ldq(args
, 1);
651 sphb
= spapr_pci_find_phb(spapr
, buid
);
653 goto param_error_exit
;
656 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
657 if (!spc
->eeh_set_option
) {
658 goto param_error_exit
;
661 option
= rtas_ld(args
, 7);
663 case RTAS_SLOT_TEMP_ERR_LOG
:
664 case RTAS_SLOT_PERM_ERR_LOG
:
667 goto param_error_exit
;
670 /* We don't have error log yet */
671 rtas_st(rets
, 0, RTAS_OUT_NO_ERRORS_FOUND
);
675 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
678 static int pci_spapr_swizzle(int slot
, int pin
)
680 return (slot
+ pin
) % PCI_NUM_PINS
;
683 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
686 * Here we need to convert pci_dev + irq_num to some unique value
687 * which is less than number of IRQs on the specific bus (4). We
688 * use standard PCI swizzling, that is (slot number + pin number)
691 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
694 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
697 * Here we use the number returned by pci_spapr_map_irq to find a
698 * corresponding qemu_irq.
700 sPAPRPHBState
*phb
= opaque
;
702 trace_spapr_pci_lsi_set(phb
->dtbusname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
703 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
706 static PCIINTxRoute
spapr_route_intx_pin_to_irq(void *opaque
, int pin
)
708 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(opaque
);
711 route
.mode
= PCI_INTX_ENABLED
;
712 route
.irq
= sphb
->lsi_table
[pin
].irq
;
718 * MSI/MSIX memory region implementation.
719 * The handler handles both MSI and MSIX.
720 * For MSI-X, the vector number is encoded as a part of the address,
722 * For MSI, the vector number is encoded in least bits in data.
724 static void spapr_msi_write(void *opaque
, hwaddr addr
,
725 uint64_t data
, unsigned size
)
727 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
730 trace_spapr_pci_msi_write(addr
, data
, irq
);
732 qemu_irq_pulse(xics_get_qirq(spapr
->icp
, irq
));
735 static const MemoryRegionOps spapr_msi_ops
= {
736 /* There is no .read as the read result is undefined by PCI spec */
738 .write
= spapr_msi_write
,
739 .endianness
= DEVICE_LITTLE_ENDIAN
745 static AddressSpace
*spapr_pci_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
747 sPAPRPHBState
*phb
= opaque
;
749 return &phb
->iommu_as
;
752 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
754 char *path
= NULL
, *buf
= NULL
, *host
= NULL
;
756 /* Get the PCI VFIO host id */
757 host
= object_property_get_str(OBJECT(pdev
), "host", NULL
);
762 /* Construct the path of the file that will give us the DT location */
763 path
= g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host
);
765 if (!path
|| !g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
770 /* Construct and read from host device tree the loc-code */
771 path
= g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf
);
773 if (!path
|| !g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
783 static char *spapr_phb_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
786 const char *devtype
= "qemu";
787 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
789 if (object_dynamic_cast(OBJECT(pdev
), "vfio-pci")) {
790 buf
= spapr_phb_vfio_get_loc_code(sphb
, pdev
);
797 * For emulated devices and VFIO-failure case, make up
800 buf
= g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
801 devtype
, pdev
->name
, sphb
->index
, busnr
,
802 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
806 /* Macros to operate with address in OF binding to PCI */
807 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
808 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
809 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
810 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
811 #define b_ss(x) b_x((x), 24, 2) /* the space code */
812 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
813 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
814 #define b_fff(x) b_x((x), 8, 3) /* function number */
815 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
817 /* for 'reg'/'assigned-addresses' OF properties */
818 #define RESOURCE_CELLS_SIZE 2
819 #define RESOURCE_CELLS_ADDRESS 3
821 typedef struct ResourceFields
{
827 } QEMU_PACKED ResourceFields
;
829 typedef struct ResourceProps
{
830 ResourceFields reg
[8];
831 ResourceFields assigned
[7];
833 uint32_t assigned_len
;
836 /* fill in the 'reg'/'assigned-resources' OF properties for
837 * a PCI device. 'reg' describes resource requirements for a
838 * device's IO/MEM regions, 'assigned-addresses' describes the
839 * actual resource assignments.
841 * the properties are arrays of ('phys-addr', 'size') pairs describing
842 * the addressable regions of the PCI device, where 'phys-addr' is a
843 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
844 * (phys.hi, phys.mid, phys.lo), and 'size' is a
845 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
847 * phys.hi = 0xYYXXXXZZ, where:
852 * ||| + 00 if configuration space
853 * ||| + 01 if IO region,
854 * ||| + 10 if 32-bit MEM region
855 * ||| + 11 if 64-bit MEM region
857 * ||+------ for non-relocatable IO: 1 if aliased
858 * || for relocatable IO: 1 if below 64KB
859 * || for MEM: 1 if below 1MB
860 * |+------- 1 if region is prefetchable
861 * +-------- 1 if region is non-relocatable
862 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
864 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
867 * phys.mid and phys.lo correspond respectively to the hi/lo portions
868 * of the actual address of the region.
870 * how the phys-addr/size values are used differ slightly between
871 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
872 * an additional description for the config space region of the
873 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
874 * to describe the region as relocatable, with an address-mapping
875 * that corresponds directly to the PHB's address space for the
876 * resource. 'assigned-addresses' always has n=1 set with an absolute
877 * address assigned for the resource. in general, 'assigned-addresses'
878 * won't be populated, since addresses for PCI devices are generally
879 * unmapped initially and left to the guest to assign.
881 * note also that addresses defined in these properties are, at least
882 * for PAPR guests, relative to the PHBs IO/MEM windows, and
883 * correspond directly to the addresses in the BARs.
885 * in accordance with PCI Bus Binding to Open Firmware,
886 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
889 static void populate_resource_props(PCIDevice
*d
, ResourceProps
*rp
)
891 int bus_num
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d
))));
892 uint32_t dev_id
= (b_bbbbbbbb(bus_num
) |
893 b_ddddd(PCI_SLOT(d
->devfn
)) |
894 b_fff(PCI_FUNC(d
->devfn
)));
895 ResourceFields
*reg
, *assigned
;
896 int i
, reg_idx
= 0, assigned_idx
= 0;
898 /* config space region */
899 reg
= &rp
->reg
[reg_idx
++];
900 reg
->phys_hi
= cpu_to_be32(dev_id
);
906 for (i
= 0; i
< PCI_NUM_REGIONS
; i
++) {
907 if (!d
->io_regions
[i
].size
) {
911 reg
= &rp
->reg
[reg_idx
++];
913 reg
->phys_hi
= cpu_to_be32(dev_id
| b_rrrrrrrr(pci_bar(d
, i
)));
914 if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_SPACE_IO
) {
915 reg
->phys_hi
|= cpu_to_be32(b_ss(1));
916 } else if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_MEM_TYPE_64
) {
917 reg
->phys_hi
|= cpu_to_be32(b_ss(3));
919 reg
->phys_hi
|= cpu_to_be32(b_ss(2));
923 reg
->size_hi
= cpu_to_be32(d
->io_regions
[i
].size
>> 32);
924 reg
->size_lo
= cpu_to_be32(d
->io_regions
[i
].size
);
926 if (d
->io_regions
[i
].addr
== PCI_BAR_UNMAPPED
) {
930 assigned
= &rp
->assigned
[assigned_idx
++];
931 assigned
->phys_hi
= cpu_to_be32(reg
->phys_hi
| b_n(1));
932 assigned
->phys_mid
= cpu_to_be32(d
->io_regions
[i
].addr
>> 32);
933 assigned
->phys_lo
= cpu_to_be32(d
->io_regions
[i
].addr
);
934 assigned
->size_hi
= reg
->size_hi
;
935 assigned
->size_lo
= reg
->size_lo
;
938 rp
->reg_len
= reg_idx
* sizeof(ResourceFields
);
939 rp
->assigned_len
= assigned_idx
* sizeof(ResourceFields
);
942 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
945 static int spapr_populate_pci_child_dt(PCIDevice
*dev
, void *fdt
, int offset
,
949 bool is_bridge
= false;
952 uint32_t drc_index
= spapr_phb_get_pci_drc_index(sphb
, dev
);
953 uint32_t max_msi
, max_msix
;
955 if (pci_default_read_config(dev
, PCI_HEADER_TYPE
, 1) ==
956 PCI_HEADER_TYPE_BRIDGE
) {
960 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
961 _FDT(fdt_setprop_cell(fdt
, offset
, "vendor-id",
962 pci_default_read_config(dev
, PCI_VENDOR_ID
, 2)));
963 _FDT(fdt_setprop_cell(fdt
, offset
, "device-id",
964 pci_default_read_config(dev
, PCI_DEVICE_ID
, 2)));
965 _FDT(fdt_setprop_cell(fdt
, offset
, "revision-id",
966 pci_default_read_config(dev
, PCI_REVISION_ID
, 1)));
967 _FDT(fdt_setprop_cell(fdt
, offset
, "class-code",
968 pci_default_read_config(dev
, PCI_CLASS_PROG
, 3)));
969 if (pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)) {
970 _FDT(fdt_setprop_cell(fdt
, offset
, "interrupts",
971 pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)));
975 _FDT(fdt_setprop_cell(fdt
, offset
, "min-grant",
976 pci_default_read_config(dev
, PCI_MIN_GNT
, 1)));
977 _FDT(fdt_setprop_cell(fdt
, offset
, "max-latency",
978 pci_default_read_config(dev
, PCI_MAX_LAT
, 1)));
981 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)) {
982 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-id",
983 pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)));
986 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)) {
987 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-vendor-id",
988 pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)));
991 _FDT(fdt_setprop_cell(fdt
, offset
, "cache-line-size",
992 pci_default_read_config(dev
, PCI_CACHE_LINE_SIZE
, 1)));
994 /* the following fdt cells are masked off the pci status register */
995 pci_status
= pci_default_read_config(dev
, PCI_STATUS
, 2);
996 _FDT(fdt_setprop_cell(fdt
, offset
, "devsel-speed",
997 PCI_STATUS_DEVSEL_MASK
& pci_status
));
999 if (pci_status
& PCI_STATUS_FAST_BACK
) {
1000 _FDT(fdt_setprop(fdt
, offset
, "fast-back-to-back", NULL
, 0));
1002 if (pci_status
& PCI_STATUS_66MHZ
) {
1003 _FDT(fdt_setprop(fdt
, offset
, "66mhz-capable", NULL
, 0));
1005 if (pci_status
& PCI_STATUS_UDF
) {
1006 _FDT(fdt_setprop(fdt
, offset
, "udf-supported", NULL
, 0));
1009 /* NOTE: this is normally generated by firmware via path/unit name,
1010 * but in our case we must set it manually since it does not get
1011 * processed by OF beforehand
1013 _FDT(fdt_setprop_string(fdt
, offset
, "name", "pci"));
1014 buf
= spapr_phb_get_loc_code(sphb
, dev
);
1016 error_report("Failed setting the ibm,loc-code");
1020 err
= fdt_setprop_string(fdt
, offset
, "ibm,loc-code", buf
);
1027 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
));
1030 _FDT(fdt_setprop_cell(fdt
, offset
, "#address-cells",
1031 RESOURCE_CELLS_ADDRESS
));
1032 _FDT(fdt_setprop_cell(fdt
, offset
, "#size-cells",
1033 RESOURCE_CELLS_SIZE
));
1035 max_msi
= msi_nr_vectors_allocated(dev
);
1037 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi", max_msi
));
1039 max_msix
= dev
->msix_entries_nr
;
1041 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi-x", max_msix
));
1044 populate_resource_props(dev
, &rp
);
1045 _FDT(fdt_setprop(fdt
, offset
, "reg", (uint8_t *)rp
.reg
, rp
.reg_len
));
1046 _FDT(fdt_setprop(fdt
, offset
, "assigned-addresses",
1047 (uint8_t *)rp
.assigned
, rp
.assigned_len
));
1052 /* create OF node for pci device and required OF DT properties */
1053 static int spapr_create_pci_child_dt(sPAPRPHBState
*phb
, PCIDevice
*dev
,
1054 void *fdt
, int node_offset
)
1057 int slot
= PCI_SLOT(dev
->devfn
);
1058 int func
= PCI_FUNC(dev
->devfn
);
1059 char nodename
[FDT_NAME_MAX
];
1062 snprintf(nodename
, FDT_NAME_MAX
, "pci@%x,%x", slot
, func
);
1064 snprintf(nodename
, FDT_NAME_MAX
, "pci@%x", slot
);
1066 offset
= fdt_add_subnode(fdt
, node_offset
, nodename
);
1067 ret
= spapr_populate_pci_child_dt(dev
, fdt
, offset
, phb
);
1076 static void spapr_phb_add_pci_device(sPAPRDRConnector
*drc
,
1081 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1082 DeviceState
*dev
= DEVICE(pdev
);
1084 int fdt_start_offset
= 0, fdt_size
;
1086 if (object_dynamic_cast(OBJECT(pdev
), "vfio-pci")) {
1087 sPAPRTCETable
*tcet
= spapr_tce_find_by_liobn(phb
->dma_liobn
);
1089 spapr_tce_set_need_vfio(tcet
, true);
1092 if (dev
->hotplugged
) {
1093 fdt
= create_device_tree(&fdt_size
);
1094 fdt_start_offset
= spapr_create_pci_child_dt(phb
, pdev
, fdt
, 0);
1095 if (!fdt_start_offset
) {
1096 error_setg(errp
, "Failed to create pci child device tree node");
1101 drck
->attach(drc
, DEVICE(pdev
),
1102 fdt
, fdt_start_offset
, !dev
->hotplugged
, errp
);
1109 static void spapr_phb_remove_pci_device_cb(DeviceState
*dev
, void *opaque
)
1111 /* some version guests do not wait for completion of a device
1112 * cleanup (generally done asynchronously by the kernel) before
1113 * signaling to QEMU that the device is safe, but instead sleep
1114 * for some 'safe' period of time. unfortunately on a busy host
1115 * this sleep isn't guaranteed to be long enough, resulting in
1116 * bad things like IRQ lines being left asserted during final
1117 * device removal. to deal with this we call reset just prior
1118 * to finalizing the device, which will put the device back into
1119 * an 'idle' state, as the device cleanup code expects.
1121 pci_device_reset(PCI_DEVICE(dev
));
1122 object_unparent(OBJECT(dev
));
1125 static void spapr_phb_remove_pci_device(sPAPRDRConnector
*drc
,
1130 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1132 drck
->detach(drc
, DEVICE(pdev
), spapr_phb_remove_pci_device_cb
, phb
, errp
);
1135 static sPAPRDRConnector
*spapr_phb_get_pci_drc(sPAPRPHBState
*phb
,
1138 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
1139 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI
,
1140 (phb
->index
<< 16) |
1145 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
1148 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1149 sPAPRDRConnectorClass
*drck
;
1155 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1156 return drck
->get_index(drc
);
1159 static void spapr_phb_hot_plug_child(HotplugHandler
*plug_handler
,
1160 DeviceState
*plugged_dev
, Error
**errp
)
1162 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1163 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1164 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1165 Error
*local_err
= NULL
;
1167 /* if DR is disabled we don't need to do anything in the case of
1168 * hotplug or coldplug callbacks
1170 if (!phb
->dr_enabled
) {
1171 /* if this is a hotplug operation initiated by the user
1172 * we need to let them know it's not enabled
1174 if (plugged_dev
->hotplugged
) {
1175 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1176 object_get_typename(OBJECT(phb
)));
1183 spapr_phb_add_pci_device(drc
, phb
, pdev
, &local_err
);
1185 error_propagate(errp
, local_err
);
1188 if (plugged_dev
->hotplugged
) {
1189 spapr_hotplug_req_add_by_index(drc
);
1193 static void spapr_phb_hot_unplug_child(HotplugHandler
*plug_handler
,
1194 DeviceState
*plugged_dev
, Error
**errp
)
1196 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1197 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1198 sPAPRDRConnectorClass
*drck
;
1199 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1200 Error
*local_err
= NULL
;
1202 if (!phb
->dr_enabled
) {
1203 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1204 object_get_typename(OBJECT(phb
)));
1210 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1211 if (!drck
->release_pending(drc
)) {
1212 spapr_phb_remove_pci_device(drc
, phb
, pdev
, &local_err
);
1214 error_propagate(errp
, local_err
);
1217 spapr_hotplug_req_remove_by_index(drc
);
1221 static void spapr_phb_realize(DeviceState
*dev
, Error
**errp
)
1223 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1224 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
1225 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
1226 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
1227 sPAPRPHBClass
*info
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s
);
1231 uint64_t msi_window_size
= 4096;
1233 if (sphb
->index
!= (uint32_t)-1) {
1234 hwaddr windows_base
;
1236 if ((sphb
->buid
!= (uint64_t)-1) || (sphb
->dma_liobn
!= (uint32_t)-1)
1237 || (sphb
->mem_win_addr
!= (hwaddr
)-1)
1238 || (sphb
->io_win_addr
!= (hwaddr
)-1)) {
1239 error_setg(errp
, "Either \"index\" or other parameters must"
1240 " be specified for PAPR PHB, not both");
1244 if (sphb
->index
> SPAPR_PCI_MAX_INDEX
) {
1245 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
1246 SPAPR_PCI_MAX_INDEX
);
1250 sphb
->buid
= SPAPR_PCI_BASE_BUID
+ sphb
->index
;
1251 sphb
->dma_liobn
= SPAPR_PCI_LIOBN(sphb
->index
, 0);
1253 windows_base
= SPAPR_PCI_WINDOW_BASE
1254 + sphb
->index
* SPAPR_PCI_WINDOW_SPACING
;
1255 sphb
->mem_win_addr
= windows_base
+ SPAPR_PCI_MMIO_WIN_OFF
;
1256 sphb
->io_win_addr
= windows_base
+ SPAPR_PCI_IO_WIN_OFF
;
1259 if (sphb
->buid
== (uint64_t)-1) {
1260 error_setg(errp
, "BUID not specified for PHB");
1264 if (sphb
->dma_liobn
== (uint32_t)-1) {
1265 error_setg(errp
, "LIOBN not specified for PHB");
1269 if (sphb
->mem_win_addr
== (hwaddr
)-1) {
1270 error_setg(errp
, "Memory window address not specified for PHB");
1274 if (sphb
->io_win_addr
== (hwaddr
)-1) {
1275 error_setg(errp
, "IO window address not specified for PHB");
1279 if (spapr_pci_find_phb(spapr
, sphb
->buid
)) {
1280 error_setg(errp
, "PCI host bridges must have unique BUIDs");
1284 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
1286 namebuf
= alloca(strlen(sphb
->dtbusname
) + 32);
1288 /* Initialize memory regions */
1289 sprintf(namebuf
, "%s.mmio", sphb
->dtbusname
);
1290 memory_region_init(&sphb
->memspace
, OBJECT(sphb
), namebuf
, UINT64_MAX
);
1292 sprintf(namebuf
, "%s.mmio-alias", sphb
->dtbusname
);
1293 memory_region_init_alias(&sphb
->memwindow
, OBJECT(sphb
),
1294 namebuf
, &sphb
->memspace
,
1295 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
1296 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
1299 /* Initialize IO regions */
1300 sprintf(namebuf
, "%s.io", sphb
->dtbusname
);
1301 memory_region_init(&sphb
->iospace
, OBJECT(sphb
),
1302 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
1304 sprintf(namebuf
, "%s.io-alias", sphb
->dtbusname
);
1305 memory_region_init_alias(&sphb
->iowindow
, OBJECT(sphb
), namebuf
,
1306 &sphb
->iospace
, 0, SPAPR_PCI_IO_WIN_SIZE
);
1307 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
1310 bus
= pci_register_bus(dev
, NULL
,
1311 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
1312 &sphb
->memspace
, &sphb
->iospace
,
1313 PCI_DEVFN(0, 0), PCI_NUM_PINS
, TYPE_PCI_BUS
);
1315 qbus_set_hotplug_handler(BUS(phb
->bus
), DEVICE(sphb
), NULL
);
1318 * Initialize PHB address space.
1319 * By default there will be at least one subregion for default
1321 * Later the guest might want to create another DMA window
1322 * which will become another memory subregion.
1324 sprintf(namebuf
, "%s.iommu-root", sphb
->dtbusname
);
1326 memory_region_init(&sphb
->iommu_root
, OBJECT(sphb
),
1327 namebuf
, UINT64_MAX
);
1328 address_space_init(&sphb
->iommu_as
, &sphb
->iommu_root
,
1332 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1333 * we need to allocate some memory to catch those writes coming
1334 * from msi_notify()/msix_notify().
1335 * As MSIMessage:addr is going to be the same and MSIMessage:data
1336 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1339 * For KVM we want to ensure that this memory is a full page so that
1340 * our memory slot is of page size granularity.
1343 if (kvm_enabled()) {
1344 msi_window_size
= getpagesize();
1348 memory_region_init_io(&sphb
->msiwindow
, NULL
, &spapr_msi_ops
, spapr
,
1349 "msi", msi_window_size
);
1350 memory_region_add_subregion(&sphb
->iommu_root
, SPAPR_PCI_MSI_WINDOW
,
1353 pci_setup_iommu(bus
, spapr_pci_dma_iommu
, sphb
);
1355 pci_bus_set_route_irq_fn(bus
, spapr_route_intx_pin_to_irq
);
1357 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
1359 /* Initialize the LSI table */
1360 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
1363 irq
= xics_alloc_block(spapr
->icp
, 0, 1, true, false);
1365 error_setg(errp
, "spapr_allocate_lsi failed");
1369 sphb
->lsi_table
[i
].irq
= irq
;
1372 /* allocate connectors for child PCI devices */
1373 if (sphb
->dr_enabled
) {
1374 for (i
= 0; i
< PCI_SLOT_MAX
* 8; i
++) {
1375 spapr_dr_connector_new(OBJECT(phb
),
1376 SPAPR_DR_CONNECTOR_TYPE_PCI
,
1377 (sphb
->index
<< 16) | i
);
1381 if (!info
->finish_realize
) {
1382 error_setg(errp
, "finish_realize not defined");
1386 info
->finish_realize(sphb
, errp
);
1388 sphb
->msi
= g_hash_table_new_full(g_int_hash
, g_int_equal
, g_free
, g_free
);
1391 static void spapr_phb_finish_realize(sPAPRPHBState
*sphb
, Error
**errp
)
1393 sPAPRTCETable
*tcet
;
1396 nb_table
= sphb
->dma_win_size
>> SPAPR_TCE_PAGE_SHIFT
;
1397 tcet
= spapr_tce_new_table(DEVICE(sphb
), sphb
->dma_liobn
,
1398 0, SPAPR_TCE_PAGE_SHIFT
, nb_table
, false);
1400 error_setg(errp
, "Unable to create TCE table for %s",
1405 /* Register default 32bit DMA window */
1406 memory_region_add_subregion(&sphb
->iommu_root
, sphb
->dma_win_addr
,
1407 spapr_tce_get_iommu(tcet
));
1410 static int spapr_phb_children_reset(Object
*child
, void *opaque
)
1412 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(child
, TYPE_DEVICE
);
1421 static void spapr_phb_reset(DeviceState
*qdev
)
1423 /* Reset the IOMMU state */
1424 object_child_foreach(OBJECT(qdev
), spapr_phb_children_reset
, NULL
);
1427 static Property spapr_phb_properties
[] = {
1428 DEFINE_PROP_UINT32("index", sPAPRPHBState
, index
, -1),
1429 DEFINE_PROP_UINT64("buid", sPAPRPHBState
, buid
, -1),
1430 DEFINE_PROP_UINT32("liobn", sPAPRPHBState
, dma_liobn
, -1),
1431 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState
, mem_win_addr
, -1),
1432 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState
, mem_win_size
,
1433 SPAPR_PCI_MMIO_WIN_SIZE
),
1434 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState
, io_win_addr
, -1),
1435 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState
, io_win_size
,
1436 SPAPR_PCI_IO_WIN_SIZE
),
1437 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState
, dr_enabled
,
1439 /* Default DMA window is 0..1GB */
1440 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState
, dma_win_addr
, 0),
1441 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState
, dma_win_size
, 0x40000000),
1442 DEFINE_PROP_END_OF_LIST(),
1445 static const VMStateDescription vmstate_spapr_pci_lsi
= {
1446 .name
= "spapr_pci/lsi",
1448 .minimum_version_id
= 1,
1449 .fields
= (VMStateField
[]) {
1450 VMSTATE_UINT32_EQUAL(irq
, struct spapr_pci_lsi
),
1452 VMSTATE_END_OF_LIST()
1456 static const VMStateDescription vmstate_spapr_pci_msi
= {
1457 .name
= "spapr_pci/msi",
1459 .minimum_version_id
= 1,
1460 .fields
= (VMStateField
[]) {
1461 VMSTATE_UINT32(key
, spapr_pci_msi_mig
),
1462 VMSTATE_UINT32(value
.first_irq
, spapr_pci_msi_mig
),
1463 VMSTATE_UINT32(value
.num
, spapr_pci_msi_mig
),
1464 VMSTATE_END_OF_LIST()
1468 static void spapr_pci_pre_save(void *opaque
)
1470 sPAPRPHBState
*sphb
= opaque
;
1471 GHashTableIter iter
;
1472 gpointer key
, value
;
1475 g_free(sphb
->msi_devs
);
1476 sphb
->msi_devs
= NULL
;
1477 sphb
->msi_devs_num
= g_hash_table_size(sphb
->msi
);
1478 if (!sphb
->msi_devs_num
) {
1481 sphb
->msi_devs
= g_malloc(sphb
->msi_devs_num
* sizeof(spapr_pci_msi_mig
));
1483 g_hash_table_iter_init(&iter
, sphb
->msi
);
1484 for (i
= 0; g_hash_table_iter_next(&iter
, &key
, &value
); ++i
) {
1485 sphb
->msi_devs
[i
].key
= *(uint32_t *) key
;
1486 sphb
->msi_devs
[i
].value
= *(spapr_pci_msi
*) value
;
1490 static int spapr_pci_post_load(void *opaque
, int version_id
)
1492 sPAPRPHBState
*sphb
= opaque
;
1493 gpointer key
, value
;
1496 for (i
= 0; i
< sphb
->msi_devs_num
; ++i
) {
1497 key
= g_memdup(&sphb
->msi_devs
[i
].key
,
1498 sizeof(sphb
->msi_devs
[i
].key
));
1499 value
= g_memdup(&sphb
->msi_devs
[i
].value
,
1500 sizeof(sphb
->msi_devs
[i
].value
));
1501 g_hash_table_insert(sphb
->msi
, key
, value
);
1503 g_free(sphb
->msi_devs
);
1504 sphb
->msi_devs
= NULL
;
1505 sphb
->msi_devs_num
= 0;
1510 static const VMStateDescription vmstate_spapr_pci
= {
1511 .name
= "spapr_pci",
1513 .minimum_version_id
= 2,
1514 .pre_save
= spapr_pci_pre_save
,
1515 .post_load
= spapr_pci_post_load
,
1516 .fields
= (VMStateField
[]) {
1517 VMSTATE_UINT64_EQUAL(buid
, sPAPRPHBState
),
1518 VMSTATE_UINT32_EQUAL(dma_liobn
, sPAPRPHBState
),
1519 VMSTATE_UINT64_EQUAL(mem_win_addr
, sPAPRPHBState
),
1520 VMSTATE_UINT64_EQUAL(mem_win_size
, sPAPRPHBState
),
1521 VMSTATE_UINT64_EQUAL(io_win_addr
, sPAPRPHBState
),
1522 VMSTATE_UINT64_EQUAL(io_win_size
, sPAPRPHBState
),
1523 VMSTATE_STRUCT_ARRAY(lsi_table
, sPAPRPHBState
, PCI_NUM_PINS
, 0,
1524 vmstate_spapr_pci_lsi
, struct spapr_pci_lsi
),
1525 VMSTATE_INT32(msi_devs_num
, sPAPRPHBState
),
1526 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs
, sPAPRPHBState
, msi_devs_num
, 0,
1527 vmstate_spapr_pci_msi
, spapr_pci_msi_mig
),
1528 VMSTATE_END_OF_LIST()
1532 static const char *spapr_phb_root_bus_path(PCIHostState
*host_bridge
,
1535 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(host_bridge
);
1537 return sphb
->dtbusname
;
1540 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
1542 PCIHostBridgeClass
*hc
= PCI_HOST_BRIDGE_CLASS(klass
);
1543 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1544 sPAPRPHBClass
*spc
= SPAPR_PCI_HOST_BRIDGE_CLASS(klass
);
1545 HotplugHandlerClass
*hp
= HOTPLUG_HANDLER_CLASS(klass
);
1547 hc
->root_bus_path
= spapr_phb_root_bus_path
;
1548 dc
->realize
= spapr_phb_realize
;
1549 dc
->props
= spapr_phb_properties
;
1550 dc
->reset
= spapr_phb_reset
;
1551 dc
->vmsd
= &vmstate_spapr_pci
;
1552 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1553 dc
->cannot_instantiate_with_device_add_yet
= false;
1554 spc
->finish_realize
= spapr_phb_finish_realize
;
1555 hp
->plug
= spapr_phb_hot_plug_child
;
1556 hp
->unplug
= spapr_phb_hot_unplug_child
;
1559 static const TypeInfo spapr_phb_info
= {
1560 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
1561 .parent
= TYPE_PCI_HOST_BRIDGE
,
1562 .instance_size
= sizeof(sPAPRPHBState
),
1563 .class_init
= spapr_phb_class_init
,
1564 .class_size
= sizeof(sPAPRPHBClass
),
1565 .interfaces
= (InterfaceInfo
[]) {
1566 { TYPE_HOTPLUG_HANDLER
},
1571 PCIHostState
*spapr_create_phb(sPAPRMachineState
*spapr
, int index
)
1575 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
1576 qdev_prop_set_uint32(dev
, "index", index
);
1577 qdev_init_nofail(dev
);
1579 return PCI_HOST_BRIDGE(dev
);
1582 typedef struct sPAPRFDT
{
1585 sPAPRPHBState
*sphb
;
1588 static void spapr_populate_pci_devices_dt(PCIBus
*bus
, PCIDevice
*pdev
,
1592 sPAPRFDT
*p
= opaque
;
1596 offset
= spapr_create_pci_child_dt(p
->sphb
, pdev
, p
->fdt
, p
->node_off
);
1598 error_report("Failed to create pci child device tree node");
1602 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1603 PCI_HEADER_TYPE_BRIDGE
)) {
1607 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
1613 s_fdt
.node_off
= offset
;
1614 s_fdt
.sphb
= p
->sphb
;
1615 pci_for_each_device(sec_bus
, pci_bus_num(sec_bus
),
1616 spapr_populate_pci_devices_dt
,
1620 static void spapr_phb_pci_enumerate_bridge(PCIBus
*bus
, PCIDevice
*pdev
,
1623 unsigned int *bus_no
= opaque
;
1624 unsigned int primary
= *bus_no
;
1625 unsigned int subordinate
= 0xff;
1626 PCIBus
*sec_bus
= NULL
;
1628 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1629 PCI_HEADER_TYPE_BRIDGE
)) {
1634 pci_default_write_config(pdev
, PCI_PRIMARY_BUS
, primary
, 1);
1635 pci_default_write_config(pdev
, PCI_SECONDARY_BUS
, *bus_no
, 1);
1636 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
1638 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
1643 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, subordinate
, 1);
1644 pci_for_each_device(sec_bus
, pci_bus_num(sec_bus
),
1645 spapr_phb_pci_enumerate_bridge
, bus_no
);
1646 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
1649 static void spapr_phb_pci_enumerate(sPAPRPHBState
*phb
)
1651 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
1652 unsigned int bus_no
= 0;
1654 pci_for_each_device(bus
, pci_bus_num(bus
),
1655 spapr_phb_pci_enumerate_bridge
,
1660 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
1661 uint32_t xics_phandle
,
1664 int bus_off
, i
, j
, ret
;
1665 char nodename
[FDT_NAME_MAX
];
1666 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1667 const uint64_t mmiosize
= memory_region_size(&phb
->memwindow
);
1668 const uint64_t w32max
= (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET
;
1669 const uint64_t w32size
= MIN(w32max
, mmiosize
);
1670 const uint64_t w64size
= (mmiosize
> w32size
) ? (mmiosize
- w32size
) : 0;
1676 } QEMU_PACKED ranges
[] = {
1678 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1679 cpu_to_be64(phb
->io_win_addr
),
1680 cpu_to_be64(memory_region_size(&phb
->iospace
)),
1683 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
1684 cpu_to_be64(phb
->mem_win_addr
),
1685 cpu_to_be64(w32size
),
1688 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1689 cpu_to_be64(phb
->mem_win_addr
+ w32size
),
1690 cpu_to_be64(w64size
)
1693 const unsigned sizeof_ranges
= (w64size
? 3 : 2) * sizeof(ranges
[0]);
1694 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
1695 uint32_t interrupt_map_mask
[] = {
1696 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1697 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
1698 sPAPRTCETable
*tcet
;
1699 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
1702 /* Start populating the FDT */
1703 snprintf(nodename
, FDT_NAME_MAX
, "pci@%" PRIx64
, phb
->buid
);
1704 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
1709 /* Write PHB properties */
1710 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
1711 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
1712 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
1713 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
1714 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
1715 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
1716 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
1717 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof_ranges
));
1718 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
1719 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
1720 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pe-total-#msi", XICS_IRQS
));
1722 /* Build the interrupt-map, this must matches what is done
1723 * in pci_spapr_map_irq
1725 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
1726 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
1727 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
1728 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
1729 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
1730 int lsi_num
= pci_spapr_swizzle(i
, j
);
1732 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
1735 irqmap
[3] = cpu_to_be32(j
+1);
1736 irqmap
[4] = cpu_to_be32(xics_phandle
);
1737 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[lsi_num
].irq
);
1738 irqmap
[6] = cpu_to_be32(0x8);
1741 /* Write interrupt map */
1742 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
1743 sizeof(interrupt_map
)));
1745 tcet
= spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb
->index
, 0));
1746 spapr_dma_dt(fdt
, bus_off
, "ibm,dma-window",
1747 tcet
->liobn
, tcet
->bus_offset
,
1748 tcet
->nb_table
<< tcet
->page_shift
);
1750 /* Walk the bridges and program the bus numbers*/
1751 spapr_phb_pci_enumerate(phb
);
1752 _FDT(fdt_setprop_cell(fdt
, bus_off
, "qemu,phb-enumerated", 0x1));
1754 /* Populate tree nodes with PCI devices attached */
1756 s_fdt
.node_off
= bus_off
;
1758 pci_for_each_device(bus
, pci_bus_num(bus
),
1759 spapr_populate_pci_devices_dt
,
1762 ret
= spapr_drc_populate_dt(fdt
, bus_off
, OBJECT(phb
),
1763 SPAPR_DR_CONNECTOR_TYPE_PCI
);
1771 void spapr_pci_rtas_init(void)
1773 spapr_rtas_register(RTAS_READ_PCI_CONFIG
, "read-pci-config",
1774 rtas_read_pci_config
);
1775 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG
, "write-pci-config",
1776 rtas_write_pci_config
);
1777 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG
, "ibm,read-pci-config",
1778 rtas_ibm_read_pci_config
);
1779 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG
, "ibm,write-pci-config",
1780 rtas_ibm_write_pci_config
);
1781 if (msi_supported
) {
1782 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER
,
1783 "ibm,query-interrupt-source-number",
1784 rtas_ibm_query_interrupt_source_number
);
1785 spapr_rtas_register(RTAS_IBM_CHANGE_MSI
, "ibm,change-msi",
1786 rtas_ibm_change_msi
);
1789 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION
,
1790 "ibm,set-eeh-option",
1791 rtas_ibm_set_eeh_option
);
1792 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2
,
1793 "ibm,get-config-addr-info2",
1794 rtas_ibm_get_config_addr_info2
);
1795 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2
,
1796 "ibm,read-slot-reset-state2",
1797 rtas_ibm_read_slot_reset_state2
);
1798 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET
,
1799 "ibm,set-slot-reset",
1800 rtas_ibm_set_slot_reset
);
1801 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE
,
1803 rtas_ibm_configure_pe
);
1804 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL
,
1805 "ibm,slot-error-detail",
1806 rtas_ibm_slot_error_detail
);
1809 static void spapr_pci_register_types(void)
1811 type_register_static(&spapr_phb_info
);
1814 type_init(spapr_pci_register_types
)
1816 static int spapr_switch_one_vga(DeviceState
*dev
, void *opaque
)
1818 bool be
= *(bool *)opaque
;
1820 if (object_dynamic_cast(OBJECT(dev
), "VGA")
1821 || object_dynamic_cast(OBJECT(dev
), "secondary-vga")) {
1822 object_property_set_bool(OBJECT(dev
), be
, "big-endian-framebuffer",
1828 void spapr_pci_switch_vga(bool big_endian
)
1830 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1831 sPAPRPHBState
*sphb
;
1834 * For backward compatibility with existing guests, we switch
1835 * the endianness of the VGA controller when changing the guest
1838 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
1839 BusState
*bus
= &PCI_HOST_BRIDGE(sphb
)->bus
->qbus
;
1840 qbus_walk_children(bus
, spapr_switch_one_vga
, NULL
, NULL
, NULL
,