2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
49 #include "exec-memory.h"
53 /* SLOF memory layout:
55 * SLOF raw image loaded at 0, copies its romfs right below the flat
56 * device-tree, then position SLOF itself 31M below that
58 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * We load our kernel at 4M, leaving space for SLOF initial image
63 #define FDT_MAX_SIZE 0x10000
64 #define RTAS_MAX_SIZE 0x10000
65 #define FW_MAX_SIZE 0x400000
66 #define FW_FILE_NAME "slof.bin"
67 #define FW_OVERHEAD 0x2800000
68 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70 #define MIN_RMA_SLOF 128UL
72 #define TIMEBASE_FREQ 512000000ULL
75 #define XICS_IRQS 1024
77 #define SPAPR_PCI_BUID 0x800000020000001ULL
78 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
79 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
80 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82 #define PHANDLE_XICP 0x00001111
84 sPAPREnvironment
*spapr
;
86 qemu_irq
spapr_allocate_irq(uint32_t hint
, uint32_t *irq_num
)
93 /* FIXME: we should probably check for collisions somehow */
95 irq
= spapr
->next_irq
++;
98 qirq
= xics_find_qirq(spapr
->icp
, irq
);
110 static int spapr_set_associativity(void *fdt
, sPAPREnvironment
*spapr
)
115 int smt
= kvmppc_smt_threads();
117 assert(spapr
->cpu_model
);
119 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
120 uint32_t associativity
[] = {cpu_to_be32(0x5),
124 cpu_to_be32(env
->numa_node
),
125 cpu_to_be32(env
->cpu_index
)};
127 if ((env
->cpu_index
% smt
) != 0) {
131 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
134 offset
= fdt_path_offset(fdt
, cpu_model
);
139 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
140 sizeof(associativity
));
148 static void *spapr_create_fdt_skel(const char *cpu_model
,
149 target_phys_addr_t rma_size
,
150 target_phys_addr_t initrd_base
,
151 target_phys_addr_t initrd_size
,
152 target_phys_addr_t kernel_size
,
153 const char *boot_device
,
154 const char *kernel_cmdline
,
159 uint64_t mem_reg_property
[2];
160 uint32_t start_prop
= cpu_to_be32(initrd_base
);
161 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
162 uint32_t pft_size_prop
[] = {0, cpu_to_be32(hash_shift
)};
163 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
164 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
165 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
168 int smt
= kvmppc_smt_threads();
169 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
170 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
171 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
172 cpu_to_be32(0x0), cpu_to_be32(0x0),
175 target_phys_addr_t node0_size
, mem_start
;
181 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
182 #exp, fdt_strerror(ret)); \
187 fdt
= g_malloc0(FDT_MAX_SIZE
);
188 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
191 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
194 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
196 _FDT((fdt_finish_reservemap(fdt
)));
199 _FDT((fdt_begin_node(fdt
, "")));
200 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
201 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
203 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
204 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
207 _FDT((fdt_begin_node(fdt
, "chosen")));
209 /* Set Form1_affinity */
210 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
212 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
213 _FDT((fdt_property(fdt
, "linux,initrd-start",
214 &start_prop
, sizeof(start_prop
))));
215 _FDT((fdt_property(fdt
, "linux,initrd-end",
216 &end_prop
, sizeof(end_prop
))));
218 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
219 cpu_to_be64(kernel_size
) };
221 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
223 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
225 _FDT((fdt_end_node(fdt
)));
228 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
229 if (rma_size
> node0_size
) {
230 rma_size
= node0_size
;
234 mem_reg_property
[0] = 0;
235 mem_reg_property
[1] = cpu_to_be64(rma_size
);
236 _FDT((fdt_begin_node(fdt
, "memory@0")));
237 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
238 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
239 sizeof(mem_reg_property
))));
240 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
241 sizeof(associativity
))));
242 _FDT((fdt_end_node(fdt
)));
245 if (node0_size
> rma_size
) {
246 mem_reg_property
[0] = cpu_to_be64(rma_size
);
247 mem_reg_property
[1] = cpu_to_be64(node0_size
- rma_size
);
249 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, rma_size
);
250 _FDT((fdt_begin_node(fdt
, mem_name
)));
251 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
252 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
253 sizeof(mem_reg_property
))));
254 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
255 sizeof(associativity
))));
256 _FDT((fdt_end_node(fdt
)));
259 /* RAM: Node 1 and beyond */
260 mem_start
= node0_size
;
261 for (i
= 1; i
< nb_numa_nodes
; i
++) {
262 mem_reg_property
[0] = cpu_to_be64(mem_start
);
263 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
264 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
265 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
266 _FDT((fdt_begin_node(fdt
, mem_name
)));
267 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
268 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
269 sizeof(mem_reg_property
))));
270 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
271 sizeof(associativity
))));
272 _FDT((fdt_end_node(fdt
)));
273 mem_start
+= node_mem
[i
];
277 _FDT((fdt_begin_node(fdt
, "cpus")));
279 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
280 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
282 modelname
= g_strdup(cpu_model
);
284 for (i
= 0; i
< strlen(modelname
); i
++) {
285 modelname
[i
] = toupper(modelname
[i
]);
288 /* This is needed during FDT finalization */
289 spapr
->cpu_model
= g_strdup(modelname
);
291 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
292 int index
= env
->cpu_index
;
293 uint32_t servers_prop
[smp_threads
];
294 uint32_t gservers_prop
[smp_threads
* 2];
296 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
297 0xffffffff, 0xffffffff};
298 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
299 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
301 if ((index
% smt
) != 0) {
305 if (asprintf(&nodename
, "%s@%x", modelname
, index
) < 0) {
306 fprintf(stderr
, "Allocation failure\n");
310 _FDT((fdt_begin_node(fdt
, nodename
)));
314 _FDT((fdt_property_cell(fdt
, "reg", index
)));
315 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
317 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
318 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
319 env
->dcache_line_size
)));
320 _FDT((fdt_property_cell(fdt
, "icache-block-size",
321 env
->icache_line_size
)));
322 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
323 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
324 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
325 _FDT((fdt_property(fdt
, "ibm,pft-size",
326 pft_size_prop
, sizeof(pft_size_prop
))));
327 _FDT((fdt_property_string(fdt
, "status", "okay")));
328 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
330 /* Build interrupt servers and gservers properties */
331 for (i
= 0; i
< smp_threads
; i
++) {
332 servers_prop
[i
] = cpu_to_be32(index
+ i
);
333 /* Hack, direct the group queues back to cpu 0 */
334 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
335 gservers_prop
[i
*2 + 1] = 0;
337 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
338 servers_prop
, sizeof(servers_prop
))));
339 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
340 gservers_prop
, sizeof(gservers_prop
))));
342 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
343 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
344 segs
, sizeof(segs
))));
347 /* Advertise VMX/VSX (vector extensions) if available
348 * 0 / no property == no vector extensions
349 * 1 == VMX / Altivec available
350 * 2 == VSX available */
351 if (env
->insns_flags
& PPC_ALTIVEC
) {
352 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
354 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
357 /* Advertise DFP (Decimal Floating Point) if available
358 * 0 / no property == no DFP
359 * 1 == DFP available */
360 if (env
->insns_flags2
& PPC2_DFP
) {
361 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
364 _FDT((fdt_end_node(fdt
)));
369 _FDT((fdt_end_node(fdt
)));
372 _FDT((fdt_begin_node(fdt
, "rtas")));
374 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
375 sizeof(hypertas_prop
))));
377 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
378 refpoints
, sizeof(refpoints
))));
380 _FDT((fdt_end_node(fdt
)));
382 /* interrupt controller */
383 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
385 _FDT((fdt_property_string(fdt
, "device_type",
386 "PowerPC-External-Interrupt-Presentation")));
387 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
388 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
389 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
390 interrupt_server_ranges_prop
,
391 sizeof(interrupt_server_ranges_prop
))));
392 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
393 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
394 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
396 _FDT((fdt_end_node(fdt
)));
399 _FDT((fdt_begin_node(fdt
, "vdevice")));
401 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
402 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
403 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
404 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
405 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
406 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
408 _FDT((fdt_end_node(fdt
)));
410 _FDT((fdt_end_node(fdt
))); /* close root node */
411 _FDT((fdt_finish(fdt
)));
416 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
417 target_phys_addr_t fdt_addr
,
418 target_phys_addr_t rtas_addr
,
419 target_phys_addr_t rtas_size
)
425 fdt
= g_malloc(FDT_MAX_SIZE
);
427 /* open out the base tree into a temp buffer for the final tweaks */
428 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
430 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
432 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
436 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
437 ret
= spapr_populate_pci_devices(phb
, PHANDLE_XICP
, fdt
);
441 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
446 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
448 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
451 /* Advertise NUMA via ibm,associativity */
452 if (nb_numa_nodes
> 1) {
453 ret
= spapr_set_associativity(fdt
, spapr
);
455 fprintf(stderr
, "Couldn't set up NUMA device tree properties\n");
459 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
461 _FDT((fdt_pack(fdt
)));
463 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
464 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
465 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
469 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
474 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
476 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
479 static void emulate_spapr_hypercall(CPUPPCState
*env
)
481 env
->gpr
[3] = spapr_hypercall(env
, env
->gpr
[3], &env
->gpr
[4]);
484 static void spapr_reset(void *opaque
)
486 sPAPREnvironment
*spapr
= (sPAPREnvironment
*)opaque
;
488 fprintf(stderr
, "sPAPR reset\n");
490 /* flush out the hash table */
491 memset(spapr
->htab
, 0, spapr
->htab_size
);
494 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
497 /* Set up the entry state */
498 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
499 first_cpu
->gpr
[5] = 0;
500 first_cpu
->halted
= 0;
501 first_cpu
->nip
= spapr
->entry_point
;
505 static void spapr_cpu_reset(void *opaque
)
507 CPUPPCState
*env
= opaque
;
509 cpu_state_reset(env
);
512 /* pSeries LPAR / sPAPR hardware init */
513 static void ppc_spapr_init(ram_addr_t ram_size
,
514 const char *boot_device
,
515 const char *kernel_filename
,
516 const char *kernel_cmdline
,
517 const char *initrd_filename
,
518 const char *cpu_model
)
522 MemoryRegion
*sysmem
= get_system_memory();
523 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
524 target_phys_addr_t rma_alloc_size
, rma_size
;
525 uint32_t initrd_base
= 0;
526 long kernel_size
= 0, initrd_size
= 0;
527 long load_limit
, rtas_limit
, fw_size
;
528 long pteg_shift
= 17;
531 spapr
= g_malloc0(sizeof(*spapr
));
532 QLIST_INIT(&spapr
->phbs
);
534 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
536 /* Allocate RMA if necessary */
537 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
539 if (rma_alloc_size
== -1) {
540 hw_error("qemu: Unable to create RMA\n");
543 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
544 rma_size
= rma_alloc_size
;
549 /* We place the device tree and RTAS just below either the top of the RMA,
550 * or just below 2GB, whichever is lowere, so that it can be
551 * processed with 32-bit real mode code if necessary */
552 rtas_limit
= MIN(rma_size
, 0x80000000);
553 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
554 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
555 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
558 if (cpu_model
== NULL
) {
559 cpu_model
= kvm_enabled() ? "host" : "POWER7";
561 for (i
= 0; i
< smp_cpus
; i
++) {
562 env
= cpu_init(cpu_model
);
565 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
568 /* Set time-base frequency to 512 MHz */
569 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
570 qemu_register_reset(spapr_cpu_reset
, env
);
572 env
->hreset_vector
= 0x60;
573 env
->hreset_excp_prefix
= 0;
574 env
->gpr
[3] = env
->cpu_index
;
578 spapr
->ram_limit
= ram_size
;
579 if (spapr
->ram_limit
> rma_alloc_size
) {
580 ram_addr_t nonrma_base
= rma_alloc_size
;
581 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
583 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
584 vmstate_register_ram_global(ram
);
585 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
588 /* allocate hash page table. For now we always make this 16mb,
589 * later we should probably make it scale to the size of guest
591 spapr
->htab_size
= 1ULL << (pteg_shift
+ 7);
592 spapr
->htab
= qemu_memalign(spapr
->htab_size
, spapr
->htab_size
);
594 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
595 env
->external_htab
= spapr
->htab
;
597 env
->htab_mask
= spapr
->htab_size
- 1;
599 /* Tell KVM that we're in PAPR mode */
600 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
601 ((pteg_shift
+ 7) - 18);
602 env
->spr
[SPR_HIOR
] = 0;
605 kvmppc_set_papr(env
);
609 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
610 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
611 rtas_limit
- spapr
->rtas_addr
);
612 if (spapr
->rtas_size
< 0) {
613 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
616 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
617 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
618 spapr
->rtas_size
, RTAS_MAX_SIZE
);
624 /* Set up Interrupt Controller */
625 spapr
->icp
= xics_system_init(XICS_IRQS
);
626 spapr
->next_irq
= 16;
629 spapr
->vio_bus
= spapr_vio_bus_init();
631 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
633 spapr_vty_create(spapr
->vio_bus
, SPAPR_VTY_BASE_ADDRESS
+ i
,
639 spapr_create_phb(spapr
, "pci", SPAPR_PCI_BUID
,
640 SPAPR_PCI_MEM_WIN_ADDR
,
641 SPAPR_PCI_MEM_WIN_SIZE
,
642 SPAPR_PCI_IO_WIN_ADDR
);
644 for (i
= 0; i
< nb_nics
; i
++) {
645 NICInfo
*nd
= &nd_table
[i
];
648 nd
->model
= g_strdup("ibmveth");
651 if (strcmp(nd
->model
, "ibmveth") == 0) {
652 spapr_vlan_create(spapr
->vio_bus
, 0x1000 + i
, nd
);
654 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
658 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
659 spapr_vscsi_create(spapr
->vio_bus
, 0x2000 + i
);
662 if (rma_size
< (MIN_RMA_SLOF
<< 20)) {
663 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
664 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
668 fprintf(stderr
, "sPAPR memory map:\n");
669 fprintf(stderr
, "RTAS : 0x%08lx..%08lx\n",
670 (unsigned long)spapr
->rtas_addr
,
671 (unsigned long)(spapr
->rtas_addr
+ spapr
->rtas_size
- 1));
672 fprintf(stderr
, "FDT : 0x%08lx..%08lx\n",
673 (unsigned long)spapr
->fdt_addr
,
674 (unsigned long)(spapr
->fdt_addr
+ FDT_MAX_SIZE
- 1));
676 if (kernel_filename
) {
677 uint64_t lowaddr
= 0;
679 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
680 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
681 if (kernel_size
< 0) {
682 kernel_size
= load_image_targphys(kernel_filename
,
684 load_limit
- KERNEL_LOAD_ADDR
);
686 if (kernel_size
< 0) {
687 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
691 fprintf(stderr
, "Kernel : 0x%08x..%08lx\n",
692 KERNEL_LOAD_ADDR
, KERNEL_LOAD_ADDR
+ kernel_size
- 1);
695 if (initrd_filename
) {
696 /* Try to locate the initrd in the gap between the kernel
697 * and the firmware. Add a bit of space just in case
699 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
700 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
701 load_limit
- initrd_base
);
702 if (initrd_size
< 0) {
703 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
707 fprintf(stderr
, "Ramdisk : 0x%08lx..%08lx\n",
708 (long)initrd_base
, (long)(initrd_base
+ initrd_size
- 1));
715 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
716 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
718 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
722 fprintf(stderr
, "Firmware load : 0x%08x..%08lx\n",
724 fprintf(stderr
, "Firmware runtime : 0x%08lx..%08lx\n",
725 load_limit
, (unsigned long)spapr
->fdt_addr
);
727 spapr
->entry_point
= 0x100;
729 /* SLOF will startup the secondary CPUs using RTAS */
730 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
734 /* Prepare the device tree */
735 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
, rma_size
,
736 initrd_base
, initrd_size
,
738 boot_device
, kernel_cmdline
,
740 assert(spapr
->fdt_skel
!= NULL
);
742 qemu_register_reset(spapr_reset
, spapr
);
745 static QEMUMachine spapr_machine
= {
747 .desc
= "pSeries Logical Partition (PAPR compliant)",
748 .init
= ppc_spapr_init
,
749 .max_cpus
= MAX_CPUS
,
754 static void spapr_machine_init(void)
756 qemu_register_machine(&spapr_machine
);
759 machine_init(spapr_machine_init
);