4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C source file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 /* softfloat (and in particular the code in softfloat-specialize.h) is
83 * target-dependent and needs the TARGET_* macros.
85 #include "qemu/osdep.h"
87 #include "fpu/softfloat.h"
89 /* We only need stdlib for abort() */
91 /*----------------------------------------------------------------------------
92 | Primitive arithmetic functions, including multi-word arithmetic, and
93 | division and square root approximations. (Can be specialized to target if
95 *----------------------------------------------------------------------------*/
96 #include "softfloat-macros.h"
98 /*----------------------------------------------------------------------------
99 | Functions and definitions to determine: (1) whether tininess for underflow
100 | is detected before or after rounding by default, (2) what (if anything)
101 | happens when exceptions are raised, (3) how signaling NaNs are distinguished
102 | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
103 | are propagated from function inputs to output. These details are target-
105 *----------------------------------------------------------------------------*/
106 #include "softfloat-specialize.h"
108 /*----------------------------------------------------------------------------
109 | Returns the fraction bits of the half-precision floating-point value `a'.
110 *----------------------------------------------------------------------------*/
112 static inline uint32_t extractFloat16Frac(float16 a
)
114 return float16_val(a
) & 0x3ff;
117 /*----------------------------------------------------------------------------
118 | Returns the exponent bits of the half-precision floating-point value `a'.
119 *----------------------------------------------------------------------------*/
121 static inline int extractFloat16Exp(float16 a
)
123 return (float16_val(a
) >> 10) & 0x1f;
126 /*----------------------------------------------------------------------------
127 | Returns the sign bit of the single-precision floating-point value `a'.
128 *----------------------------------------------------------------------------*/
130 static inline flag
extractFloat16Sign(float16 a
)
132 return float16_val(a
)>>15;
135 /*----------------------------------------------------------------------------
136 | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
137 | and 7, and returns the properly rounded 32-bit integer corresponding to the
138 | input. If `zSign' is 1, the input is negated before being converted to an
139 | integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
140 | is simply rounded to an integer, with the inexact exception raised if the
141 | input cannot be represented exactly as an integer. However, if the fixed-
142 | point input is too large, the invalid exception is raised and the largest
143 | positive or negative integer is returned.
144 *----------------------------------------------------------------------------*/
146 static int32_t roundAndPackInt32(flag zSign
, uint64_t absZ
, float_status
*status
)
149 flag roundNearestEven
;
150 int8_t roundIncrement
, roundBits
;
153 roundingMode
= status
->float_rounding_mode
;
154 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
155 switch (roundingMode
) {
156 case float_round_nearest_even
:
157 case float_round_ties_away
:
158 roundIncrement
= 0x40;
160 case float_round_to_zero
:
164 roundIncrement
= zSign
? 0 : 0x7f;
166 case float_round_down
:
167 roundIncrement
= zSign
? 0x7f : 0;
172 roundBits
= absZ
& 0x7F;
173 absZ
= ( absZ
+ roundIncrement
)>>7;
174 absZ
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
176 if ( zSign
) z
= - z
;
177 if ( ( absZ
>>32 ) || ( z
&& ( ( z
< 0 ) ^ zSign
) ) ) {
178 float_raise(float_flag_invalid
, status
);
179 return zSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
182 status
->float_exception_flags
|= float_flag_inexact
;
188 /*----------------------------------------------------------------------------
189 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
190 | `absZ1', with binary point between bits 63 and 64 (between the input words),
191 | and returns the properly rounded 64-bit integer corresponding to the input.
192 | If `zSign' is 1, the input is negated before being converted to an integer.
193 | Ordinarily, the fixed-point input is simply rounded to an integer, with
194 | the inexact exception raised if the input cannot be represented exactly as
195 | an integer. However, if the fixed-point input is too large, the invalid
196 | exception is raised and the largest positive or negative integer is
198 *----------------------------------------------------------------------------*/
200 static int64_t roundAndPackInt64(flag zSign
, uint64_t absZ0
, uint64_t absZ1
,
201 float_status
*status
)
204 flag roundNearestEven
, increment
;
207 roundingMode
= status
->float_rounding_mode
;
208 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
209 switch (roundingMode
) {
210 case float_round_nearest_even
:
211 case float_round_ties_away
:
212 increment
= ((int64_t) absZ1
< 0);
214 case float_round_to_zero
:
218 increment
= !zSign
&& absZ1
;
220 case float_round_down
:
221 increment
= zSign
&& absZ1
;
228 if ( absZ0
== 0 ) goto overflow
;
229 absZ0
&= ~ ( ( (uint64_t) ( absZ1
<<1 ) == 0 ) & roundNearestEven
);
232 if ( zSign
) z
= - z
;
233 if ( z
&& ( ( z
< 0 ) ^ zSign
) ) {
235 float_raise(float_flag_invalid
, status
);
237 zSign
? (int64_t) LIT64( 0x8000000000000000 )
238 : LIT64( 0x7FFFFFFFFFFFFFFF );
241 status
->float_exception_flags
|= float_flag_inexact
;
247 /*----------------------------------------------------------------------------
248 | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
249 | `absZ1', with binary point between bits 63 and 64 (between the input words),
250 | and returns the properly rounded 64-bit unsigned integer corresponding to the
251 | input. Ordinarily, the fixed-point input is simply rounded to an integer,
252 | with the inexact exception raised if the input cannot be represented exactly
253 | as an integer. However, if the fixed-point input is too large, the invalid
254 | exception is raised and the largest unsigned integer is returned.
255 *----------------------------------------------------------------------------*/
257 static int64_t roundAndPackUint64(flag zSign
, uint64_t absZ0
,
258 uint64_t absZ1
, float_status
*status
)
261 flag roundNearestEven
, increment
;
263 roundingMode
= status
->float_rounding_mode
;
264 roundNearestEven
= (roundingMode
== float_round_nearest_even
);
265 switch (roundingMode
) {
266 case float_round_nearest_even
:
267 case float_round_ties_away
:
268 increment
= ((int64_t)absZ1
< 0);
270 case float_round_to_zero
:
274 increment
= !zSign
&& absZ1
;
276 case float_round_down
:
277 increment
= zSign
&& absZ1
;
285 float_raise(float_flag_invalid
, status
);
286 return LIT64(0xFFFFFFFFFFFFFFFF);
288 absZ0
&= ~(((uint64_t)(absZ1
<<1) == 0) & roundNearestEven
);
291 if (zSign
&& absZ0
) {
292 float_raise(float_flag_invalid
, status
);
297 status
->float_exception_flags
|= float_flag_inexact
;
302 /*----------------------------------------------------------------------------
303 | Returns the fraction bits of the single-precision floating-point value `a'.
304 *----------------------------------------------------------------------------*/
306 static inline uint32_t extractFloat32Frac( float32 a
)
309 return float32_val(a
) & 0x007FFFFF;
313 /*----------------------------------------------------------------------------
314 | Returns the exponent bits of the single-precision floating-point value `a'.
315 *----------------------------------------------------------------------------*/
317 static inline int extractFloat32Exp(float32 a
)
320 return ( float32_val(a
)>>23 ) & 0xFF;
324 /*----------------------------------------------------------------------------
325 | Returns the sign bit of the single-precision floating-point value `a'.
326 *----------------------------------------------------------------------------*/
328 static inline flag
extractFloat32Sign( float32 a
)
331 return float32_val(a
)>>31;
335 /*----------------------------------------------------------------------------
336 | If `a' is denormal and we are in flush-to-zero mode then set the
337 | input-denormal exception and return zero. Otherwise just return the value.
338 *----------------------------------------------------------------------------*/
339 float32
float32_squash_input_denormal(float32 a
, float_status
*status
)
341 if (status
->flush_inputs_to_zero
) {
342 if (extractFloat32Exp(a
) == 0 && extractFloat32Frac(a
) != 0) {
343 float_raise(float_flag_input_denormal
, status
);
344 return make_float32(float32_val(a
) & 0x80000000);
350 /*----------------------------------------------------------------------------
351 | Normalizes the subnormal single-precision floating-point value represented
352 | by the denormalized significand `aSig'. The normalized exponent and
353 | significand are stored at the locations pointed to by `zExpPtr' and
354 | `zSigPtr', respectively.
355 *----------------------------------------------------------------------------*/
358 normalizeFloat32Subnormal(uint32_t aSig
, int *zExpPtr
, uint32_t *zSigPtr
)
362 shiftCount
= countLeadingZeros32( aSig
) - 8;
363 *zSigPtr
= aSig
<<shiftCount
;
364 *zExpPtr
= 1 - shiftCount
;
368 /*----------------------------------------------------------------------------
369 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
370 | single-precision floating-point value, returning the result. After being
371 | shifted into the proper positions, the three fields are simply added
372 | together to form the result. This means that any integer portion of `zSig'
373 | will be added into the exponent. Since a properly normalized significand
374 | will have an integer portion equal to 1, the `zExp' input should be 1 less
375 | than the desired result exponent whenever `zSig' is a complete, normalized
377 *----------------------------------------------------------------------------*/
379 static inline float32
packFloat32(flag zSign
, int zExp
, uint32_t zSig
)
383 ( ( (uint32_t) zSign
)<<31 ) + ( ( (uint32_t) zExp
)<<23 ) + zSig
);
387 /*----------------------------------------------------------------------------
388 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
389 | and significand `zSig', and returns the proper single-precision floating-
390 | point value corresponding to the abstract input. Ordinarily, the abstract
391 | value is simply rounded and packed into the single-precision format, with
392 | the inexact exception raised if the abstract input cannot be represented
393 | exactly. However, if the abstract value is too large, the overflow and
394 | inexact exceptions are raised and an infinity or maximal finite value is
395 | returned. If the abstract value is too small, the input value is rounded to
396 | a subnormal number, and the underflow and inexact exceptions are raised if
397 | the abstract input cannot be represented exactly as a subnormal single-
398 | precision floating-point number.
399 | The input significand `zSig' has its binary point between bits 30
400 | and 29, which is 7 bits to the left of the usual location. This shifted
401 | significand must be normalized or smaller. If `zSig' is not normalized,
402 | `zExp' must be 0; in that case, the result returned is a subnormal number,
403 | and it must not require rounding. In the usual case that `zSig' is
404 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
405 | The handling of underflow and overflow follows the IEC/IEEE Standard for
406 | Binary Floating-Point Arithmetic.
407 *----------------------------------------------------------------------------*/
409 static float32
roundAndPackFloat32(flag zSign
, int zExp
, uint32_t zSig
,
410 float_status
*status
)
413 flag roundNearestEven
;
414 int8_t roundIncrement
, roundBits
;
417 roundingMode
= status
->float_rounding_mode
;
418 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
419 switch (roundingMode
) {
420 case float_round_nearest_even
:
421 case float_round_ties_away
:
422 roundIncrement
= 0x40;
424 case float_round_to_zero
:
428 roundIncrement
= zSign
? 0 : 0x7f;
430 case float_round_down
:
431 roundIncrement
= zSign
? 0x7f : 0;
437 roundBits
= zSig
& 0x7F;
438 if ( 0xFD <= (uint16_t) zExp
) {
440 || ( ( zExp
== 0xFD )
441 && ( (int32_t) ( zSig
+ roundIncrement
) < 0 ) )
443 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
444 return packFloat32( zSign
, 0xFF, - ( roundIncrement
== 0 ));
447 if (status
->flush_to_zero
) {
448 float_raise(float_flag_output_denormal
, status
);
449 return packFloat32(zSign
, 0, 0);
452 (status
->float_detect_tininess
453 == float_tininess_before_rounding
)
455 || ( zSig
+ roundIncrement
< 0x80000000 );
456 shift32RightJamming( zSig
, - zExp
, &zSig
);
458 roundBits
= zSig
& 0x7F;
459 if (isTiny
&& roundBits
) {
460 float_raise(float_flag_underflow
, status
);
465 status
->float_exception_flags
|= float_flag_inexact
;
467 zSig
= ( zSig
+ roundIncrement
)>>7;
468 zSig
&= ~ ( ( ( roundBits
^ 0x40 ) == 0 ) & roundNearestEven
);
469 if ( zSig
== 0 ) zExp
= 0;
470 return packFloat32( zSign
, zExp
, zSig
);
474 /*----------------------------------------------------------------------------
475 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
476 | and significand `zSig', and returns the proper single-precision floating-
477 | point value corresponding to the abstract input. This routine is just like
478 | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
479 | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
480 | floating-point exponent.
481 *----------------------------------------------------------------------------*/
484 normalizeRoundAndPackFloat32(flag zSign
, int zExp
, uint32_t zSig
,
485 float_status
*status
)
489 shiftCount
= countLeadingZeros32( zSig
) - 1;
490 return roundAndPackFloat32(zSign
, zExp
- shiftCount
, zSig
<<shiftCount
,
495 /*----------------------------------------------------------------------------
496 | Returns the fraction bits of the double-precision floating-point value `a'.
497 *----------------------------------------------------------------------------*/
499 static inline uint64_t extractFloat64Frac( float64 a
)
502 return float64_val(a
) & LIT64( 0x000FFFFFFFFFFFFF );
506 /*----------------------------------------------------------------------------
507 | Returns the exponent bits of the double-precision floating-point value `a'.
508 *----------------------------------------------------------------------------*/
510 static inline int extractFloat64Exp(float64 a
)
513 return ( float64_val(a
)>>52 ) & 0x7FF;
517 /*----------------------------------------------------------------------------
518 | Returns the sign bit of the double-precision floating-point value `a'.
519 *----------------------------------------------------------------------------*/
521 static inline flag
extractFloat64Sign( float64 a
)
524 return float64_val(a
)>>63;
528 /*----------------------------------------------------------------------------
529 | If `a' is denormal and we are in flush-to-zero mode then set the
530 | input-denormal exception and return zero. Otherwise just return the value.
531 *----------------------------------------------------------------------------*/
532 float64
float64_squash_input_denormal(float64 a
, float_status
*status
)
534 if (status
->flush_inputs_to_zero
) {
535 if (extractFloat64Exp(a
) == 0 && extractFloat64Frac(a
) != 0) {
536 float_raise(float_flag_input_denormal
, status
);
537 return make_float64(float64_val(a
) & (1ULL << 63));
543 /*----------------------------------------------------------------------------
544 | Normalizes the subnormal double-precision floating-point value represented
545 | by the denormalized significand `aSig'. The normalized exponent and
546 | significand are stored at the locations pointed to by `zExpPtr' and
547 | `zSigPtr', respectively.
548 *----------------------------------------------------------------------------*/
551 normalizeFloat64Subnormal(uint64_t aSig
, int *zExpPtr
, uint64_t *zSigPtr
)
555 shiftCount
= countLeadingZeros64( aSig
) - 11;
556 *zSigPtr
= aSig
<<shiftCount
;
557 *zExpPtr
= 1 - shiftCount
;
561 /*----------------------------------------------------------------------------
562 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
563 | double-precision floating-point value, returning the result. After being
564 | shifted into the proper positions, the three fields are simply added
565 | together to form the result. This means that any integer portion of `zSig'
566 | will be added into the exponent. Since a properly normalized significand
567 | will have an integer portion equal to 1, the `zExp' input should be 1 less
568 | than the desired result exponent whenever `zSig' is a complete, normalized
570 *----------------------------------------------------------------------------*/
572 static inline float64
packFloat64(flag zSign
, int zExp
, uint64_t zSig
)
576 ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<52 ) + zSig
);
580 /*----------------------------------------------------------------------------
581 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
582 | and significand `zSig', and returns the proper double-precision floating-
583 | point value corresponding to the abstract input. Ordinarily, the abstract
584 | value is simply rounded and packed into the double-precision format, with
585 | the inexact exception raised if the abstract input cannot be represented
586 | exactly. However, if the abstract value is too large, the overflow and
587 | inexact exceptions are raised and an infinity or maximal finite value is
588 | returned. If the abstract value is too small, the input value is rounded to
589 | a subnormal number, and the underflow and inexact exceptions are raised if
590 | the abstract input cannot be represented exactly as a subnormal double-
591 | precision floating-point number.
592 | The input significand `zSig' has its binary point between bits 62
593 | and 61, which is 10 bits to the left of the usual location. This shifted
594 | significand must be normalized or smaller. If `zSig' is not normalized,
595 | `zExp' must be 0; in that case, the result returned is a subnormal number,
596 | and it must not require rounding. In the usual case that `zSig' is
597 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
598 | The handling of underflow and overflow follows the IEC/IEEE Standard for
599 | Binary Floating-Point Arithmetic.
600 *----------------------------------------------------------------------------*/
602 static float64
roundAndPackFloat64(flag zSign
, int zExp
, uint64_t zSig
,
603 float_status
*status
)
606 flag roundNearestEven
;
607 int roundIncrement
, roundBits
;
610 roundingMode
= status
->float_rounding_mode
;
611 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
612 switch (roundingMode
) {
613 case float_round_nearest_even
:
614 case float_round_ties_away
:
615 roundIncrement
= 0x200;
617 case float_round_to_zero
:
621 roundIncrement
= zSign
? 0 : 0x3ff;
623 case float_round_down
:
624 roundIncrement
= zSign
? 0x3ff : 0;
626 case float_round_to_odd
:
627 roundIncrement
= (zSig
& 0x400) ? 0 : 0x3ff;
632 roundBits
= zSig
& 0x3FF;
633 if ( 0x7FD <= (uint16_t) zExp
) {
634 if ( ( 0x7FD < zExp
)
635 || ( ( zExp
== 0x7FD )
636 && ( (int64_t) ( zSig
+ roundIncrement
) < 0 ) )
638 bool overflow_to_inf
= roundingMode
!= float_round_to_odd
&&
640 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
641 return packFloat64(zSign
, 0x7FF, -(!overflow_to_inf
));
644 if (status
->flush_to_zero
) {
645 float_raise(float_flag_output_denormal
, status
);
646 return packFloat64(zSign
, 0, 0);
649 (status
->float_detect_tininess
650 == float_tininess_before_rounding
)
652 || ( zSig
+ roundIncrement
< LIT64( 0x8000000000000000 ) );
653 shift64RightJamming( zSig
, - zExp
, &zSig
);
655 roundBits
= zSig
& 0x3FF;
656 if (isTiny
&& roundBits
) {
657 float_raise(float_flag_underflow
, status
);
659 if (roundingMode
== float_round_to_odd
) {
661 * For round-to-odd case, the roundIncrement depends on
662 * zSig which just changed.
664 roundIncrement
= (zSig
& 0x400) ? 0 : 0x3ff;
669 status
->float_exception_flags
|= float_flag_inexact
;
671 zSig
= ( zSig
+ roundIncrement
)>>10;
672 zSig
&= ~ ( ( ( roundBits
^ 0x200 ) == 0 ) & roundNearestEven
);
673 if ( zSig
== 0 ) zExp
= 0;
674 return packFloat64( zSign
, zExp
, zSig
);
678 /*----------------------------------------------------------------------------
679 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
680 | and significand `zSig', and returns the proper double-precision floating-
681 | point value corresponding to the abstract input. This routine is just like
682 | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
683 | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
684 | floating-point exponent.
685 *----------------------------------------------------------------------------*/
688 normalizeRoundAndPackFloat64(flag zSign
, int zExp
, uint64_t zSig
,
689 float_status
*status
)
693 shiftCount
= countLeadingZeros64( zSig
) - 1;
694 return roundAndPackFloat64(zSign
, zExp
- shiftCount
, zSig
<<shiftCount
,
699 /*----------------------------------------------------------------------------
700 | Returns the fraction bits of the extended double-precision floating-point
702 *----------------------------------------------------------------------------*/
704 static inline uint64_t extractFloatx80Frac( floatx80 a
)
711 /*----------------------------------------------------------------------------
712 | Returns the exponent bits of the extended double-precision floating-point
714 *----------------------------------------------------------------------------*/
716 static inline int32_t extractFloatx80Exp( floatx80 a
)
719 return a
.high
& 0x7FFF;
723 /*----------------------------------------------------------------------------
724 | Returns the sign bit of the extended double-precision floating-point value
726 *----------------------------------------------------------------------------*/
728 static inline flag
extractFloatx80Sign( floatx80 a
)
735 /*----------------------------------------------------------------------------
736 | Normalizes the subnormal extended double-precision floating-point value
737 | represented by the denormalized significand `aSig'. The normalized exponent
738 | and significand are stored at the locations pointed to by `zExpPtr' and
739 | `zSigPtr', respectively.
740 *----------------------------------------------------------------------------*/
743 normalizeFloatx80Subnormal( uint64_t aSig
, int32_t *zExpPtr
, uint64_t *zSigPtr
)
747 shiftCount
= countLeadingZeros64( aSig
);
748 *zSigPtr
= aSig
<<shiftCount
;
749 *zExpPtr
= 1 - shiftCount
;
753 /*----------------------------------------------------------------------------
754 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
755 | extended double-precision floating-point value, returning the result.
756 *----------------------------------------------------------------------------*/
758 static inline floatx80
packFloatx80( flag zSign
, int32_t zExp
, uint64_t zSig
)
763 z
.high
= ( ( (uint16_t) zSign
)<<15 ) + zExp
;
768 /*----------------------------------------------------------------------------
769 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
770 | and extended significand formed by the concatenation of `zSig0' and `zSig1',
771 | and returns the proper extended double-precision floating-point value
772 | corresponding to the abstract input. Ordinarily, the abstract value is
773 | rounded and packed into the extended double-precision format, with the
774 | inexact exception raised if the abstract input cannot be represented
775 | exactly. However, if the abstract value is too large, the overflow and
776 | inexact exceptions are raised and an infinity or maximal finite value is
777 | returned. If the abstract value is too small, the input value is rounded to
778 | a subnormal number, and the underflow and inexact exceptions are raised if
779 | the abstract input cannot be represented exactly as a subnormal extended
780 | double-precision floating-point number.
781 | If `roundingPrecision' is 32 or 64, the result is rounded to the same
782 | number of bits as single or double precision, respectively. Otherwise, the
783 | result is rounded to the full precision of the extended double-precision
785 | The input significand must be normalized or smaller. If the input
786 | significand is not normalized, `zExp' must be 0; in that case, the result
787 | returned is a subnormal number, and it must not require rounding. The
788 | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
789 | Floating-Point Arithmetic.
790 *----------------------------------------------------------------------------*/
792 static floatx80
roundAndPackFloatx80(int8_t roundingPrecision
, flag zSign
,
793 int32_t zExp
, uint64_t zSig0
, uint64_t zSig1
,
794 float_status
*status
)
797 flag roundNearestEven
, increment
, isTiny
;
798 int64_t roundIncrement
, roundMask
, roundBits
;
800 roundingMode
= status
->float_rounding_mode
;
801 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
802 if ( roundingPrecision
== 80 ) goto precision80
;
803 if ( roundingPrecision
== 64 ) {
804 roundIncrement
= LIT64( 0x0000000000000400 );
805 roundMask
= LIT64( 0x00000000000007FF );
807 else if ( roundingPrecision
== 32 ) {
808 roundIncrement
= LIT64( 0x0000008000000000 );
809 roundMask
= LIT64( 0x000000FFFFFFFFFF );
814 zSig0
|= ( zSig1
!= 0 );
815 switch (roundingMode
) {
816 case float_round_nearest_even
:
817 case float_round_ties_away
:
819 case float_round_to_zero
:
823 roundIncrement
= zSign
? 0 : roundMask
;
825 case float_round_down
:
826 roundIncrement
= zSign
? roundMask
: 0;
831 roundBits
= zSig0
& roundMask
;
832 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
833 if ( ( 0x7FFE < zExp
)
834 || ( ( zExp
== 0x7FFE ) && ( zSig0
+ roundIncrement
< zSig0
) )
839 if (status
->flush_to_zero
) {
840 float_raise(float_flag_output_denormal
, status
);
841 return packFloatx80(zSign
, 0, 0);
844 (status
->float_detect_tininess
845 == float_tininess_before_rounding
)
847 || ( zSig0
<= zSig0
+ roundIncrement
);
848 shift64RightJamming( zSig0
, 1 - zExp
, &zSig0
);
850 roundBits
= zSig0
& roundMask
;
851 if (isTiny
&& roundBits
) {
852 float_raise(float_flag_underflow
, status
);
855 status
->float_exception_flags
|= float_flag_inexact
;
857 zSig0
+= roundIncrement
;
858 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
859 roundIncrement
= roundMask
+ 1;
860 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
861 roundMask
|= roundIncrement
;
863 zSig0
&= ~ roundMask
;
864 return packFloatx80( zSign
, zExp
, zSig0
);
868 status
->float_exception_flags
|= float_flag_inexact
;
870 zSig0
+= roundIncrement
;
871 if ( zSig0
< roundIncrement
) {
873 zSig0
= LIT64( 0x8000000000000000 );
875 roundIncrement
= roundMask
+ 1;
876 if ( roundNearestEven
&& ( roundBits
<<1 == roundIncrement
) ) {
877 roundMask
|= roundIncrement
;
879 zSig0
&= ~ roundMask
;
880 if ( zSig0
== 0 ) zExp
= 0;
881 return packFloatx80( zSign
, zExp
, zSig0
);
883 switch (roundingMode
) {
884 case float_round_nearest_even
:
885 case float_round_ties_away
:
886 increment
= ((int64_t)zSig1
< 0);
888 case float_round_to_zero
:
892 increment
= !zSign
&& zSig1
;
894 case float_round_down
:
895 increment
= zSign
&& zSig1
;
900 if ( 0x7FFD <= (uint32_t) ( zExp
- 1 ) ) {
901 if ( ( 0x7FFE < zExp
)
902 || ( ( zExp
== 0x7FFE )
903 && ( zSig0
== LIT64( 0xFFFFFFFFFFFFFFFF ) )
909 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
910 if ( ( roundingMode
== float_round_to_zero
)
911 || ( zSign
&& ( roundingMode
== float_round_up
) )
912 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
914 return packFloatx80( zSign
, 0x7FFE, ~ roundMask
);
916 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
920 (status
->float_detect_tininess
921 == float_tininess_before_rounding
)
924 || ( zSig0
< LIT64( 0xFFFFFFFFFFFFFFFF ) );
925 shift64ExtraRightJamming( zSig0
, zSig1
, 1 - zExp
, &zSig0
, &zSig1
);
927 if (isTiny
&& zSig1
) {
928 float_raise(float_flag_underflow
, status
);
931 status
->float_exception_flags
|= float_flag_inexact
;
933 switch (roundingMode
) {
934 case float_round_nearest_even
:
935 case float_round_ties_away
:
936 increment
= ((int64_t)zSig1
< 0);
938 case float_round_to_zero
:
942 increment
= !zSign
&& zSig1
;
944 case float_round_down
:
945 increment
= zSign
&& zSig1
;
953 ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
954 if ( (int64_t) zSig0
< 0 ) zExp
= 1;
956 return packFloatx80( zSign
, zExp
, zSig0
);
960 status
->float_exception_flags
|= float_flag_inexact
;
966 zSig0
= LIT64( 0x8000000000000000 );
969 zSig0
&= ~ ( ( (uint64_t) ( zSig1
<<1 ) == 0 ) & roundNearestEven
);
973 if ( zSig0
== 0 ) zExp
= 0;
975 return packFloatx80( zSign
, zExp
, zSig0
);
979 /*----------------------------------------------------------------------------
980 | Takes an abstract floating-point value having sign `zSign', exponent
981 | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
982 | and returns the proper extended double-precision floating-point value
983 | corresponding to the abstract input. This routine is just like
984 | `roundAndPackFloatx80' except that the input significand does not have to be
986 *----------------------------------------------------------------------------*/
988 static floatx80
normalizeRoundAndPackFloatx80(int8_t roundingPrecision
,
989 flag zSign
, int32_t zExp
,
990 uint64_t zSig0
, uint64_t zSig1
,
991 float_status
*status
)
1000 shiftCount
= countLeadingZeros64( zSig0
);
1001 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1003 return roundAndPackFloatx80(roundingPrecision
, zSign
, zExp
,
1004 zSig0
, zSig1
, status
);
1008 /*----------------------------------------------------------------------------
1009 | Returns the least-significant 64 fraction bits of the quadruple-precision
1010 | floating-point value `a'.
1011 *----------------------------------------------------------------------------*/
1013 static inline uint64_t extractFloat128Frac1( float128 a
)
1020 /*----------------------------------------------------------------------------
1021 | Returns the most-significant 48 fraction bits of the quadruple-precision
1022 | floating-point value `a'.
1023 *----------------------------------------------------------------------------*/
1025 static inline uint64_t extractFloat128Frac0( float128 a
)
1028 return a
.high
& LIT64( 0x0000FFFFFFFFFFFF );
1032 /*----------------------------------------------------------------------------
1033 | Returns the exponent bits of the quadruple-precision floating-point value
1035 *----------------------------------------------------------------------------*/
1037 static inline int32_t extractFloat128Exp( float128 a
)
1040 return ( a
.high
>>48 ) & 0x7FFF;
1044 /*----------------------------------------------------------------------------
1045 | Returns the sign bit of the quadruple-precision floating-point value `a'.
1046 *----------------------------------------------------------------------------*/
1048 static inline flag
extractFloat128Sign( float128 a
)
1055 /*----------------------------------------------------------------------------
1056 | Normalizes the subnormal quadruple-precision floating-point value
1057 | represented by the denormalized significand formed by the concatenation of
1058 | `aSig0' and `aSig1'. The normalized exponent is stored at the location
1059 | pointed to by `zExpPtr'. The most significant 49 bits of the normalized
1060 | significand are stored at the location pointed to by `zSig0Ptr', and the
1061 | least significant 64 bits of the normalized significand are stored at the
1062 | location pointed to by `zSig1Ptr'.
1063 *----------------------------------------------------------------------------*/
1066 normalizeFloat128Subnormal(
1077 shiftCount
= countLeadingZeros64( aSig1
) - 15;
1078 if ( shiftCount
< 0 ) {
1079 *zSig0Ptr
= aSig1
>>( - shiftCount
);
1080 *zSig1Ptr
= aSig1
<<( shiftCount
& 63 );
1083 *zSig0Ptr
= aSig1
<<shiftCount
;
1086 *zExpPtr
= - shiftCount
- 63;
1089 shiftCount
= countLeadingZeros64( aSig0
) - 15;
1090 shortShift128Left( aSig0
, aSig1
, shiftCount
, zSig0Ptr
, zSig1Ptr
);
1091 *zExpPtr
= 1 - shiftCount
;
1096 /*----------------------------------------------------------------------------
1097 | Packs the sign `zSign', the exponent `zExp', and the significand formed
1098 | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
1099 | floating-point value, returning the result. After being shifted into the
1100 | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
1101 | added together to form the most significant 32 bits of the result. This
1102 | means that any integer portion of `zSig0' will be added into the exponent.
1103 | Since a properly normalized significand will have an integer portion equal
1104 | to 1, the `zExp' input should be 1 less than the desired result exponent
1105 | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
1107 *----------------------------------------------------------------------------*/
1109 static inline float128
1110 packFloat128( flag zSign
, int32_t zExp
, uint64_t zSig0
, uint64_t zSig1
)
1115 z
.high
= ( ( (uint64_t) zSign
)<<63 ) + ( ( (uint64_t) zExp
)<<48 ) + zSig0
;
1120 /*----------------------------------------------------------------------------
1121 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1122 | and extended significand formed by the concatenation of `zSig0', `zSig1',
1123 | and `zSig2', and returns the proper quadruple-precision floating-point value
1124 | corresponding to the abstract input. Ordinarily, the abstract value is
1125 | simply rounded and packed into the quadruple-precision format, with the
1126 | inexact exception raised if the abstract input cannot be represented
1127 | exactly. However, if the abstract value is too large, the overflow and
1128 | inexact exceptions are raised and an infinity or maximal finite value is
1129 | returned. If the abstract value is too small, the input value is rounded to
1130 | a subnormal number, and the underflow and inexact exceptions are raised if
1131 | the abstract input cannot be represented exactly as a subnormal quadruple-
1132 | precision floating-point number.
1133 | The input significand must be normalized or smaller. If the input
1134 | significand is not normalized, `zExp' must be 0; in that case, the result
1135 | returned is a subnormal number, and it must not require rounding. In the
1136 | usual case that the input significand is normalized, `zExp' must be 1 less
1137 | than the ``true'' floating-point exponent. The handling of underflow and
1138 | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1139 *----------------------------------------------------------------------------*/
1141 static float128
roundAndPackFloat128(flag zSign
, int32_t zExp
,
1142 uint64_t zSig0
, uint64_t zSig1
,
1143 uint64_t zSig2
, float_status
*status
)
1145 int8_t roundingMode
;
1146 flag roundNearestEven
, increment
, isTiny
;
1148 roundingMode
= status
->float_rounding_mode
;
1149 roundNearestEven
= ( roundingMode
== float_round_nearest_even
);
1150 switch (roundingMode
) {
1151 case float_round_nearest_even
:
1152 case float_round_ties_away
:
1153 increment
= ((int64_t)zSig2
< 0);
1155 case float_round_to_zero
:
1158 case float_round_up
:
1159 increment
= !zSign
&& zSig2
;
1161 case float_round_down
:
1162 increment
= zSign
&& zSig2
;
1164 case float_round_to_odd
:
1165 increment
= !(zSig1
& 0x1) && zSig2
;
1170 if ( 0x7FFD <= (uint32_t) zExp
) {
1171 if ( ( 0x7FFD < zExp
)
1172 || ( ( zExp
== 0x7FFD )
1174 LIT64( 0x0001FFFFFFFFFFFF ),
1175 LIT64( 0xFFFFFFFFFFFFFFFF ),
1182 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
1183 if ( ( roundingMode
== float_round_to_zero
)
1184 || ( zSign
&& ( roundingMode
== float_round_up
) )
1185 || ( ! zSign
&& ( roundingMode
== float_round_down
) )
1186 || (roundingMode
== float_round_to_odd
)
1192 LIT64( 0x0000FFFFFFFFFFFF ),
1193 LIT64( 0xFFFFFFFFFFFFFFFF )
1196 return packFloat128( zSign
, 0x7FFF, 0, 0 );
1199 if (status
->flush_to_zero
) {
1200 float_raise(float_flag_output_denormal
, status
);
1201 return packFloat128(zSign
, 0, 0, 0);
1204 (status
->float_detect_tininess
1205 == float_tininess_before_rounding
)
1211 LIT64( 0x0001FFFFFFFFFFFF ),
1212 LIT64( 0xFFFFFFFFFFFFFFFF )
1214 shift128ExtraRightJamming(
1215 zSig0
, zSig1
, zSig2
, - zExp
, &zSig0
, &zSig1
, &zSig2
);
1217 if (isTiny
&& zSig2
) {
1218 float_raise(float_flag_underflow
, status
);
1220 switch (roundingMode
) {
1221 case float_round_nearest_even
:
1222 case float_round_ties_away
:
1223 increment
= ((int64_t)zSig2
< 0);
1225 case float_round_to_zero
:
1228 case float_round_up
:
1229 increment
= !zSign
&& zSig2
;
1231 case float_round_down
:
1232 increment
= zSign
&& zSig2
;
1234 case float_round_to_odd
:
1235 increment
= !(zSig1
& 0x1) && zSig2
;
1243 status
->float_exception_flags
|= float_flag_inexact
;
1246 add128( zSig0
, zSig1
, 0, 1, &zSig0
, &zSig1
);
1247 zSig1
&= ~ ( ( zSig2
+ zSig2
== 0 ) & roundNearestEven
);
1250 if ( ( zSig0
| zSig1
) == 0 ) zExp
= 0;
1252 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1256 /*----------------------------------------------------------------------------
1257 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1258 | and significand formed by the concatenation of `zSig0' and `zSig1', and
1259 | returns the proper quadruple-precision floating-point value corresponding
1260 | to the abstract input. This routine is just like `roundAndPackFloat128'
1261 | except that the input significand has fewer bits and does not have to be
1262 | normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
1264 *----------------------------------------------------------------------------*/
1266 static float128
normalizeRoundAndPackFloat128(flag zSign
, int32_t zExp
,
1267 uint64_t zSig0
, uint64_t zSig1
,
1268 float_status
*status
)
1278 shiftCount
= countLeadingZeros64( zSig0
) - 15;
1279 if ( 0 <= shiftCount
) {
1281 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1284 shift128ExtraRightJamming(
1285 zSig0
, zSig1
, 0, - shiftCount
, &zSig0
, &zSig1
, &zSig2
);
1288 return roundAndPackFloat128(zSign
, zExp
, zSig0
, zSig1
, zSig2
, status
);
1292 /*----------------------------------------------------------------------------
1293 | Returns the result of converting the 32-bit two's complement integer `a'
1294 | to the single-precision floating-point format. The conversion is performed
1295 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1296 *----------------------------------------------------------------------------*/
1298 float32
int32_to_float32(int32_t a
, float_status
*status
)
1302 if ( a
== 0 ) return float32_zero
;
1303 if ( a
== (int32_t) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
1305 return normalizeRoundAndPackFloat32(zSign
, 0x9C, zSign
? -a
: a
, status
);
1308 /*----------------------------------------------------------------------------
1309 | Returns the result of converting the 32-bit two's complement integer `a'
1310 | to the double-precision floating-point format. The conversion is performed
1311 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1312 *----------------------------------------------------------------------------*/
1314 float64
int32_to_float64(int32_t a
, float_status
*status
)
1321 if ( a
== 0 ) return float64_zero
;
1323 absA
= zSign
? - a
: a
;
1324 shiftCount
= countLeadingZeros32( absA
) + 21;
1326 return packFloat64( zSign
, 0x432 - shiftCount
, zSig
<<shiftCount
);
1330 /*----------------------------------------------------------------------------
1331 | Returns the result of converting the 32-bit two's complement integer `a'
1332 | to the extended double-precision floating-point format. The conversion
1333 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1335 *----------------------------------------------------------------------------*/
1337 floatx80
int32_to_floatx80(int32_t a
, float_status
*status
)
1344 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1346 absA
= zSign
? - a
: a
;
1347 shiftCount
= countLeadingZeros32( absA
) + 32;
1349 return packFloatx80( zSign
, 0x403E - shiftCount
, zSig
<<shiftCount
);
1353 /*----------------------------------------------------------------------------
1354 | Returns the result of converting the 32-bit two's complement integer `a' to
1355 | the quadruple-precision floating-point format. The conversion is performed
1356 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1357 *----------------------------------------------------------------------------*/
1359 float128
int32_to_float128(int32_t a
, float_status
*status
)
1366 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1368 absA
= zSign
? - a
: a
;
1369 shiftCount
= countLeadingZeros32( absA
) + 17;
1371 return packFloat128( zSign
, 0x402E - shiftCount
, zSig0
<<shiftCount
, 0 );
1375 /*----------------------------------------------------------------------------
1376 | Returns the result of converting the 64-bit two's complement integer `a'
1377 | to the single-precision floating-point format. The conversion is performed
1378 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1379 *----------------------------------------------------------------------------*/
1381 float32
int64_to_float32(int64_t a
, float_status
*status
)
1387 if ( a
== 0 ) return float32_zero
;
1389 absA
= zSign
? - a
: a
;
1390 shiftCount
= countLeadingZeros64( absA
) - 40;
1391 if ( 0 <= shiftCount
) {
1392 return packFloat32( zSign
, 0x95 - shiftCount
, absA
<<shiftCount
);
1396 if ( shiftCount
< 0 ) {
1397 shift64RightJamming( absA
, - shiftCount
, &absA
);
1400 absA
<<= shiftCount
;
1402 return roundAndPackFloat32(zSign
, 0x9C - shiftCount
, absA
, status
);
1407 /*----------------------------------------------------------------------------
1408 | Returns the result of converting the 64-bit two's complement integer `a'
1409 | to the double-precision floating-point format. The conversion is performed
1410 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1411 *----------------------------------------------------------------------------*/
1413 float64
int64_to_float64(int64_t a
, float_status
*status
)
1417 if ( a
== 0 ) return float64_zero
;
1418 if ( a
== (int64_t) LIT64( 0x8000000000000000 ) ) {
1419 return packFloat64( 1, 0x43E, 0 );
1422 return normalizeRoundAndPackFloat64(zSign
, 0x43C, zSign
? -a
: a
, status
);
1425 /*----------------------------------------------------------------------------
1426 | Returns the result of converting the 64-bit two's complement integer `a'
1427 | to the extended double-precision floating-point format. The conversion
1428 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1430 *----------------------------------------------------------------------------*/
1432 floatx80
int64_to_floatx80(int64_t a
, float_status
*status
)
1438 if ( a
== 0 ) return packFloatx80( 0, 0, 0 );
1440 absA
= zSign
? - a
: a
;
1441 shiftCount
= countLeadingZeros64( absA
);
1442 return packFloatx80( zSign
, 0x403E - shiftCount
, absA
<<shiftCount
);
1446 /*----------------------------------------------------------------------------
1447 | Returns the result of converting the 64-bit two's complement integer `a' to
1448 | the quadruple-precision floating-point format. The conversion is performed
1449 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1450 *----------------------------------------------------------------------------*/
1452 float128
int64_to_float128(int64_t a
, float_status
*status
)
1458 uint64_t zSig0
, zSig1
;
1460 if ( a
== 0 ) return packFloat128( 0, 0, 0, 0 );
1462 absA
= zSign
? - a
: a
;
1463 shiftCount
= countLeadingZeros64( absA
) + 49;
1464 zExp
= 0x406E - shiftCount
;
1465 if ( 64 <= shiftCount
) {
1474 shortShift128Left( zSig0
, zSig1
, shiftCount
, &zSig0
, &zSig1
);
1475 return packFloat128( zSign
, zExp
, zSig0
, zSig1
);
1479 /*----------------------------------------------------------------------------
1480 | Returns the result of converting the 64-bit unsigned integer `a'
1481 | to the single-precision floating-point format. The conversion is performed
1482 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1483 *----------------------------------------------------------------------------*/
1485 float32
uint64_to_float32(uint64_t a
, float_status
*status
)
1490 return float32_zero
;
1493 /* Determine (left) shift needed to put first set bit into bit posn 23
1494 * (since packFloat32() expects the binary point between bits 23 and 22);
1495 * this is the fast case for smallish numbers.
1497 shiftcount
= countLeadingZeros64(a
) - 40;
1498 if (shiftcount
>= 0) {
1499 return packFloat32(0, 0x95 - shiftcount
, a
<< shiftcount
);
1501 /* Otherwise we need to do a round-and-pack. roundAndPackFloat32()
1502 * expects the binary point between bits 30 and 29, hence the + 7.
1505 if (shiftcount
< 0) {
1506 shift64RightJamming(a
, -shiftcount
, &a
);
1511 return roundAndPackFloat32(0, 0x9c - shiftcount
, a
, status
);
1514 /*----------------------------------------------------------------------------
1515 | Returns the result of converting the 64-bit unsigned integer `a'
1516 | to the double-precision floating-point format. The conversion is performed
1517 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1518 *----------------------------------------------------------------------------*/
1520 float64
uint64_to_float64(uint64_t a
, float_status
*status
)
1526 return float64_zero
;
1529 shiftcount
= countLeadingZeros64(a
) - 1;
1530 if (shiftcount
< 0) {
1531 shift64RightJamming(a
, -shiftcount
, &a
);
1535 return roundAndPackFloat64(0, exp
- shiftcount
, a
, status
);
1538 /*----------------------------------------------------------------------------
1539 | Returns the result of converting the 64-bit unsigned integer `a'
1540 | to the quadruple-precision floating-point format. The conversion is performed
1541 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
1542 *----------------------------------------------------------------------------*/
1544 float128
uint64_to_float128(uint64_t a
, float_status
*status
)
1547 return float128_zero
;
1549 return normalizeRoundAndPackFloat128(0, 0x406E, a
, 0, status
);
1552 /*----------------------------------------------------------------------------
1553 | Returns the result of converting the single-precision floating-point value
1554 | `a' to the 32-bit two's complement integer format. The conversion is
1555 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1556 | Arithmetic---which means in particular that the conversion is rounded
1557 | according to the current rounding mode. If `a' is a NaN, the largest
1558 | positive integer is returned. Otherwise, if the conversion overflows, the
1559 | largest integer with the same sign as `a' is returned.
1560 *----------------------------------------------------------------------------*/
1562 int32_t float32_to_int32(float32 a
, float_status
*status
)
1570 a
= float32_squash_input_denormal(a
, status
);
1571 aSig
= extractFloat32Frac( a
);
1572 aExp
= extractFloat32Exp( a
);
1573 aSign
= extractFloat32Sign( a
);
1574 if ( ( aExp
== 0xFF ) && aSig
) aSign
= 0;
1575 if ( aExp
) aSig
|= 0x00800000;
1576 shiftCount
= 0xAF - aExp
;
1579 if ( 0 < shiftCount
) shift64RightJamming( aSig64
, shiftCount
, &aSig64
);
1580 return roundAndPackInt32(aSign
, aSig64
, status
);
1584 /*----------------------------------------------------------------------------
1585 | Returns the result of converting the single-precision floating-point value
1586 | `a' to the 32-bit two's complement integer format. The conversion is
1587 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1588 | Arithmetic, except that the conversion is always rounded toward zero.
1589 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1590 | the conversion overflows, the largest integer with the same sign as `a' is
1592 *----------------------------------------------------------------------------*/
1594 int32_t float32_to_int32_round_to_zero(float32 a
, float_status
*status
)
1601 a
= float32_squash_input_denormal(a
, status
);
1603 aSig
= extractFloat32Frac( a
);
1604 aExp
= extractFloat32Exp( a
);
1605 aSign
= extractFloat32Sign( a
);
1606 shiftCount
= aExp
- 0x9E;
1607 if ( 0 <= shiftCount
) {
1608 if ( float32_val(a
) != 0xCF000000 ) {
1609 float_raise(float_flag_invalid
, status
);
1610 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) return 0x7FFFFFFF;
1612 return (int32_t) 0x80000000;
1614 else if ( aExp
<= 0x7E ) {
1616 status
->float_exception_flags
|= float_flag_inexact
;
1620 aSig
= ( aSig
| 0x00800000 )<<8;
1621 z
= aSig
>>( - shiftCount
);
1622 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1623 status
->float_exception_flags
|= float_flag_inexact
;
1625 if ( aSign
) z
= - z
;
1630 /*----------------------------------------------------------------------------
1631 | Returns the result of converting the single-precision floating-point value
1632 | `a' to the 16-bit two's complement integer format. The conversion is
1633 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1634 | Arithmetic, except that the conversion is always rounded toward zero.
1635 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
1636 | the conversion overflows, the largest integer with the same sign as `a' is
1638 *----------------------------------------------------------------------------*/
1640 int16_t float32_to_int16_round_to_zero(float32 a
, float_status
*status
)
1648 aSig
= extractFloat32Frac( a
);
1649 aExp
= extractFloat32Exp( a
);
1650 aSign
= extractFloat32Sign( a
);
1651 shiftCount
= aExp
- 0x8E;
1652 if ( 0 <= shiftCount
) {
1653 if ( float32_val(a
) != 0xC7000000 ) {
1654 float_raise(float_flag_invalid
, status
);
1655 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1659 return (int32_t) 0xffff8000;
1661 else if ( aExp
<= 0x7E ) {
1662 if ( aExp
| aSig
) {
1663 status
->float_exception_flags
|= float_flag_inexact
;
1668 aSig
= ( aSig
| 0x00800000 )<<8;
1669 z
= aSig
>>( - shiftCount
);
1670 if ( (uint32_t) ( aSig
<<( shiftCount
& 31 ) ) ) {
1671 status
->float_exception_flags
|= float_flag_inexact
;
1680 /*----------------------------------------------------------------------------
1681 | Returns the result of converting the single-precision floating-point value
1682 | `a' to the 64-bit two's complement integer format. The conversion is
1683 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1684 | Arithmetic---which means in particular that the conversion is rounded
1685 | according to the current rounding mode. If `a' is a NaN, the largest
1686 | positive integer is returned. Otherwise, if the conversion overflows, the
1687 | largest integer with the same sign as `a' is returned.
1688 *----------------------------------------------------------------------------*/
1690 int64_t float32_to_int64(float32 a
, float_status
*status
)
1696 uint64_t aSig64
, aSigExtra
;
1697 a
= float32_squash_input_denormal(a
, status
);
1699 aSig
= extractFloat32Frac( a
);
1700 aExp
= extractFloat32Exp( a
);
1701 aSign
= extractFloat32Sign( a
);
1702 shiftCount
= 0xBE - aExp
;
1703 if ( shiftCount
< 0 ) {
1704 float_raise(float_flag_invalid
, status
);
1705 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1706 return LIT64( 0x7FFFFFFFFFFFFFFF );
1708 return (int64_t) LIT64( 0x8000000000000000 );
1710 if ( aExp
) aSig
|= 0x00800000;
1713 shift64ExtraRightJamming( aSig64
, 0, shiftCount
, &aSig64
, &aSigExtra
);
1714 return roundAndPackInt64(aSign
, aSig64
, aSigExtra
, status
);
1718 /*----------------------------------------------------------------------------
1719 | Returns the result of converting the single-precision floating-point value
1720 | `a' to the 64-bit unsigned integer format. The conversion is
1721 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1722 | Arithmetic---which means in particular that the conversion is rounded
1723 | according to the current rounding mode. If `a' is a NaN, the largest
1724 | unsigned integer is returned. Otherwise, if the conversion overflows, the
1725 | largest unsigned integer is returned. If the 'a' is negative, the result
1726 | is rounded and zero is returned; values that do not round to zero will
1727 | raise the inexact exception flag.
1728 *----------------------------------------------------------------------------*/
1730 uint64_t float32_to_uint64(float32 a
, float_status
*status
)
1736 uint64_t aSig64
, aSigExtra
;
1737 a
= float32_squash_input_denormal(a
, status
);
1739 aSig
= extractFloat32Frac(a
);
1740 aExp
= extractFloat32Exp(a
);
1741 aSign
= extractFloat32Sign(a
);
1742 if ((aSign
) && (aExp
> 126)) {
1743 float_raise(float_flag_invalid
, status
);
1744 if (float32_is_any_nan(a
)) {
1745 return LIT64(0xFFFFFFFFFFFFFFFF);
1750 shiftCount
= 0xBE - aExp
;
1754 if (shiftCount
< 0) {
1755 float_raise(float_flag_invalid
, status
);
1756 return LIT64(0xFFFFFFFFFFFFFFFF);
1761 shift64ExtraRightJamming(aSig64
, 0, shiftCount
, &aSig64
, &aSigExtra
);
1762 return roundAndPackUint64(aSign
, aSig64
, aSigExtra
, status
);
1765 /*----------------------------------------------------------------------------
1766 | Returns the result of converting the single-precision floating-point value
1767 | `a' to the 64-bit unsigned integer format. The conversion is
1768 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1769 | Arithmetic, except that the conversion is always rounded toward zero. If
1770 | `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
1771 | conversion overflows, the largest unsigned integer is returned. If the
1772 | 'a' is negative, the result is rounded and zero is returned; values that do
1773 | not round to zero will raise the inexact flag.
1774 *----------------------------------------------------------------------------*/
1776 uint64_t float32_to_uint64_round_to_zero(float32 a
, float_status
*status
)
1778 signed char current_rounding_mode
= status
->float_rounding_mode
;
1779 set_float_rounding_mode(float_round_to_zero
, status
);
1780 int64_t v
= float32_to_uint64(a
, status
);
1781 set_float_rounding_mode(current_rounding_mode
, status
);
1785 /*----------------------------------------------------------------------------
1786 | Returns the result of converting the single-precision floating-point value
1787 | `a' to the 64-bit two's complement integer format. The conversion is
1788 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1789 | Arithmetic, except that the conversion is always rounded toward zero. If
1790 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
1791 | conversion overflows, the largest integer with the same sign as `a' is
1793 *----------------------------------------------------------------------------*/
1795 int64_t float32_to_int64_round_to_zero(float32 a
, float_status
*status
)
1803 a
= float32_squash_input_denormal(a
, status
);
1805 aSig
= extractFloat32Frac( a
);
1806 aExp
= extractFloat32Exp( a
);
1807 aSign
= extractFloat32Sign( a
);
1808 shiftCount
= aExp
- 0xBE;
1809 if ( 0 <= shiftCount
) {
1810 if ( float32_val(a
) != 0xDF000000 ) {
1811 float_raise(float_flag_invalid
, status
);
1812 if ( ! aSign
|| ( ( aExp
== 0xFF ) && aSig
) ) {
1813 return LIT64( 0x7FFFFFFFFFFFFFFF );
1816 return (int64_t) LIT64( 0x8000000000000000 );
1818 else if ( aExp
<= 0x7E ) {
1820 status
->float_exception_flags
|= float_flag_inexact
;
1824 aSig64
= aSig
| 0x00800000;
1826 z
= aSig64
>>( - shiftCount
);
1827 if ( (uint64_t) ( aSig64
<<( shiftCount
& 63 ) ) ) {
1828 status
->float_exception_flags
|= float_flag_inexact
;
1830 if ( aSign
) z
= - z
;
1835 /*----------------------------------------------------------------------------
1836 | Returns the result of converting the single-precision floating-point value
1837 | `a' to the double-precision floating-point format. The conversion is
1838 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1840 *----------------------------------------------------------------------------*/
1842 float64
float32_to_float64(float32 a
, float_status
*status
)
1847 a
= float32_squash_input_denormal(a
, status
);
1849 aSig
= extractFloat32Frac( a
);
1850 aExp
= extractFloat32Exp( a
);
1851 aSign
= extractFloat32Sign( a
);
1852 if ( aExp
== 0xFF ) {
1854 return commonNaNToFloat64(float32ToCommonNaN(a
, status
), status
);
1856 return packFloat64( aSign
, 0x7FF, 0 );
1859 if ( aSig
== 0 ) return packFloat64( aSign
, 0, 0 );
1860 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1863 return packFloat64( aSign
, aExp
+ 0x380, ( (uint64_t) aSig
)<<29 );
1867 /*----------------------------------------------------------------------------
1868 | Returns the result of converting the single-precision floating-point value
1869 | `a' to the extended double-precision floating-point format. The conversion
1870 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
1872 *----------------------------------------------------------------------------*/
1874 floatx80
float32_to_floatx80(float32 a
, float_status
*status
)
1880 a
= float32_squash_input_denormal(a
, status
);
1881 aSig
= extractFloat32Frac( a
);
1882 aExp
= extractFloat32Exp( a
);
1883 aSign
= extractFloat32Sign( a
);
1884 if ( aExp
== 0xFF ) {
1886 return commonNaNToFloatx80(float32ToCommonNaN(a
, status
), status
);
1888 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
1891 if ( aSig
== 0 ) return packFloatx80( aSign
, 0, 0 );
1892 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1895 return packFloatx80( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<40 );
1899 /*----------------------------------------------------------------------------
1900 | Returns the result of converting the single-precision floating-point value
1901 | `a' to the double-precision floating-point format. The conversion is
1902 | performed according to the IEC/IEEE Standard for Binary Floating-Point
1904 *----------------------------------------------------------------------------*/
1906 float128
float32_to_float128(float32 a
, float_status
*status
)
1912 a
= float32_squash_input_denormal(a
, status
);
1913 aSig
= extractFloat32Frac( a
);
1914 aExp
= extractFloat32Exp( a
);
1915 aSign
= extractFloat32Sign( a
);
1916 if ( aExp
== 0xFF ) {
1918 return commonNaNToFloat128(float32ToCommonNaN(a
, status
), status
);
1920 return packFloat128( aSign
, 0x7FFF, 0, 0 );
1923 if ( aSig
== 0 ) return packFloat128( aSign
, 0, 0, 0 );
1924 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
1927 return packFloat128( aSign
, aExp
+ 0x3F80, ( (uint64_t) aSig
)<<25, 0 );
1931 /*----------------------------------------------------------------------------
1932 | Rounds the single-precision floating-point value `a' to an integer, and
1933 | returns the result as a single-precision floating-point value. The
1934 | operation is performed according to the IEC/IEEE Standard for Binary
1935 | Floating-Point Arithmetic.
1936 *----------------------------------------------------------------------------*/
1938 float32
float32_round_to_int(float32 a
, float_status
*status
)
1942 uint32_t lastBitMask
, roundBitsMask
;
1944 a
= float32_squash_input_denormal(a
, status
);
1946 aExp
= extractFloat32Exp( a
);
1947 if ( 0x96 <= aExp
) {
1948 if ( ( aExp
== 0xFF ) && extractFloat32Frac( a
) ) {
1949 return propagateFloat32NaN(a
, a
, status
);
1953 if ( aExp
<= 0x7E ) {
1954 if ( (uint32_t) ( float32_val(a
)<<1 ) == 0 ) return a
;
1955 status
->float_exception_flags
|= float_flag_inexact
;
1956 aSign
= extractFloat32Sign( a
);
1957 switch (status
->float_rounding_mode
) {
1958 case float_round_nearest_even
:
1959 if ( ( aExp
== 0x7E ) && extractFloat32Frac( a
) ) {
1960 return packFloat32( aSign
, 0x7F, 0 );
1963 case float_round_ties_away
:
1965 return packFloat32(aSign
, 0x7F, 0);
1968 case float_round_down
:
1969 return make_float32(aSign
? 0xBF800000 : 0);
1970 case float_round_up
:
1971 return make_float32(aSign
? 0x80000000 : 0x3F800000);
1973 return packFloat32( aSign
, 0, 0 );
1976 lastBitMask
<<= 0x96 - aExp
;
1977 roundBitsMask
= lastBitMask
- 1;
1979 switch (status
->float_rounding_mode
) {
1980 case float_round_nearest_even
:
1981 z
+= lastBitMask
>>1;
1982 if ((z
& roundBitsMask
) == 0) {
1986 case float_round_ties_away
:
1987 z
+= lastBitMask
>> 1;
1989 case float_round_to_zero
:
1991 case float_round_up
:
1992 if (!extractFloat32Sign(make_float32(z
))) {
1996 case float_round_down
:
1997 if (extractFloat32Sign(make_float32(z
))) {
2004 z
&= ~ roundBitsMask
;
2005 if (z
!= float32_val(a
)) {
2006 status
->float_exception_flags
|= float_flag_inexact
;
2008 return make_float32(z
);
2012 /*----------------------------------------------------------------------------
2013 | Returns the result of adding the absolute values of the single-precision
2014 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
2015 | before being returned. `zSign' is ignored if the result is a NaN.
2016 | The addition is performed according to the IEC/IEEE Standard for Binary
2017 | Floating-Point Arithmetic.
2018 *----------------------------------------------------------------------------*/
2020 static float32
addFloat32Sigs(float32 a
, float32 b
, flag zSign
,
2021 float_status
*status
)
2023 int aExp
, bExp
, zExp
;
2024 uint32_t aSig
, bSig
, zSig
;
2027 aSig
= extractFloat32Frac( a
);
2028 aExp
= extractFloat32Exp( a
);
2029 bSig
= extractFloat32Frac( b
);
2030 bExp
= extractFloat32Exp( b
);
2031 expDiff
= aExp
- bExp
;
2034 if ( 0 < expDiff
) {
2035 if ( aExp
== 0xFF ) {
2037 return propagateFloat32NaN(a
, b
, status
);
2047 shift32RightJamming( bSig
, expDiff
, &bSig
);
2050 else if ( expDiff
< 0 ) {
2051 if ( bExp
== 0xFF ) {
2053 return propagateFloat32NaN(a
, b
, status
);
2055 return packFloat32( zSign
, 0xFF, 0 );
2063 shift32RightJamming( aSig
, - expDiff
, &aSig
);
2067 if ( aExp
== 0xFF ) {
2069 return propagateFloat32NaN(a
, b
, status
);
2074 if (status
->flush_to_zero
) {
2076 float_raise(float_flag_output_denormal
, status
);
2078 return packFloat32(zSign
, 0, 0);
2080 return packFloat32( zSign
, 0, ( aSig
+ bSig
)>>6 );
2082 zSig
= 0x40000000 + aSig
+ bSig
;
2087 zSig
= ( aSig
+ bSig
)<<1;
2089 if ( (int32_t) zSig
< 0 ) {
2094 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2098 /*----------------------------------------------------------------------------
2099 | Returns the result of subtracting the absolute values of the single-
2100 | precision floating-point values `a' and `b'. If `zSign' is 1, the
2101 | difference is negated before being returned. `zSign' is ignored if the
2102 | result is a NaN. The subtraction is performed according to the IEC/IEEE
2103 | Standard for Binary Floating-Point Arithmetic.
2104 *----------------------------------------------------------------------------*/
2106 static float32
subFloat32Sigs(float32 a
, float32 b
, flag zSign
,
2107 float_status
*status
)
2109 int aExp
, bExp
, zExp
;
2110 uint32_t aSig
, bSig
, zSig
;
2113 aSig
= extractFloat32Frac( a
);
2114 aExp
= extractFloat32Exp( a
);
2115 bSig
= extractFloat32Frac( b
);
2116 bExp
= extractFloat32Exp( b
);
2117 expDiff
= aExp
- bExp
;
2120 if ( 0 < expDiff
) goto aExpBigger
;
2121 if ( expDiff
< 0 ) goto bExpBigger
;
2122 if ( aExp
== 0xFF ) {
2124 return propagateFloat32NaN(a
, b
, status
);
2126 float_raise(float_flag_invalid
, status
);
2127 return float32_default_nan(status
);
2133 if ( bSig
< aSig
) goto aBigger
;
2134 if ( aSig
< bSig
) goto bBigger
;
2135 return packFloat32(status
->float_rounding_mode
== float_round_down
, 0, 0);
2137 if ( bExp
== 0xFF ) {
2139 return propagateFloat32NaN(a
, b
, status
);
2141 return packFloat32( zSign
^ 1, 0xFF, 0 );
2149 shift32RightJamming( aSig
, - expDiff
, &aSig
);
2155 goto normalizeRoundAndPack
;
2157 if ( aExp
== 0xFF ) {
2159 return propagateFloat32NaN(a
, b
, status
);
2169 shift32RightJamming( bSig
, expDiff
, &bSig
);
2174 normalizeRoundAndPack
:
2176 return normalizeRoundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2180 /*----------------------------------------------------------------------------
2181 | Returns the result of adding the single-precision floating-point values `a'
2182 | and `b'. The operation is performed according to the IEC/IEEE Standard for
2183 | Binary Floating-Point Arithmetic.
2184 *----------------------------------------------------------------------------*/
2186 float32
float32_add(float32 a
, float32 b
, float_status
*status
)
2189 a
= float32_squash_input_denormal(a
, status
);
2190 b
= float32_squash_input_denormal(b
, status
);
2192 aSign
= extractFloat32Sign( a
);
2193 bSign
= extractFloat32Sign( b
);
2194 if ( aSign
== bSign
) {
2195 return addFloat32Sigs(a
, b
, aSign
, status
);
2198 return subFloat32Sigs(a
, b
, aSign
, status
);
2203 /*----------------------------------------------------------------------------
2204 | Returns the result of subtracting the single-precision floating-point values
2205 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
2206 | for Binary Floating-Point Arithmetic.
2207 *----------------------------------------------------------------------------*/
2209 float32
float32_sub(float32 a
, float32 b
, float_status
*status
)
2212 a
= float32_squash_input_denormal(a
, status
);
2213 b
= float32_squash_input_denormal(b
, status
);
2215 aSign
= extractFloat32Sign( a
);
2216 bSign
= extractFloat32Sign( b
);
2217 if ( aSign
== bSign
) {
2218 return subFloat32Sigs(a
, b
, aSign
, status
);
2221 return addFloat32Sigs(a
, b
, aSign
, status
);
2226 /*----------------------------------------------------------------------------
2227 | Returns the result of multiplying the single-precision floating-point values
2228 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
2229 | for Binary Floating-Point Arithmetic.
2230 *----------------------------------------------------------------------------*/
2232 float32
float32_mul(float32 a
, float32 b
, float_status
*status
)
2234 flag aSign
, bSign
, zSign
;
2235 int aExp
, bExp
, zExp
;
2236 uint32_t aSig
, bSig
;
2240 a
= float32_squash_input_denormal(a
, status
);
2241 b
= float32_squash_input_denormal(b
, status
);
2243 aSig
= extractFloat32Frac( a
);
2244 aExp
= extractFloat32Exp( a
);
2245 aSign
= extractFloat32Sign( a
);
2246 bSig
= extractFloat32Frac( b
);
2247 bExp
= extractFloat32Exp( b
);
2248 bSign
= extractFloat32Sign( b
);
2249 zSign
= aSign
^ bSign
;
2250 if ( aExp
== 0xFF ) {
2251 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
2252 return propagateFloat32NaN(a
, b
, status
);
2254 if ( ( bExp
| bSig
) == 0 ) {
2255 float_raise(float_flag_invalid
, status
);
2256 return float32_default_nan(status
);
2258 return packFloat32( zSign
, 0xFF, 0 );
2260 if ( bExp
== 0xFF ) {
2262 return propagateFloat32NaN(a
, b
, status
);
2264 if ( ( aExp
| aSig
) == 0 ) {
2265 float_raise(float_flag_invalid
, status
);
2266 return float32_default_nan(status
);
2268 return packFloat32( zSign
, 0xFF, 0 );
2271 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2272 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2275 if ( bSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2276 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2278 zExp
= aExp
+ bExp
- 0x7F;
2279 aSig
= ( aSig
| 0x00800000 )<<7;
2280 bSig
= ( bSig
| 0x00800000 )<<8;
2281 shift64RightJamming( ( (uint64_t) aSig
) * bSig
, 32, &zSig64
);
2283 if ( 0 <= (int32_t) ( zSig
<<1 ) ) {
2287 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2291 /*----------------------------------------------------------------------------
2292 | Returns the result of dividing the single-precision floating-point value `a'
2293 | by the corresponding value `b'. The operation is performed according to the
2294 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2295 *----------------------------------------------------------------------------*/
2297 float32
float32_div(float32 a
, float32 b
, float_status
*status
)
2299 flag aSign
, bSign
, zSign
;
2300 int aExp
, bExp
, zExp
;
2301 uint32_t aSig
, bSig
, zSig
;
2302 a
= float32_squash_input_denormal(a
, status
);
2303 b
= float32_squash_input_denormal(b
, status
);
2305 aSig
= extractFloat32Frac( a
);
2306 aExp
= extractFloat32Exp( a
);
2307 aSign
= extractFloat32Sign( a
);
2308 bSig
= extractFloat32Frac( b
);
2309 bExp
= extractFloat32Exp( b
);
2310 bSign
= extractFloat32Sign( b
);
2311 zSign
= aSign
^ bSign
;
2312 if ( aExp
== 0xFF ) {
2314 return propagateFloat32NaN(a
, b
, status
);
2316 if ( bExp
== 0xFF ) {
2318 return propagateFloat32NaN(a
, b
, status
);
2320 float_raise(float_flag_invalid
, status
);
2321 return float32_default_nan(status
);
2323 return packFloat32( zSign
, 0xFF, 0 );
2325 if ( bExp
== 0xFF ) {
2327 return propagateFloat32NaN(a
, b
, status
);
2329 return packFloat32( zSign
, 0, 0 );
2333 if ( ( aExp
| aSig
) == 0 ) {
2334 float_raise(float_flag_invalid
, status
);
2335 return float32_default_nan(status
);
2337 float_raise(float_flag_divbyzero
, status
);
2338 return packFloat32( zSign
, 0xFF, 0 );
2340 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2343 if ( aSig
== 0 ) return packFloat32( zSign
, 0, 0 );
2344 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2346 zExp
= aExp
- bExp
+ 0x7D;
2347 aSig
= ( aSig
| 0x00800000 )<<7;
2348 bSig
= ( bSig
| 0x00800000 )<<8;
2349 if ( bSig
<= ( aSig
+ aSig
) ) {
2353 zSig
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2354 if ( ( zSig
& 0x3F ) == 0 ) {
2355 zSig
|= ( (uint64_t) bSig
* zSig
!= ( (uint64_t) aSig
)<<32 );
2357 return roundAndPackFloat32(zSign
, zExp
, zSig
, status
);
2361 /*----------------------------------------------------------------------------
2362 | Returns the remainder of the single-precision floating-point value `a'
2363 | with respect to the corresponding value `b'. The operation is performed
2364 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2365 *----------------------------------------------------------------------------*/
2367 float32
float32_rem(float32 a
, float32 b
, float_status
*status
)
2370 int aExp
, bExp
, expDiff
;
2371 uint32_t aSig
, bSig
;
2373 uint64_t aSig64
, bSig64
, q64
;
2374 uint32_t alternateASig
;
2376 a
= float32_squash_input_denormal(a
, status
);
2377 b
= float32_squash_input_denormal(b
, status
);
2379 aSig
= extractFloat32Frac( a
);
2380 aExp
= extractFloat32Exp( a
);
2381 aSign
= extractFloat32Sign( a
);
2382 bSig
= extractFloat32Frac( b
);
2383 bExp
= extractFloat32Exp( b
);
2384 if ( aExp
== 0xFF ) {
2385 if ( aSig
|| ( ( bExp
== 0xFF ) && bSig
) ) {
2386 return propagateFloat32NaN(a
, b
, status
);
2388 float_raise(float_flag_invalid
, status
);
2389 return float32_default_nan(status
);
2391 if ( bExp
== 0xFF ) {
2393 return propagateFloat32NaN(a
, b
, status
);
2399 float_raise(float_flag_invalid
, status
);
2400 return float32_default_nan(status
);
2402 normalizeFloat32Subnormal( bSig
, &bExp
, &bSig
);
2405 if ( aSig
== 0 ) return a
;
2406 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2408 expDiff
= aExp
- bExp
;
2411 if ( expDiff
< 32 ) {
2414 if ( expDiff
< 0 ) {
2415 if ( expDiff
< -1 ) return a
;
2418 q
= ( bSig
<= aSig
);
2419 if ( q
) aSig
-= bSig
;
2420 if ( 0 < expDiff
) {
2421 q
= ( ( (uint64_t) aSig
)<<32 ) / bSig
;
2424 aSig
= ( ( aSig
>>1 )<<( expDiff
- 1 ) ) - bSig
* q
;
2432 if ( bSig
<= aSig
) aSig
-= bSig
;
2433 aSig64
= ( (uint64_t) aSig
)<<40;
2434 bSig64
= ( (uint64_t) bSig
)<<40;
2436 while ( 0 < expDiff
) {
2437 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2438 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2439 aSig64
= - ( ( bSig
* q64
)<<38 );
2443 q64
= estimateDiv128To64( aSig64
, 0, bSig64
);
2444 q64
= ( 2 < q64
) ? q64
- 2 : 0;
2445 q
= q64
>>( 64 - expDiff
);
2447 aSig
= ( ( aSig64
>>33 )<<( expDiff
- 1 ) ) - bSig
* q
;
2450 alternateASig
= aSig
;
2453 } while ( 0 <= (int32_t) aSig
);
2454 sigMean
= aSig
+ alternateASig
;
2455 if ( ( sigMean
< 0 ) || ( ( sigMean
== 0 ) && ( q
& 1 ) ) ) {
2456 aSig
= alternateASig
;
2458 zSign
= ( (int32_t) aSig
< 0 );
2459 if ( zSign
) aSig
= - aSig
;
2460 return normalizeRoundAndPackFloat32(aSign
^ zSign
, bExp
, aSig
, status
);
2463 /*----------------------------------------------------------------------------
2464 | Returns the result of multiplying the single-precision floating-point values
2465 | `a' and `b' then adding 'c', with no intermediate rounding step after the
2466 | multiplication. The operation is performed according to the IEC/IEEE
2467 | Standard for Binary Floating-Point Arithmetic 754-2008.
2468 | The flags argument allows the caller to select negation of the
2469 | addend, the intermediate product, or the final result. (The difference
2470 | between this and having the caller do a separate negation is that negating
2471 | externally will flip the sign bit on NaNs.)
2472 *----------------------------------------------------------------------------*/
2474 float32
float32_muladd(float32 a
, float32 b
, float32 c
, int flags
,
2475 float_status
*status
)
2477 flag aSign
, bSign
, cSign
, zSign
;
2478 int aExp
, bExp
, cExp
, pExp
, zExp
, expDiff
;
2479 uint32_t aSig
, bSig
, cSig
;
2480 flag pInf
, pZero
, pSign
;
2481 uint64_t pSig64
, cSig64
, zSig64
;
2484 flag signflip
, infzero
;
2486 a
= float32_squash_input_denormal(a
, status
);
2487 b
= float32_squash_input_denormal(b
, status
);
2488 c
= float32_squash_input_denormal(c
, status
);
2489 aSig
= extractFloat32Frac(a
);
2490 aExp
= extractFloat32Exp(a
);
2491 aSign
= extractFloat32Sign(a
);
2492 bSig
= extractFloat32Frac(b
);
2493 bExp
= extractFloat32Exp(b
);
2494 bSign
= extractFloat32Sign(b
);
2495 cSig
= extractFloat32Frac(c
);
2496 cExp
= extractFloat32Exp(c
);
2497 cSign
= extractFloat32Sign(c
);
2499 infzero
= ((aExp
== 0 && aSig
== 0 && bExp
== 0xff && bSig
== 0) ||
2500 (aExp
== 0xff && aSig
== 0 && bExp
== 0 && bSig
== 0));
2502 /* It is implementation-defined whether the cases of (0,inf,qnan)
2503 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
2504 * they return if they do), so we have to hand this information
2505 * off to the target-specific pick-a-NaN routine.
2507 if (((aExp
== 0xff) && aSig
) ||
2508 ((bExp
== 0xff) && bSig
) ||
2509 ((cExp
== 0xff) && cSig
)) {
2510 return propagateFloat32MulAddNaN(a
, b
, c
, infzero
, status
);
2514 float_raise(float_flag_invalid
, status
);
2515 return float32_default_nan(status
);
2518 if (flags
& float_muladd_negate_c
) {
2522 signflip
= (flags
& float_muladd_negate_result
) ? 1 : 0;
2524 /* Work out the sign and type of the product */
2525 pSign
= aSign
^ bSign
;
2526 if (flags
& float_muladd_negate_product
) {
2529 pInf
= (aExp
== 0xff) || (bExp
== 0xff);
2530 pZero
= ((aExp
| aSig
) == 0) || ((bExp
| bSig
) == 0);
2533 if (pInf
&& (pSign
^ cSign
)) {
2534 /* addition of opposite-signed infinities => InvalidOperation */
2535 float_raise(float_flag_invalid
, status
);
2536 return float32_default_nan(status
);
2538 /* Otherwise generate an infinity of the same sign */
2539 return packFloat32(cSign
^ signflip
, 0xff, 0);
2543 return packFloat32(pSign
^ signflip
, 0xff, 0);
2549 /* Adding two exact zeroes */
2550 if (pSign
== cSign
) {
2552 } else if (status
->float_rounding_mode
== float_round_down
) {
2557 return packFloat32(zSign
^ signflip
, 0, 0);
2559 /* Exact zero plus a denorm */
2560 if (status
->flush_to_zero
) {
2561 float_raise(float_flag_output_denormal
, status
);
2562 return packFloat32(cSign
^ signflip
, 0, 0);
2565 /* Zero plus something non-zero : just return the something */
2566 if (flags
& float_muladd_halve_result
) {
2568 normalizeFloat32Subnormal(cSig
, &cExp
, &cSig
);
2570 /* Subtract one to halve, and one again because roundAndPackFloat32
2571 * wants one less than the true exponent.
2574 cSig
= (cSig
| 0x00800000) << 7;
2575 return roundAndPackFloat32(cSign
^ signflip
, cExp
, cSig
, status
);
2577 return packFloat32(cSign
^ signflip
, cExp
, cSig
);
2581 normalizeFloat32Subnormal(aSig
, &aExp
, &aSig
);
2584 normalizeFloat32Subnormal(bSig
, &bExp
, &bSig
);
2587 /* Calculate the actual result a * b + c */
2589 /* Multiply first; this is easy. */
2590 /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
2591 * because we want the true exponent, not the "one-less-than"
2592 * flavour that roundAndPackFloat32() takes.
2594 pExp
= aExp
+ bExp
- 0x7e;
2595 aSig
= (aSig
| 0x00800000) << 7;
2596 bSig
= (bSig
| 0x00800000) << 8;
2597 pSig64
= (uint64_t)aSig
* bSig
;
2598 if ((int64_t)(pSig64
<< 1) >= 0) {
2603 zSign
= pSign
^ signflip
;
2605 /* Now pSig64 is the significand of the multiply, with the explicit bit in
2610 /* Throw out the special case of c being an exact zero now */
2611 shift64RightJamming(pSig64
, 32, &pSig64
);
2613 if (flags
& float_muladd_halve_result
) {
2616 return roundAndPackFloat32(zSign
, pExp
- 1,
2619 normalizeFloat32Subnormal(cSig
, &cExp
, &cSig
);
2622 cSig64
= (uint64_t)cSig
<< (62 - 23);
2623 cSig64
|= LIT64(0x4000000000000000);
2624 expDiff
= pExp
- cExp
;
2626 if (pSign
== cSign
) {
2629 /* scale c to match p */
2630 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2632 } else if (expDiff
< 0) {
2633 /* scale p to match c */
2634 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2637 /* no scaling needed */
2640 /* Add significands and make sure explicit bit ends up in posn 62 */
2641 zSig64
= pSig64
+ cSig64
;
2642 if ((int64_t)zSig64
< 0) {
2643 shift64RightJamming(zSig64
, 1, &zSig64
);
2650 shift64RightJamming(cSig64
, expDiff
, &cSig64
);
2651 zSig64
= pSig64
- cSig64
;
2653 } else if (expDiff
< 0) {
2654 shift64RightJamming(pSig64
, -expDiff
, &pSig64
);
2655 zSig64
= cSig64
- pSig64
;
2660 if (cSig64
< pSig64
) {
2661 zSig64
= pSig64
- cSig64
;
2662 } else if (pSig64
< cSig64
) {
2663 zSig64
= cSig64
- pSig64
;
2668 if (status
->float_rounding_mode
== float_round_down
) {
2671 return packFloat32(zSign
, 0, 0);
2675 /* Normalize to put the explicit bit back into bit 62. */
2676 shiftcount
= countLeadingZeros64(zSig64
) - 1;
2677 zSig64
<<= shiftcount
;
2680 if (flags
& float_muladd_halve_result
) {
2684 shift64RightJamming(zSig64
, 32, &zSig64
);
2685 return roundAndPackFloat32(zSign
, zExp
, zSig64
, status
);
2689 /*----------------------------------------------------------------------------
2690 | Returns the square root of the single-precision floating-point value `a'.
2691 | The operation is performed according to the IEC/IEEE Standard for Binary
2692 | Floating-Point Arithmetic.
2693 *----------------------------------------------------------------------------*/
2695 float32
float32_sqrt(float32 a
, float_status
*status
)
2699 uint32_t aSig
, zSig
;
2701 a
= float32_squash_input_denormal(a
, status
);
2703 aSig
= extractFloat32Frac( a
);
2704 aExp
= extractFloat32Exp( a
);
2705 aSign
= extractFloat32Sign( a
);
2706 if ( aExp
== 0xFF ) {
2708 return propagateFloat32NaN(a
, float32_zero
, status
);
2710 if ( ! aSign
) return a
;
2711 float_raise(float_flag_invalid
, status
);
2712 return float32_default_nan(status
);
2715 if ( ( aExp
| aSig
) == 0 ) return a
;
2716 float_raise(float_flag_invalid
, status
);
2717 return float32_default_nan(status
);
2720 if ( aSig
== 0 ) return float32_zero
;
2721 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2723 zExp
= ( ( aExp
- 0x7F )>>1 ) + 0x7E;
2724 aSig
= ( aSig
| 0x00800000 )<<8;
2725 zSig
= estimateSqrt32( aExp
, aSig
) + 2;
2726 if ( ( zSig
& 0x7F ) <= 5 ) {
2732 term
= ( (uint64_t) zSig
) * zSig
;
2733 rem
= ( ( (uint64_t) aSig
)<<32 ) - term
;
2734 while ( (int64_t) rem
< 0 ) {
2736 rem
+= ( ( (uint64_t) zSig
)<<1 ) | 1;
2738 zSig
|= ( rem
!= 0 );
2740 shift32RightJamming( zSig
, 1, &zSig
);
2742 return roundAndPackFloat32(0, zExp
, zSig
, status
);
2746 /*----------------------------------------------------------------------------
2747 | Returns the binary exponential of the single-precision floating-point value
2748 | `a'. The operation is performed according to the IEC/IEEE Standard for
2749 | Binary Floating-Point Arithmetic.
2751 | Uses the following identities:
2753 | 1. -------------------------------------------------------------------------
2757 | 2. -------------------------------------------------------------------------
2760 | e = 1 + --- + --- + --- + --- + --- + ... + --- + ...
2762 *----------------------------------------------------------------------------*/
2764 static const float64 float32_exp2_coefficients
[15] =
2766 const_float64( 0x3ff0000000000000ll
), /* 1 */
2767 const_float64( 0x3fe0000000000000ll
), /* 2 */
2768 const_float64( 0x3fc5555555555555ll
), /* 3 */
2769 const_float64( 0x3fa5555555555555ll
), /* 4 */
2770 const_float64( 0x3f81111111111111ll
), /* 5 */
2771 const_float64( 0x3f56c16c16c16c17ll
), /* 6 */
2772 const_float64( 0x3f2a01a01a01a01all
), /* 7 */
2773 const_float64( 0x3efa01a01a01a01all
), /* 8 */
2774 const_float64( 0x3ec71de3a556c734ll
), /* 9 */
2775 const_float64( 0x3e927e4fb7789f5cll
), /* 10 */
2776 const_float64( 0x3e5ae64567f544e4ll
), /* 11 */
2777 const_float64( 0x3e21eed8eff8d898ll
), /* 12 */
2778 const_float64( 0x3de6124613a86d09ll
), /* 13 */
2779 const_float64( 0x3da93974a8c07c9dll
), /* 14 */
2780 const_float64( 0x3d6ae7f3e733b81fll
), /* 15 */
2783 float32
float32_exp2(float32 a
, float_status
*status
)
2790 a
= float32_squash_input_denormal(a
, status
);
2792 aSig
= extractFloat32Frac( a
);
2793 aExp
= extractFloat32Exp( a
);
2794 aSign
= extractFloat32Sign( a
);
2796 if ( aExp
== 0xFF) {
2798 return propagateFloat32NaN(a
, float32_zero
, status
);
2800 return (aSign
) ? float32_zero
: a
;
2803 if (aSig
== 0) return float32_one
;
2806 float_raise(float_flag_inexact
, status
);
2808 /* ******************************* */
2809 /* using float64 for approximation */
2810 /* ******************************* */
2811 x
= float32_to_float64(a
, status
);
2812 x
= float64_mul(x
, float64_ln2
, status
);
2816 for (i
= 0 ; i
< 15 ; i
++) {
2819 f
= float64_mul(xn
, float32_exp2_coefficients
[i
], status
);
2820 r
= float64_add(r
, f
, status
);
2822 xn
= float64_mul(xn
, x
, status
);
2825 return float64_to_float32(r
, status
);
2828 /*----------------------------------------------------------------------------
2829 | Returns the binary log of the single-precision floating-point value `a'.
2830 | The operation is performed according to the IEC/IEEE Standard for Binary
2831 | Floating-Point Arithmetic.
2832 *----------------------------------------------------------------------------*/
2833 float32
float32_log2(float32 a
, float_status
*status
)
2837 uint32_t aSig
, zSig
, i
;
2839 a
= float32_squash_input_denormal(a
, status
);
2840 aSig
= extractFloat32Frac( a
);
2841 aExp
= extractFloat32Exp( a
);
2842 aSign
= extractFloat32Sign( a
);
2845 if ( aSig
== 0 ) return packFloat32( 1, 0xFF, 0 );
2846 normalizeFloat32Subnormal( aSig
, &aExp
, &aSig
);
2849 float_raise(float_flag_invalid
, status
);
2850 return float32_default_nan(status
);
2852 if ( aExp
== 0xFF ) {
2854 return propagateFloat32NaN(a
, float32_zero
, status
);
2864 for (i
= 1 << 22; i
> 0; i
>>= 1) {
2865 aSig
= ( (uint64_t)aSig
* aSig
) >> 23;
2866 if ( aSig
& 0x01000000 ) {
2875 return normalizeRoundAndPackFloat32(zSign
, 0x85, zSig
, status
);
2878 /*----------------------------------------------------------------------------
2879 | Returns 1 if the single-precision floating-point value `a' is equal to
2880 | the corresponding value `b', and 0 otherwise. The invalid exception is
2881 | raised if either operand is a NaN. Otherwise, the comparison is performed
2882 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2883 *----------------------------------------------------------------------------*/
2885 int float32_eq(float32 a
, float32 b
, float_status
*status
)
2888 a
= float32_squash_input_denormal(a
, status
);
2889 b
= float32_squash_input_denormal(b
, status
);
2891 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2892 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2894 float_raise(float_flag_invalid
, status
);
2897 av
= float32_val(a
);
2898 bv
= float32_val(b
);
2899 return ( av
== bv
) || ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2902 /*----------------------------------------------------------------------------
2903 | Returns 1 if the single-precision floating-point value `a' is less than
2904 | or equal to the corresponding value `b', and 0 otherwise. The invalid
2905 | exception is raised if either operand is a NaN. The comparison is performed
2906 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2907 *----------------------------------------------------------------------------*/
2909 int float32_le(float32 a
, float32 b
, float_status
*status
)
2913 a
= float32_squash_input_denormal(a
, status
);
2914 b
= float32_squash_input_denormal(b
, status
);
2916 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2917 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2919 float_raise(float_flag_invalid
, status
);
2922 aSign
= extractFloat32Sign( a
);
2923 bSign
= extractFloat32Sign( b
);
2924 av
= float32_val(a
);
2925 bv
= float32_val(b
);
2926 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
2927 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
2931 /*----------------------------------------------------------------------------
2932 | Returns 1 if the single-precision floating-point value `a' is less than
2933 | the corresponding value `b', and 0 otherwise. The invalid exception is
2934 | raised if either operand is a NaN. The comparison is performed according
2935 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
2936 *----------------------------------------------------------------------------*/
2938 int float32_lt(float32 a
, float32 b
, float_status
*status
)
2942 a
= float32_squash_input_denormal(a
, status
);
2943 b
= float32_squash_input_denormal(b
, status
);
2945 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2946 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2948 float_raise(float_flag_invalid
, status
);
2951 aSign
= extractFloat32Sign( a
);
2952 bSign
= extractFloat32Sign( b
);
2953 av
= float32_val(a
);
2954 bv
= float32_val(b
);
2955 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
2956 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
2960 /*----------------------------------------------------------------------------
2961 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
2962 | be compared, and 0 otherwise. The invalid exception is raised if either
2963 | operand is a NaN. The comparison is performed according to the IEC/IEEE
2964 | Standard for Binary Floating-Point Arithmetic.
2965 *----------------------------------------------------------------------------*/
2967 int float32_unordered(float32 a
, float32 b
, float_status
*status
)
2969 a
= float32_squash_input_denormal(a
, status
);
2970 b
= float32_squash_input_denormal(b
, status
);
2972 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2973 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2975 float_raise(float_flag_invalid
, status
);
2981 /*----------------------------------------------------------------------------
2982 | Returns 1 if the single-precision floating-point value `a' is equal to
2983 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
2984 | exception. The comparison is performed according to the IEC/IEEE Standard
2985 | for Binary Floating-Point Arithmetic.
2986 *----------------------------------------------------------------------------*/
2988 int float32_eq_quiet(float32 a
, float32 b
, float_status
*status
)
2990 a
= float32_squash_input_denormal(a
, status
);
2991 b
= float32_squash_input_denormal(b
, status
);
2993 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
2994 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
2996 if (float32_is_signaling_nan(a
, status
)
2997 || float32_is_signaling_nan(b
, status
)) {
2998 float_raise(float_flag_invalid
, status
);
3002 return ( float32_val(a
) == float32_val(b
) ) ||
3003 ( (uint32_t) ( ( float32_val(a
) | float32_val(b
) )<<1 ) == 0 );
3006 /*----------------------------------------------------------------------------
3007 | Returns 1 if the single-precision floating-point value `a' is less than or
3008 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
3009 | cause an exception. Otherwise, the comparison is performed according to the
3010 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
3011 *----------------------------------------------------------------------------*/
3013 int float32_le_quiet(float32 a
, float32 b
, float_status
*status
)
3017 a
= float32_squash_input_denormal(a
, status
);
3018 b
= float32_squash_input_denormal(b
, status
);
3020 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3021 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3023 if (float32_is_signaling_nan(a
, status
)
3024 || float32_is_signaling_nan(b
, status
)) {
3025 float_raise(float_flag_invalid
, status
);
3029 aSign
= extractFloat32Sign( a
);
3030 bSign
= extractFloat32Sign( b
);
3031 av
= float32_val(a
);
3032 bv
= float32_val(b
);
3033 if ( aSign
!= bSign
) return aSign
|| ( (uint32_t) ( ( av
| bv
)<<1 ) == 0 );
3034 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
3038 /*----------------------------------------------------------------------------
3039 | Returns 1 if the single-precision floating-point value `a' is less than
3040 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
3041 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
3042 | Standard for Binary Floating-Point Arithmetic.
3043 *----------------------------------------------------------------------------*/
3045 int float32_lt_quiet(float32 a
, float32 b
, float_status
*status
)
3049 a
= float32_squash_input_denormal(a
, status
);
3050 b
= float32_squash_input_denormal(b
, status
);
3052 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3053 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3055 if (float32_is_signaling_nan(a
, status
)
3056 || float32_is_signaling_nan(b
, status
)) {
3057 float_raise(float_flag_invalid
, status
);
3061 aSign
= extractFloat32Sign( a
);
3062 bSign
= extractFloat32Sign( b
);
3063 av
= float32_val(a
);
3064 bv
= float32_val(b
);
3065 if ( aSign
!= bSign
) return aSign
&& ( (uint32_t) ( ( av
| bv
)<<1 ) != 0 );
3066 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
3070 /*----------------------------------------------------------------------------
3071 | Returns 1 if the single-precision floating-point values `a' and `b' cannot
3072 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
3073 | comparison is performed according to the IEC/IEEE Standard for Binary
3074 | Floating-Point Arithmetic.
3075 *----------------------------------------------------------------------------*/
3077 int float32_unordered_quiet(float32 a
, float32 b
, float_status
*status
)
3079 a
= float32_squash_input_denormal(a
, status
);
3080 b
= float32_squash_input_denormal(b
, status
);
3082 if ( ( ( extractFloat32Exp( a
) == 0xFF ) && extractFloat32Frac( a
) )
3083 || ( ( extractFloat32Exp( b
) == 0xFF ) && extractFloat32Frac( b
) )
3085 if (float32_is_signaling_nan(a
, status
)
3086 || float32_is_signaling_nan(b
, status
)) {
3087 float_raise(float_flag_invalid
, status
);
3094 /*----------------------------------------------------------------------------
3095 | Returns the result of converting the double-precision floating-point value
3096 | `a' to the 32-bit two's complement integer format. The conversion is
3097 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3098 | Arithmetic---which means in particular that the conversion is rounded
3099 | according to the current rounding mode. If `a' is a NaN, the largest
3100 | positive integer is returned. Otherwise, if the conversion overflows, the
3101 | largest integer with the same sign as `a' is returned.
3102 *----------------------------------------------------------------------------*/
3104 int32_t float64_to_int32(float64 a
, float_status
*status
)
3110 a
= float64_squash_input_denormal(a
, status
);
3112 aSig
= extractFloat64Frac( a
);
3113 aExp
= extractFloat64Exp( a
);
3114 aSign
= extractFloat64Sign( a
);
3115 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
3116 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3117 shiftCount
= 0x42C - aExp
;
3118 if ( 0 < shiftCount
) shift64RightJamming( aSig
, shiftCount
, &aSig
);
3119 return roundAndPackInt32(aSign
, aSig
, status
);
3123 /*----------------------------------------------------------------------------
3124 | Returns the result of converting the double-precision floating-point value
3125 | `a' to the 32-bit two's complement integer format. The conversion is
3126 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3127 | Arithmetic, except that the conversion is always rounded toward zero.
3128 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3129 | the conversion overflows, the largest integer with the same sign as `a' is
3131 *----------------------------------------------------------------------------*/
3133 int32_t float64_to_int32_round_to_zero(float64 a
, float_status
*status
)
3138 uint64_t aSig
, savedASig
;
3140 a
= float64_squash_input_denormal(a
, status
);
3142 aSig
= extractFloat64Frac( a
);
3143 aExp
= extractFloat64Exp( a
);
3144 aSign
= extractFloat64Sign( a
);
3145 if ( 0x41E < aExp
) {
3146 if ( ( aExp
== 0x7FF ) && aSig
) aSign
= 0;
3149 else if ( aExp
< 0x3FF ) {
3151 status
->float_exception_flags
|= float_flag_inexact
;
3155 aSig
|= LIT64( 0x0010000000000000 );
3156 shiftCount
= 0x433 - aExp
;
3158 aSig
>>= shiftCount
;
3160 if ( aSign
) z
= - z
;
3161 if ( ( z
< 0 ) ^ aSign
) {
3163 float_raise(float_flag_invalid
, status
);
3164 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
3166 if ( ( aSig
<<shiftCount
) != savedASig
) {
3167 status
->float_exception_flags
|= float_flag_inexact
;
3173 /*----------------------------------------------------------------------------
3174 | Returns the result of converting the double-precision floating-point value
3175 | `a' to the 16-bit two's complement integer format. The conversion is
3176 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3177 | Arithmetic, except that the conversion is always rounded toward zero.
3178 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3179 | the conversion overflows, the largest integer with the same sign as `a' is
3181 *----------------------------------------------------------------------------*/
3183 int16_t float64_to_int16_round_to_zero(float64 a
, float_status
*status
)
3188 uint64_t aSig
, savedASig
;
3191 aSig
= extractFloat64Frac( a
);
3192 aExp
= extractFloat64Exp( a
);
3193 aSign
= extractFloat64Sign( a
);
3194 if ( 0x40E < aExp
) {
3195 if ( ( aExp
== 0x7FF ) && aSig
) {
3200 else if ( aExp
< 0x3FF ) {
3201 if ( aExp
|| aSig
) {
3202 status
->float_exception_flags
|= float_flag_inexact
;
3206 aSig
|= LIT64( 0x0010000000000000 );
3207 shiftCount
= 0x433 - aExp
;
3209 aSig
>>= shiftCount
;
3214 if ( ( (int16_t)z
< 0 ) ^ aSign
) {
3216 float_raise(float_flag_invalid
, status
);
3217 return aSign
? (int32_t) 0xffff8000 : 0x7FFF;
3219 if ( ( aSig
<<shiftCount
) != savedASig
) {
3220 status
->float_exception_flags
|= float_flag_inexact
;
3225 /*----------------------------------------------------------------------------
3226 | Returns the result of converting the double-precision floating-point value
3227 | `a' to the 64-bit two's complement integer format. The conversion is
3228 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3229 | Arithmetic---which means in particular that the conversion is rounded
3230 | according to the current rounding mode. If `a' is a NaN, the largest
3231 | positive integer is returned. Otherwise, if the conversion overflows, the
3232 | largest integer with the same sign as `a' is returned.
3233 *----------------------------------------------------------------------------*/
3235 int64_t float64_to_int64(float64 a
, float_status
*status
)
3240 uint64_t aSig
, aSigExtra
;
3241 a
= float64_squash_input_denormal(a
, status
);
3243 aSig
= extractFloat64Frac( a
);
3244 aExp
= extractFloat64Exp( a
);
3245 aSign
= extractFloat64Sign( a
);
3246 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3247 shiftCount
= 0x433 - aExp
;
3248 if ( shiftCount
<= 0 ) {
3249 if ( 0x43E < aExp
) {
3250 float_raise(float_flag_invalid
, status
);
3252 || ( ( aExp
== 0x7FF )
3253 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
3255 return LIT64( 0x7FFFFFFFFFFFFFFF );
3257 return (int64_t) LIT64( 0x8000000000000000 );
3260 aSig
<<= - shiftCount
;
3263 shift64ExtraRightJamming( aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
3265 return roundAndPackInt64(aSign
, aSig
, aSigExtra
, status
);
3269 /*----------------------------------------------------------------------------
3270 | Returns the result of converting the double-precision floating-point value
3271 | `a' to the 64-bit two's complement integer format. The conversion is
3272 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3273 | Arithmetic, except that the conversion is always rounded toward zero.
3274 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
3275 | the conversion overflows, the largest integer with the same sign as `a' is
3277 *----------------------------------------------------------------------------*/
3279 int64_t float64_to_int64_round_to_zero(float64 a
, float_status
*status
)
3286 a
= float64_squash_input_denormal(a
, status
);
3288 aSig
= extractFloat64Frac( a
);
3289 aExp
= extractFloat64Exp( a
);
3290 aSign
= extractFloat64Sign( a
);
3291 if ( aExp
) aSig
|= LIT64( 0x0010000000000000 );
3292 shiftCount
= aExp
- 0x433;
3293 if ( 0 <= shiftCount
) {
3294 if ( 0x43E <= aExp
) {
3295 if ( float64_val(a
) != LIT64( 0xC3E0000000000000 ) ) {
3296 float_raise(float_flag_invalid
, status
);
3298 || ( ( aExp
== 0x7FF )
3299 && ( aSig
!= LIT64( 0x0010000000000000 ) ) )
3301 return LIT64( 0x7FFFFFFFFFFFFFFF );
3304 return (int64_t) LIT64( 0x8000000000000000 );
3306 z
= aSig
<<shiftCount
;
3309 if ( aExp
< 0x3FE ) {
3311 status
->float_exception_flags
|= float_flag_inexact
;
3315 z
= aSig
>>( - shiftCount
);
3316 if ( (uint64_t) ( aSig
<<( shiftCount
& 63 ) ) ) {
3317 status
->float_exception_flags
|= float_flag_inexact
;
3320 if ( aSign
) z
= - z
;
3325 /*----------------------------------------------------------------------------
3326 | Returns the result of converting the double-precision floating-point value
3327 | `a' to the single-precision floating-point format. The conversion is
3328 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3330 *----------------------------------------------------------------------------*/
3332 float32
float64_to_float32(float64 a
, float_status
*status
)
3338 a
= float64_squash_input_denormal(a
, status
);
3340 aSig
= extractFloat64Frac( a
);
3341 aExp
= extractFloat64Exp( a
);
3342 aSign
= extractFloat64Sign( a
);
3343 if ( aExp
== 0x7FF ) {
3345 return commonNaNToFloat32(float64ToCommonNaN(a
, status
), status
);
3347 return packFloat32( aSign
, 0xFF, 0 );
3349 shift64RightJamming( aSig
, 22, &aSig
);
3351 if ( aExp
|| zSig
) {
3355 return roundAndPackFloat32(aSign
, aExp
, zSig
, status
);
3360 /*----------------------------------------------------------------------------
3361 | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
3362 | half-precision floating-point value, returning the result. After being
3363 | shifted into the proper positions, the three fields are simply added
3364 | together to form the result. This means that any integer portion of `zSig'
3365 | will be added into the exponent. Since a properly normalized significand
3366 | will have an integer portion equal to 1, the `zExp' input should be 1 less
3367 | than the desired result exponent whenever `zSig' is a complete, normalized
3369 *----------------------------------------------------------------------------*/
3370 static float16
packFloat16(flag zSign
, int zExp
, uint16_t zSig
)
3372 return make_float16(
3373 (((uint32_t)zSign
) << 15) + (((uint32_t)zExp
) << 10) + zSig
);
3376 /*----------------------------------------------------------------------------
3377 | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
3378 | and significand `zSig', and returns the proper half-precision floating-
3379 | point value corresponding to the abstract input. Ordinarily, the abstract
3380 | value is simply rounded and packed into the half-precision format, with
3381 | the inexact exception raised if the abstract input cannot be represented
3382 | exactly. However, if the abstract value is too large, the overflow and
3383 | inexact exceptions are raised and an infinity or maximal finite value is
3384 | returned. If the abstract value is too small, the input value is rounded to
3385 | a subnormal number, and the underflow and inexact exceptions are raised if
3386 | the abstract input cannot be represented exactly as a subnormal half-
3387 | precision floating-point number.
3388 | The `ieee' flag indicates whether to use IEEE standard half precision, or
3389 | ARM-style "alternative representation", which omits the NaN and Inf
3390 | encodings in order to raise the maximum representable exponent by one.
3391 | The input significand `zSig' has its binary point between bits 22
3392 | and 23, which is 13 bits to the left of the usual location. This shifted
3393 | significand must be normalized or smaller. If `zSig' is not normalized,
3394 | `zExp' must be 0; in that case, the result returned is a subnormal number,
3395 | and it must not require rounding. In the usual case that `zSig' is
3396 | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
3397 | Note the slightly odd position of the binary point in zSig compared with the
3398 | other roundAndPackFloat functions. This should probably be fixed if we
3399 | need to implement more float16 routines than just conversion.
3400 | The handling of underflow and overflow follows the IEC/IEEE Standard for
3401 | Binary Floating-Point Arithmetic.
3402 *----------------------------------------------------------------------------*/
3404 static float16
roundAndPackFloat16(flag zSign
, int zExp
,
3405 uint32_t zSig
, flag ieee
,
3406 float_status
*status
)
3408 int maxexp
= ieee
? 29 : 30;
3411 bool rounding_bumps_exp
;
3412 bool is_tiny
= false;
3414 /* Calculate the mask of bits of the mantissa which are not
3415 * representable in half-precision and will be lost.
3418 /* Will be denormal in halfprec */
3424 /* Normal number in halfprec */
3428 switch (status
->float_rounding_mode
) {
3429 case float_round_nearest_even
:
3430 increment
= (mask
+ 1) >> 1;
3431 if ((zSig
& mask
) == increment
) {
3432 increment
= zSig
& (increment
<< 1);
3435 case float_round_ties_away
:
3436 increment
= (mask
+ 1) >> 1;
3438 case float_round_up
:
3439 increment
= zSign
? 0 : mask
;
3441 case float_round_down
:
3442 increment
= zSign
? mask
: 0;
3444 default: /* round_to_zero */
3449 rounding_bumps_exp
= (zSig
+ increment
>= 0x01000000);
3451 if (zExp
> maxexp
|| (zExp
== maxexp
&& rounding_bumps_exp
)) {
3453 float_raise(float_flag_overflow
| float_flag_inexact
, status
);
3454 return packFloat16(zSign
, 0x1f, 0);
3456 float_raise(float_flag_invalid
, status
);
3457 return packFloat16(zSign
, 0x1f, 0x3ff);
3462 /* Note that flush-to-zero does not affect half-precision results */
3464 (status
->float_detect_tininess
== float_tininess_before_rounding
)
3466 || (!rounding_bumps_exp
);
3469 float_raise(float_flag_inexact
, status
);
3471 float_raise(float_flag_underflow
, status
);
3476 if (rounding_bumps_exp
) {
3482 return packFloat16(zSign
, 0, 0);
3488 return packFloat16(zSign
, zExp
, zSig
>> 13);
3491 static void normalizeFloat16Subnormal(uint32_t aSig
, int *zExpPtr
,
3494 int8_t shiftCount
= countLeadingZeros32(aSig
) - 21;
3495 *zSigPtr
= aSig
<< shiftCount
;
3496 *zExpPtr
= 1 - shiftCount
;
3499 /* Half precision floats come in two formats: standard IEEE and "ARM" format.
3500 The latter gains extra exponent range by omitting the NaN/Inf encodings. */
3502 float32
float16_to_float32(float16 a
, flag ieee
, float_status
*status
)
3508 aSign
= extractFloat16Sign(a
);
3509 aExp
= extractFloat16Exp(a
);
3510 aSig
= extractFloat16Frac(a
);
3512 if (aExp
== 0x1f && ieee
) {
3514 return commonNaNToFloat32(float16ToCommonNaN(a
, status
), status
);
3516 return packFloat32(aSign
, 0xff, 0);
3520 return packFloat32(aSign
, 0, 0);
3523 normalizeFloat16Subnormal(aSig
, &aExp
, &aSig
);
3526 return packFloat32( aSign
, aExp
+ 0x70, aSig
<< 13);
3529 float16
float32_to_float16(float32 a
, flag ieee
, float_status
*status
)
3535 a
= float32_squash_input_denormal(a
, status
);
3537 aSig
= extractFloat32Frac( a
);
3538 aExp
= extractFloat32Exp( a
);
3539 aSign
= extractFloat32Sign( a
);
3540 if ( aExp
== 0xFF ) {
3542 /* Input is a NaN */
3544 float_raise(float_flag_invalid
, status
);
3545 return packFloat16(aSign
, 0, 0);
3547 return commonNaNToFloat16(
3548 float32ToCommonNaN(a
, status
), status
);
3552 float_raise(float_flag_invalid
, status
);
3553 return packFloat16(aSign
, 0x1f, 0x3ff);
3555 return packFloat16(aSign
, 0x1f, 0);
3557 if (aExp
== 0 && aSig
== 0) {
3558 return packFloat16(aSign
, 0, 0);
3560 /* Decimal point between bits 22 and 23. Note that we add the 1 bit
3561 * even if the input is denormal; however this is harmless because
3562 * the largest possible single-precision denormal is still smaller
3563 * than the smallest representable half-precision denormal, and so we
3564 * will end up ignoring aSig and returning via the "always return zero"
3570 return roundAndPackFloat16(aSign
, aExp
, aSig
, ieee
, status
);
3573 float64
float16_to_float64(float16 a
, flag ieee
, float_status
*status
)
3579 aSign
= extractFloat16Sign(a
);
3580 aExp
= extractFloat16Exp(a
);
3581 aSig
= extractFloat16Frac(a
);
3583 if (aExp
== 0x1f && ieee
) {
3585 return commonNaNToFloat64(
3586 float16ToCommonNaN(a
, status
), status
);
3588 return packFloat64(aSign
, 0x7ff, 0);
3592 return packFloat64(aSign
, 0, 0);
3595 normalizeFloat16Subnormal(aSig
, &aExp
, &aSig
);
3598 return packFloat64(aSign
, aExp
+ 0x3f0, ((uint64_t)aSig
) << 42);
3601 float16
float64_to_float16(float64 a
, flag ieee
, float_status
*status
)
3608 a
= float64_squash_input_denormal(a
, status
);
3610 aSig
= extractFloat64Frac(a
);
3611 aExp
= extractFloat64Exp(a
);
3612 aSign
= extractFloat64Sign(a
);
3613 if (aExp
== 0x7FF) {
3615 /* Input is a NaN */
3617 float_raise(float_flag_invalid
, status
);
3618 return packFloat16(aSign
, 0, 0);
3620 return commonNaNToFloat16(
3621 float64ToCommonNaN(a
, status
), status
);
3625 float_raise(float_flag_invalid
, status
);
3626 return packFloat16(aSign
, 0x1f, 0x3ff);
3628 return packFloat16(aSign
, 0x1f, 0);
3630 shift64RightJamming(aSig
, 29, &aSig
);
3632 if (aExp
== 0 && zSig
== 0) {
3633 return packFloat16(aSign
, 0, 0);
3635 /* Decimal point between bits 22 and 23. Note that we add the 1 bit
3636 * even if the input is denormal; however this is harmless because
3637 * the largest possible single-precision denormal is still smaller
3638 * than the smallest representable half-precision denormal, and so we
3639 * will end up ignoring aSig and returning via the "always return zero"
3645 return roundAndPackFloat16(aSign
, aExp
, zSig
, ieee
, status
);
3648 /*----------------------------------------------------------------------------
3649 | Returns the result of converting the double-precision floating-point value
3650 | `a' to the extended double-precision floating-point format. The conversion
3651 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
3653 *----------------------------------------------------------------------------*/
3655 floatx80
float64_to_floatx80(float64 a
, float_status
*status
)
3661 a
= float64_squash_input_denormal(a
, status
);
3662 aSig
= extractFloat64Frac( a
);
3663 aExp
= extractFloat64Exp( a
);
3664 aSign
= extractFloat64Sign( a
);
3665 if ( aExp
== 0x7FF ) {
3667 return commonNaNToFloatx80(float64ToCommonNaN(a
, status
), status
);
3669 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
3672 if ( aSig
== 0 ) return packFloatx80( aSign
, 0, 0 );
3673 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3677 aSign
, aExp
+ 0x3C00, ( aSig
| LIT64( 0x0010000000000000 ) )<<11 );
3681 /*----------------------------------------------------------------------------
3682 | Returns the result of converting the double-precision floating-point value
3683 | `a' to the quadruple-precision floating-point format. The conversion is
3684 | performed according to the IEC/IEEE Standard for Binary Floating-Point
3686 *----------------------------------------------------------------------------*/
3688 float128
float64_to_float128(float64 a
, float_status
*status
)
3692 uint64_t aSig
, zSig0
, zSig1
;
3694 a
= float64_squash_input_denormal(a
, status
);
3695 aSig
= extractFloat64Frac( a
);
3696 aExp
= extractFloat64Exp( a
);
3697 aSign
= extractFloat64Sign( a
);
3698 if ( aExp
== 0x7FF ) {
3700 return commonNaNToFloat128(float64ToCommonNaN(a
, status
), status
);
3702 return packFloat128( aSign
, 0x7FFF, 0, 0 );
3705 if ( aSig
== 0 ) return packFloat128( aSign
, 0, 0, 0 );
3706 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
3709 shift128Right( aSig
, 0, 4, &zSig0
, &zSig1
);
3710 return packFloat128( aSign
, aExp
+ 0x3C00, zSig0
, zSig1
);
3714 /*----------------------------------------------------------------------------
3715 | Rounds the double-precision floating-point value `a' to an integer, and
3716 | returns the result as a double-precision floating-point value. The
3717 | operation is performed according to the IEC/IEEE Standard for Binary
3718 | Floating-Point Arithmetic.
3719 *----------------------------------------------------------------------------*/
3721 float64
float64_round_to_int(float64 a
, float_status
*status
)
3725 uint64_t lastBitMask
, roundBitsMask
;
3727 a
= float64_squash_input_denormal(a
, status
);
3729 aExp
= extractFloat64Exp( a
);
3730 if ( 0x433 <= aExp
) {
3731 if ( ( aExp
== 0x7FF ) && extractFloat64Frac( a
) ) {
3732 return propagateFloat64NaN(a
, a
, status
);
3736 if ( aExp
< 0x3FF ) {
3737 if ( (uint64_t) ( float64_val(a
)<<1 ) == 0 ) return a
;
3738 status
->float_exception_flags
|= float_flag_inexact
;
3739 aSign
= extractFloat64Sign( a
);
3740 switch (status
->float_rounding_mode
) {
3741 case float_round_nearest_even
:
3742 if ( ( aExp
== 0x3FE ) && extractFloat64Frac( a
) ) {
3743 return packFloat64( aSign
, 0x3FF, 0 );
3746 case float_round_ties_away
:
3747 if (aExp
== 0x3FE) {
3748 return packFloat64(aSign
, 0x3ff, 0);
3751 case float_round_down
:
3752 return make_float64(aSign
? LIT64( 0xBFF0000000000000 ) : 0);
3753 case float_round_up
:
3754 return make_float64(
3755 aSign
? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
3757 return packFloat64( aSign
, 0, 0 );
3760 lastBitMask
<<= 0x433 - aExp
;
3761 roundBitsMask
= lastBitMask
- 1;
3763 switch (status
->float_rounding_mode
) {
3764 case float_round_nearest_even
:
3765 z
+= lastBitMask
>> 1;
3766 if ((z
& roundBitsMask
) == 0) {
3770 case float_round_ties_away
:
3771 z
+= lastBitMask
>> 1;
3773 case float_round_to_zero
:
3775 case float_round_up
:
3776 if (!extractFloat64Sign(make_float64(z
))) {
3780 case float_round_down
:
3781 if (extractFloat64Sign(make_float64(z
))) {
3788 z
&= ~ roundBitsMask
;
3789 if (z
!= float64_val(a
)) {
3790 status
->float_exception_flags
|= float_flag_inexact
;
3792 return make_float64(z
);
3796 float64
float64_trunc_to_int(float64 a
, float_status
*status
)
3800 oldmode
= status
->float_rounding_mode
;
3801 status
->float_rounding_mode
= float_round_to_zero
;
3802 res
= float64_round_to_int(a
, status
);
3803 status
->float_rounding_mode
= oldmode
;
3807 /*----------------------------------------------------------------------------
3808 | Returns the result of adding the absolute values of the double-precision
3809 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
3810 | before being returned. `zSign' is ignored if the result is a NaN.
3811 | The addition is performed according to the IEC/IEEE Standard for Binary
3812 | Floating-Point Arithmetic.
3813 *----------------------------------------------------------------------------*/
3815 static float64
addFloat64Sigs(float64 a
, float64 b
, flag zSign
,
3816 float_status
*status
)
3818 int aExp
, bExp
, zExp
;
3819 uint64_t aSig
, bSig
, zSig
;
3822 aSig
= extractFloat64Frac( a
);
3823 aExp
= extractFloat64Exp( a
);
3824 bSig
= extractFloat64Frac( b
);
3825 bExp
= extractFloat64Exp( b
);
3826 expDiff
= aExp
- bExp
;
3829 if ( 0 < expDiff
) {
3830 if ( aExp
== 0x7FF ) {
3832 return propagateFloat64NaN(a
, b
, status
);
3840 bSig
|= LIT64( 0x2000000000000000 );
3842 shift64RightJamming( bSig
, expDiff
, &bSig
);
3845 else if ( expDiff
< 0 ) {
3846 if ( bExp
== 0x7FF ) {
3848 return propagateFloat64NaN(a
, b
, status
);
3850 return packFloat64( zSign
, 0x7FF, 0 );
3856 aSig
|= LIT64( 0x2000000000000000 );
3858 shift64RightJamming( aSig
, - expDiff
, &aSig
);
3862 if ( aExp
== 0x7FF ) {
3864 return propagateFloat64NaN(a
, b
, status
);
3869 if (status
->flush_to_zero
) {
3871 float_raise(float_flag_output_denormal
, status
);
3873 return packFloat64(zSign
, 0, 0);
3875 return packFloat64( zSign
, 0, ( aSig
+ bSig
)>>9 );
3877 zSig
= LIT64( 0x4000000000000000 ) + aSig
+ bSig
;
3881 aSig
|= LIT64( 0x2000000000000000 );
3882 zSig
= ( aSig
+ bSig
)<<1;
3884 if ( (int64_t) zSig
< 0 ) {
3889 return roundAndPackFloat64(zSign
, zExp
, zSig
, status
);
3893 /*----------------------------------------------------------------------------
3894 | Returns the result of subtracting the absolute values of the double-
3895 | precision floating-point values `a' and `b'. If `zSign' is 1, the
3896 | difference is negated before being returned. `zSign' is ignored if the
3897 | result is a NaN. The subtraction is performed according to the IEC/IEEE
3898 | Standard for Binary Floating-Point Arithmetic.
3899 *----------------------------------------------------------------------------*/
3901 static float64
subFloat64Sigs(float64 a
, float64 b
, flag zSign
,
3902 float_status
*status
)
3904 int aExp
, bExp
, zExp
;
3905 uint64_t aSig
, bSig
, zSig
;
3908 aSig
= extractFloat64Frac( a
);
3909 aExp
= extractFloat64Exp( a
);
3910 bSig
= extractFloat64Frac( b
);
3911 bExp
= extractFloat64Exp( b
);
3912 expDiff
= aExp
- bExp
;
3915 if ( 0 < expDiff
) goto aExpBigger
;
3916 if ( expDiff
< 0 ) goto bExpBigger
;
3917 if ( aExp
== 0x7FF ) {
3919 return propagateFloat64NaN(a
, b
, status
);
3921 float_raise(float_flag_invalid
, status
);
3922 return float64_default_nan(status
);
3928 if ( bSig
< aSig
) goto aBigger
;
3929 if ( aSig
< bSig
) goto bBigger
;
3930 return packFloat64(status
->float_rounding_mode
== float_round_down
, 0, 0);
3932 if ( bExp
== 0x7FF ) {
3934 return propagateFloat64NaN(a
, b
, status
);
3936 return packFloat64( zSign
^ 1, 0x7FF, 0 );
3942 aSig
|= LIT64( 0x4000000000000000 );
3944 shift64RightJamming( aSig
, - expDiff
, &aSig
);
3945 bSig
|= LIT64( 0x4000000000000000 );
3950 goto normalizeRoundAndPack
;
3952 if ( aExp
== 0x7FF ) {
3954 return propagateFloat64NaN(a
, b
, status
);
3962 bSig
|= LIT64( 0x4000000000000000 );
3964 shift64RightJamming( bSig
, expDiff
, &bSig
);
3965 aSig
|= LIT64( 0x4000000000000000 );
3969 normalizeRoundAndPack
:
3971 return normalizeRoundAndPackFloat64(zSign
, zExp
, zSig
, status
);
3975 /*----------------------------------------------------------------------------
3976 | Returns the result of adding the double-precision floating-point values `a'
3977 | and `b'. The operation is performed according to the IEC/IEEE Standard for
3978 | Binary Floating-Point Arithmetic.
3979 *----------------------------------------------------------------------------*/
3981 float64
float64_add(float64 a
, float64 b
, float_status
*status
)
3984 a
= float64_squash_input_denormal(a
, status
);
3985 b
= float64_squash_input_denormal(b
, status
);
3987 aSign
= extractFloat64Sign( a
);
3988 bSign
= extractFloat64Sign( b
);
3989 if ( aSign
== bSign
) {
3990 return addFloat64Sigs(a
, b
, aSign
, status
);
3993 return subFloat64Sigs(a
, b
, aSign
, status
);
3998 /*----------------------------------------------------------------------------
3999 | Returns the result of subtracting the double-precision floating-point values
4000 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
4001 | for Binary Floating-Point Arithmetic.
4002 *----------------------------------------------------------------------------*/
4004 float64
float64_sub(float64 a
, float64 b
, float_status
*status
)
4007 a
= float64_squash_input_denormal(a
, status
);
4008 b
= float64_squash_input_denormal(b
, status
);
4010 aSign
= extractFloat64Sign( a
);
4011 bSign
= extractFloat64Sign( b
);
4012 if ( aSign
== bSign
) {
4013 return subFloat64Sigs(a
, b
, aSign
, status
);
4016 return addFloat64Sigs(a
, b
, aSign
, status
);
4021 /*----------------------------------------------------------------------------
4022 | Returns the result of multiplying the double-precision floating-point values
4023 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
4024 | for Binary Floating-Point Arithmetic.
4025 *----------------------------------------------------------------------------*/
4027 float64
float64_mul(float64 a
, float64 b
, float_status
*status
)
4029 flag aSign
, bSign
, zSign
;
4030 int aExp
, bExp
, zExp
;
4031 uint64_t aSig
, bSig
, zSig0
, zSig1
;
4033 a
= float64_squash_input_denormal(a
, status
);
4034 b
= float64_squash_input_denormal(b
, status
);
4036 aSig
= extractFloat64Frac( a
);
4037 aExp
= extractFloat64Exp( a
);
4038 aSign
= extractFloat64Sign( a
);
4039 bSig
= extractFloat64Frac( b
);
4040 bExp
= extractFloat64Exp( b
);
4041 bSign
= extractFloat64Sign( b
);
4042 zSign
= aSign
^ bSign
;
4043 if ( aExp
== 0x7FF ) {
4044 if ( aSig
|| ( ( bExp
== 0x7FF ) && bSig
) ) {
4045 return propagateFloat64NaN(a
, b
, status
);
4047 if ( ( bExp
| bSig
) == 0 ) {
4048 float_raise(float_flag_invalid
, status
);
4049 return float64_default_nan(status
);
4051 return packFloat64( zSign
, 0x7FF, 0 );
4053 if ( bExp
== 0x7FF ) {
4055 return propagateFloat64NaN(a
, b
, status
);
4057 if ( ( aExp
| aSig
) == 0 ) {
4058 float_raise(float_flag_invalid
, status
);
4059 return float64_default_nan(status
);
4061 return packFloat64( zSign
, 0x7FF, 0 );
4064 if ( aSig
== 0 ) return packFloat64( zSign
, 0, 0 );
4065 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
4068 if ( bSig
== 0 ) return packFloat64( zSign
, 0, 0 );
4069 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
4071 zExp
= aExp
+ bExp
- 0x3FF;
4072 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<10;
4073 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
4074 mul64To128( aSig
, bSig
, &zSig0
, &zSig1
);
4075 zSig0
|= ( zSig1
!= 0 );
4076 if ( 0 <= (int64_t) ( zSig0
<<1 ) ) {
4080 return roundAndPackFloat64(zSign
, zExp
, zSig0
, status
);
4084 /*----------------------------------------------------------------------------
4085 | Returns the result of dividing the double-precision floating-point value `a'
4086 | by the corresponding value `b'. The operation is performed according to
4087 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4088 *----------------------------------------------------------------------------*/
4090 float64
float64_div(float64 a
, float64 b
, float_status
*status
)
4092 flag aSign
, bSign
, zSign
;
4093 int aExp
, bExp
, zExp
;
4094 uint64_t aSig
, bSig
, zSig
;
4095 uint64_t rem0
, rem1
;
4096 uint64_t term0
, term1
;
4097 a
= float64_squash_input_denormal(a
, status
);
4098 b
= float64_squash_input_denormal(b
, status
);
4100 aSig
= extractFloat64Frac( a
);
4101 aExp
= extractFloat64Exp( a
);
4102 aSign
= extractFloat64Sign( a
);
4103 bSig
= extractFloat64Frac( b
);
4104 bExp
= extractFloat64Exp( b
);
4105 bSign
= extractFloat64Sign( b
);
4106 zSign
= aSign
^ bSign
;
4107 if ( aExp
== 0x7FF ) {
4109 return propagateFloat64NaN(a
, b
, status
);
4111 if ( bExp
== 0x7FF ) {
4113 return propagateFloat64NaN(a
, b
, status
);
4115 float_raise(float_flag_invalid
, status
);
4116 return float64_default_nan(status
);
4118 return packFloat64( zSign
, 0x7FF, 0 );
4120 if ( bExp
== 0x7FF ) {
4122 return propagateFloat64NaN(a
, b
, status
);
4124 return packFloat64( zSign
, 0, 0 );
4128 if ( ( aExp
| aSig
) == 0 ) {
4129 float_raise(float_flag_invalid
, status
);
4130 return float64_default_nan(status
);
4132 float_raise(float_flag_divbyzero
, status
);
4133 return packFloat64( zSign
, 0x7FF, 0 );
4135 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
4138 if ( aSig
== 0 ) return packFloat64( zSign
, 0, 0 );
4139 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
4141 zExp
= aExp
- bExp
+ 0x3FD;
4142 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<10;
4143 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
4144 if ( bSig
<= ( aSig
+ aSig
) ) {
4148 zSig
= estimateDiv128To64( aSig
, 0, bSig
);
4149 if ( ( zSig
& 0x1FF ) <= 2 ) {
4150 mul64To128( bSig
, zSig
, &term0
, &term1
);
4151 sub128( aSig
, 0, term0
, term1
, &rem0
, &rem1
);
4152 while ( (int64_t) rem0
< 0 ) {
4154 add128( rem0
, rem1
, 0, bSig
, &rem0
, &rem1
);
4156 zSig
|= ( rem1
!= 0 );
4158 return roundAndPackFloat64(zSign
, zExp
, zSig
, status
);
4162 /*----------------------------------------------------------------------------
4163 | Returns the remainder of the double-precision floating-point value `a'
4164 | with respect to the corresponding value `b'. The operation is performed
4165 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4166 *----------------------------------------------------------------------------*/
4168 float64
float64_rem(float64 a
, float64 b
, float_status
*status
)
4171 int aExp
, bExp
, expDiff
;
4172 uint64_t aSig
, bSig
;
4173 uint64_t q
, alternateASig
;
4176 a
= float64_squash_input_denormal(a
, status
);
4177 b
= float64_squash_input_denormal(b
, status
);
4178 aSig
= extractFloat64Frac( a
);
4179 aExp
= extractFloat64Exp( a
);
4180 aSign
= extractFloat64Sign( a
);
4181 bSig
= extractFloat64Frac( b
);
4182 bExp
= extractFloat64Exp( b
);
4183 if ( aExp
== 0x7FF ) {
4184 if ( aSig
|| ( ( bExp
== 0x7FF ) && bSig
) ) {
4185 return propagateFloat64NaN(a
, b
, status
);
4187 float_raise(float_flag_invalid
, status
);
4188 return float64_default_nan(status
);
4190 if ( bExp
== 0x7FF ) {
4192 return propagateFloat64NaN(a
, b
, status
);
4198 float_raise(float_flag_invalid
, status
);
4199 return float64_default_nan(status
);
4201 normalizeFloat64Subnormal( bSig
, &bExp
, &bSig
);
4204 if ( aSig
== 0 ) return a
;
4205 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
4207 expDiff
= aExp
- bExp
;
4208 aSig
= ( aSig
| LIT64( 0x0010000000000000 ) )<<11;
4209 bSig
= ( bSig
| LIT64( 0x0010000000000000 ) )<<11;
4210 if ( expDiff
< 0 ) {
4211 if ( expDiff
< -1 ) return a
;
4214 q
= ( bSig
<= aSig
);
4215 if ( q
) aSig
-= bSig
;
4217 while ( 0 < expDiff
) {
4218 q
= estimateDiv128To64( aSig
, 0, bSig
);
4219 q
= ( 2 < q
) ? q
- 2 : 0;
4220 aSig
= - ( ( bSig
>>2 ) * q
);
4224 if ( 0 < expDiff
) {
4225 q
= estimateDiv128To64( aSig
, 0, bSig
);
4226 q
= ( 2 < q
) ? q
- 2 : 0;
4229 aSig
= ( ( aSig
>>1 )<<( expDiff
- 1 ) ) - bSig
* q
;
4236 alternateASig
= aSig
;
4239 } while ( 0 <= (int64_t) aSig
);
4240 sigMean
= aSig
+ alternateASig
;
4241 if ( ( sigMean
< 0 ) || ( ( sigMean
== 0 ) && ( q
& 1 ) ) ) {
4242 aSig
= alternateASig
;
4244 zSign
= ( (int64_t) aSig
< 0 );
4245 if ( zSign
) aSig
= - aSig
;
4246 return normalizeRoundAndPackFloat64(aSign
^ zSign
, bExp
, aSig
, status
);
4250 /*----------------------------------------------------------------------------
4251 | Returns the result of multiplying the double-precision floating-point values
4252 | `a' and `b' then adding 'c', with no intermediate rounding step after the
4253 | multiplication. The operation is performed according to the IEC/IEEE
4254 | Standard for Binary Floating-Point Arithmetic 754-2008.
4255 | The flags argument allows the caller to select negation of the
4256 | addend, the intermediate product, or the final result. (The difference
4257 | between this and having the caller do a separate negation is that negating
4258 | externally will flip the sign bit on NaNs.)
4259 *----------------------------------------------------------------------------*/
4261 float64
float64_muladd(float64 a
, float64 b
, float64 c
, int flags
,
4262 float_status
*status
)
4264 flag aSign
, bSign
, cSign
, zSign
;
4265 int aExp
, bExp
, cExp
, pExp
, zExp
, expDiff
;
4266 uint64_t aSig
, bSig
, cSig
;
4267 flag pInf
, pZero
, pSign
;
4268 uint64_t pSig0
, pSig1
, cSig0
, cSig1
, zSig0
, zSig1
;
4270 flag signflip
, infzero
;
4272 a
= float64_squash_input_denormal(a
, status
);
4273 b
= float64_squash_input_denormal(b
, status
);
4274 c
= float64_squash_input_denormal(c
, status
);
4275 aSig
= extractFloat64Frac(a
);
4276 aExp
= extractFloat64Exp(a
);
4277 aSign
= extractFloat64Sign(a
);
4278 bSig
= extractFloat64Frac(b
);
4279 bExp
= extractFloat64Exp(b
);
4280 bSign
= extractFloat64Sign(b
);
4281 cSig
= extractFloat64Frac(c
);
4282 cExp
= extractFloat64Exp(c
);
4283 cSign
= extractFloat64Sign(c
);
4285 infzero
= ((aExp
== 0 && aSig
== 0 && bExp
== 0x7ff && bSig
== 0) ||
4286 (aExp
== 0x7ff && aSig
== 0 && bExp
== 0 && bSig
== 0));
4288 /* It is implementation-defined whether the cases of (0,inf,qnan)
4289 * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
4290 * they return if they do), so we have to hand this information
4291 * off to the target-specific pick-a-NaN routine.
4293 if (((aExp
== 0x7ff) && aSig
) ||
4294 ((bExp
== 0x7ff) && bSig
) ||
4295 ((cExp
== 0x7ff) && cSig
)) {
4296 return propagateFloat64MulAddNaN(a
, b
, c
, infzero
, status
);
4300 float_raise(float_flag_invalid
, status
);
4301 return float64_default_nan(status
);
4304 if (flags
& float_muladd_negate_c
) {
4308 signflip
= (flags
& float_muladd_negate_result
) ? 1 : 0;
4310 /* Work out the sign and type of the product */
4311 pSign
= aSign
^ bSign
;
4312 if (flags
& float_muladd_negate_product
) {
4315 pInf
= (aExp
== 0x7ff) || (bExp
== 0x7ff);
4316 pZero
= ((aExp
| aSig
) == 0) || ((bExp
| bSig
) == 0);
4318 if (cExp
== 0x7ff) {
4319 if (pInf
&& (pSign
^ cSign
)) {
4320 /* addition of opposite-signed infinities => InvalidOperation */
4321 float_raise(float_flag_invalid
, status
);
4322 return float64_default_nan(status
);
4324 /* Otherwise generate an infinity of the same sign */
4325 return packFloat64(cSign
^ signflip
, 0x7ff, 0);
4329 return packFloat64(pSign
^ signflip
, 0x7ff, 0);
4335 /* Adding two exact zeroes */
4336 if (pSign
== cSign
) {
4338 } else if (status
->float_rounding_mode
== float_round_down
) {
4343 return packFloat64(zSign
^ signflip
, 0, 0);
4345 /* Exact zero plus a denorm */
4346 if (status
->flush_to_zero
) {
4347 float_raise(float_flag_output_denormal
, status
);
4348 return packFloat64(cSign
^ signflip
, 0, 0);
4351 /* Zero plus something non-zero : just return the something */
4352 if (flags
& float_muladd_halve_result
) {
4354 normalizeFloat64Subnormal(cSig
, &cExp
, &cSig
);
4356 /* Subtract one to halve, and one again because roundAndPackFloat64
4357 * wants one less than the true exponent.
4360 cSig
= (cSig
| 0x0010000000000000ULL
) << 10;
4361 return roundAndPackFloat64(cSign
^ signflip
, cExp
, cSig
, status
);
4363 return packFloat64(cSign
^ signflip
, cExp
, cSig
);
4367 normalizeFloat64Subnormal(aSig
, &aExp
, &aSig
);
4370 normalizeFloat64Subnormal(bSig
, &bExp
, &bSig
);
4373 /* Calculate the actual result a * b + c */
4375 /* Multiply first; this is easy. */
4376 /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
4377 * because we want the true exponent, not the "one-less-than"
4378 * flavour that roundAndPackFloat64() takes.
4380 pExp
= aExp
+ bExp
- 0x3fe;
4381 aSig
= (aSig
| LIT64(0x0010000000000000))<<10;
4382 bSig
= (bSig
| LIT64(0x0010000000000000))<<11;
4383 mul64To128(aSig
, bSig
, &pSig0
, &pSig1
);
4384 if ((int64_t)(pSig0
<< 1) >= 0) {
4385 shortShift128Left(pSig0
, pSig1
, 1, &pSig0
, &pSig1
);
4389 zSign
= pSign
^ signflip
;
4391 /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
4392 * bit in position 126.
4396 /* Throw out the special case of c being an exact zero now */
4397 shift128RightJamming(pSig0
, pSig1
, 64, &pSig0
, &pSig1
);
4398 if (flags
& float_muladd_halve_result
) {
4401 return roundAndPackFloat64(zSign
, pExp
- 1,
4404 normalizeFloat64Subnormal(cSig
, &cExp
, &cSig
);
4407 /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
4408 * significand of the addend, with the explicit bit in position 126.
4410 cSig0
= cSig
<< (126 - 64 - 52);
4412 cSig0
|= LIT64(0x4000000000000000);
4413 expDiff
= pExp
- cExp
;
4415 if (pSign
== cSign
) {
4418 /* scale c to match p */
4419 shift128RightJamming(cSig0
, cSig1
, expDiff
, &cSig0
, &cSig1
);
4421 } else if (expDiff
< 0) {
4422 /* scale p to match c */
4423 shift128RightJamming(pSig0
, pSig1
, -expDiff
, &pSig0
, &pSig1
);
4426 /* no scaling needed */
4429 /* Add significands and make sure explicit bit ends up in posn 126 */
4430 add128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
4431 if ((int64_t)zSig0
< 0) {
4432 shift128RightJamming(zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
4436 shift128RightJamming(zSig0
, zSig1
, 64, &zSig0
, &zSig1
);
4437 if (flags
& float_muladd_halve_result
) {
4440 return roundAndPackFloat64(zSign
, zExp
, zSig1
, status
);
4444 shift128RightJamming(cSig0
, cSig1
, expDiff
, &cSig0
, &cSig1
);
4445 sub128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
4447 } else if (expDiff
< 0) {
4448 shift128RightJamming(pSig0
, pSig1
, -expDiff
, &pSig0
, &pSig1
);
4449 sub128(cSig0
, cSig1
, pSig0
, pSig1
, &zSig0
, &zSig1
);
4454 if (lt128(cSig0
, cSig1
, pSig0
, pSig1
)) {
4455 sub128(pSig0
, pSig1
, cSig0
, cSig1
, &zSig0
, &zSig1
);
4456 } else if (lt128(pSig0
, pSig1
, cSig0
, cSig1
)) {
4457 sub128(cSig0
, cSig1
, pSig0
, pSig1
, &zSig0
, &zSig1
);
4462 if (status
->float_rounding_mode
== float_round_down
) {
4465 return packFloat64(zSign
, 0, 0);
4469 /* Do the equivalent of normalizeRoundAndPackFloat64() but
4470 * starting with the significand in a pair of uint64_t.
4473 shiftcount
= countLeadingZeros64(zSig0
) - 1;
4474 shortShift128Left(zSig0
, zSig1
, shiftcount
, &zSig0
, &zSig1
);
4480 shiftcount
= countLeadingZeros64(zSig1
);
4481 if (shiftcount
== 0) {
4482 zSig0
= (zSig1
>> 1) | (zSig1
& 1);
4486 zSig0
= zSig1
<< shiftcount
;
4487 zExp
-= (shiftcount
+ 64);
4490 if (flags
& float_muladd_halve_result
) {
4493 return roundAndPackFloat64(zSign
, zExp
, zSig0
, status
);
4497 /*----------------------------------------------------------------------------
4498 | Returns the square root of the double-precision floating-point value `a'.
4499 | The operation is performed according to the IEC/IEEE Standard for Binary
4500 | Floating-Point Arithmetic.
4501 *----------------------------------------------------------------------------*/
4503 float64
float64_sqrt(float64 a
, float_status
*status
)
4507 uint64_t aSig
, zSig
, doubleZSig
;
4508 uint64_t rem0
, rem1
, term0
, term1
;
4509 a
= float64_squash_input_denormal(a
, status
);
4511 aSig
= extractFloat64Frac( a
);
4512 aExp
= extractFloat64Exp( a
);
4513 aSign
= extractFloat64Sign( a
);
4514 if ( aExp
== 0x7FF ) {
4516 return propagateFloat64NaN(a
, a
, status
);
4518 if ( ! aSign
) return a
;
4519 float_raise(float_flag_invalid
, status
);
4520 return float64_default_nan(status
);
4523 if ( ( aExp
| aSig
) == 0 ) return a
;
4524 float_raise(float_flag_invalid
, status
);
4525 return float64_default_nan(status
);
4528 if ( aSig
== 0 ) return float64_zero
;
4529 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
4531 zExp
= ( ( aExp
- 0x3FF )>>1 ) + 0x3FE;
4532 aSig
|= LIT64( 0x0010000000000000 );
4533 zSig
= estimateSqrt32( aExp
, aSig
>>21 );
4534 aSig
<<= 9 - ( aExp
& 1 );
4535 zSig
= estimateDiv128To64( aSig
, 0, zSig
<<32 ) + ( zSig
<<30 );
4536 if ( ( zSig
& 0x1FF ) <= 5 ) {
4537 doubleZSig
= zSig
<<1;
4538 mul64To128( zSig
, zSig
, &term0
, &term1
);
4539 sub128( aSig
, 0, term0
, term1
, &rem0
, &rem1
);
4540 while ( (int64_t) rem0
< 0 ) {
4543 add128( rem0
, rem1
, zSig
>>63, doubleZSig
| 1, &rem0
, &rem1
);
4545 zSig
|= ( ( rem0
| rem1
) != 0 );
4547 return roundAndPackFloat64(0, zExp
, zSig
, status
);
4551 /*----------------------------------------------------------------------------
4552 | Returns the binary log of the double-precision floating-point value `a'.
4553 | The operation is performed according to the IEC/IEEE Standard for Binary
4554 | Floating-Point Arithmetic.
4555 *----------------------------------------------------------------------------*/
4556 float64
float64_log2(float64 a
, float_status
*status
)
4560 uint64_t aSig
, aSig0
, aSig1
, zSig
, i
;
4561 a
= float64_squash_input_denormal(a
, status
);
4563 aSig
= extractFloat64Frac( a
);
4564 aExp
= extractFloat64Exp( a
);
4565 aSign
= extractFloat64Sign( a
);
4568 if ( aSig
== 0 ) return packFloat64( 1, 0x7FF, 0 );
4569 normalizeFloat64Subnormal( aSig
, &aExp
, &aSig
);
4572 float_raise(float_flag_invalid
, status
);
4573 return float64_default_nan(status
);
4575 if ( aExp
== 0x7FF ) {
4577 return propagateFloat64NaN(a
, float64_zero
, status
);
4583 aSig
|= LIT64( 0x0010000000000000 );
4585 zSig
= (uint64_t)aExp
<< 52;
4586 for (i
= 1LL << 51; i
> 0; i
>>= 1) {
4587 mul64To128( aSig
, aSig
, &aSig0
, &aSig1
);
4588 aSig
= ( aSig0
<< 12 ) | ( aSig1
>> 52 );
4589 if ( aSig
& LIT64( 0x0020000000000000 ) ) {
4597 return normalizeRoundAndPackFloat64(zSign
, 0x408, zSig
, status
);
4600 /*----------------------------------------------------------------------------
4601 | Returns 1 if the double-precision floating-point value `a' is equal to the
4602 | corresponding value `b', and 0 otherwise. The invalid exception is raised
4603 | if either operand is a NaN. Otherwise, the comparison is performed
4604 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4605 *----------------------------------------------------------------------------*/
4607 int float64_eq(float64 a
, float64 b
, float_status
*status
)
4610 a
= float64_squash_input_denormal(a
, status
);
4611 b
= float64_squash_input_denormal(b
, status
);
4613 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4614 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4616 float_raise(float_flag_invalid
, status
);
4619 av
= float64_val(a
);
4620 bv
= float64_val(b
);
4621 return ( av
== bv
) || ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4625 /*----------------------------------------------------------------------------
4626 | Returns 1 if the double-precision floating-point value `a' is less than or
4627 | equal to the corresponding value `b', and 0 otherwise. The invalid
4628 | exception is raised if either operand is a NaN. The comparison is performed
4629 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4630 *----------------------------------------------------------------------------*/
4632 int float64_le(float64 a
, float64 b
, float_status
*status
)
4636 a
= float64_squash_input_denormal(a
, status
);
4637 b
= float64_squash_input_denormal(b
, status
);
4639 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4640 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4642 float_raise(float_flag_invalid
, status
);
4645 aSign
= extractFloat64Sign( a
);
4646 bSign
= extractFloat64Sign( b
);
4647 av
= float64_val(a
);
4648 bv
= float64_val(b
);
4649 if ( aSign
!= bSign
) return aSign
|| ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4650 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
4654 /*----------------------------------------------------------------------------
4655 | Returns 1 if the double-precision floating-point value `a' is less than
4656 | the corresponding value `b', and 0 otherwise. The invalid exception is
4657 | raised if either operand is a NaN. The comparison is performed according
4658 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4659 *----------------------------------------------------------------------------*/
4661 int float64_lt(float64 a
, float64 b
, float_status
*status
)
4666 a
= float64_squash_input_denormal(a
, status
);
4667 b
= float64_squash_input_denormal(b
, status
);
4668 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4669 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4671 float_raise(float_flag_invalid
, status
);
4674 aSign
= extractFloat64Sign( a
);
4675 bSign
= extractFloat64Sign( b
);
4676 av
= float64_val(a
);
4677 bv
= float64_val(b
);
4678 if ( aSign
!= bSign
) return aSign
&& ( (uint64_t) ( ( av
| bv
)<<1 ) != 0 );
4679 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
4683 /*----------------------------------------------------------------------------
4684 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4685 | be compared, and 0 otherwise. The invalid exception is raised if either
4686 | operand is a NaN. The comparison is performed according to the IEC/IEEE
4687 | Standard for Binary Floating-Point Arithmetic.
4688 *----------------------------------------------------------------------------*/
4690 int float64_unordered(float64 a
, float64 b
, float_status
*status
)
4692 a
= float64_squash_input_denormal(a
, status
);
4693 b
= float64_squash_input_denormal(b
, status
);
4695 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4696 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4698 float_raise(float_flag_invalid
, status
);
4704 /*----------------------------------------------------------------------------
4705 | Returns 1 if the double-precision floating-point value `a' is equal to the
4706 | corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
4707 | exception.The comparison is performed according to the IEC/IEEE Standard
4708 | for Binary Floating-Point Arithmetic.
4709 *----------------------------------------------------------------------------*/
4711 int float64_eq_quiet(float64 a
, float64 b
, float_status
*status
)
4714 a
= float64_squash_input_denormal(a
, status
);
4715 b
= float64_squash_input_denormal(b
, status
);
4717 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4718 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4720 if (float64_is_signaling_nan(a
, status
)
4721 || float64_is_signaling_nan(b
, status
)) {
4722 float_raise(float_flag_invalid
, status
);
4726 av
= float64_val(a
);
4727 bv
= float64_val(b
);
4728 return ( av
== bv
) || ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4732 /*----------------------------------------------------------------------------
4733 | Returns 1 if the double-precision floating-point value `a' is less than or
4734 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
4735 | cause an exception. Otherwise, the comparison is performed according to the
4736 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
4737 *----------------------------------------------------------------------------*/
4739 int float64_le_quiet(float64 a
, float64 b
, float_status
*status
)
4743 a
= float64_squash_input_denormal(a
, status
);
4744 b
= float64_squash_input_denormal(b
, status
);
4746 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4747 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4749 if (float64_is_signaling_nan(a
, status
)
4750 || float64_is_signaling_nan(b
, status
)) {
4751 float_raise(float_flag_invalid
, status
);
4755 aSign
= extractFloat64Sign( a
);
4756 bSign
= extractFloat64Sign( b
);
4757 av
= float64_val(a
);
4758 bv
= float64_val(b
);
4759 if ( aSign
!= bSign
) return aSign
|| ( (uint64_t) ( ( av
| bv
)<<1 ) == 0 );
4760 return ( av
== bv
) || ( aSign
^ ( av
< bv
) );
4764 /*----------------------------------------------------------------------------
4765 | Returns 1 if the double-precision floating-point value `a' is less than
4766 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
4767 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
4768 | Standard for Binary Floating-Point Arithmetic.
4769 *----------------------------------------------------------------------------*/
4771 int float64_lt_quiet(float64 a
, float64 b
, float_status
*status
)
4775 a
= float64_squash_input_denormal(a
, status
);
4776 b
= float64_squash_input_denormal(b
, status
);
4778 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4779 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4781 if (float64_is_signaling_nan(a
, status
)
4782 || float64_is_signaling_nan(b
, status
)) {
4783 float_raise(float_flag_invalid
, status
);
4787 aSign
= extractFloat64Sign( a
);
4788 bSign
= extractFloat64Sign( b
);
4789 av
= float64_val(a
);
4790 bv
= float64_val(b
);
4791 if ( aSign
!= bSign
) return aSign
&& ( (uint64_t) ( ( av
| bv
)<<1 ) != 0 );
4792 return ( av
!= bv
) && ( aSign
^ ( av
< bv
) );
4796 /*----------------------------------------------------------------------------
4797 | Returns 1 if the double-precision floating-point values `a' and `b' cannot
4798 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
4799 | comparison is performed according to the IEC/IEEE Standard for Binary
4800 | Floating-Point Arithmetic.
4801 *----------------------------------------------------------------------------*/
4803 int float64_unordered_quiet(float64 a
, float64 b
, float_status
*status
)
4805 a
= float64_squash_input_denormal(a
, status
);
4806 b
= float64_squash_input_denormal(b
, status
);
4808 if ( ( ( extractFloat64Exp( a
) == 0x7FF ) && extractFloat64Frac( a
) )
4809 || ( ( extractFloat64Exp( b
) == 0x7FF ) && extractFloat64Frac( b
) )
4811 if (float64_is_signaling_nan(a
, status
)
4812 || float64_is_signaling_nan(b
, status
)) {
4813 float_raise(float_flag_invalid
, status
);
4820 /*----------------------------------------------------------------------------
4821 | Returns the result of converting the extended double-precision floating-
4822 | point value `a' to the 32-bit two's complement integer format. The
4823 | conversion is performed according to the IEC/IEEE Standard for Binary
4824 | Floating-Point Arithmetic---which means in particular that the conversion
4825 | is rounded according to the current rounding mode. If `a' is a NaN, the
4826 | largest positive integer is returned. Otherwise, if the conversion
4827 | overflows, the largest integer with the same sign as `a' is returned.
4828 *----------------------------------------------------------------------------*/
4830 int32_t floatx80_to_int32(floatx80 a
, float_status
*status
)
4833 int32_t aExp
, shiftCount
;
4836 if (floatx80_invalid_encoding(a
)) {
4837 float_raise(float_flag_invalid
, status
);
4840 aSig
= extractFloatx80Frac( a
);
4841 aExp
= extractFloatx80Exp( a
);
4842 aSign
= extractFloatx80Sign( a
);
4843 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) aSign
= 0;
4844 shiftCount
= 0x4037 - aExp
;
4845 if ( shiftCount
<= 0 ) shiftCount
= 1;
4846 shift64RightJamming( aSig
, shiftCount
, &aSig
);
4847 return roundAndPackInt32(aSign
, aSig
, status
);
4851 /*----------------------------------------------------------------------------
4852 | Returns the result of converting the extended double-precision floating-
4853 | point value `a' to the 32-bit two's complement integer format. The
4854 | conversion is performed according to the IEC/IEEE Standard for Binary
4855 | Floating-Point Arithmetic, except that the conversion is always rounded
4856 | toward zero. If `a' is a NaN, the largest positive integer is returned.
4857 | Otherwise, if the conversion overflows, the largest integer with the same
4858 | sign as `a' is returned.
4859 *----------------------------------------------------------------------------*/
4861 int32_t floatx80_to_int32_round_to_zero(floatx80 a
, float_status
*status
)
4864 int32_t aExp
, shiftCount
;
4865 uint64_t aSig
, savedASig
;
4868 if (floatx80_invalid_encoding(a
)) {
4869 float_raise(float_flag_invalid
, status
);
4872 aSig
= extractFloatx80Frac( a
);
4873 aExp
= extractFloatx80Exp( a
);
4874 aSign
= extractFloatx80Sign( a
);
4875 if ( 0x401E < aExp
) {
4876 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) aSign
= 0;
4879 else if ( aExp
< 0x3FFF ) {
4881 status
->float_exception_flags
|= float_flag_inexact
;
4885 shiftCount
= 0x403E - aExp
;
4887 aSig
>>= shiftCount
;
4889 if ( aSign
) z
= - z
;
4890 if ( ( z
< 0 ) ^ aSign
) {
4892 float_raise(float_flag_invalid
, status
);
4893 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
4895 if ( ( aSig
<<shiftCount
) != savedASig
) {
4896 status
->float_exception_flags
|= float_flag_inexact
;
4902 /*----------------------------------------------------------------------------
4903 | Returns the result of converting the extended double-precision floating-
4904 | point value `a' to the 64-bit two's complement integer format. The
4905 | conversion is performed according to the IEC/IEEE Standard for Binary
4906 | Floating-Point Arithmetic---which means in particular that the conversion
4907 | is rounded according to the current rounding mode. If `a' is a NaN,
4908 | the largest positive integer is returned. Otherwise, if the conversion
4909 | overflows, the largest integer with the same sign as `a' is returned.
4910 *----------------------------------------------------------------------------*/
4912 int64_t floatx80_to_int64(floatx80 a
, float_status
*status
)
4915 int32_t aExp
, shiftCount
;
4916 uint64_t aSig
, aSigExtra
;
4918 if (floatx80_invalid_encoding(a
)) {
4919 float_raise(float_flag_invalid
, status
);
4922 aSig
= extractFloatx80Frac( a
);
4923 aExp
= extractFloatx80Exp( a
);
4924 aSign
= extractFloatx80Sign( a
);
4925 shiftCount
= 0x403E - aExp
;
4926 if ( shiftCount
<= 0 ) {
4928 float_raise(float_flag_invalid
, status
);
4930 || ( ( aExp
== 0x7FFF )
4931 && ( aSig
!= LIT64( 0x8000000000000000 ) ) )
4933 return LIT64( 0x7FFFFFFFFFFFFFFF );
4935 return (int64_t) LIT64( 0x8000000000000000 );
4940 shift64ExtraRightJamming( aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
4942 return roundAndPackInt64(aSign
, aSig
, aSigExtra
, status
);
4946 /*----------------------------------------------------------------------------
4947 | Returns the result of converting the extended double-precision floating-
4948 | point value `a' to the 64-bit two's complement integer format. The
4949 | conversion is performed according to the IEC/IEEE Standard for Binary
4950 | Floating-Point Arithmetic, except that the conversion is always rounded
4951 | toward zero. If `a' is a NaN, the largest positive integer is returned.
4952 | Otherwise, if the conversion overflows, the largest integer with the same
4953 | sign as `a' is returned.
4954 *----------------------------------------------------------------------------*/
4956 int64_t floatx80_to_int64_round_to_zero(floatx80 a
, float_status
*status
)
4959 int32_t aExp
, shiftCount
;
4963 if (floatx80_invalid_encoding(a
)) {
4964 float_raise(float_flag_invalid
, status
);
4967 aSig
= extractFloatx80Frac( a
);
4968 aExp
= extractFloatx80Exp( a
);
4969 aSign
= extractFloatx80Sign( a
);
4970 shiftCount
= aExp
- 0x403E;
4971 if ( 0 <= shiftCount
) {
4972 aSig
&= LIT64( 0x7FFFFFFFFFFFFFFF );
4973 if ( ( a
.high
!= 0xC03E ) || aSig
) {
4974 float_raise(float_flag_invalid
, status
);
4975 if ( ! aSign
|| ( ( aExp
== 0x7FFF ) && aSig
) ) {
4976 return LIT64( 0x7FFFFFFFFFFFFFFF );
4979 return (int64_t) LIT64( 0x8000000000000000 );
4981 else if ( aExp
< 0x3FFF ) {
4983 status
->float_exception_flags
|= float_flag_inexact
;
4987 z
= aSig
>>( - shiftCount
);
4988 if ( (uint64_t) ( aSig
<<( shiftCount
& 63 ) ) ) {
4989 status
->float_exception_flags
|= float_flag_inexact
;
4991 if ( aSign
) z
= - z
;
4996 /*----------------------------------------------------------------------------
4997 | Returns the result of converting the extended double-precision floating-
4998 | point value `a' to the single-precision floating-point format. The
4999 | conversion is performed according to the IEC/IEEE Standard for Binary
5000 | Floating-Point Arithmetic.
5001 *----------------------------------------------------------------------------*/
5003 float32
floatx80_to_float32(floatx80 a
, float_status
*status
)
5009 if (floatx80_invalid_encoding(a
)) {
5010 float_raise(float_flag_invalid
, status
);
5011 return float32_default_nan(status
);
5013 aSig
= extractFloatx80Frac( a
);
5014 aExp
= extractFloatx80Exp( a
);
5015 aSign
= extractFloatx80Sign( a
);
5016 if ( aExp
== 0x7FFF ) {
5017 if ( (uint64_t) ( aSig
<<1 ) ) {
5018 return commonNaNToFloat32(floatx80ToCommonNaN(a
, status
), status
);
5020 return packFloat32( aSign
, 0xFF, 0 );
5022 shift64RightJamming( aSig
, 33, &aSig
);
5023 if ( aExp
|| aSig
) aExp
-= 0x3F81;
5024 return roundAndPackFloat32(aSign
, aExp
, aSig
, status
);
5028 /*----------------------------------------------------------------------------
5029 | Returns the result of converting the extended double-precision floating-
5030 | point value `a' to the double-precision floating-point format. The
5031 | conversion is performed according to the IEC/IEEE Standard for Binary
5032 | Floating-Point Arithmetic.
5033 *----------------------------------------------------------------------------*/
5035 float64
floatx80_to_float64(floatx80 a
, float_status
*status
)
5039 uint64_t aSig
, zSig
;
5041 if (floatx80_invalid_encoding(a
)) {
5042 float_raise(float_flag_invalid
, status
);
5043 return float64_default_nan(status
);
5045 aSig
= extractFloatx80Frac( a
);
5046 aExp
= extractFloatx80Exp( a
);
5047 aSign
= extractFloatx80Sign( a
);
5048 if ( aExp
== 0x7FFF ) {
5049 if ( (uint64_t) ( aSig
<<1 ) ) {
5050 return commonNaNToFloat64(floatx80ToCommonNaN(a
, status
), status
);
5052 return packFloat64( aSign
, 0x7FF, 0 );
5054 shift64RightJamming( aSig
, 1, &zSig
);
5055 if ( aExp
|| aSig
) aExp
-= 0x3C01;
5056 return roundAndPackFloat64(aSign
, aExp
, zSig
, status
);
5060 /*----------------------------------------------------------------------------
5061 | Returns the result of converting the extended double-precision floating-
5062 | point value `a' to the quadruple-precision floating-point format. The
5063 | conversion is performed according to the IEC/IEEE Standard for Binary
5064 | Floating-Point Arithmetic.
5065 *----------------------------------------------------------------------------*/
5067 float128
floatx80_to_float128(floatx80 a
, float_status
*status
)
5071 uint64_t aSig
, zSig0
, zSig1
;
5073 if (floatx80_invalid_encoding(a
)) {
5074 float_raise(float_flag_invalid
, status
);
5075 return float128_default_nan(status
);
5077 aSig
= extractFloatx80Frac( a
);
5078 aExp
= extractFloatx80Exp( a
);
5079 aSign
= extractFloatx80Sign( a
);
5080 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( aSig
<<1 ) ) {
5081 return commonNaNToFloat128(floatx80ToCommonNaN(a
, status
), status
);
5083 shift128Right( aSig
<<1, 0, 16, &zSig0
, &zSig1
);
5084 return packFloat128( aSign
, aExp
, zSig0
, zSig1
);
5088 /*----------------------------------------------------------------------------
5089 | Rounds the extended double-precision floating-point value `a' to an integer,
5090 | and returns the result as an extended quadruple-precision floating-point
5091 | value. The operation is performed according to the IEC/IEEE Standard for
5092 | Binary Floating-Point Arithmetic.
5093 *----------------------------------------------------------------------------*/
5095 floatx80
floatx80_round_to_int(floatx80 a
, float_status
*status
)
5099 uint64_t lastBitMask
, roundBitsMask
;
5102 if (floatx80_invalid_encoding(a
)) {
5103 float_raise(float_flag_invalid
, status
);
5104 return floatx80_default_nan(status
);
5106 aExp
= extractFloatx80Exp( a
);
5107 if ( 0x403E <= aExp
) {
5108 if ( ( aExp
== 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) ) {
5109 return propagateFloatx80NaN(a
, a
, status
);
5113 if ( aExp
< 0x3FFF ) {
5115 && ( (uint64_t) ( extractFloatx80Frac( a
)<<1 ) == 0 ) ) {
5118 status
->float_exception_flags
|= float_flag_inexact
;
5119 aSign
= extractFloatx80Sign( a
);
5120 switch (status
->float_rounding_mode
) {
5121 case float_round_nearest_even
:
5122 if ( ( aExp
== 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a
)<<1 )
5125 packFloatx80( aSign
, 0x3FFF, LIT64( 0x8000000000000000 ) );
5128 case float_round_ties_away
:
5129 if (aExp
== 0x3FFE) {
5130 return packFloatx80(aSign
, 0x3FFF, LIT64(0x8000000000000000));
5133 case float_round_down
:
5136 packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
5137 : packFloatx80( 0, 0, 0 );
5138 case float_round_up
:
5140 aSign
? packFloatx80( 1, 0, 0 )
5141 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
5143 return packFloatx80( aSign
, 0, 0 );
5146 lastBitMask
<<= 0x403E - aExp
;
5147 roundBitsMask
= lastBitMask
- 1;
5149 switch (status
->float_rounding_mode
) {
5150 case float_round_nearest_even
:
5151 z
.low
+= lastBitMask
>>1;
5152 if ((z
.low
& roundBitsMask
) == 0) {
5153 z
.low
&= ~lastBitMask
;
5156 case float_round_ties_away
:
5157 z
.low
+= lastBitMask
>> 1;
5159 case float_round_to_zero
:
5161 case float_round_up
:
5162 if (!extractFloatx80Sign(z
)) {
5163 z
.low
+= roundBitsMask
;
5166 case float_round_down
:
5167 if (extractFloatx80Sign(z
)) {
5168 z
.low
+= roundBitsMask
;
5174 z
.low
&= ~ roundBitsMask
;
5177 z
.low
= LIT64( 0x8000000000000000 );
5179 if (z
.low
!= a
.low
) {
5180 status
->float_exception_flags
|= float_flag_inexact
;
5186 /*----------------------------------------------------------------------------
5187 | Returns the result of adding the absolute values of the extended double-
5188 | precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
5189 | negated before being returned. `zSign' is ignored if the result is a NaN.
5190 | The addition is performed according to the IEC/IEEE Standard for Binary
5191 | Floating-Point Arithmetic.
5192 *----------------------------------------------------------------------------*/
5194 static floatx80
addFloatx80Sigs(floatx80 a
, floatx80 b
, flag zSign
,
5195 float_status
*status
)
5197 int32_t aExp
, bExp
, zExp
;
5198 uint64_t aSig
, bSig
, zSig0
, zSig1
;
5201 aSig
= extractFloatx80Frac( a
);
5202 aExp
= extractFloatx80Exp( a
);
5203 bSig
= extractFloatx80Frac( b
);
5204 bExp
= extractFloatx80Exp( b
);
5205 expDiff
= aExp
- bExp
;
5206 if ( 0 < expDiff
) {
5207 if ( aExp
== 0x7FFF ) {
5208 if ((uint64_t)(aSig
<< 1)) {
5209 return propagateFloatx80NaN(a
, b
, status
);
5213 if ( bExp
== 0 ) --expDiff
;
5214 shift64ExtraRightJamming( bSig
, 0, expDiff
, &bSig
, &zSig1
);
5217 else if ( expDiff
< 0 ) {
5218 if ( bExp
== 0x7FFF ) {
5219 if ((uint64_t)(bSig
<< 1)) {
5220 return propagateFloatx80NaN(a
, b
, status
);
5222 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5224 if ( aExp
== 0 ) ++expDiff
;
5225 shift64ExtraRightJamming( aSig
, 0, - expDiff
, &aSig
, &zSig1
);
5229 if ( aExp
== 0x7FFF ) {
5230 if ( (uint64_t) ( ( aSig
| bSig
)<<1 ) ) {
5231 return propagateFloatx80NaN(a
, b
, status
);
5236 zSig0
= aSig
+ bSig
;
5238 normalizeFloatx80Subnormal( zSig0
, &zExp
, &zSig0
);
5244 zSig0
= aSig
+ bSig
;
5245 if ( (int64_t) zSig0
< 0 ) goto roundAndPack
;
5247 shift64ExtraRightJamming( zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
5248 zSig0
|= LIT64( 0x8000000000000000 );
5251 return roundAndPackFloatx80(status
->floatx80_rounding_precision
,
5252 zSign
, zExp
, zSig0
, zSig1
, status
);
5255 /*----------------------------------------------------------------------------
5256 | Returns the result of subtracting the absolute values of the extended
5257 | double-precision floating-point values `a' and `b'. If `zSign' is 1, the
5258 | difference is negated before being returned. `zSign' is ignored if the
5259 | result is a NaN. The subtraction is performed according to the IEC/IEEE
5260 | Standard for Binary Floating-Point Arithmetic.
5261 *----------------------------------------------------------------------------*/
5263 static floatx80
subFloatx80Sigs(floatx80 a
, floatx80 b
, flag zSign
,
5264 float_status
*status
)
5266 int32_t aExp
, bExp
, zExp
;
5267 uint64_t aSig
, bSig
, zSig0
, zSig1
;
5270 aSig
= extractFloatx80Frac( a
);
5271 aExp
= extractFloatx80Exp( a
);
5272 bSig
= extractFloatx80Frac( b
);
5273 bExp
= extractFloatx80Exp( b
);
5274 expDiff
= aExp
- bExp
;
5275 if ( 0 < expDiff
) goto aExpBigger
;
5276 if ( expDiff
< 0 ) goto bExpBigger
;
5277 if ( aExp
== 0x7FFF ) {
5278 if ( (uint64_t) ( ( aSig
| bSig
)<<1 ) ) {
5279 return propagateFloatx80NaN(a
, b
, status
);
5281 float_raise(float_flag_invalid
, status
);
5282 return floatx80_default_nan(status
);
5289 if ( bSig
< aSig
) goto aBigger
;
5290 if ( aSig
< bSig
) goto bBigger
;
5291 return packFloatx80(status
->float_rounding_mode
== float_round_down
, 0, 0);
5293 if ( bExp
== 0x7FFF ) {
5294 if ((uint64_t)(bSig
<< 1)) {
5295 return propagateFloatx80NaN(a
, b
, status
);
5297 return packFloatx80( zSign
^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
5299 if ( aExp
== 0 ) ++expDiff
;
5300 shift128RightJamming( aSig
, 0, - expDiff
, &aSig
, &zSig1
);
5302 sub128( bSig
, 0, aSig
, zSig1
, &zSig0
, &zSig1
);
5305 goto normalizeRoundAndPack
;
5307 if ( aExp
== 0x7FFF ) {
5308 if ((uint64_t)(aSig
<< 1)) {
5309 return propagateFloatx80NaN(a
, b
, status
);
5313 if ( bExp
== 0 ) --expDiff
;
5314 shift128RightJamming( bSig
, 0, expDiff
, &bSig
, &zSig1
);
5316 sub128( aSig
, 0, bSig
, zSig1
, &zSig0
, &zSig1
);
5318 normalizeRoundAndPack
:
5319 return normalizeRoundAndPackFloatx80(status
->floatx80_rounding_precision
,
5320 zSign
, zExp
, zSig0
, zSig1
, status
);
5323 /*----------------------------------------------------------------------------
5324 | Returns the result of adding the extended double-precision floating-point
5325 | values `a' and `b'. The operation is performed according to the IEC/IEEE
5326 | Standard for Binary Floating-Point Arithmetic.
5327 *----------------------------------------------------------------------------*/
5329 floatx80
floatx80_add(floatx80 a
, floatx80 b
, float_status
*status
)
5333 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5334 float_raise(float_flag_invalid
, status
);
5335 return floatx80_default_nan(status
);
5337 aSign
= extractFloatx80Sign( a
);
5338 bSign
= extractFloatx80Sign( b
);
5339 if ( aSign
== bSign
) {
5340 return addFloatx80Sigs(a
, b
, aSign
, status
);
5343 return subFloatx80Sigs(a
, b
, aSign
, status
);
5348 /*----------------------------------------------------------------------------
5349 | Returns the result of subtracting the extended double-precision floating-
5350 | point values `a' and `b'. The operation is performed according to the
5351 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5352 *----------------------------------------------------------------------------*/
5354 floatx80
floatx80_sub(floatx80 a
, floatx80 b
, float_status
*status
)
5358 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5359 float_raise(float_flag_invalid
, status
);
5360 return floatx80_default_nan(status
);
5362 aSign
= extractFloatx80Sign( a
);
5363 bSign
= extractFloatx80Sign( b
);
5364 if ( aSign
== bSign
) {
5365 return subFloatx80Sigs(a
, b
, aSign
, status
);
5368 return addFloatx80Sigs(a
, b
, aSign
, status
);
5373 /*----------------------------------------------------------------------------
5374 | Returns the result of multiplying the extended double-precision floating-
5375 | point values `a' and `b'. The operation is performed according to the
5376 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5377 *----------------------------------------------------------------------------*/
5379 floatx80
floatx80_mul(floatx80 a
, floatx80 b
, float_status
*status
)
5381 flag aSign
, bSign
, zSign
;
5382 int32_t aExp
, bExp
, zExp
;
5383 uint64_t aSig
, bSig
, zSig0
, zSig1
;
5385 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5386 float_raise(float_flag_invalid
, status
);
5387 return floatx80_default_nan(status
);
5389 aSig
= extractFloatx80Frac( a
);
5390 aExp
= extractFloatx80Exp( a
);
5391 aSign
= extractFloatx80Sign( a
);
5392 bSig
= extractFloatx80Frac( b
);
5393 bExp
= extractFloatx80Exp( b
);
5394 bSign
= extractFloatx80Sign( b
);
5395 zSign
= aSign
^ bSign
;
5396 if ( aExp
== 0x7FFF ) {
5397 if ( (uint64_t) ( aSig
<<1 )
5398 || ( ( bExp
== 0x7FFF ) && (uint64_t) ( bSig
<<1 ) ) ) {
5399 return propagateFloatx80NaN(a
, b
, status
);
5401 if ( ( bExp
| bSig
) == 0 ) goto invalid
;
5402 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5404 if ( bExp
== 0x7FFF ) {
5405 if ((uint64_t)(bSig
<< 1)) {
5406 return propagateFloatx80NaN(a
, b
, status
);
5408 if ( ( aExp
| aSig
) == 0 ) {
5410 float_raise(float_flag_invalid
, status
);
5411 return floatx80_default_nan(status
);
5413 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5416 if ( aSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
5417 normalizeFloatx80Subnormal( aSig
, &aExp
, &aSig
);
5420 if ( bSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
5421 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
5423 zExp
= aExp
+ bExp
- 0x3FFE;
5424 mul64To128( aSig
, bSig
, &zSig0
, &zSig1
);
5425 if ( 0 < (int64_t) zSig0
) {
5426 shortShift128Left( zSig0
, zSig1
, 1, &zSig0
, &zSig1
);
5429 return roundAndPackFloatx80(status
->floatx80_rounding_precision
,
5430 zSign
, zExp
, zSig0
, zSig1
, status
);
5433 /*----------------------------------------------------------------------------
5434 | Returns the result of dividing the extended double-precision floating-point
5435 | value `a' by the corresponding value `b'. The operation is performed
5436 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5437 *----------------------------------------------------------------------------*/
5439 floatx80
floatx80_div(floatx80 a
, floatx80 b
, float_status
*status
)
5441 flag aSign
, bSign
, zSign
;
5442 int32_t aExp
, bExp
, zExp
;
5443 uint64_t aSig
, bSig
, zSig0
, zSig1
;
5444 uint64_t rem0
, rem1
, rem2
, term0
, term1
, term2
;
5446 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5447 float_raise(float_flag_invalid
, status
);
5448 return floatx80_default_nan(status
);
5450 aSig
= extractFloatx80Frac( a
);
5451 aExp
= extractFloatx80Exp( a
);
5452 aSign
= extractFloatx80Sign( a
);
5453 bSig
= extractFloatx80Frac( b
);
5454 bExp
= extractFloatx80Exp( b
);
5455 bSign
= extractFloatx80Sign( b
);
5456 zSign
= aSign
^ bSign
;
5457 if ( aExp
== 0x7FFF ) {
5458 if ((uint64_t)(aSig
<< 1)) {
5459 return propagateFloatx80NaN(a
, b
, status
);
5461 if ( bExp
== 0x7FFF ) {
5462 if ((uint64_t)(bSig
<< 1)) {
5463 return propagateFloatx80NaN(a
, b
, status
);
5467 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5469 if ( bExp
== 0x7FFF ) {
5470 if ((uint64_t)(bSig
<< 1)) {
5471 return propagateFloatx80NaN(a
, b
, status
);
5473 return packFloatx80( zSign
, 0, 0 );
5477 if ( ( aExp
| aSig
) == 0 ) {
5479 float_raise(float_flag_invalid
, status
);
5480 return floatx80_default_nan(status
);
5482 float_raise(float_flag_divbyzero
, status
);
5483 return packFloatx80( zSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
5485 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
5488 if ( aSig
== 0 ) return packFloatx80( zSign
, 0, 0 );
5489 normalizeFloatx80Subnormal( aSig
, &aExp
, &aSig
);
5491 zExp
= aExp
- bExp
+ 0x3FFE;
5493 if ( bSig
<= aSig
) {
5494 shift128Right( aSig
, 0, 1, &aSig
, &rem1
);
5497 zSig0
= estimateDiv128To64( aSig
, rem1
, bSig
);
5498 mul64To128( bSig
, zSig0
, &term0
, &term1
);
5499 sub128( aSig
, rem1
, term0
, term1
, &rem0
, &rem1
);
5500 while ( (int64_t) rem0
< 0 ) {
5502 add128( rem0
, rem1
, 0, bSig
, &rem0
, &rem1
);
5504 zSig1
= estimateDiv128To64( rem1
, 0, bSig
);
5505 if ( (uint64_t) ( zSig1
<<1 ) <= 8 ) {
5506 mul64To128( bSig
, zSig1
, &term1
, &term2
);
5507 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
5508 while ( (int64_t) rem1
< 0 ) {
5510 add128( rem1
, rem2
, 0, bSig
, &rem1
, &rem2
);
5512 zSig1
|= ( ( rem1
| rem2
) != 0 );
5514 return roundAndPackFloatx80(status
->floatx80_rounding_precision
,
5515 zSign
, zExp
, zSig0
, zSig1
, status
);
5518 /*----------------------------------------------------------------------------
5519 | Returns the remainder of the extended double-precision floating-point value
5520 | `a' with respect to the corresponding value `b'. The operation is performed
5521 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5522 *----------------------------------------------------------------------------*/
5524 floatx80
floatx80_rem(floatx80 a
, floatx80 b
, float_status
*status
)
5527 int32_t aExp
, bExp
, expDiff
;
5528 uint64_t aSig0
, aSig1
, bSig
;
5529 uint64_t q
, term0
, term1
, alternateASig0
, alternateASig1
;
5531 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5532 float_raise(float_flag_invalid
, status
);
5533 return floatx80_default_nan(status
);
5535 aSig0
= extractFloatx80Frac( a
);
5536 aExp
= extractFloatx80Exp( a
);
5537 aSign
= extractFloatx80Sign( a
);
5538 bSig
= extractFloatx80Frac( b
);
5539 bExp
= extractFloatx80Exp( b
);
5540 if ( aExp
== 0x7FFF ) {
5541 if ( (uint64_t) ( aSig0
<<1 )
5542 || ( ( bExp
== 0x7FFF ) && (uint64_t) ( bSig
<<1 ) ) ) {
5543 return propagateFloatx80NaN(a
, b
, status
);
5547 if ( bExp
== 0x7FFF ) {
5548 if ((uint64_t)(bSig
<< 1)) {
5549 return propagateFloatx80NaN(a
, b
, status
);
5556 float_raise(float_flag_invalid
, status
);
5557 return floatx80_default_nan(status
);
5559 normalizeFloatx80Subnormal( bSig
, &bExp
, &bSig
);
5562 if ( (uint64_t) ( aSig0
<<1 ) == 0 ) return a
;
5563 normalizeFloatx80Subnormal( aSig0
, &aExp
, &aSig0
);
5565 bSig
|= LIT64( 0x8000000000000000 );
5567 expDiff
= aExp
- bExp
;
5569 if ( expDiff
< 0 ) {
5570 if ( expDiff
< -1 ) return a
;
5571 shift128Right( aSig0
, 0, 1, &aSig0
, &aSig1
);
5574 q
= ( bSig
<= aSig0
);
5575 if ( q
) aSig0
-= bSig
;
5577 while ( 0 < expDiff
) {
5578 q
= estimateDiv128To64( aSig0
, aSig1
, bSig
);
5579 q
= ( 2 < q
) ? q
- 2 : 0;
5580 mul64To128( bSig
, q
, &term0
, &term1
);
5581 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
5582 shortShift128Left( aSig0
, aSig1
, 62, &aSig0
, &aSig1
);
5586 if ( 0 < expDiff
) {
5587 q
= estimateDiv128To64( aSig0
, aSig1
, bSig
);
5588 q
= ( 2 < q
) ? q
- 2 : 0;
5590 mul64To128( bSig
, q
<<( 64 - expDiff
), &term0
, &term1
);
5591 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
5592 shortShift128Left( 0, bSig
, 64 - expDiff
, &term0
, &term1
);
5593 while ( le128( term0
, term1
, aSig0
, aSig1
) ) {
5595 sub128( aSig0
, aSig1
, term0
, term1
, &aSig0
, &aSig1
);
5602 sub128( term0
, term1
, aSig0
, aSig1
, &alternateASig0
, &alternateASig1
);
5603 if ( lt128( alternateASig0
, alternateASig1
, aSig0
, aSig1
)
5604 || ( eq128( alternateASig0
, alternateASig1
, aSig0
, aSig1
)
5607 aSig0
= alternateASig0
;
5608 aSig1
= alternateASig1
;
5612 normalizeRoundAndPackFloatx80(
5613 80, zSign
, bExp
+ expDiff
, aSig0
, aSig1
, status
);
5617 /*----------------------------------------------------------------------------
5618 | Returns the square root of the extended double-precision floating-point
5619 | value `a'. The operation is performed according to the IEC/IEEE Standard
5620 | for Binary Floating-Point Arithmetic.
5621 *----------------------------------------------------------------------------*/
5623 floatx80
floatx80_sqrt(floatx80 a
, float_status
*status
)
5627 uint64_t aSig0
, aSig1
, zSig0
, zSig1
, doubleZSig0
;
5628 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
5630 if (floatx80_invalid_encoding(a
)) {
5631 float_raise(float_flag_invalid
, status
);
5632 return floatx80_default_nan(status
);
5634 aSig0
= extractFloatx80Frac( a
);
5635 aExp
= extractFloatx80Exp( a
);
5636 aSign
= extractFloatx80Sign( a
);
5637 if ( aExp
== 0x7FFF ) {
5638 if ((uint64_t)(aSig0
<< 1)) {
5639 return propagateFloatx80NaN(a
, a
, status
);
5641 if ( ! aSign
) return a
;
5645 if ( ( aExp
| aSig0
) == 0 ) return a
;
5647 float_raise(float_flag_invalid
, status
);
5648 return floatx80_default_nan(status
);
5651 if ( aSig0
== 0 ) return packFloatx80( 0, 0, 0 );
5652 normalizeFloatx80Subnormal( aSig0
, &aExp
, &aSig0
);
5654 zExp
= ( ( aExp
- 0x3FFF )>>1 ) + 0x3FFF;
5655 zSig0
= estimateSqrt32( aExp
, aSig0
>>32 );
5656 shift128Right( aSig0
, 0, 2 + ( aExp
& 1 ), &aSig0
, &aSig1
);
5657 zSig0
= estimateDiv128To64( aSig0
, aSig1
, zSig0
<<32 ) + ( zSig0
<<30 );
5658 doubleZSig0
= zSig0
<<1;
5659 mul64To128( zSig0
, zSig0
, &term0
, &term1
);
5660 sub128( aSig0
, aSig1
, term0
, term1
, &rem0
, &rem1
);
5661 while ( (int64_t) rem0
< 0 ) {
5664 add128( rem0
, rem1
, zSig0
>>63, doubleZSig0
| 1, &rem0
, &rem1
);
5666 zSig1
= estimateDiv128To64( rem1
, 0, doubleZSig0
);
5667 if ( ( zSig1
& LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
5668 if ( zSig1
== 0 ) zSig1
= 1;
5669 mul64To128( doubleZSig0
, zSig1
, &term1
, &term2
);
5670 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
5671 mul64To128( zSig1
, zSig1
, &term2
, &term3
);
5672 sub192( rem1
, rem2
, 0, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
5673 while ( (int64_t) rem1
< 0 ) {
5675 shortShift128Left( 0, zSig1
, 1, &term2
, &term3
);
5677 term2
|= doubleZSig0
;
5678 add192( rem1
, rem2
, rem3
, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
5680 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
5682 shortShift128Left( 0, zSig1
, 1, &zSig0
, &zSig1
);
5683 zSig0
|= doubleZSig0
;
5684 return roundAndPackFloatx80(status
->floatx80_rounding_precision
,
5685 0, zExp
, zSig0
, zSig1
, status
);
5688 /*----------------------------------------------------------------------------
5689 | Returns 1 if the extended double-precision floating-point value `a' is equal
5690 | to the corresponding value `b', and 0 otherwise. The invalid exception is
5691 | raised if either operand is a NaN. Otherwise, the comparison is performed
5692 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5693 *----------------------------------------------------------------------------*/
5695 int floatx80_eq(floatx80 a
, floatx80 b
, float_status
*status
)
5698 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)
5699 || (extractFloatx80Exp(a
) == 0x7FFF
5700 && (uint64_t) (extractFloatx80Frac(a
) << 1))
5701 || (extractFloatx80Exp(b
) == 0x7FFF
5702 && (uint64_t) (extractFloatx80Frac(b
) << 1))
5704 float_raise(float_flag_invalid
, status
);
5709 && ( ( a
.high
== b
.high
)
5711 && ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
5716 /*----------------------------------------------------------------------------
5717 | Returns 1 if the extended double-precision floating-point value `a' is
5718 | less than or equal to the corresponding value `b', and 0 otherwise. The
5719 | invalid exception is raised if either operand is a NaN. The comparison is
5720 | performed according to the IEC/IEEE Standard for Binary Floating-Point
5722 *----------------------------------------------------------------------------*/
5724 int floatx80_le(floatx80 a
, floatx80 b
, float_status
*status
)
5728 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)
5729 || (extractFloatx80Exp(a
) == 0x7FFF
5730 && (uint64_t) (extractFloatx80Frac(a
) << 1))
5731 || (extractFloatx80Exp(b
) == 0x7FFF
5732 && (uint64_t) (extractFloatx80Frac(b
) << 1))
5734 float_raise(float_flag_invalid
, status
);
5737 aSign
= extractFloatx80Sign( a
);
5738 bSign
= extractFloatx80Sign( b
);
5739 if ( aSign
!= bSign
) {
5742 || ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5746 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
5747 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
5751 /*----------------------------------------------------------------------------
5752 | Returns 1 if the extended double-precision floating-point value `a' is
5753 | less than the corresponding value `b', and 0 otherwise. The invalid
5754 | exception is raised if either operand is a NaN. The comparison is performed
5755 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5756 *----------------------------------------------------------------------------*/
5758 int floatx80_lt(floatx80 a
, floatx80 b
, float_status
*status
)
5762 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)
5763 || (extractFloatx80Exp(a
) == 0x7FFF
5764 && (uint64_t) (extractFloatx80Frac(a
) << 1))
5765 || (extractFloatx80Exp(b
) == 0x7FFF
5766 && (uint64_t) (extractFloatx80Frac(b
) << 1))
5768 float_raise(float_flag_invalid
, status
);
5771 aSign
= extractFloatx80Sign( a
);
5772 bSign
= extractFloatx80Sign( b
);
5773 if ( aSign
!= bSign
) {
5776 && ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5780 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
5781 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
5785 /*----------------------------------------------------------------------------
5786 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5787 | cannot be compared, and 0 otherwise. The invalid exception is raised if
5788 | either operand is a NaN. The comparison is performed according to the
5789 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5790 *----------------------------------------------------------------------------*/
5791 int floatx80_unordered(floatx80 a
, floatx80 b
, float_status
*status
)
5793 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)
5794 || (extractFloatx80Exp(a
) == 0x7FFF
5795 && (uint64_t) (extractFloatx80Frac(a
) << 1))
5796 || (extractFloatx80Exp(b
) == 0x7FFF
5797 && (uint64_t) (extractFloatx80Frac(b
) << 1))
5799 float_raise(float_flag_invalid
, status
);
5805 /*----------------------------------------------------------------------------
5806 | Returns 1 if the extended double-precision floating-point value `a' is
5807 | equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
5808 | cause an exception. The comparison is performed according to the IEC/IEEE
5809 | Standard for Binary Floating-Point Arithmetic.
5810 *----------------------------------------------------------------------------*/
5812 int floatx80_eq_quiet(floatx80 a
, floatx80 b
, float_status
*status
)
5815 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5816 float_raise(float_flag_invalid
, status
);
5819 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5820 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5821 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5822 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5824 if (floatx80_is_signaling_nan(a
, status
)
5825 || floatx80_is_signaling_nan(b
, status
)) {
5826 float_raise(float_flag_invalid
, status
);
5832 && ( ( a
.high
== b
.high
)
5834 && ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
5839 /*----------------------------------------------------------------------------
5840 | Returns 1 if the extended double-precision floating-point value `a' is less
5841 | than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
5842 | do not cause an exception. Otherwise, the comparison is performed according
5843 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5844 *----------------------------------------------------------------------------*/
5846 int floatx80_le_quiet(floatx80 a
, floatx80 b
, float_status
*status
)
5850 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5851 float_raise(float_flag_invalid
, status
);
5854 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5855 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5856 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5857 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5859 if (floatx80_is_signaling_nan(a
, status
)
5860 || floatx80_is_signaling_nan(b
, status
)) {
5861 float_raise(float_flag_invalid
, status
);
5865 aSign
= extractFloatx80Sign( a
);
5866 bSign
= extractFloatx80Sign( b
);
5867 if ( aSign
!= bSign
) {
5870 || ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5874 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
5875 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
5879 /*----------------------------------------------------------------------------
5880 | Returns 1 if the extended double-precision floating-point value `a' is less
5881 | than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
5882 | an exception. Otherwise, the comparison is performed according to the
5883 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
5884 *----------------------------------------------------------------------------*/
5886 int floatx80_lt_quiet(floatx80 a
, floatx80 b
, float_status
*status
)
5890 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5891 float_raise(float_flag_invalid
, status
);
5894 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5895 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5896 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5897 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5899 if (floatx80_is_signaling_nan(a
, status
)
5900 || floatx80_is_signaling_nan(b
, status
)) {
5901 float_raise(float_flag_invalid
, status
);
5905 aSign
= extractFloatx80Sign( a
);
5906 bSign
= extractFloatx80Sign( b
);
5907 if ( aSign
!= bSign
) {
5910 && ( ( ( (uint16_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
5914 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
5915 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
5919 /*----------------------------------------------------------------------------
5920 | Returns 1 if the extended double-precision floating-point values `a' and `b'
5921 | cannot be compared, and 0 otherwise. Quiet NaNs do not cause an exception.
5922 | The comparison is performed according to the IEC/IEEE Standard for Binary
5923 | Floating-Point Arithmetic.
5924 *----------------------------------------------------------------------------*/
5925 int floatx80_unordered_quiet(floatx80 a
, floatx80 b
, float_status
*status
)
5927 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
5928 float_raise(float_flag_invalid
, status
);
5931 if ( ( ( extractFloatx80Exp( a
) == 0x7FFF )
5932 && (uint64_t) ( extractFloatx80Frac( a
)<<1 ) )
5933 || ( ( extractFloatx80Exp( b
) == 0x7FFF )
5934 && (uint64_t) ( extractFloatx80Frac( b
)<<1 ) )
5936 if (floatx80_is_signaling_nan(a
, status
)
5937 || floatx80_is_signaling_nan(b
, status
)) {
5938 float_raise(float_flag_invalid
, status
);
5945 /*----------------------------------------------------------------------------
5946 | Returns the result of converting the quadruple-precision floating-point
5947 | value `a' to the 32-bit two's complement integer format. The conversion
5948 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5949 | Arithmetic---which means in particular that the conversion is rounded
5950 | according to the current rounding mode. If `a' is a NaN, the largest
5951 | positive integer is returned. Otherwise, if the conversion overflows, the
5952 | largest integer with the same sign as `a' is returned.
5953 *----------------------------------------------------------------------------*/
5955 int32_t float128_to_int32(float128 a
, float_status
*status
)
5958 int32_t aExp
, shiftCount
;
5959 uint64_t aSig0
, aSig1
;
5961 aSig1
= extractFloat128Frac1( a
);
5962 aSig0
= extractFloat128Frac0( a
);
5963 aExp
= extractFloat128Exp( a
);
5964 aSign
= extractFloat128Sign( a
);
5965 if ( ( aExp
== 0x7FFF ) && ( aSig0
| aSig1
) ) aSign
= 0;
5966 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
5967 aSig0
|= ( aSig1
!= 0 );
5968 shiftCount
= 0x4028 - aExp
;
5969 if ( 0 < shiftCount
) shift64RightJamming( aSig0
, shiftCount
, &aSig0
);
5970 return roundAndPackInt32(aSign
, aSig0
, status
);
5974 /*----------------------------------------------------------------------------
5975 | Returns the result of converting the quadruple-precision floating-point
5976 | value `a' to the 32-bit two's complement integer format. The conversion
5977 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
5978 | Arithmetic, except that the conversion is always rounded toward zero. If
5979 | `a' is a NaN, the largest positive integer is returned. Otherwise, if the
5980 | conversion overflows, the largest integer with the same sign as `a' is
5982 *----------------------------------------------------------------------------*/
5984 int32_t float128_to_int32_round_to_zero(float128 a
, float_status
*status
)
5987 int32_t aExp
, shiftCount
;
5988 uint64_t aSig0
, aSig1
, savedASig
;
5991 aSig1
= extractFloat128Frac1( a
);
5992 aSig0
= extractFloat128Frac0( a
);
5993 aExp
= extractFloat128Exp( a
);
5994 aSign
= extractFloat128Sign( a
);
5995 aSig0
|= ( aSig1
!= 0 );
5996 if ( 0x401E < aExp
) {
5997 if ( ( aExp
== 0x7FFF ) && aSig0
) aSign
= 0;
6000 else if ( aExp
< 0x3FFF ) {
6001 if (aExp
|| aSig0
) {
6002 status
->float_exception_flags
|= float_flag_inexact
;
6006 aSig0
|= LIT64( 0x0001000000000000 );
6007 shiftCount
= 0x402F - aExp
;
6009 aSig0
>>= shiftCount
;
6011 if ( aSign
) z
= - z
;
6012 if ( ( z
< 0 ) ^ aSign
) {
6014 float_raise(float_flag_invalid
, status
);
6015 return aSign
? (int32_t) 0x80000000 : 0x7FFFFFFF;
6017 if ( ( aSig0
<<shiftCount
) != savedASig
) {
6018 status
->float_exception_flags
|= float_flag_inexact
;
6024 /*----------------------------------------------------------------------------
6025 | Returns the result of converting the quadruple-precision floating-point
6026 | value `a' to the 64-bit two's complement integer format. The conversion
6027 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6028 | Arithmetic---which means in particular that the conversion is rounded
6029 | according to the current rounding mode. If `a' is a NaN, the largest
6030 | positive integer is returned. Otherwise, if the conversion overflows, the
6031 | largest integer with the same sign as `a' is returned.
6032 *----------------------------------------------------------------------------*/
6034 int64_t float128_to_int64(float128 a
, float_status
*status
)
6037 int32_t aExp
, shiftCount
;
6038 uint64_t aSig0
, aSig1
;
6040 aSig1
= extractFloat128Frac1( a
);
6041 aSig0
= extractFloat128Frac0( a
);
6042 aExp
= extractFloat128Exp( a
);
6043 aSign
= extractFloat128Sign( a
);
6044 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
6045 shiftCount
= 0x402F - aExp
;
6046 if ( shiftCount
<= 0 ) {
6047 if ( 0x403E < aExp
) {
6048 float_raise(float_flag_invalid
, status
);
6050 || ( ( aExp
== 0x7FFF )
6051 && ( aSig1
|| ( aSig0
!= LIT64( 0x0001000000000000 ) ) )
6054 return LIT64( 0x7FFFFFFFFFFFFFFF );
6056 return (int64_t) LIT64( 0x8000000000000000 );
6058 shortShift128Left( aSig0
, aSig1
, - shiftCount
, &aSig0
, &aSig1
);
6061 shift64ExtraRightJamming( aSig0
, aSig1
, shiftCount
, &aSig0
, &aSig1
);
6063 return roundAndPackInt64(aSign
, aSig0
, aSig1
, status
);
6067 /*----------------------------------------------------------------------------
6068 | Returns the result of converting the quadruple-precision floating-point
6069 | value `a' to the 64-bit two's complement integer format. The conversion
6070 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6071 | Arithmetic, except that the conversion is always rounded toward zero.
6072 | If `a' is a NaN, the largest positive integer is returned. Otherwise, if
6073 | the conversion overflows, the largest integer with the same sign as `a' is
6075 *----------------------------------------------------------------------------*/
6077 int64_t float128_to_int64_round_to_zero(float128 a
, float_status
*status
)
6080 int32_t aExp
, shiftCount
;
6081 uint64_t aSig0
, aSig1
;
6084 aSig1
= extractFloat128Frac1( a
);
6085 aSig0
= extractFloat128Frac0( a
);
6086 aExp
= extractFloat128Exp( a
);
6087 aSign
= extractFloat128Sign( a
);
6088 if ( aExp
) aSig0
|= LIT64( 0x0001000000000000 );
6089 shiftCount
= aExp
- 0x402F;
6090 if ( 0 < shiftCount
) {
6091 if ( 0x403E <= aExp
) {
6092 aSig0
&= LIT64( 0x0000FFFFFFFFFFFF );
6093 if ( ( a
.high
== LIT64( 0xC03E000000000000 ) )
6094 && ( aSig1
< LIT64( 0x0002000000000000 ) ) ) {
6096 status
->float_exception_flags
|= float_flag_inexact
;
6100 float_raise(float_flag_invalid
, status
);
6101 if ( ! aSign
|| ( ( aExp
== 0x7FFF ) && ( aSig0
| aSig1
) ) ) {
6102 return LIT64( 0x7FFFFFFFFFFFFFFF );
6105 return (int64_t) LIT64( 0x8000000000000000 );
6107 z
= ( aSig0
<<shiftCount
) | ( aSig1
>>( ( - shiftCount
) & 63 ) );
6108 if ( (uint64_t) ( aSig1
<<shiftCount
) ) {
6109 status
->float_exception_flags
|= float_flag_inexact
;
6113 if ( aExp
< 0x3FFF ) {
6114 if ( aExp
| aSig0
| aSig1
) {
6115 status
->float_exception_flags
|= float_flag_inexact
;
6119 z
= aSig0
>>( - shiftCount
);
6121 || ( shiftCount
&& (uint64_t) ( aSig0
<<( shiftCount
& 63 ) ) ) ) {
6122 status
->float_exception_flags
|= float_flag_inexact
;
6125 if ( aSign
) z
= - z
;
6130 /*----------------------------------------------------------------------------
6131 | Returns the result of converting the quadruple-precision floating-point value
6132 | `a' to the 64-bit unsigned integer format. The conversion is
6133 | performed according to the IEC/IEEE Standard for Binary Floating-Point
6134 | Arithmetic---which means in particular that the conversion is rounded
6135 | according to the current rounding mode. If `a' is a NaN, the largest
6136 | positive integer is returned. If the conversion overflows, the
6137 | largest unsigned integer is returned. If 'a' is negative, the value is
6138 | rounded and zero is returned; negative values that do not round to zero
6139 | will raise the inexact exception.
6140 *----------------------------------------------------------------------------*/
6142 uint64_t float128_to_uint64(float128 a
, float_status
*status
)
6147 uint64_t aSig0
, aSig1
;
6149 aSig0
= extractFloat128Frac0(a
);
6150 aSig1
= extractFloat128Frac1(a
);
6151 aExp
= extractFloat128Exp(a
);
6152 aSign
= extractFloat128Sign(a
);
6153 if (aSign
&& (aExp
> 0x3FFE)) {
6154 float_raise(float_flag_invalid
, status
);
6155 if (float128_is_any_nan(a
)) {
6156 return LIT64(0xFFFFFFFFFFFFFFFF);
6162 aSig0
|= LIT64(0x0001000000000000);
6164 shiftCount
= 0x402F - aExp
;
6165 if (shiftCount
<= 0) {
6166 if (0x403E < aExp
) {
6167 float_raise(float_flag_invalid
, status
);
6168 return LIT64(0xFFFFFFFFFFFFFFFF);
6170 shortShift128Left(aSig0
, aSig1
, -shiftCount
, &aSig0
, &aSig1
);
6172 shift64ExtraRightJamming(aSig0
, aSig1
, shiftCount
, &aSig0
, &aSig1
);
6174 return roundAndPackUint64(aSign
, aSig0
, aSig1
, status
);
6177 uint64_t float128_to_uint64_round_to_zero(float128 a
, float_status
*status
)
6180 signed char current_rounding_mode
= status
->float_rounding_mode
;
6182 set_float_rounding_mode(float_round_to_zero
, status
);
6183 v
= float128_to_uint64(a
, status
);
6184 set_float_rounding_mode(current_rounding_mode
, status
);
6189 /*----------------------------------------------------------------------------
6190 | Returns the result of converting the quadruple-precision floating-point
6191 | value `a' to the 32-bit unsigned integer format. The conversion
6192 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6193 | Arithmetic except that the conversion is always rounded toward zero.
6194 | If `a' is a NaN, the largest positive integer is returned. Otherwise,
6195 | if the conversion overflows, the largest unsigned integer is returned.
6196 | If 'a' is negative, the value is rounded and zero is returned; negative
6197 | values that do not round to zero will raise the inexact exception.
6198 *----------------------------------------------------------------------------*/
6200 uint32_t float128_to_uint32_round_to_zero(float128 a
, float_status
*status
)
6204 int old_exc_flags
= get_float_exception_flags(status
);
6206 v
= float128_to_uint64_round_to_zero(a
, status
);
6207 if (v
> 0xffffffff) {
6212 set_float_exception_flags(old_exc_flags
, status
);
6213 float_raise(float_flag_invalid
, status
);
6217 /*----------------------------------------------------------------------------
6218 | Returns the result of converting the quadruple-precision floating-point
6219 | value `a' to the single-precision floating-point format. The conversion
6220 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6222 *----------------------------------------------------------------------------*/
6224 float32
float128_to_float32(float128 a
, float_status
*status
)
6228 uint64_t aSig0
, aSig1
;
6231 aSig1
= extractFloat128Frac1( a
);
6232 aSig0
= extractFloat128Frac0( a
);
6233 aExp
= extractFloat128Exp( a
);
6234 aSign
= extractFloat128Sign( a
);
6235 if ( aExp
== 0x7FFF ) {
6236 if ( aSig0
| aSig1
) {
6237 return commonNaNToFloat32(float128ToCommonNaN(a
, status
), status
);
6239 return packFloat32( aSign
, 0xFF, 0 );
6241 aSig0
|= ( aSig1
!= 0 );
6242 shift64RightJamming( aSig0
, 18, &aSig0
);
6244 if ( aExp
|| zSig
) {
6248 return roundAndPackFloat32(aSign
, aExp
, zSig
, status
);
6252 /*----------------------------------------------------------------------------
6253 | Returns the result of converting the quadruple-precision floating-point
6254 | value `a' to the double-precision floating-point format. The conversion
6255 | is performed according to the IEC/IEEE Standard for Binary Floating-Point
6257 *----------------------------------------------------------------------------*/
6259 float64
float128_to_float64(float128 a
, float_status
*status
)
6263 uint64_t aSig0
, aSig1
;
6265 aSig1
= extractFloat128Frac1( a
);
6266 aSig0
= extractFloat128Frac0( a
);
6267 aExp
= extractFloat128Exp( a
);
6268 aSign
= extractFloat128Sign( a
);
6269 if ( aExp
== 0x7FFF ) {
6270 if ( aSig0
| aSig1
) {
6271 return commonNaNToFloat64(float128ToCommonNaN(a
, status
), status
);
6273 return packFloat64( aSign
, 0x7FF, 0 );
6275 shortShift128Left( aSig0
, aSig1
, 14, &aSig0
, &aSig1
);
6276 aSig0
|= ( aSig1
!= 0 );
6277 if ( aExp
|| aSig0
) {
6278 aSig0
|= LIT64( 0x4000000000000000 );
6281 return roundAndPackFloat64(aSign
, aExp
, aSig0
, status
);
6285 /*----------------------------------------------------------------------------
6286 | Returns the result of converting the quadruple-precision floating-point
6287 | value `a' to the extended double-precision floating-point format. The
6288 | conversion is performed according to the IEC/IEEE Standard for Binary
6289 | Floating-Point Arithmetic.
6290 *----------------------------------------------------------------------------*/
6292 floatx80
float128_to_floatx80(float128 a
, float_status
*status
)
6296 uint64_t aSig0
, aSig1
;
6298 aSig1
= extractFloat128Frac1( a
);
6299 aSig0
= extractFloat128Frac0( a
);
6300 aExp
= extractFloat128Exp( a
);
6301 aSign
= extractFloat128Sign( a
);
6302 if ( aExp
== 0x7FFF ) {
6303 if ( aSig0
| aSig1
) {
6304 return commonNaNToFloatx80(float128ToCommonNaN(a
, status
), status
);
6306 return packFloatx80( aSign
, 0x7FFF, LIT64( 0x8000000000000000 ) );
6309 if ( ( aSig0
| aSig1
) == 0 ) return packFloatx80( aSign
, 0, 0 );
6310 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6313 aSig0
|= LIT64( 0x0001000000000000 );
6315 shortShift128Left( aSig0
, aSig1
, 15, &aSig0
, &aSig1
);
6316 return roundAndPackFloatx80(80, aSign
, aExp
, aSig0
, aSig1
, status
);
6320 /*----------------------------------------------------------------------------
6321 | Rounds the quadruple-precision floating-point value `a' to an integer, and
6322 | returns the result as a quadruple-precision floating-point value. The
6323 | operation is performed according to the IEC/IEEE Standard for Binary
6324 | Floating-Point Arithmetic.
6325 *----------------------------------------------------------------------------*/
6327 float128
float128_round_to_int(float128 a
, float_status
*status
)
6331 uint64_t lastBitMask
, roundBitsMask
;
6334 aExp
= extractFloat128Exp( a
);
6335 if ( 0x402F <= aExp
) {
6336 if ( 0x406F <= aExp
) {
6337 if ( ( aExp
== 0x7FFF )
6338 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) )
6340 return propagateFloat128NaN(a
, a
, status
);
6345 lastBitMask
= ( lastBitMask
<<( 0x406E - aExp
) )<<1;
6346 roundBitsMask
= lastBitMask
- 1;
6348 switch (status
->float_rounding_mode
) {
6349 case float_round_nearest_even
:
6350 if ( lastBitMask
) {
6351 add128( z
.high
, z
.low
, 0, lastBitMask
>>1, &z
.high
, &z
.low
);
6352 if ( ( z
.low
& roundBitsMask
) == 0 ) z
.low
&= ~ lastBitMask
;
6355 if ( (int64_t) z
.low
< 0 ) {
6357 if ( (uint64_t) ( z
.low
<<1 ) == 0 ) z
.high
&= ~1;
6361 case float_round_ties_away
:
6363 add128(z
.high
, z
.low
, 0, lastBitMask
>> 1, &z
.high
, &z
.low
);
6365 if ((int64_t) z
.low
< 0) {
6370 case float_round_to_zero
:
6372 case float_round_up
:
6373 if (!extractFloat128Sign(z
)) {
6374 add128(z
.high
, z
.low
, 0, roundBitsMask
, &z
.high
, &z
.low
);
6377 case float_round_down
:
6378 if (extractFloat128Sign(z
)) {
6379 add128(z
.high
, z
.low
, 0, roundBitsMask
, &z
.high
, &z
.low
);
6385 z
.low
&= ~ roundBitsMask
;
6388 if ( aExp
< 0x3FFF ) {
6389 if ( ( ( (uint64_t) ( a
.high
<<1 ) ) | a
.low
) == 0 ) return a
;
6390 status
->float_exception_flags
|= float_flag_inexact
;
6391 aSign
= extractFloat128Sign( a
);
6392 switch (status
->float_rounding_mode
) {
6393 case float_round_nearest_even
:
6394 if ( ( aExp
== 0x3FFE )
6395 && ( extractFloat128Frac0( a
)
6396 | extractFloat128Frac1( a
) )
6398 return packFloat128( aSign
, 0x3FFF, 0, 0 );
6401 case float_round_ties_away
:
6402 if (aExp
== 0x3FFE) {
6403 return packFloat128(aSign
, 0x3FFF, 0, 0);
6406 case float_round_down
:
6408 aSign
? packFloat128( 1, 0x3FFF, 0, 0 )
6409 : packFloat128( 0, 0, 0, 0 );
6410 case float_round_up
:
6412 aSign
? packFloat128( 1, 0, 0, 0 )
6413 : packFloat128( 0, 0x3FFF, 0, 0 );
6415 return packFloat128( aSign
, 0, 0, 0 );
6418 lastBitMask
<<= 0x402F - aExp
;
6419 roundBitsMask
= lastBitMask
- 1;
6422 switch (status
->float_rounding_mode
) {
6423 case float_round_nearest_even
:
6424 z
.high
+= lastBitMask
>>1;
6425 if ( ( ( z
.high
& roundBitsMask
) | a
.low
) == 0 ) {
6426 z
.high
&= ~ lastBitMask
;
6429 case float_round_ties_away
:
6430 z
.high
+= lastBitMask
>>1;
6432 case float_round_to_zero
:
6434 case float_round_up
:
6435 if (!extractFloat128Sign(z
)) {
6436 z
.high
|= ( a
.low
!= 0 );
6437 z
.high
+= roundBitsMask
;
6440 case float_round_down
:
6441 if (extractFloat128Sign(z
)) {
6442 z
.high
|= (a
.low
!= 0);
6443 z
.high
+= roundBitsMask
;
6449 z
.high
&= ~ roundBitsMask
;
6451 if ( ( z
.low
!= a
.low
) || ( z
.high
!= a
.high
) ) {
6452 status
->float_exception_flags
|= float_flag_inexact
;
6458 /*----------------------------------------------------------------------------
6459 | Returns the result of adding the absolute values of the quadruple-precision
6460 | floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
6461 | before being returned. `zSign' is ignored if the result is a NaN.
6462 | The addition is performed according to the IEC/IEEE Standard for Binary
6463 | Floating-Point Arithmetic.
6464 *----------------------------------------------------------------------------*/
6466 static float128
addFloat128Sigs(float128 a
, float128 b
, flag zSign
,
6467 float_status
*status
)
6469 int32_t aExp
, bExp
, zExp
;
6470 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
;
6473 aSig1
= extractFloat128Frac1( a
);
6474 aSig0
= extractFloat128Frac0( a
);
6475 aExp
= extractFloat128Exp( a
);
6476 bSig1
= extractFloat128Frac1( b
);
6477 bSig0
= extractFloat128Frac0( b
);
6478 bExp
= extractFloat128Exp( b
);
6479 expDiff
= aExp
- bExp
;
6480 if ( 0 < expDiff
) {
6481 if ( aExp
== 0x7FFF ) {
6482 if (aSig0
| aSig1
) {
6483 return propagateFloat128NaN(a
, b
, status
);
6491 bSig0
|= LIT64( 0x0001000000000000 );
6493 shift128ExtraRightJamming(
6494 bSig0
, bSig1
, 0, expDiff
, &bSig0
, &bSig1
, &zSig2
);
6497 else if ( expDiff
< 0 ) {
6498 if ( bExp
== 0x7FFF ) {
6499 if (bSig0
| bSig1
) {
6500 return propagateFloat128NaN(a
, b
, status
);
6502 return packFloat128( zSign
, 0x7FFF, 0, 0 );
6508 aSig0
|= LIT64( 0x0001000000000000 );
6510 shift128ExtraRightJamming(
6511 aSig0
, aSig1
, 0, - expDiff
, &aSig0
, &aSig1
, &zSig2
);
6515 if ( aExp
== 0x7FFF ) {
6516 if ( aSig0
| aSig1
| bSig0
| bSig1
) {
6517 return propagateFloat128NaN(a
, b
, status
);
6521 add128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
6523 if (status
->flush_to_zero
) {
6524 if (zSig0
| zSig1
) {
6525 float_raise(float_flag_output_denormal
, status
);
6527 return packFloat128(zSign
, 0, 0, 0);
6529 return packFloat128( zSign
, 0, zSig0
, zSig1
);
6532 zSig0
|= LIT64( 0x0002000000000000 );
6536 aSig0
|= LIT64( 0x0001000000000000 );
6537 add128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
6539 if ( zSig0
< LIT64( 0x0002000000000000 ) ) goto roundAndPack
;
6542 shift128ExtraRightJamming(
6543 zSig0
, zSig1
, zSig2
, 1, &zSig0
, &zSig1
, &zSig2
);
6545 return roundAndPackFloat128(zSign
, zExp
, zSig0
, zSig1
, zSig2
, status
);
6549 /*----------------------------------------------------------------------------
6550 | Returns the result of subtracting the absolute values of the quadruple-
6551 | precision floating-point values `a' and `b'. If `zSign' is 1, the
6552 | difference is negated before being returned. `zSign' is ignored if the
6553 | result is a NaN. The subtraction is performed according to the IEC/IEEE
6554 | Standard for Binary Floating-Point Arithmetic.
6555 *----------------------------------------------------------------------------*/
6557 static float128
subFloat128Sigs(float128 a
, float128 b
, flag zSign
,
6558 float_status
*status
)
6560 int32_t aExp
, bExp
, zExp
;
6561 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
;
6564 aSig1
= extractFloat128Frac1( a
);
6565 aSig0
= extractFloat128Frac0( a
);
6566 aExp
= extractFloat128Exp( a
);
6567 bSig1
= extractFloat128Frac1( b
);
6568 bSig0
= extractFloat128Frac0( b
);
6569 bExp
= extractFloat128Exp( b
);
6570 expDiff
= aExp
- bExp
;
6571 shortShift128Left( aSig0
, aSig1
, 14, &aSig0
, &aSig1
);
6572 shortShift128Left( bSig0
, bSig1
, 14, &bSig0
, &bSig1
);
6573 if ( 0 < expDiff
) goto aExpBigger
;
6574 if ( expDiff
< 0 ) goto bExpBigger
;
6575 if ( aExp
== 0x7FFF ) {
6576 if ( aSig0
| aSig1
| bSig0
| bSig1
) {
6577 return propagateFloat128NaN(a
, b
, status
);
6579 float_raise(float_flag_invalid
, status
);
6580 return float128_default_nan(status
);
6586 if ( bSig0
< aSig0
) goto aBigger
;
6587 if ( aSig0
< bSig0
) goto bBigger
;
6588 if ( bSig1
< aSig1
) goto aBigger
;
6589 if ( aSig1
< bSig1
) goto bBigger
;
6590 return packFloat128(status
->float_rounding_mode
== float_round_down
,
6593 if ( bExp
== 0x7FFF ) {
6594 if (bSig0
| bSig1
) {
6595 return propagateFloat128NaN(a
, b
, status
);
6597 return packFloat128( zSign
^ 1, 0x7FFF, 0, 0 );
6603 aSig0
|= LIT64( 0x4000000000000000 );
6605 shift128RightJamming( aSig0
, aSig1
, - expDiff
, &aSig0
, &aSig1
);
6606 bSig0
|= LIT64( 0x4000000000000000 );
6608 sub128( bSig0
, bSig1
, aSig0
, aSig1
, &zSig0
, &zSig1
);
6611 goto normalizeRoundAndPack
;
6613 if ( aExp
== 0x7FFF ) {
6614 if (aSig0
| aSig1
) {
6615 return propagateFloat128NaN(a
, b
, status
);
6623 bSig0
|= LIT64( 0x4000000000000000 );
6625 shift128RightJamming( bSig0
, bSig1
, expDiff
, &bSig0
, &bSig1
);
6626 aSig0
|= LIT64( 0x4000000000000000 );
6628 sub128( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
);
6630 normalizeRoundAndPack
:
6632 return normalizeRoundAndPackFloat128(zSign
, zExp
- 14, zSig0
, zSig1
,
6637 /*----------------------------------------------------------------------------
6638 | Returns the result of adding the quadruple-precision floating-point values
6639 | `a' and `b'. The operation is performed according to the IEC/IEEE Standard
6640 | for Binary Floating-Point Arithmetic.
6641 *----------------------------------------------------------------------------*/
6643 float128
float128_add(float128 a
, float128 b
, float_status
*status
)
6647 aSign
= extractFloat128Sign( a
);
6648 bSign
= extractFloat128Sign( b
);
6649 if ( aSign
== bSign
) {
6650 return addFloat128Sigs(a
, b
, aSign
, status
);
6653 return subFloat128Sigs(a
, b
, aSign
, status
);
6658 /*----------------------------------------------------------------------------
6659 | Returns the result of subtracting the quadruple-precision floating-point
6660 | values `a' and `b'. The operation is performed according to the IEC/IEEE
6661 | Standard for Binary Floating-Point Arithmetic.
6662 *----------------------------------------------------------------------------*/
6664 float128
float128_sub(float128 a
, float128 b
, float_status
*status
)
6668 aSign
= extractFloat128Sign( a
);
6669 bSign
= extractFloat128Sign( b
);
6670 if ( aSign
== bSign
) {
6671 return subFloat128Sigs(a
, b
, aSign
, status
);
6674 return addFloat128Sigs(a
, b
, aSign
, status
);
6679 /*----------------------------------------------------------------------------
6680 | Returns the result of multiplying the quadruple-precision floating-point
6681 | values `a' and `b'. The operation is performed according to the IEC/IEEE
6682 | Standard for Binary Floating-Point Arithmetic.
6683 *----------------------------------------------------------------------------*/
6685 float128
float128_mul(float128 a
, float128 b
, float_status
*status
)
6687 flag aSign
, bSign
, zSign
;
6688 int32_t aExp
, bExp
, zExp
;
6689 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
, zSig3
;
6691 aSig1
= extractFloat128Frac1( a
);
6692 aSig0
= extractFloat128Frac0( a
);
6693 aExp
= extractFloat128Exp( a
);
6694 aSign
= extractFloat128Sign( a
);
6695 bSig1
= extractFloat128Frac1( b
);
6696 bSig0
= extractFloat128Frac0( b
);
6697 bExp
= extractFloat128Exp( b
);
6698 bSign
= extractFloat128Sign( b
);
6699 zSign
= aSign
^ bSign
;
6700 if ( aExp
== 0x7FFF ) {
6701 if ( ( aSig0
| aSig1
)
6702 || ( ( bExp
== 0x7FFF ) && ( bSig0
| bSig1
) ) ) {
6703 return propagateFloat128NaN(a
, b
, status
);
6705 if ( ( bExp
| bSig0
| bSig1
) == 0 ) goto invalid
;
6706 return packFloat128( zSign
, 0x7FFF, 0, 0 );
6708 if ( bExp
== 0x7FFF ) {
6709 if (bSig0
| bSig1
) {
6710 return propagateFloat128NaN(a
, b
, status
);
6712 if ( ( aExp
| aSig0
| aSig1
) == 0 ) {
6714 float_raise(float_flag_invalid
, status
);
6715 return float128_default_nan(status
);
6717 return packFloat128( zSign
, 0x7FFF, 0, 0 );
6720 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
6721 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6724 if ( ( bSig0
| bSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
6725 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
6727 zExp
= aExp
+ bExp
- 0x4000;
6728 aSig0
|= LIT64( 0x0001000000000000 );
6729 shortShift128Left( bSig0
, bSig1
, 16, &bSig0
, &bSig1
);
6730 mul128To256( aSig0
, aSig1
, bSig0
, bSig1
, &zSig0
, &zSig1
, &zSig2
, &zSig3
);
6731 add128( zSig0
, zSig1
, aSig0
, aSig1
, &zSig0
, &zSig1
);
6732 zSig2
|= ( zSig3
!= 0 );
6733 if ( LIT64( 0x0002000000000000 ) <= zSig0
) {
6734 shift128ExtraRightJamming(
6735 zSig0
, zSig1
, zSig2
, 1, &zSig0
, &zSig1
, &zSig2
);
6738 return roundAndPackFloat128(zSign
, zExp
, zSig0
, zSig1
, zSig2
, status
);
6742 /*----------------------------------------------------------------------------
6743 | Returns the result of dividing the quadruple-precision floating-point value
6744 | `a' by the corresponding value `b'. The operation is performed according to
6745 | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6746 *----------------------------------------------------------------------------*/
6748 float128
float128_div(float128 a
, float128 b
, float_status
*status
)
6750 flag aSign
, bSign
, zSign
;
6751 int32_t aExp
, bExp
, zExp
;
6752 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, zSig0
, zSig1
, zSig2
;
6753 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
6755 aSig1
= extractFloat128Frac1( a
);
6756 aSig0
= extractFloat128Frac0( a
);
6757 aExp
= extractFloat128Exp( a
);
6758 aSign
= extractFloat128Sign( a
);
6759 bSig1
= extractFloat128Frac1( b
);
6760 bSig0
= extractFloat128Frac0( b
);
6761 bExp
= extractFloat128Exp( b
);
6762 bSign
= extractFloat128Sign( b
);
6763 zSign
= aSign
^ bSign
;
6764 if ( aExp
== 0x7FFF ) {
6765 if (aSig0
| aSig1
) {
6766 return propagateFloat128NaN(a
, b
, status
);
6768 if ( bExp
== 0x7FFF ) {
6769 if (bSig0
| bSig1
) {
6770 return propagateFloat128NaN(a
, b
, status
);
6774 return packFloat128( zSign
, 0x7FFF, 0, 0 );
6776 if ( bExp
== 0x7FFF ) {
6777 if (bSig0
| bSig1
) {
6778 return propagateFloat128NaN(a
, b
, status
);
6780 return packFloat128( zSign
, 0, 0, 0 );
6783 if ( ( bSig0
| bSig1
) == 0 ) {
6784 if ( ( aExp
| aSig0
| aSig1
) == 0 ) {
6786 float_raise(float_flag_invalid
, status
);
6787 return float128_default_nan(status
);
6789 float_raise(float_flag_divbyzero
, status
);
6790 return packFloat128( zSign
, 0x7FFF, 0, 0 );
6792 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
6795 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( zSign
, 0, 0, 0 );
6796 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6798 zExp
= aExp
- bExp
+ 0x3FFD;
6800 aSig0
| LIT64( 0x0001000000000000 ), aSig1
, 15, &aSig0
, &aSig1
);
6802 bSig0
| LIT64( 0x0001000000000000 ), bSig1
, 15, &bSig0
, &bSig1
);
6803 if ( le128( bSig0
, bSig1
, aSig0
, aSig1
) ) {
6804 shift128Right( aSig0
, aSig1
, 1, &aSig0
, &aSig1
);
6807 zSig0
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
6808 mul128By64To192( bSig0
, bSig1
, zSig0
, &term0
, &term1
, &term2
);
6809 sub192( aSig0
, aSig1
, 0, term0
, term1
, term2
, &rem0
, &rem1
, &rem2
);
6810 while ( (int64_t) rem0
< 0 ) {
6812 add192( rem0
, rem1
, rem2
, 0, bSig0
, bSig1
, &rem0
, &rem1
, &rem2
);
6814 zSig1
= estimateDiv128To64( rem1
, rem2
, bSig0
);
6815 if ( ( zSig1
& 0x3FFF ) <= 4 ) {
6816 mul128By64To192( bSig0
, bSig1
, zSig1
, &term1
, &term2
, &term3
);
6817 sub192( rem1
, rem2
, 0, term1
, term2
, term3
, &rem1
, &rem2
, &rem3
);
6818 while ( (int64_t) rem1
< 0 ) {
6820 add192( rem1
, rem2
, rem3
, 0, bSig0
, bSig1
, &rem1
, &rem2
, &rem3
);
6822 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
6824 shift128ExtraRightJamming( zSig0
, zSig1
, 0, 15, &zSig0
, &zSig1
, &zSig2
);
6825 return roundAndPackFloat128(zSign
, zExp
, zSig0
, zSig1
, zSig2
, status
);
6829 /*----------------------------------------------------------------------------
6830 | Returns the remainder of the quadruple-precision floating-point value `a'
6831 | with respect to the corresponding value `b'. The operation is performed
6832 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
6833 *----------------------------------------------------------------------------*/
6835 float128
float128_rem(float128 a
, float128 b
, float_status
*status
)
6838 int32_t aExp
, bExp
, expDiff
;
6839 uint64_t aSig0
, aSig1
, bSig0
, bSig1
, q
, term0
, term1
, term2
;
6840 uint64_t allZero
, alternateASig0
, alternateASig1
, sigMean1
;
6843 aSig1
= extractFloat128Frac1( a
);
6844 aSig0
= extractFloat128Frac0( a
);
6845 aExp
= extractFloat128Exp( a
);
6846 aSign
= extractFloat128Sign( a
);
6847 bSig1
= extractFloat128Frac1( b
);
6848 bSig0
= extractFloat128Frac0( b
);
6849 bExp
= extractFloat128Exp( b
);
6850 if ( aExp
== 0x7FFF ) {
6851 if ( ( aSig0
| aSig1
)
6852 || ( ( bExp
== 0x7FFF ) && ( bSig0
| bSig1
) ) ) {
6853 return propagateFloat128NaN(a
, b
, status
);
6857 if ( bExp
== 0x7FFF ) {
6858 if (bSig0
| bSig1
) {
6859 return propagateFloat128NaN(a
, b
, status
);
6864 if ( ( bSig0
| bSig1
) == 0 ) {
6866 float_raise(float_flag_invalid
, status
);
6867 return float128_default_nan(status
);
6869 normalizeFloat128Subnormal( bSig0
, bSig1
, &bExp
, &bSig0
, &bSig1
);
6872 if ( ( aSig0
| aSig1
) == 0 ) return a
;
6873 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6875 expDiff
= aExp
- bExp
;
6876 if ( expDiff
< -1 ) return a
;
6878 aSig0
| LIT64( 0x0001000000000000 ),
6880 15 - ( expDiff
< 0 ),
6885 bSig0
| LIT64( 0x0001000000000000 ), bSig1
, 15, &bSig0
, &bSig1
);
6886 q
= le128( bSig0
, bSig1
, aSig0
, aSig1
);
6887 if ( q
) sub128( aSig0
, aSig1
, bSig0
, bSig1
, &aSig0
, &aSig1
);
6889 while ( 0 < expDiff
) {
6890 q
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
6891 q
= ( 4 < q
) ? q
- 4 : 0;
6892 mul128By64To192( bSig0
, bSig1
, q
, &term0
, &term1
, &term2
);
6893 shortShift192Left( term0
, term1
, term2
, 61, &term1
, &term2
, &allZero
);
6894 shortShift128Left( aSig0
, aSig1
, 61, &aSig0
, &allZero
);
6895 sub128( aSig0
, 0, term1
, term2
, &aSig0
, &aSig1
);
6898 if ( -64 < expDiff
) {
6899 q
= estimateDiv128To64( aSig0
, aSig1
, bSig0
);
6900 q
= ( 4 < q
) ? q
- 4 : 0;
6902 shift128Right( bSig0
, bSig1
, 12, &bSig0
, &bSig1
);
6904 if ( expDiff
< 0 ) {
6905 shift128Right( aSig0
, aSig1
, - expDiff
, &aSig0
, &aSig1
);
6908 shortShift128Left( aSig0
, aSig1
, expDiff
, &aSig0
, &aSig1
);
6910 mul128By64To192( bSig0
, bSig1
, q
, &term0
, &term1
, &term2
);
6911 sub128( aSig0
, aSig1
, term1
, term2
, &aSig0
, &aSig1
);
6914 shift128Right( aSig0
, aSig1
, 12, &aSig0
, &aSig1
);
6915 shift128Right( bSig0
, bSig1
, 12, &bSig0
, &bSig1
);
6918 alternateASig0
= aSig0
;
6919 alternateASig1
= aSig1
;
6921 sub128( aSig0
, aSig1
, bSig0
, bSig1
, &aSig0
, &aSig1
);
6922 } while ( 0 <= (int64_t) aSig0
);
6924 aSig0
, aSig1
, alternateASig0
, alternateASig1
, (uint64_t *)&sigMean0
, &sigMean1
);
6925 if ( ( sigMean0
< 0 )
6926 || ( ( ( sigMean0
| sigMean1
) == 0 ) && ( q
& 1 ) ) ) {
6927 aSig0
= alternateASig0
;
6928 aSig1
= alternateASig1
;
6930 zSign
= ( (int64_t) aSig0
< 0 );
6931 if ( zSign
) sub128( 0, 0, aSig0
, aSig1
, &aSig0
, &aSig1
);
6932 return normalizeRoundAndPackFloat128(aSign
^ zSign
, bExp
- 4, aSig0
, aSig1
,
6936 /*----------------------------------------------------------------------------
6937 | Returns the square root of the quadruple-precision floating-point value `a'.
6938 | The operation is performed according to the IEC/IEEE Standard for Binary
6939 | Floating-Point Arithmetic.
6940 *----------------------------------------------------------------------------*/
6942 float128
float128_sqrt(float128 a
, float_status
*status
)
6946 uint64_t aSig0
, aSig1
, zSig0
, zSig1
, zSig2
, doubleZSig0
;
6947 uint64_t rem0
, rem1
, rem2
, rem3
, term0
, term1
, term2
, term3
;
6949 aSig1
= extractFloat128Frac1( a
);
6950 aSig0
= extractFloat128Frac0( a
);
6951 aExp
= extractFloat128Exp( a
);
6952 aSign
= extractFloat128Sign( a
);
6953 if ( aExp
== 0x7FFF ) {
6954 if (aSig0
| aSig1
) {
6955 return propagateFloat128NaN(a
, a
, status
);
6957 if ( ! aSign
) return a
;
6961 if ( ( aExp
| aSig0
| aSig1
) == 0 ) return a
;
6963 float_raise(float_flag_invalid
, status
);
6964 return float128_default_nan(status
);
6967 if ( ( aSig0
| aSig1
) == 0 ) return packFloat128( 0, 0, 0, 0 );
6968 normalizeFloat128Subnormal( aSig0
, aSig1
, &aExp
, &aSig0
, &aSig1
);
6970 zExp
= ( ( aExp
- 0x3FFF )>>1 ) + 0x3FFE;
6971 aSig0
|= LIT64( 0x0001000000000000 );
6972 zSig0
= estimateSqrt32( aExp
, aSig0
>>17 );
6973 shortShift128Left( aSig0
, aSig1
, 13 - ( aExp
& 1 ), &aSig0
, &aSig1
);
6974 zSig0
= estimateDiv128To64( aSig0
, aSig1
, zSig0
<<32 ) + ( zSig0
<<30 );
6975 doubleZSig0
= zSig0
<<1;
6976 mul64To128( zSig0
, zSig0
, &term0
, &term1
);
6977 sub128( aSig0
, aSig1
, term0
, term1
, &rem0
, &rem1
);
6978 while ( (int64_t) rem0
< 0 ) {
6981 add128( rem0
, rem1
, zSig0
>>63, doubleZSig0
| 1, &rem0
, &rem1
);
6983 zSig1
= estimateDiv128To64( rem1
, 0, doubleZSig0
);
6984 if ( ( zSig1
& 0x1FFF ) <= 5 ) {
6985 if ( zSig1
== 0 ) zSig1
= 1;
6986 mul64To128( doubleZSig0
, zSig1
, &term1
, &term2
);
6987 sub128( rem1
, 0, term1
, term2
, &rem1
, &rem2
);
6988 mul64To128( zSig1
, zSig1
, &term2
, &term3
);
6989 sub192( rem1
, rem2
, 0, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
6990 while ( (int64_t) rem1
< 0 ) {
6992 shortShift128Left( 0, zSig1
, 1, &term2
, &term3
);
6994 term2
|= doubleZSig0
;
6995 add192( rem1
, rem2
, rem3
, 0, term2
, term3
, &rem1
, &rem2
, &rem3
);
6997 zSig1
|= ( ( rem1
| rem2
| rem3
) != 0 );
6999 shift128ExtraRightJamming( zSig0
, zSig1
, 0, 14, &zSig0
, &zSig1
, &zSig2
);
7000 return roundAndPackFloat128(0, zExp
, zSig0
, zSig1
, zSig2
, status
);
7004 /*----------------------------------------------------------------------------
7005 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
7006 | the corresponding value `b', and 0 otherwise. The invalid exception is
7007 | raised if either operand is a NaN. Otherwise, the comparison is performed
7008 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
7009 *----------------------------------------------------------------------------*/
7011 int float128_eq(float128 a
, float128 b
, float_status
*status
)
7014 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7015 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7016 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7017 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7019 float_raise(float_flag_invalid
, status
);
7024 && ( ( a
.high
== b
.high
)
7026 && ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
7031 /*----------------------------------------------------------------------------
7032 | Returns 1 if the quadruple-precision floating-point value `a' is less than
7033 | or equal to the corresponding value `b', and 0 otherwise. The invalid
7034 | exception is raised if either operand is a NaN. The comparison is performed
7035 | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
7036 *----------------------------------------------------------------------------*/
7038 int float128_le(float128 a
, float128 b
, float_status
*status
)
7042 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7043 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7044 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7045 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7047 float_raise(float_flag_invalid
, status
);
7050 aSign
= extractFloat128Sign( a
);
7051 bSign
= extractFloat128Sign( b
);
7052 if ( aSign
!= bSign
) {
7055 || ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
7059 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
7060 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
7064 /*----------------------------------------------------------------------------
7065 | Returns 1 if the quadruple-precision floating-point value `a' is less than
7066 | the corresponding value `b', and 0 otherwise. The invalid exception is
7067 | raised if either operand is a NaN. The comparison is performed according
7068 | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
7069 *----------------------------------------------------------------------------*/
7071 int float128_lt(float128 a
, float128 b
, float_status
*status
)
7075 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7076 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7077 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7078 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7080 float_raise(float_flag_invalid
, status
);
7083 aSign
= extractFloat128Sign( a
);
7084 bSign
= extractFloat128Sign( b
);
7085 if ( aSign
!= bSign
) {
7088 && ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
7092 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
7093 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
7097 /*----------------------------------------------------------------------------
7098 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7099 | be compared, and 0 otherwise. The invalid exception is raised if either
7100 | operand is a NaN. The comparison is performed according to the IEC/IEEE
7101 | Standard for Binary Floating-Point Arithmetic.
7102 *----------------------------------------------------------------------------*/
7104 int float128_unordered(float128 a
, float128 b
, float_status
*status
)
7106 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7107 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7108 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7109 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7111 float_raise(float_flag_invalid
, status
);
7117 /*----------------------------------------------------------------------------
7118 | Returns 1 if the quadruple-precision floating-point value `a' is equal to
7119 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
7120 | exception. The comparison is performed according to the IEC/IEEE Standard
7121 | for Binary Floating-Point Arithmetic.
7122 *----------------------------------------------------------------------------*/
7124 int float128_eq_quiet(float128 a
, float128 b
, float_status
*status
)
7127 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7128 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7129 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7130 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7132 if (float128_is_signaling_nan(a
, status
)
7133 || float128_is_signaling_nan(b
, status
)) {
7134 float_raise(float_flag_invalid
, status
);
7140 && ( ( a
.high
== b
.high
)
7142 && ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) == 0 ) )
7147 /*----------------------------------------------------------------------------
7148 | Returns 1 if the quadruple-precision floating-point value `a' is less than
7149 | or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
7150 | cause an exception. Otherwise, the comparison is performed according to the
7151 | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
7152 *----------------------------------------------------------------------------*/
7154 int float128_le_quiet(float128 a
, float128 b
, float_status
*status
)
7158 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7159 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7160 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7161 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7163 if (float128_is_signaling_nan(a
, status
)
7164 || float128_is_signaling_nan(b
, status
)) {
7165 float_raise(float_flag_invalid
, status
);
7169 aSign
= extractFloat128Sign( a
);
7170 bSign
= extractFloat128Sign( b
);
7171 if ( aSign
!= bSign
) {
7174 || ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
7178 aSign
? le128( b
.high
, b
.low
, a
.high
, a
.low
)
7179 : le128( a
.high
, a
.low
, b
.high
, b
.low
);
7183 /*----------------------------------------------------------------------------
7184 | Returns 1 if the quadruple-precision floating-point value `a' is less than
7185 | the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
7186 | exception. Otherwise, the comparison is performed according to the IEC/IEEE
7187 | Standard for Binary Floating-Point Arithmetic.
7188 *----------------------------------------------------------------------------*/
7190 int float128_lt_quiet(float128 a
, float128 b
, float_status
*status
)
7194 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7195 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7196 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7197 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7199 if (float128_is_signaling_nan(a
, status
)
7200 || float128_is_signaling_nan(b
, status
)) {
7201 float_raise(float_flag_invalid
, status
);
7205 aSign
= extractFloat128Sign( a
);
7206 bSign
= extractFloat128Sign( b
);
7207 if ( aSign
!= bSign
) {
7210 && ( ( ( (uint64_t) ( ( a
.high
| b
.high
)<<1 ) ) | a
.low
| b
.low
)
7214 aSign
? lt128( b
.high
, b
.low
, a
.high
, a
.low
)
7215 : lt128( a
.high
, a
.low
, b
.high
, b
.low
);
7219 /*----------------------------------------------------------------------------
7220 | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
7221 | be compared, and 0 otherwise. Quiet NaNs do not cause an exception. The
7222 | comparison is performed according to the IEC/IEEE Standard for Binary
7223 | Floating-Point Arithmetic.
7224 *----------------------------------------------------------------------------*/
7226 int float128_unordered_quiet(float128 a
, float128 b
, float_status
*status
)
7228 if ( ( ( extractFloat128Exp( a
) == 0x7FFF )
7229 && ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) )
7230 || ( ( extractFloat128Exp( b
) == 0x7FFF )
7231 && ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )
7233 if (float128_is_signaling_nan(a
, status
)
7234 || float128_is_signaling_nan(b
, status
)) {
7235 float_raise(float_flag_invalid
, status
);
7242 /* misc functions */
7243 float32
uint32_to_float32(uint32_t a
, float_status
*status
)
7245 return int64_to_float32(a
, status
);
7248 float64
uint32_to_float64(uint32_t a
, float_status
*status
)
7250 return int64_to_float64(a
, status
);
7253 uint32_t float32_to_uint32(float32 a
, float_status
*status
)
7257 int old_exc_flags
= get_float_exception_flags(status
);
7259 v
= float32_to_int64(a
, status
);
7262 } else if (v
> 0xffffffff) {
7267 set_float_exception_flags(old_exc_flags
, status
);
7268 float_raise(float_flag_invalid
, status
);
7272 uint32_t float32_to_uint32_round_to_zero(float32 a
, float_status
*status
)
7276 int old_exc_flags
= get_float_exception_flags(status
);
7278 v
= float32_to_int64_round_to_zero(a
, status
);
7281 } else if (v
> 0xffffffff) {
7286 set_float_exception_flags(old_exc_flags
, status
);
7287 float_raise(float_flag_invalid
, status
);
7291 int16_t float32_to_int16(float32 a
, float_status
*status
)
7295 int old_exc_flags
= get_float_exception_flags(status
);
7297 v
= float32_to_int32(a
, status
);
7300 } else if (v
> 0x7fff) {
7306 set_float_exception_flags(old_exc_flags
, status
);
7307 float_raise(float_flag_invalid
, status
);
7311 uint16_t float32_to_uint16(float32 a
, float_status
*status
)
7315 int old_exc_flags
= get_float_exception_flags(status
);
7317 v
= float32_to_int32(a
, status
);
7320 } else if (v
> 0xffff) {
7326 set_float_exception_flags(old_exc_flags
, status
);
7327 float_raise(float_flag_invalid
, status
);
7331 uint16_t float32_to_uint16_round_to_zero(float32 a
, float_status
*status
)
7335 int old_exc_flags
= get_float_exception_flags(status
);
7337 v
= float32_to_int64_round_to_zero(a
, status
);
7340 } else if (v
> 0xffff) {
7345 set_float_exception_flags(old_exc_flags
, status
);
7346 float_raise(float_flag_invalid
, status
);
7350 uint32_t float64_to_uint32(float64 a
, float_status
*status
)
7354 int old_exc_flags
= get_float_exception_flags(status
);
7356 v
= float64_to_uint64(a
, status
);
7357 if (v
> 0xffffffff) {
7362 set_float_exception_flags(old_exc_flags
, status
);
7363 float_raise(float_flag_invalid
, status
);
7367 uint32_t float64_to_uint32_round_to_zero(float64 a
, float_status
*status
)
7371 int old_exc_flags
= get_float_exception_flags(status
);
7373 v
= float64_to_uint64_round_to_zero(a
, status
);
7374 if (v
> 0xffffffff) {
7379 set_float_exception_flags(old_exc_flags
, status
);
7380 float_raise(float_flag_invalid
, status
);
7384 int16_t float64_to_int16(float64 a
, float_status
*status
)
7388 int old_exc_flags
= get_float_exception_flags(status
);
7390 v
= float64_to_int32(a
, status
);
7393 } else if (v
> 0x7fff) {
7399 set_float_exception_flags(old_exc_flags
, status
);
7400 float_raise(float_flag_invalid
, status
);
7404 uint16_t float64_to_uint16(float64 a
, float_status
*status
)
7408 int old_exc_flags
= get_float_exception_flags(status
);
7410 v
= float64_to_int32(a
, status
);
7413 } else if (v
> 0xffff) {
7419 set_float_exception_flags(old_exc_flags
, status
);
7420 float_raise(float_flag_invalid
, status
);
7424 uint16_t float64_to_uint16_round_to_zero(float64 a
, float_status
*status
)
7428 int old_exc_flags
= get_float_exception_flags(status
);
7430 v
= float64_to_int64_round_to_zero(a
, status
);
7433 } else if (v
> 0xffff) {
7438 set_float_exception_flags(old_exc_flags
, status
);
7439 float_raise(float_flag_invalid
, status
);
7443 /*----------------------------------------------------------------------------
7444 | Returns the result of converting the double-precision floating-point value
7445 | `a' to the 64-bit unsigned integer format. The conversion is
7446 | performed according to the IEC/IEEE Standard for Binary Floating-Point
7447 | Arithmetic---which means in particular that the conversion is rounded
7448 | according to the current rounding mode. If `a' is a NaN, the largest
7449 | positive integer is returned. If the conversion overflows, the
7450 | largest unsigned integer is returned. If 'a' is negative, the value is
7451 | rounded and zero is returned; negative values that do not round to zero
7452 | will raise the inexact exception.
7453 *----------------------------------------------------------------------------*/
7455 uint64_t float64_to_uint64(float64 a
, float_status
*status
)
7460 uint64_t aSig
, aSigExtra
;
7461 a
= float64_squash_input_denormal(a
, status
);
7463 aSig
= extractFloat64Frac(a
);
7464 aExp
= extractFloat64Exp(a
);
7465 aSign
= extractFloat64Sign(a
);
7466 if (aSign
&& (aExp
> 1022)) {
7467 float_raise(float_flag_invalid
, status
);
7468 if (float64_is_any_nan(a
)) {
7469 return LIT64(0xFFFFFFFFFFFFFFFF);
7475 aSig
|= LIT64(0x0010000000000000);
7477 shiftCount
= 0x433 - aExp
;
7478 if (shiftCount
<= 0) {
7480 float_raise(float_flag_invalid
, status
);
7481 return LIT64(0xFFFFFFFFFFFFFFFF);
7484 aSig
<<= -shiftCount
;
7486 shift64ExtraRightJamming(aSig
, 0, shiftCount
, &aSig
, &aSigExtra
);
7488 return roundAndPackUint64(aSign
, aSig
, aSigExtra
, status
);
7491 uint64_t float64_to_uint64_round_to_zero(float64 a
, float_status
*status
)
7493 signed char current_rounding_mode
= status
->float_rounding_mode
;
7494 set_float_rounding_mode(float_round_to_zero
, status
);
7495 uint64_t v
= float64_to_uint64(a
, status
);
7496 set_float_rounding_mode(current_rounding_mode
, status
);
7500 #define COMPARE(s, nan_exp) \
7501 static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\
7502 int is_quiet, float_status *status) \
7504 flag aSign, bSign; \
7505 uint ## s ## _t av, bv; \
7506 a = float ## s ## _squash_input_denormal(a, status); \
7507 b = float ## s ## _squash_input_denormal(b, status); \
7509 if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) && \
7510 extractFloat ## s ## Frac( a ) ) || \
7511 ( ( extractFloat ## s ## Exp( b ) == nan_exp ) && \
7512 extractFloat ## s ## Frac( b ) )) { \
7514 float ## s ## _is_signaling_nan(a, status) || \
7515 float ## s ## _is_signaling_nan(b, status)) { \
7516 float_raise(float_flag_invalid, status); \
7518 return float_relation_unordered; \
7520 aSign = extractFloat ## s ## Sign( a ); \
7521 bSign = extractFloat ## s ## Sign( b ); \
7522 av = float ## s ## _val(a); \
7523 bv = float ## s ## _val(b); \
7524 if ( aSign != bSign ) { \
7525 if ( (uint ## s ## _t) ( ( av | bv )<<1 ) == 0 ) { \
7527 return float_relation_equal; \
7529 return 1 - (2 * aSign); \
7533 return float_relation_equal; \
7535 return 1 - 2 * (aSign ^ ( av < bv )); \
7540 int float ## s ## _compare(float ## s a, float ## s b, float_status *status) \
7542 return float ## s ## _compare_internal(a, b, 0, status); \
7545 int float ## s ## _compare_quiet(float ## s a, float ## s b, \
7546 float_status *status) \
7548 return float ## s ## _compare_internal(a, b, 1, status); \
7554 static inline int floatx80_compare_internal(floatx80 a
, floatx80 b
,
7555 int is_quiet
, float_status
*status
)
7559 if (floatx80_invalid_encoding(a
) || floatx80_invalid_encoding(b
)) {
7560 float_raise(float_flag_invalid
, status
);
7561 return float_relation_unordered
;
7563 if (( ( extractFloatx80Exp( a
) == 0x7fff ) &&
7564 ( extractFloatx80Frac( a
)<<1 ) ) ||
7565 ( ( extractFloatx80Exp( b
) == 0x7fff ) &&
7566 ( extractFloatx80Frac( b
)<<1 ) )) {
7568 floatx80_is_signaling_nan(a
, status
) ||
7569 floatx80_is_signaling_nan(b
, status
)) {
7570 float_raise(float_flag_invalid
, status
);
7572 return float_relation_unordered
;
7574 aSign
= extractFloatx80Sign( a
);
7575 bSign
= extractFloatx80Sign( b
);
7576 if ( aSign
!= bSign
) {
7578 if ( ( ( (uint16_t) ( ( a
.high
| b
.high
) << 1 ) ) == 0) &&
7579 ( ( a
.low
| b
.low
) == 0 ) ) {
7581 return float_relation_equal
;
7583 return 1 - (2 * aSign
);
7586 if (a
.low
== b
.low
&& a
.high
== b
.high
) {
7587 return float_relation_equal
;
7589 return 1 - 2 * (aSign
^ ( lt128( a
.high
, a
.low
, b
.high
, b
.low
) ));
7594 int floatx80_compare(floatx80 a
, floatx80 b
, float_status
*status
)
7596 return floatx80_compare_internal(a
, b
, 0, status
);
7599 int floatx80_compare_quiet(floatx80 a
, floatx80 b
, float_status
*status
)
7601 return floatx80_compare_internal(a
, b
, 1, status
);
7604 static inline int float128_compare_internal(float128 a
, float128 b
,
7605 int is_quiet
, float_status
*status
)
7609 if (( ( extractFloat128Exp( a
) == 0x7fff ) &&
7610 ( extractFloat128Frac0( a
) | extractFloat128Frac1( a
) ) ) ||
7611 ( ( extractFloat128Exp( b
) == 0x7fff ) &&
7612 ( extractFloat128Frac0( b
) | extractFloat128Frac1( b
) ) )) {
7614 float128_is_signaling_nan(a
, status
) ||
7615 float128_is_signaling_nan(b
, status
)) {
7616 float_raise(float_flag_invalid
, status
);
7618 return float_relation_unordered
;
7620 aSign
= extractFloat128Sign( a
);
7621 bSign
= extractFloat128Sign( b
);
7622 if ( aSign
!= bSign
) {
7623 if ( ( ( ( a
.high
| b
.high
)<<1 ) | a
.low
| b
.low
) == 0 ) {
7625 return float_relation_equal
;
7627 return 1 - (2 * aSign
);
7630 if (a
.low
== b
.low
&& a
.high
== b
.high
) {
7631 return float_relation_equal
;
7633 return 1 - 2 * (aSign
^ ( lt128( a
.high
, a
.low
, b
.high
, b
.low
) ));
7638 int float128_compare(float128 a
, float128 b
, float_status
*status
)
7640 return float128_compare_internal(a
, b
, 0, status
);
7643 int float128_compare_quiet(float128 a
, float128 b
, float_status
*status
)
7645 return float128_compare_internal(a
, b
, 1, status
);
7648 /* min() and max() functions. These can't be implemented as
7649 * 'compare and pick one input' because that would mishandle
7650 * NaNs and +0 vs -0.
7652 * minnum() and maxnum() functions. These are similar to the min()
7653 * and max() functions but if one of the arguments is a QNaN and
7654 * the other is numerical then the numerical argument is returned.
7655 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
7656 * and maxNum() operations. min() and max() are the typical min/max
7657 * semantics provided by many CPUs which predate that specification.
7659 * minnummag() and maxnummag() functions correspond to minNumMag()
7660 * and minNumMag() from the IEEE-754 2008.
7663 static inline float ## s float ## s ## _minmax(float ## s a, float ## s b, \
7664 int ismin, int isieee, \
7666 float_status *status) \
7668 flag aSign, bSign; \
7669 uint ## s ## _t av, bv, aav, abv; \
7670 a = float ## s ## _squash_input_denormal(a, status); \
7671 b = float ## s ## _squash_input_denormal(b, status); \
7672 if (float ## s ## _is_any_nan(a) || \
7673 float ## s ## _is_any_nan(b)) { \
7675 if (float ## s ## _is_quiet_nan(a, status) && \
7676 !float ## s ##_is_any_nan(b)) { \
7678 } else if (float ## s ## _is_quiet_nan(b, status) && \
7679 !float ## s ## _is_any_nan(a)) { \
7683 return propagateFloat ## s ## NaN(a, b, status); \
7685 aSign = extractFloat ## s ## Sign(a); \
7686 bSign = extractFloat ## s ## Sign(b); \
7687 av = float ## s ## _val(a); \
7688 bv = float ## s ## _val(b); \
7690 aav = float ## s ## _abs(av); \
7691 abv = float ## s ## _abs(bv); \
7694 return (aav < abv) ? a : b; \
7696 return (aav < abv) ? b : a; \
7700 if (aSign != bSign) { \
7702 return aSign ? a : b; \
7704 return aSign ? b : a; \
7708 return (aSign ^ (av < bv)) ? a : b; \
7710 return (aSign ^ (av < bv)) ? b : a; \
7715 float ## s float ## s ## _min(float ## s a, float ## s b, \
7716 float_status *status) \
7718 return float ## s ## _minmax(a, b, 1, 0, 0, status); \
7721 float ## s float ## s ## _max(float ## s a, float ## s b, \
7722 float_status *status) \
7724 return float ## s ## _minmax(a, b, 0, 0, 0, status); \
7727 float ## s float ## s ## _minnum(float ## s a, float ## s b, \
7728 float_status *status) \
7730 return float ## s ## _minmax(a, b, 1, 1, 0, status); \
7733 float ## s float ## s ## _maxnum(float ## s a, float ## s b, \
7734 float_status *status) \
7736 return float ## s ## _minmax(a, b, 0, 1, 0, status); \
7739 float ## s float ## s ## _minnummag(float ## s a, float ## s b, \
7740 float_status *status) \
7742 return float ## s ## _minmax(a, b, 1, 1, 1, status); \
7745 float ## s float ## s ## _maxnummag(float ## s a, float ## s b, \
7746 float_status *status) \
7748 return float ## s ## _minmax(a, b, 0, 1, 1, status); \
7755 /* Multiply A by 2 raised to the power N. */
7756 float32
float32_scalbn(float32 a
, int n
, float_status
*status
)
7762 a
= float32_squash_input_denormal(a
, status
);
7763 aSig
= extractFloat32Frac( a
);
7764 aExp
= extractFloat32Exp( a
);
7765 aSign
= extractFloat32Sign( a
);
7767 if ( aExp
== 0xFF ) {
7769 return propagateFloat32NaN(a
, a
, status
);
7775 } else if (aSig
== 0) {
7783 } else if (n
< -0x200) {
7789 return normalizeRoundAndPackFloat32(aSign
, aExp
, aSig
, status
);
7792 float64
float64_scalbn(float64 a
, int n
, float_status
*status
)
7798 a
= float64_squash_input_denormal(a
, status
);
7799 aSig
= extractFloat64Frac( a
);
7800 aExp
= extractFloat64Exp( a
);
7801 aSign
= extractFloat64Sign( a
);
7803 if ( aExp
== 0x7FF ) {
7805 return propagateFloat64NaN(a
, a
, status
);
7810 aSig
|= LIT64( 0x0010000000000000 );
7811 } else if (aSig
== 0) {
7819 } else if (n
< -0x1000) {
7825 return normalizeRoundAndPackFloat64(aSign
, aExp
, aSig
, status
);
7828 floatx80
floatx80_scalbn(floatx80 a
, int n
, float_status
*status
)
7834 if (floatx80_invalid_encoding(a
)) {
7835 float_raise(float_flag_invalid
, status
);
7836 return floatx80_default_nan(status
);
7838 aSig
= extractFloatx80Frac( a
);
7839 aExp
= extractFloatx80Exp( a
);
7840 aSign
= extractFloatx80Sign( a
);
7842 if ( aExp
== 0x7FFF ) {
7844 return propagateFloatx80NaN(a
, a
, status
);
7858 } else if (n
< -0x10000) {
7863 return normalizeRoundAndPackFloatx80(status
->floatx80_rounding_precision
,
7864 aSign
, aExp
, aSig
, 0, status
);
7867 float128
float128_scalbn(float128 a
, int n
, float_status
*status
)
7871 uint64_t aSig0
, aSig1
;
7873 aSig1
= extractFloat128Frac1( a
);
7874 aSig0
= extractFloat128Frac0( a
);
7875 aExp
= extractFloat128Exp( a
);
7876 aSign
= extractFloat128Sign( a
);
7877 if ( aExp
== 0x7FFF ) {
7878 if ( aSig0
| aSig1
) {
7879 return propagateFloat128NaN(a
, a
, status
);
7884 aSig0
|= LIT64( 0x0001000000000000 );
7885 } else if (aSig0
== 0 && aSig1
== 0) {
7893 } else if (n
< -0x10000) {
7898 return normalizeRoundAndPackFloat128( aSign
, aExp
, aSig0
, aSig1