target-arm: raise exception on misaligned LDREX operands
[qemu/ar7.git] / target-arm / translate-a64.c
blob14e8131b0538aa39d9ecf6508ebdcd926cd408f3
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include <stdarg.h>
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <inttypes.h>
25 #include "cpu.h"
26 #include "tcg-op.h"
27 #include "qemu/log.h"
28 #include "arm_ldst.h"
29 #include "translate.h"
30 #include "internals.h"
31 #include "qemu/host-utils.h"
33 #include "exec/semihost.h"
34 #include "exec/gen-icount.h"
36 #include "exec/helper-proto.h"
37 #include "exec/helper-gen.h"
39 #include "trace-tcg.h"
41 static TCGv_i64 cpu_X[32];
42 static TCGv_i64 cpu_pc;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_high;
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* Function prototype for gen_ functions for calling Neon helpers */
73 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
74 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
76 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
77 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
78 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
79 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
80 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
81 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
82 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
83 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
84 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
85 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
87 /* initialize TCG globals. */
88 void a64_translate_init(void)
90 int i;
92 cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
93 offsetof(CPUARMState, pc),
94 "pc");
95 for (i = 0; i < 32; i++) {
96 cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
97 offsetof(CPUARMState, xregs[i]),
98 regnames[i]);
101 cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
102 offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
107 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
108 * if EL1, access as if EL0; otherwise access at current EL
110 switch (s->mmu_idx) {
111 case ARMMMUIdx_S12NSE1:
112 return ARMMMUIdx_S12NSE0;
113 case ARMMMUIdx_S1SE1:
114 return ARMMMUIdx_S1SE0;
115 case ARMMMUIdx_S2NS:
116 g_assert_not_reached();
117 default:
118 return s->mmu_idx;
122 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
123 fprintf_function cpu_fprintf, int flags)
125 ARMCPU *cpu = ARM_CPU(cs);
126 CPUARMState *env = &cpu->env;
127 uint32_t psr = pstate_read(env);
128 int i;
129 int el = arm_current_el(env);
130 const char *ns_status;
132 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
133 env->pc, env->xregs[31]);
134 for (i = 0; i < 31; i++) {
135 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
136 if ((i % 4) == 3) {
137 cpu_fprintf(f, "\n");
138 } else {
139 cpu_fprintf(f, " ");
143 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
144 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
145 } else {
146 ns_status = "";
149 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
150 psr,
151 psr & PSTATE_N ? 'N' : '-',
152 psr & PSTATE_Z ? 'Z' : '-',
153 psr & PSTATE_C ? 'C' : '-',
154 psr & PSTATE_V ? 'V' : '-',
155 ns_status,
157 psr & PSTATE_SP ? 'h' : 't');
159 if (flags & CPU_DUMP_FPU) {
160 int numvfpregs = 32;
161 for (i = 0; i < numvfpregs; i += 2) {
162 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
163 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
164 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
165 i, vhi, vlo);
166 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
167 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
168 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
169 i + 1, vhi, vlo);
171 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
172 vfp_get_fpcr(env), vfp_get_fpsr(env));
176 void gen_a64_set_pc_im(uint64_t val)
178 tcg_gen_movi_i64(cpu_pc, val);
181 typedef struct DisasCompare64 {
182 TCGCond cond;
183 TCGv_i64 value;
184 } DisasCompare64;
186 static void a64_test_cc(DisasCompare64 *c64, int cc)
188 DisasCompare c32;
190 arm_test_cc(&c32, cc);
192 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
193 * properly. The NE/EQ comparisons are also fine with this choice. */
194 c64->cond = c32.cond;
195 c64->value = tcg_temp_new_i64();
196 tcg_gen_ext_i32_i64(c64->value, c32.value);
198 arm_free_cc(&c32);
201 static void a64_free_cc(DisasCompare64 *c64)
203 tcg_temp_free_i64(c64->value);
206 static void gen_exception_internal(int excp)
208 TCGv_i32 tcg_excp = tcg_const_i32(excp);
210 assert(excp_is_internal(excp));
211 gen_helper_exception_internal(cpu_env, tcg_excp);
212 tcg_temp_free_i32(tcg_excp);
215 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
217 TCGv_i32 tcg_excp = tcg_const_i32(excp);
218 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
219 TCGv_i32 tcg_el = tcg_const_i32(target_el);
221 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
222 tcg_syn, tcg_el);
223 tcg_temp_free_i32(tcg_el);
224 tcg_temp_free_i32(tcg_syn);
225 tcg_temp_free_i32(tcg_excp);
228 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
230 gen_a64_set_pc_im(s->pc - offset);
231 gen_exception_internal(excp);
232 s->is_jmp = DISAS_EXC;
235 static void gen_exception_insn(DisasContext *s, int offset, int excp,
236 uint32_t syndrome, uint32_t target_el)
238 gen_a64_set_pc_im(s->pc - offset);
239 gen_exception(excp, syndrome, target_el);
240 s->is_jmp = DISAS_EXC;
243 static void gen_ss_advance(DisasContext *s)
245 /* If the singlestep state is Active-not-pending, advance to
246 * Active-pending.
248 if (s->ss_active) {
249 s->pstate_ss = 0;
250 gen_helper_clear_pstate_ss(cpu_env);
254 static void gen_step_complete_exception(DisasContext *s)
256 /* We just completed step of an insn. Move from Active-not-pending
257 * to Active-pending, and then also take the swstep exception.
258 * This corresponds to making the (IMPDEF) choice to prioritize
259 * swstep exceptions over asynchronous exceptions taken to an exception
260 * level where debug is disabled. This choice has the advantage that
261 * we do not need to maintain internal state corresponding to the
262 * ISV/EX syndrome bits between completion of the step and generation
263 * of the exception, and our syndrome information is always correct.
265 gen_ss_advance(s);
266 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
267 default_exception_el(s));
268 s->is_jmp = DISAS_EXC;
271 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
273 /* No direct tb linking with singlestep (either QEMU's or the ARM
274 * debug architecture kind) or deterministic io
276 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
277 return false;
280 /* Only link tbs from inside the same guest page */
281 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
282 return false;
285 return true;
288 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
290 TranslationBlock *tb;
292 tb = s->tb;
293 if (use_goto_tb(s, n, dest)) {
294 tcg_gen_goto_tb(n);
295 gen_a64_set_pc_im(dest);
296 tcg_gen_exit_tb((intptr_t)tb + n);
297 s->is_jmp = DISAS_TB_JUMP;
298 } else {
299 gen_a64_set_pc_im(dest);
300 if (s->ss_active) {
301 gen_step_complete_exception(s);
302 } else if (s->singlestep_enabled) {
303 gen_exception_internal(EXCP_DEBUG);
304 } else {
305 tcg_gen_exit_tb(0);
306 s->is_jmp = DISAS_TB_JUMP;
311 static void unallocated_encoding(DisasContext *s)
313 /* Unallocated and reserved encodings are uncategorized */
314 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
315 default_exception_el(s));
318 #define unsupported_encoding(s, insn) \
319 do { \
320 qemu_log_mask(LOG_UNIMP, \
321 "%s:%d: unsupported instruction encoding 0x%08x " \
322 "at pc=%016" PRIx64 "\n", \
323 __FILE__, __LINE__, insn, s->pc - 4); \
324 unallocated_encoding(s); \
325 } while (0);
327 static void init_tmp_a64_array(DisasContext *s)
329 #ifdef CONFIG_DEBUG_TCG
330 int i;
331 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
332 TCGV_UNUSED_I64(s->tmp_a64[i]);
334 #endif
335 s->tmp_a64_count = 0;
338 static void free_tmp_a64(DisasContext *s)
340 int i;
341 for (i = 0; i < s->tmp_a64_count; i++) {
342 tcg_temp_free_i64(s->tmp_a64[i]);
344 init_tmp_a64_array(s);
347 static TCGv_i64 new_tmp_a64(DisasContext *s)
349 assert(s->tmp_a64_count < TMP_A64_MAX);
350 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
353 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
355 TCGv_i64 t = new_tmp_a64(s);
356 tcg_gen_movi_i64(t, 0);
357 return t;
361 * Register access functions
363 * These functions are used for directly accessing a register in where
364 * changes to the final register value are likely to be made. If you
365 * need to use a register for temporary calculation (e.g. index type
366 * operations) use the read_* form.
368 * B1.2.1 Register mappings
370 * In instruction register encoding 31 can refer to ZR (zero register) or
371 * the SP (stack pointer) depending on context. In QEMU's case we map SP
372 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
373 * This is the point of the _sp forms.
375 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
377 if (reg == 31) {
378 return new_tmp_a64_zero(s);
379 } else {
380 return cpu_X[reg];
384 /* register access for when 31 == SP */
385 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
387 return cpu_X[reg];
390 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
391 * representing the register contents. This TCGv is an auto-freed
392 * temporary so it need not be explicitly freed, and may be modified.
394 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
396 TCGv_i64 v = new_tmp_a64(s);
397 if (reg != 31) {
398 if (sf) {
399 tcg_gen_mov_i64(v, cpu_X[reg]);
400 } else {
401 tcg_gen_ext32u_i64(v, cpu_X[reg]);
403 } else {
404 tcg_gen_movi_i64(v, 0);
406 return v;
409 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
411 TCGv_i64 v = new_tmp_a64(s);
412 if (sf) {
413 tcg_gen_mov_i64(v, cpu_X[reg]);
414 } else {
415 tcg_gen_ext32u_i64(v, cpu_X[reg]);
417 return v;
420 /* We should have at some point before trying to access an FP register
421 * done the necessary access check, so assert that
422 * (a) we did the check and
423 * (b) we didn't then just plough ahead anyway if it failed.
424 * Print the instruction pattern in the abort message so we can figure
425 * out what we need to fix if a user encounters this problem in the wild.
427 static inline void assert_fp_access_checked(DisasContext *s)
429 #ifdef CONFIG_DEBUG_TCG
430 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
431 fprintf(stderr, "target-arm: FP access check missing for "
432 "instruction 0x%08x\n", s->insn);
433 abort();
435 #endif
438 /* Return the offset into CPUARMState of an element of specified
439 * size, 'element' places in from the least significant end of
440 * the FP/vector register Qn.
442 static inline int vec_reg_offset(DisasContext *s, int regno,
443 int element, TCGMemOp size)
445 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
446 #ifdef HOST_WORDS_BIGENDIAN
447 /* This is complicated slightly because vfp.regs[2n] is
448 * still the low half and vfp.regs[2n+1] the high half
449 * of the 128 bit vector, even on big endian systems.
450 * Calculate the offset assuming a fully bigendian 128 bits,
451 * then XOR to account for the order of the two 64 bit halves.
453 offs += (16 - ((element + 1) * (1 << size)));
454 offs ^= 8;
455 #else
456 offs += element * (1 << size);
457 #endif
458 assert_fp_access_checked(s);
459 return offs;
462 /* Return the offset into CPUARMState of a slice (from
463 * the least significant end) of FP register Qn (ie
464 * Dn, Sn, Hn or Bn).
465 * (Note that this is not the same mapping as for A32; see cpu.h)
467 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
469 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
470 #ifdef HOST_WORDS_BIGENDIAN
471 offs += (8 - (1 << size));
472 #endif
473 assert_fp_access_checked(s);
474 return offs;
477 /* Offset of the high half of the 128 bit vector Qn */
478 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
480 assert_fp_access_checked(s);
481 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
484 /* Convenience accessors for reading and writing single and double
485 * FP registers. Writing clears the upper parts of the associated
486 * 128 bit vector register, as required by the architecture.
487 * Note that unlike the GP register accessors, the values returned
488 * by the read functions must be manually freed.
490 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
492 TCGv_i64 v = tcg_temp_new_i64();
494 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
495 return v;
498 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
500 TCGv_i32 v = tcg_temp_new_i32();
502 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
503 return v;
506 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
508 TCGv_i64 tcg_zero = tcg_const_i64(0);
510 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
511 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
512 tcg_temp_free_i64(tcg_zero);
515 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
517 TCGv_i64 tmp = tcg_temp_new_i64();
519 tcg_gen_extu_i32_i64(tmp, v);
520 write_fp_dreg(s, reg, tmp);
521 tcg_temp_free_i64(tmp);
524 static TCGv_ptr get_fpstatus_ptr(void)
526 TCGv_ptr statusptr = tcg_temp_new_ptr();
527 int offset;
529 /* In A64 all instructions (both FP and Neon) use the FPCR;
530 * there is no equivalent of the A32 Neon "standard FPSCR value"
531 * and all operations use vfp.fp_status.
533 offset = offsetof(CPUARMState, vfp.fp_status);
534 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
535 return statusptr;
538 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
539 * than the 32 bit equivalent.
541 static inline void gen_set_NZ64(TCGv_i64 result)
543 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
544 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
547 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
548 static inline void gen_logic_CC(int sf, TCGv_i64 result)
550 if (sf) {
551 gen_set_NZ64(result);
552 } else {
553 tcg_gen_extrl_i64_i32(cpu_ZF, result);
554 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
556 tcg_gen_movi_i32(cpu_CF, 0);
557 tcg_gen_movi_i32(cpu_VF, 0);
560 /* dest = T0 + T1; compute C, N, V and Z flags */
561 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
563 if (sf) {
564 TCGv_i64 result, flag, tmp;
565 result = tcg_temp_new_i64();
566 flag = tcg_temp_new_i64();
567 tmp = tcg_temp_new_i64();
569 tcg_gen_movi_i64(tmp, 0);
570 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
572 tcg_gen_extrl_i64_i32(cpu_CF, flag);
574 gen_set_NZ64(result);
576 tcg_gen_xor_i64(flag, result, t0);
577 tcg_gen_xor_i64(tmp, t0, t1);
578 tcg_gen_andc_i64(flag, flag, tmp);
579 tcg_temp_free_i64(tmp);
580 tcg_gen_extrh_i64_i32(cpu_VF, flag);
582 tcg_gen_mov_i64(dest, result);
583 tcg_temp_free_i64(result);
584 tcg_temp_free_i64(flag);
585 } else {
586 /* 32 bit arithmetic */
587 TCGv_i32 t0_32 = tcg_temp_new_i32();
588 TCGv_i32 t1_32 = tcg_temp_new_i32();
589 TCGv_i32 tmp = tcg_temp_new_i32();
591 tcg_gen_movi_i32(tmp, 0);
592 tcg_gen_extrl_i64_i32(t0_32, t0);
593 tcg_gen_extrl_i64_i32(t1_32, t1);
594 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
595 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
596 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
597 tcg_gen_xor_i32(tmp, t0_32, t1_32);
598 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
599 tcg_gen_extu_i32_i64(dest, cpu_NF);
601 tcg_temp_free_i32(tmp);
602 tcg_temp_free_i32(t0_32);
603 tcg_temp_free_i32(t1_32);
607 /* dest = T0 - T1; compute C, N, V and Z flags */
608 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
610 if (sf) {
611 /* 64 bit arithmetic */
612 TCGv_i64 result, flag, tmp;
614 result = tcg_temp_new_i64();
615 flag = tcg_temp_new_i64();
616 tcg_gen_sub_i64(result, t0, t1);
618 gen_set_NZ64(result);
620 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
621 tcg_gen_extrl_i64_i32(cpu_CF, flag);
623 tcg_gen_xor_i64(flag, result, t0);
624 tmp = tcg_temp_new_i64();
625 tcg_gen_xor_i64(tmp, t0, t1);
626 tcg_gen_and_i64(flag, flag, tmp);
627 tcg_temp_free_i64(tmp);
628 tcg_gen_extrh_i64_i32(cpu_VF, flag);
629 tcg_gen_mov_i64(dest, result);
630 tcg_temp_free_i64(flag);
631 tcg_temp_free_i64(result);
632 } else {
633 /* 32 bit arithmetic */
634 TCGv_i32 t0_32 = tcg_temp_new_i32();
635 TCGv_i32 t1_32 = tcg_temp_new_i32();
636 TCGv_i32 tmp;
638 tcg_gen_extrl_i64_i32(t0_32, t0);
639 tcg_gen_extrl_i64_i32(t1_32, t1);
640 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
641 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
642 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
643 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
644 tmp = tcg_temp_new_i32();
645 tcg_gen_xor_i32(tmp, t0_32, t1_32);
646 tcg_temp_free_i32(t0_32);
647 tcg_temp_free_i32(t1_32);
648 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
649 tcg_temp_free_i32(tmp);
650 tcg_gen_extu_i32_i64(dest, cpu_NF);
654 /* dest = T0 + T1 + CF; do not compute flags. */
655 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
657 TCGv_i64 flag = tcg_temp_new_i64();
658 tcg_gen_extu_i32_i64(flag, cpu_CF);
659 tcg_gen_add_i64(dest, t0, t1);
660 tcg_gen_add_i64(dest, dest, flag);
661 tcg_temp_free_i64(flag);
663 if (!sf) {
664 tcg_gen_ext32u_i64(dest, dest);
668 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
669 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
671 if (sf) {
672 TCGv_i64 result, cf_64, vf_64, tmp;
673 result = tcg_temp_new_i64();
674 cf_64 = tcg_temp_new_i64();
675 vf_64 = tcg_temp_new_i64();
676 tmp = tcg_const_i64(0);
678 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
679 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
680 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
681 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
682 gen_set_NZ64(result);
684 tcg_gen_xor_i64(vf_64, result, t0);
685 tcg_gen_xor_i64(tmp, t0, t1);
686 tcg_gen_andc_i64(vf_64, vf_64, tmp);
687 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
689 tcg_gen_mov_i64(dest, result);
691 tcg_temp_free_i64(tmp);
692 tcg_temp_free_i64(vf_64);
693 tcg_temp_free_i64(cf_64);
694 tcg_temp_free_i64(result);
695 } else {
696 TCGv_i32 t0_32, t1_32, tmp;
697 t0_32 = tcg_temp_new_i32();
698 t1_32 = tcg_temp_new_i32();
699 tmp = tcg_const_i32(0);
701 tcg_gen_extrl_i64_i32(t0_32, t0);
702 tcg_gen_extrl_i64_i32(t1_32, t1);
703 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
704 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
706 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
707 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
708 tcg_gen_xor_i32(tmp, t0_32, t1_32);
709 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
710 tcg_gen_extu_i32_i64(dest, cpu_NF);
712 tcg_temp_free_i32(tmp);
713 tcg_temp_free_i32(t1_32);
714 tcg_temp_free_i32(t0_32);
719 * Load/Store generators
723 * Store from GPR register to memory.
725 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
726 TCGv_i64 tcg_addr, int size, int memidx)
728 g_assert(size <= 3);
729 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
732 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
733 TCGv_i64 tcg_addr, int size)
735 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
739 * Load from memory to GPR register
741 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
742 int size, bool is_signed, bool extend, int memidx)
744 TCGMemOp memop = MO_TE + size;
746 g_assert(size <= 3);
748 if (is_signed) {
749 memop += MO_SIGN;
752 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
754 if (extend && is_signed) {
755 g_assert(size < 3);
756 tcg_gen_ext32u_i64(dest, dest);
760 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
761 int size, bool is_signed, bool extend)
763 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
764 get_mem_index(s));
768 * Store from FP register to memory
770 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
772 /* This writes the bottom N bits of a 128 bit wide vector to memory */
773 TCGv_i64 tmp = tcg_temp_new_i64();
774 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
775 if (size < 4) {
776 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
777 } else {
778 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
779 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
780 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
781 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
782 tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
783 tcg_temp_free_i64(tcg_hiaddr);
786 tcg_temp_free_i64(tmp);
790 * Load from memory to FP register
792 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
794 /* This always zero-extends and writes to a full 128 bit wide vector */
795 TCGv_i64 tmplo = tcg_temp_new_i64();
796 TCGv_i64 tmphi;
798 if (size < 4) {
799 TCGMemOp memop = MO_TE + size;
800 tmphi = tcg_const_i64(0);
801 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
802 } else {
803 TCGv_i64 tcg_hiaddr;
804 tmphi = tcg_temp_new_i64();
805 tcg_hiaddr = tcg_temp_new_i64();
807 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
808 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
809 tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
810 tcg_temp_free_i64(tcg_hiaddr);
813 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
814 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
816 tcg_temp_free_i64(tmplo);
817 tcg_temp_free_i64(tmphi);
821 * Vector load/store helpers.
823 * The principal difference between this and a FP load is that we don't
824 * zero extend as we are filling a partial chunk of the vector register.
825 * These functions don't support 128 bit loads/stores, which would be
826 * normal load/store operations.
828 * The _i32 versions are useful when operating on 32 bit quantities
829 * (eg for floating point single or using Neon helper functions).
832 /* Get value of an element within a vector register */
833 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
834 int element, TCGMemOp memop)
836 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
837 switch (memop) {
838 case MO_8:
839 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
840 break;
841 case MO_16:
842 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
843 break;
844 case MO_32:
845 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
846 break;
847 case MO_8|MO_SIGN:
848 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
849 break;
850 case MO_16|MO_SIGN:
851 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
852 break;
853 case MO_32|MO_SIGN:
854 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
855 break;
856 case MO_64:
857 case MO_64|MO_SIGN:
858 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
859 break;
860 default:
861 g_assert_not_reached();
865 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
866 int element, TCGMemOp memop)
868 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
869 switch (memop) {
870 case MO_8:
871 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
872 break;
873 case MO_16:
874 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
875 break;
876 case MO_8|MO_SIGN:
877 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
878 break;
879 case MO_16|MO_SIGN:
880 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
881 break;
882 case MO_32:
883 case MO_32|MO_SIGN:
884 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
885 break;
886 default:
887 g_assert_not_reached();
891 /* Set value of an element within a vector register */
892 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
893 int element, TCGMemOp memop)
895 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
896 switch (memop) {
897 case MO_8:
898 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
899 break;
900 case MO_16:
901 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
902 break;
903 case MO_32:
904 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
905 break;
906 case MO_64:
907 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
908 break;
909 default:
910 g_assert_not_reached();
914 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
915 int destidx, int element, TCGMemOp memop)
917 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
918 switch (memop) {
919 case MO_8:
920 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
921 break;
922 case MO_16:
923 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
924 break;
925 case MO_32:
926 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
927 break;
928 default:
929 g_assert_not_reached();
933 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
934 * vector ops all need to do this).
936 static void clear_vec_high(DisasContext *s, int rd)
938 TCGv_i64 tcg_zero = tcg_const_i64(0);
940 write_vec_element(s, tcg_zero, rd, 1, MO_64);
941 tcg_temp_free_i64(tcg_zero);
944 /* Store from vector register to memory */
945 static void do_vec_st(DisasContext *s, int srcidx, int element,
946 TCGv_i64 tcg_addr, int size)
948 TCGMemOp memop = MO_TE + size;
949 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
951 read_vec_element(s, tcg_tmp, srcidx, element, size);
952 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
954 tcg_temp_free_i64(tcg_tmp);
957 /* Load from memory to vector register */
958 static void do_vec_ld(DisasContext *s, int destidx, int element,
959 TCGv_i64 tcg_addr, int size)
961 TCGMemOp memop = MO_TE + size;
962 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
964 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
965 write_vec_element(s, tcg_tmp, destidx, element, size);
967 tcg_temp_free_i64(tcg_tmp);
970 /* Check that FP/Neon access is enabled. If it is, return
971 * true. If not, emit code to generate an appropriate exception,
972 * and return false; the caller should not emit any code for
973 * the instruction. Note that this check must happen after all
974 * unallocated-encoding checks (otherwise the syndrome information
975 * for the resulting exception will be incorrect).
977 static inline bool fp_access_check(DisasContext *s)
979 assert(!s->fp_access_checked);
980 s->fp_access_checked = true;
982 if (!s->fp_excp_el) {
983 return true;
986 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
987 s->fp_excp_el);
988 return false;
992 * This utility function is for doing register extension with an
993 * optional shift. You will likely want to pass a temporary for the
994 * destination register. See DecodeRegExtend() in the ARM ARM.
996 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
997 int option, unsigned int shift)
999 int extsize = extract32(option, 0, 2);
1000 bool is_signed = extract32(option, 2, 1);
1002 if (is_signed) {
1003 switch (extsize) {
1004 case 0:
1005 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1006 break;
1007 case 1:
1008 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1009 break;
1010 case 2:
1011 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1012 break;
1013 case 3:
1014 tcg_gen_mov_i64(tcg_out, tcg_in);
1015 break;
1017 } else {
1018 switch (extsize) {
1019 case 0:
1020 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1021 break;
1022 case 1:
1023 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1024 break;
1025 case 2:
1026 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1027 break;
1028 case 3:
1029 tcg_gen_mov_i64(tcg_out, tcg_in);
1030 break;
1034 if (shift) {
1035 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1039 static inline void gen_check_sp_alignment(DisasContext *s)
1041 /* The AArch64 architecture mandates that (if enabled via PSTATE
1042 * or SCTLR bits) there is a check that SP is 16-aligned on every
1043 * SP-relative load or store (with an exception generated if it is not).
1044 * In line with general QEMU practice regarding misaligned accesses,
1045 * we omit these checks for the sake of guest program performance.
1046 * This function is provided as a hook so we can more easily add these
1047 * checks in future (possibly as a "favour catching guest program bugs
1048 * over speed" user selectable option).
1053 * This provides a simple table based table lookup decoder. It is
1054 * intended to be used when the relevant bits for decode are too
1055 * awkwardly placed and switch/if based logic would be confusing and
1056 * deeply nested. Since it's a linear search through the table, tables
1057 * should be kept small.
1059 * It returns the first handler where insn & mask == pattern, or
1060 * NULL if there is no match.
1061 * The table is terminated by an empty mask (i.e. 0)
1063 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1064 uint32_t insn)
1066 const AArch64DecodeTable *tptr = table;
1068 while (tptr->mask) {
1069 if ((insn & tptr->mask) == tptr->pattern) {
1070 return tptr->disas_fn;
1072 tptr++;
1074 return NULL;
1078 * the instruction disassembly implemented here matches
1079 * the instruction encoding classifications in chapter 3 (C3)
1080 * of the ARM Architecture Reference Manual (DDI0487A_a)
1083 /* C3.2.7 Unconditional branch (immediate)
1084 * 31 30 26 25 0
1085 * +----+-----------+-------------------------------------+
1086 * | op | 0 0 1 0 1 | imm26 |
1087 * +----+-----------+-------------------------------------+
1089 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1091 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1093 if (insn & (1U << 31)) {
1094 /* C5.6.26 BL Branch with link */
1095 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1098 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1099 gen_goto_tb(s, 0, addr);
1102 /* C3.2.1 Compare & branch (immediate)
1103 * 31 30 25 24 23 5 4 0
1104 * +----+-------------+----+---------------------+--------+
1105 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1106 * +----+-------------+----+---------------------+--------+
1108 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1110 unsigned int sf, op, rt;
1111 uint64_t addr;
1112 TCGLabel *label_match;
1113 TCGv_i64 tcg_cmp;
1115 sf = extract32(insn, 31, 1);
1116 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1117 rt = extract32(insn, 0, 5);
1118 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1120 tcg_cmp = read_cpu_reg(s, rt, sf);
1121 label_match = gen_new_label();
1123 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1124 tcg_cmp, 0, label_match);
1126 gen_goto_tb(s, 0, s->pc);
1127 gen_set_label(label_match);
1128 gen_goto_tb(s, 1, addr);
1131 /* C3.2.5 Test & branch (immediate)
1132 * 31 30 25 24 23 19 18 5 4 0
1133 * +----+-------------+----+-------+-------------+------+
1134 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1135 * +----+-------------+----+-------+-------------+------+
1137 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1139 unsigned int bit_pos, op, rt;
1140 uint64_t addr;
1141 TCGLabel *label_match;
1142 TCGv_i64 tcg_cmp;
1144 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1145 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1146 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1147 rt = extract32(insn, 0, 5);
1149 tcg_cmp = tcg_temp_new_i64();
1150 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1151 label_match = gen_new_label();
1152 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1153 tcg_cmp, 0, label_match);
1154 tcg_temp_free_i64(tcg_cmp);
1155 gen_goto_tb(s, 0, s->pc);
1156 gen_set_label(label_match);
1157 gen_goto_tb(s, 1, addr);
1160 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1161 * 31 25 24 23 5 4 3 0
1162 * +---------------+----+---------------------+----+------+
1163 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1164 * +---------------+----+---------------------+----+------+
1166 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1168 unsigned int cond;
1169 uint64_t addr;
1171 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1172 unallocated_encoding(s);
1173 return;
1175 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1176 cond = extract32(insn, 0, 4);
1178 if (cond < 0x0e) {
1179 /* genuinely conditional branches */
1180 TCGLabel *label_match = gen_new_label();
1181 arm_gen_test_cc(cond, label_match);
1182 gen_goto_tb(s, 0, s->pc);
1183 gen_set_label(label_match);
1184 gen_goto_tb(s, 1, addr);
1185 } else {
1186 /* 0xe and 0xf are both "always" conditions */
1187 gen_goto_tb(s, 0, addr);
1191 /* C5.6.68 HINT */
1192 static void handle_hint(DisasContext *s, uint32_t insn,
1193 unsigned int op1, unsigned int op2, unsigned int crm)
1195 unsigned int selector = crm << 3 | op2;
1197 if (op1 != 3) {
1198 unallocated_encoding(s);
1199 return;
1202 switch (selector) {
1203 case 0: /* NOP */
1204 return;
1205 case 3: /* WFI */
1206 s->is_jmp = DISAS_WFI;
1207 return;
1208 case 1: /* YIELD */
1209 s->is_jmp = DISAS_YIELD;
1210 return;
1211 case 2: /* WFE */
1212 s->is_jmp = DISAS_WFE;
1213 return;
1214 case 4: /* SEV */
1215 case 5: /* SEVL */
1216 /* we treat all as NOP at least for now */
1217 return;
1218 default:
1219 /* default specified as NOP equivalent */
1220 return;
1224 static void gen_clrex(DisasContext *s, uint32_t insn)
1226 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1229 /* CLREX, DSB, DMB, ISB */
1230 static void handle_sync(DisasContext *s, uint32_t insn,
1231 unsigned int op1, unsigned int op2, unsigned int crm)
1233 if (op1 != 3) {
1234 unallocated_encoding(s);
1235 return;
1238 switch (op2) {
1239 case 2: /* CLREX */
1240 gen_clrex(s, insn);
1241 return;
1242 case 4: /* DSB */
1243 case 5: /* DMB */
1244 /* We don't emulate caches so barriers are no-ops */
1245 return;
1246 case 6: /* ISB */
1247 /* We need to break the TB after this insn to execute
1248 * a self-modified code correctly and also to take
1249 * any pending interrupts immediately.
1251 s->is_jmp = DISAS_UPDATE;
1252 return;
1253 default:
1254 unallocated_encoding(s);
1255 return;
1259 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1260 static void handle_msr_i(DisasContext *s, uint32_t insn,
1261 unsigned int op1, unsigned int op2, unsigned int crm)
1263 int op = op1 << 3 | op2;
1264 switch (op) {
1265 case 0x05: /* SPSel */
1266 if (s->current_el == 0) {
1267 unallocated_encoding(s);
1268 return;
1270 /* fall through */
1271 case 0x1e: /* DAIFSet */
1272 case 0x1f: /* DAIFClear */
1274 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1275 TCGv_i32 tcg_op = tcg_const_i32(op);
1276 gen_a64_set_pc_im(s->pc - 4);
1277 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1278 tcg_temp_free_i32(tcg_imm);
1279 tcg_temp_free_i32(tcg_op);
1280 s->is_jmp = DISAS_UPDATE;
1281 break;
1283 default:
1284 unallocated_encoding(s);
1285 return;
1289 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1291 TCGv_i32 tmp = tcg_temp_new_i32();
1292 TCGv_i32 nzcv = tcg_temp_new_i32();
1294 /* build bit 31, N */
1295 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1296 /* build bit 30, Z */
1297 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1298 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1299 /* build bit 29, C */
1300 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1301 /* build bit 28, V */
1302 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1303 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1304 /* generate result */
1305 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1307 tcg_temp_free_i32(nzcv);
1308 tcg_temp_free_i32(tmp);
1311 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1314 TCGv_i32 nzcv = tcg_temp_new_i32();
1316 /* take NZCV from R[t] */
1317 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1319 /* bit 31, N */
1320 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1321 /* bit 30, Z */
1322 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1323 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1324 /* bit 29, C */
1325 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1326 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1327 /* bit 28, V */
1328 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1329 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1330 tcg_temp_free_i32(nzcv);
1333 /* C5.6.129 MRS - move from system register
1334 * C5.6.131 MSR (register) - move to system register
1335 * C5.6.204 SYS
1336 * C5.6.205 SYSL
1337 * These are all essentially the same insn in 'read' and 'write'
1338 * versions, with varying op0 fields.
1340 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1341 unsigned int op0, unsigned int op1, unsigned int op2,
1342 unsigned int crn, unsigned int crm, unsigned int rt)
1344 const ARMCPRegInfo *ri;
1345 TCGv_i64 tcg_rt;
1347 ri = get_arm_cp_reginfo(s->cp_regs,
1348 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1349 crn, crm, op0, op1, op2));
1351 if (!ri) {
1352 /* Unknown register; this might be a guest error or a QEMU
1353 * unimplemented feature.
1355 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1356 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1357 isread ? "read" : "write", op0, op1, crn, crm, op2);
1358 unallocated_encoding(s);
1359 return;
1362 /* Check access permissions */
1363 if (!cp_access_ok(s->current_el, ri, isread)) {
1364 unallocated_encoding(s);
1365 return;
1368 if (ri->accessfn) {
1369 /* Emit code to perform further access permissions checks at
1370 * runtime; this may result in an exception.
1372 TCGv_ptr tmpptr;
1373 TCGv_i32 tcg_syn;
1374 uint32_t syndrome;
1376 gen_a64_set_pc_im(s->pc - 4);
1377 tmpptr = tcg_const_ptr(ri);
1378 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1379 tcg_syn = tcg_const_i32(syndrome);
1380 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
1381 tcg_temp_free_ptr(tmpptr);
1382 tcg_temp_free_i32(tcg_syn);
1385 /* Handle special cases first */
1386 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1387 case ARM_CP_NOP:
1388 return;
1389 case ARM_CP_NZCV:
1390 tcg_rt = cpu_reg(s, rt);
1391 if (isread) {
1392 gen_get_nzcv(tcg_rt);
1393 } else {
1394 gen_set_nzcv(tcg_rt);
1396 return;
1397 case ARM_CP_CURRENTEL:
1398 /* Reads as current EL value from pstate, which is
1399 * guaranteed to be constant by the tb flags.
1401 tcg_rt = cpu_reg(s, rt);
1402 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1403 return;
1404 case ARM_CP_DC_ZVA:
1405 /* Writes clear the aligned block of memory which rt points into. */
1406 tcg_rt = cpu_reg(s, rt);
1407 gen_helper_dc_zva(cpu_env, tcg_rt);
1408 return;
1409 default:
1410 break;
1413 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1414 gen_io_start();
1417 tcg_rt = cpu_reg(s, rt);
1419 if (isread) {
1420 if (ri->type & ARM_CP_CONST) {
1421 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1422 } else if (ri->readfn) {
1423 TCGv_ptr tmpptr;
1424 tmpptr = tcg_const_ptr(ri);
1425 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1426 tcg_temp_free_ptr(tmpptr);
1427 } else {
1428 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1430 } else {
1431 if (ri->type & ARM_CP_CONST) {
1432 /* If not forbidden by access permissions, treat as WI */
1433 return;
1434 } else if (ri->writefn) {
1435 TCGv_ptr tmpptr;
1436 tmpptr = tcg_const_ptr(ri);
1437 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1438 tcg_temp_free_ptr(tmpptr);
1439 } else {
1440 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1444 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1445 /* I/O operations must end the TB here (whether read or write) */
1446 gen_io_end();
1447 s->is_jmp = DISAS_UPDATE;
1448 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1449 /* We default to ending the TB on a coprocessor register write,
1450 * but allow this to be suppressed by the register definition
1451 * (usually only necessary to work around guest bugs).
1453 s->is_jmp = DISAS_UPDATE;
1457 /* C3.2.4 System
1458 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1459 * +---------------------+---+-----+-----+-------+-------+-----+------+
1460 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1461 * +---------------------+---+-----+-----+-------+-------+-----+------+
1463 static void disas_system(DisasContext *s, uint32_t insn)
1465 unsigned int l, op0, op1, crn, crm, op2, rt;
1466 l = extract32(insn, 21, 1);
1467 op0 = extract32(insn, 19, 2);
1468 op1 = extract32(insn, 16, 3);
1469 crn = extract32(insn, 12, 4);
1470 crm = extract32(insn, 8, 4);
1471 op2 = extract32(insn, 5, 3);
1472 rt = extract32(insn, 0, 5);
1474 if (op0 == 0) {
1475 if (l || rt != 31) {
1476 unallocated_encoding(s);
1477 return;
1479 switch (crn) {
1480 case 2: /* C5.6.68 HINT */
1481 handle_hint(s, insn, op1, op2, crm);
1482 break;
1483 case 3: /* CLREX, DSB, DMB, ISB */
1484 handle_sync(s, insn, op1, op2, crm);
1485 break;
1486 case 4: /* C5.6.130 MSR (immediate) */
1487 handle_msr_i(s, insn, op1, op2, crm);
1488 break;
1489 default:
1490 unallocated_encoding(s);
1491 break;
1493 return;
1495 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1498 /* C3.2.3 Exception generation
1500 * 31 24 23 21 20 5 4 2 1 0
1501 * +-----------------+-----+------------------------+-----+----+
1502 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1503 * +-----------------------+------------------------+----------+
1505 static void disas_exc(DisasContext *s, uint32_t insn)
1507 int opc = extract32(insn, 21, 3);
1508 int op2_ll = extract32(insn, 0, 5);
1509 int imm16 = extract32(insn, 5, 16);
1510 TCGv_i32 tmp;
1512 switch (opc) {
1513 case 0:
1514 /* For SVC, HVC and SMC we advance the single-step state
1515 * machine before taking the exception. This is architecturally
1516 * mandated, to ensure that single-stepping a system call
1517 * instruction works properly.
1519 switch (op2_ll) {
1520 case 1:
1521 gen_ss_advance(s);
1522 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1523 default_exception_el(s));
1524 break;
1525 case 2:
1526 if (s->current_el == 0) {
1527 unallocated_encoding(s);
1528 break;
1530 /* The pre HVC helper handles cases when HVC gets trapped
1531 * as an undefined insn by runtime configuration.
1533 gen_a64_set_pc_im(s->pc - 4);
1534 gen_helper_pre_hvc(cpu_env);
1535 gen_ss_advance(s);
1536 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1537 break;
1538 case 3:
1539 if (s->current_el == 0) {
1540 unallocated_encoding(s);
1541 break;
1543 gen_a64_set_pc_im(s->pc - 4);
1544 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1545 gen_helper_pre_smc(cpu_env, tmp);
1546 tcg_temp_free_i32(tmp);
1547 gen_ss_advance(s);
1548 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1549 break;
1550 default:
1551 unallocated_encoding(s);
1552 break;
1554 break;
1555 case 1:
1556 if (op2_ll != 0) {
1557 unallocated_encoding(s);
1558 break;
1560 /* BRK */
1561 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1562 default_exception_el(s));
1563 break;
1564 case 2:
1565 if (op2_ll != 0) {
1566 unallocated_encoding(s);
1567 break;
1569 /* HLT. This has two purposes.
1570 * Architecturally, it is an external halting debug instruction.
1571 * Since QEMU doesn't implement external debug, we treat this as
1572 * it is required for halting debug disabled: it will UNDEF.
1573 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1575 if (semihosting_enabled() && imm16 == 0xf000) {
1576 #ifndef CONFIG_USER_ONLY
1577 /* In system mode, don't allow userspace access to semihosting,
1578 * to provide some semblance of security (and for consistency
1579 * with our 32-bit semihosting).
1581 if (s->current_el == 0) {
1582 unsupported_encoding(s, insn);
1583 break;
1585 #endif
1586 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1587 } else {
1588 unsupported_encoding(s, insn);
1590 break;
1591 case 5:
1592 if (op2_ll < 1 || op2_ll > 3) {
1593 unallocated_encoding(s);
1594 break;
1596 /* DCPS1, DCPS2, DCPS3 */
1597 unsupported_encoding(s, insn);
1598 break;
1599 default:
1600 unallocated_encoding(s);
1601 break;
1605 /* C3.2.7 Unconditional branch (register)
1606 * 31 25 24 21 20 16 15 10 9 5 4 0
1607 * +---------------+-------+-------+-------+------+-------+
1608 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1609 * +---------------+-------+-------+-------+------+-------+
1611 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1613 unsigned int opc, op2, op3, rn, op4;
1615 opc = extract32(insn, 21, 4);
1616 op2 = extract32(insn, 16, 5);
1617 op3 = extract32(insn, 10, 6);
1618 rn = extract32(insn, 5, 5);
1619 op4 = extract32(insn, 0, 5);
1621 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1622 unallocated_encoding(s);
1623 return;
1626 switch (opc) {
1627 case 0: /* BR */
1628 case 2: /* RET */
1629 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1630 break;
1631 case 1: /* BLR */
1632 tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
1633 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1634 break;
1635 case 4: /* ERET */
1636 if (s->current_el == 0) {
1637 unallocated_encoding(s);
1638 return;
1640 gen_helper_exception_return(cpu_env);
1641 s->is_jmp = DISAS_JUMP;
1642 return;
1643 case 5: /* DRPS */
1644 if (rn != 0x1f) {
1645 unallocated_encoding(s);
1646 } else {
1647 unsupported_encoding(s, insn);
1649 return;
1650 default:
1651 unallocated_encoding(s);
1652 return;
1655 s->is_jmp = DISAS_JUMP;
1658 /* C3.2 Branches, exception generating and system instructions */
1659 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1661 switch (extract32(insn, 25, 7)) {
1662 case 0x0a: case 0x0b:
1663 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1664 disas_uncond_b_imm(s, insn);
1665 break;
1666 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1667 disas_comp_b_imm(s, insn);
1668 break;
1669 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1670 disas_test_b_imm(s, insn);
1671 break;
1672 case 0x2a: /* Conditional branch (immediate) */
1673 disas_cond_b_imm(s, insn);
1674 break;
1675 case 0x6a: /* Exception generation / System */
1676 if (insn & (1 << 24)) {
1677 disas_system(s, insn);
1678 } else {
1679 disas_exc(s, insn);
1681 break;
1682 case 0x6b: /* Unconditional branch (register) */
1683 disas_uncond_b_reg(s, insn);
1684 break;
1685 default:
1686 unallocated_encoding(s);
1687 break;
1692 * Load/Store exclusive instructions are implemented by remembering
1693 * the value/address loaded, and seeing if these are the same
1694 * when the store is performed. This is not actually the architecturally
1695 * mandated semantics, but it works for typical guest code sequences
1696 * and avoids having to monitor regular stores.
1698 * In system emulation mode only one CPU will be running at once, so
1699 * this sequence is effectively atomic. In user emulation mode we
1700 * throw an exception and handle the atomic operation elsewhere.
1702 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1703 TCGv_i64 addr, int size, bool is_pair)
1705 TCGv_i64 tmp = tcg_temp_new_i64();
1706 TCGMemOp memop = MO_TE + size;
1708 g_assert(size <= 3);
1709 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1711 if (is_pair) {
1712 TCGv_i64 addr2 = tcg_temp_new_i64();
1713 TCGv_i64 hitmp = tcg_temp_new_i64();
1715 g_assert(size >= 2);
1716 tcg_gen_addi_i64(addr2, addr, 1 << size);
1717 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1718 tcg_temp_free_i64(addr2);
1719 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1720 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1721 tcg_temp_free_i64(hitmp);
1724 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1725 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1727 tcg_temp_free_i64(tmp);
1728 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1731 #ifdef CONFIG_USER_ONLY
1732 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1733 TCGv_i64 addr, int size, int is_pair)
1735 tcg_gen_mov_i64(cpu_exclusive_test, addr);
1736 tcg_gen_movi_i32(cpu_exclusive_info,
1737 size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
1738 gen_exception_internal_insn(s, 4, EXCP_STREX);
1740 #else
1741 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1742 TCGv_i64 inaddr, int size, int is_pair)
1744 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1745 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1746 * [addr] = {Rt};
1747 * if (is_pair) {
1748 * [addr + datasize] = {Rt2};
1750 * {Rd} = 0;
1751 * } else {
1752 * {Rd} = 1;
1754 * env->exclusive_addr = -1;
1756 TCGLabel *fail_label = gen_new_label();
1757 TCGLabel *done_label = gen_new_label();
1758 TCGv_i64 addr = tcg_temp_local_new_i64();
1759 TCGv_i64 tmp;
1761 /* Copy input into a local temp so it is not trashed when the
1762 * basic block ends at the branch insn.
1764 tcg_gen_mov_i64(addr, inaddr);
1765 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1767 tmp = tcg_temp_new_i64();
1768 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
1769 tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
1770 tcg_temp_free_i64(tmp);
1772 if (is_pair) {
1773 TCGv_i64 addrhi = tcg_temp_new_i64();
1774 TCGv_i64 tmphi = tcg_temp_new_i64();
1776 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1777 tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
1778 tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
1780 tcg_temp_free_i64(tmphi);
1781 tcg_temp_free_i64(addrhi);
1784 /* We seem to still have the exclusive monitor, so do the store */
1785 tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
1786 if (is_pair) {
1787 TCGv_i64 addrhi = tcg_temp_new_i64();
1789 tcg_gen_addi_i64(addrhi, addr, 1 << size);
1790 tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
1791 get_mem_index(s), MO_TE + size);
1792 tcg_temp_free_i64(addrhi);
1795 tcg_temp_free_i64(addr);
1797 tcg_gen_movi_i64(cpu_reg(s, rd), 0);
1798 tcg_gen_br(done_label);
1799 gen_set_label(fail_label);
1800 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1801 gen_set_label(done_label);
1802 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1805 #endif
1807 /* C3.3.6 Load/store exclusive
1809 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1810 * +-----+-------------+----+---+----+------+----+-------+------+------+
1811 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1812 * +-----+-------------+----+---+----+------+----+-------+------+------+
1814 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1815 * L: 0 -> store, 1 -> load
1816 * o2: 0 -> exclusive, 1 -> not
1817 * o1: 0 -> single register, 1 -> register pair
1818 * o0: 1 -> load-acquire/store-release, 0 -> not
1820 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1822 int rt = extract32(insn, 0, 5);
1823 int rn = extract32(insn, 5, 5);
1824 int rt2 = extract32(insn, 10, 5);
1825 int is_lasr = extract32(insn, 15, 1);
1826 int rs = extract32(insn, 16, 5);
1827 int is_pair = extract32(insn, 21, 1);
1828 int is_store = !extract32(insn, 22, 1);
1829 int is_excl = !extract32(insn, 23, 1);
1830 int size = extract32(insn, 30, 2);
1831 TCGv_i64 tcg_addr;
1833 if ((!is_excl && !is_pair && !is_lasr) ||
1834 (!is_excl && is_pair) ||
1835 (is_pair && size < 2)) {
1836 unallocated_encoding(s);
1837 return;
1840 if (rn == 31) {
1841 gen_check_sp_alignment(s);
1843 tcg_addr = read_cpu_reg_sp(s, rn, 1);
1845 /* Note that since TCG is single threaded load-acquire/store-release
1846 * semantics require no extra if (is_lasr) { ... } handling.
1849 if (is_excl) {
1850 if (!is_store) {
1851 s->is_ldex = true;
1852 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
1853 } else {
1854 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
1856 } else {
1857 TCGv_i64 tcg_rt = cpu_reg(s, rt);
1858 if (is_store) {
1859 do_gpr_st(s, tcg_rt, tcg_addr, size);
1860 } else {
1861 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
1867 * C3.3.5 Load register (literal)
1869 * 31 30 29 27 26 25 24 23 5 4 0
1870 * +-----+-------+---+-----+-------------------+-------+
1871 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
1872 * +-----+-------+---+-----+-------------------+-------+
1874 * V: 1 -> vector (simd/fp)
1875 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
1876 * 10-> 32 bit signed, 11 -> prefetch
1877 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
1879 static void disas_ld_lit(DisasContext *s, uint32_t insn)
1881 int rt = extract32(insn, 0, 5);
1882 int64_t imm = sextract32(insn, 5, 19) << 2;
1883 bool is_vector = extract32(insn, 26, 1);
1884 int opc = extract32(insn, 30, 2);
1885 bool is_signed = false;
1886 int size = 2;
1887 TCGv_i64 tcg_rt, tcg_addr;
1889 if (is_vector) {
1890 if (opc == 3) {
1891 unallocated_encoding(s);
1892 return;
1894 size = 2 + opc;
1895 if (!fp_access_check(s)) {
1896 return;
1898 } else {
1899 if (opc == 3) {
1900 /* PRFM (literal) : prefetch */
1901 return;
1903 size = 2 + extract32(opc, 0, 1);
1904 is_signed = extract32(opc, 1, 1);
1907 tcg_rt = cpu_reg(s, rt);
1909 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
1910 if (is_vector) {
1911 do_fp_ld(s, rt, tcg_addr, size);
1912 } else {
1913 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
1915 tcg_temp_free_i64(tcg_addr);
1919 * C5.6.80 LDNP (Load Pair - non-temporal hint)
1920 * C5.6.81 LDP (Load Pair - non vector)
1921 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
1922 * C5.6.176 STNP (Store Pair - non-temporal hint)
1923 * C5.6.177 STP (Store Pair - non vector)
1924 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
1925 * C6.3.165 LDP (Load Pair of SIMD&FP)
1926 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
1927 * C6.3.284 STP (Store Pair of SIMD&FP)
1929 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
1930 * +-----+-------+---+---+-------+---+-----------------------------+
1931 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
1932 * +-----+-------+---+---+-------+---+-------+-------+------+------+
1934 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
1935 * LDPSW 01
1936 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
1937 * V: 0 -> GPR, 1 -> Vector
1938 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
1939 * 10 -> signed offset, 11 -> pre-index
1940 * L: 0 -> Store 1 -> Load
1942 * Rt, Rt2 = GPR or SIMD registers to be stored
1943 * Rn = general purpose register containing address
1944 * imm7 = signed offset (multiple of 4 or 8 depending on size)
1946 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
1948 int rt = extract32(insn, 0, 5);
1949 int rn = extract32(insn, 5, 5);
1950 int rt2 = extract32(insn, 10, 5);
1951 uint64_t offset = sextract64(insn, 15, 7);
1952 int index = extract32(insn, 23, 2);
1953 bool is_vector = extract32(insn, 26, 1);
1954 bool is_load = extract32(insn, 22, 1);
1955 int opc = extract32(insn, 30, 2);
1957 bool is_signed = false;
1958 bool postindex = false;
1959 bool wback = false;
1961 TCGv_i64 tcg_addr; /* calculated address */
1962 int size;
1964 if (opc == 3) {
1965 unallocated_encoding(s);
1966 return;
1969 if (is_vector) {
1970 size = 2 + opc;
1971 } else {
1972 size = 2 + extract32(opc, 1, 1);
1973 is_signed = extract32(opc, 0, 1);
1974 if (!is_load && is_signed) {
1975 unallocated_encoding(s);
1976 return;
1980 switch (index) {
1981 case 1: /* post-index */
1982 postindex = true;
1983 wback = true;
1984 break;
1985 case 0:
1986 /* signed offset with "non-temporal" hint. Since we don't emulate
1987 * caches we don't care about hints to the cache system about
1988 * data access patterns, and handle this identically to plain
1989 * signed offset.
1991 if (is_signed) {
1992 /* There is no non-temporal-hint version of LDPSW */
1993 unallocated_encoding(s);
1994 return;
1996 postindex = false;
1997 break;
1998 case 2: /* signed offset, rn not updated */
1999 postindex = false;
2000 break;
2001 case 3: /* pre-index */
2002 postindex = false;
2003 wback = true;
2004 break;
2007 if (is_vector && !fp_access_check(s)) {
2008 return;
2011 offset <<= size;
2013 if (rn == 31) {
2014 gen_check_sp_alignment(s);
2017 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2019 if (!postindex) {
2020 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2023 if (is_vector) {
2024 if (is_load) {
2025 do_fp_ld(s, rt, tcg_addr, size);
2026 } else {
2027 do_fp_st(s, rt, tcg_addr, size);
2029 } else {
2030 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2031 if (is_load) {
2032 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
2033 } else {
2034 do_gpr_st(s, tcg_rt, tcg_addr, size);
2037 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2038 if (is_vector) {
2039 if (is_load) {
2040 do_fp_ld(s, rt2, tcg_addr, size);
2041 } else {
2042 do_fp_st(s, rt2, tcg_addr, size);
2044 } else {
2045 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2046 if (is_load) {
2047 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
2048 } else {
2049 do_gpr_st(s, tcg_rt2, tcg_addr, size);
2053 if (wback) {
2054 if (postindex) {
2055 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2056 } else {
2057 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2059 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2064 * C3.3.8 Load/store (immediate post-indexed)
2065 * C3.3.9 Load/store (immediate pre-indexed)
2066 * C3.3.12 Load/store (unscaled immediate)
2068 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2069 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2070 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2071 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2073 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2074 10 -> unprivileged
2075 * V = 0 -> non-vector
2076 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2077 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2079 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
2081 int rt = extract32(insn, 0, 5);
2082 int rn = extract32(insn, 5, 5);
2083 int imm9 = sextract32(insn, 12, 9);
2084 int opc = extract32(insn, 22, 2);
2085 int size = extract32(insn, 30, 2);
2086 int idx = extract32(insn, 10, 2);
2087 bool is_signed = false;
2088 bool is_store = false;
2089 bool is_extended = false;
2090 bool is_unpriv = (idx == 2);
2091 bool is_vector = extract32(insn, 26, 1);
2092 bool post_index;
2093 bool writeback;
2095 TCGv_i64 tcg_addr;
2097 if (is_vector) {
2098 size |= (opc & 2) << 1;
2099 if (size > 4 || is_unpriv) {
2100 unallocated_encoding(s);
2101 return;
2103 is_store = ((opc & 1) == 0);
2104 if (!fp_access_check(s)) {
2105 return;
2107 } else {
2108 if (size == 3 && opc == 2) {
2109 /* PRFM - prefetch */
2110 if (is_unpriv) {
2111 unallocated_encoding(s);
2112 return;
2114 return;
2116 if (opc == 3 && size > 1) {
2117 unallocated_encoding(s);
2118 return;
2120 is_store = (opc == 0);
2121 is_signed = opc & (1<<1);
2122 is_extended = (size < 3) && (opc & 1);
2125 switch (idx) {
2126 case 0:
2127 case 2:
2128 post_index = false;
2129 writeback = false;
2130 break;
2131 case 1:
2132 post_index = true;
2133 writeback = true;
2134 break;
2135 case 3:
2136 post_index = false;
2137 writeback = true;
2138 break;
2141 if (rn == 31) {
2142 gen_check_sp_alignment(s);
2144 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2146 if (!post_index) {
2147 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2150 if (is_vector) {
2151 if (is_store) {
2152 do_fp_st(s, rt, tcg_addr, size);
2153 } else {
2154 do_fp_ld(s, rt, tcg_addr, size);
2156 } else {
2157 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2158 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2160 if (is_store) {
2161 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
2162 } else {
2163 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2164 is_signed, is_extended, memidx);
2168 if (writeback) {
2169 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2170 if (post_index) {
2171 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2173 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2178 * C3.3.10 Load/store (register offset)
2180 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2181 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2182 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2183 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2185 * For non-vector:
2186 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2187 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2188 * For vector:
2189 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2190 * opc<0>: 0 -> store, 1 -> load
2191 * V: 1 -> vector/simd
2192 * opt: extend encoding (see DecodeRegExtend)
2193 * S: if S=1 then scale (essentially index by sizeof(size))
2194 * Rt: register to transfer into/out of
2195 * Rn: address register or SP for base
2196 * Rm: offset register or ZR for offset
2198 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
2200 int rt = extract32(insn, 0, 5);
2201 int rn = extract32(insn, 5, 5);
2202 int shift = extract32(insn, 12, 1);
2203 int rm = extract32(insn, 16, 5);
2204 int opc = extract32(insn, 22, 2);
2205 int opt = extract32(insn, 13, 3);
2206 int size = extract32(insn, 30, 2);
2207 bool is_signed = false;
2208 bool is_store = false;
2209 bool is_extended = false;
2210 bool is_vector = extract32(insn, 26, 1);
2212 TCGv_i64 tcg_rm;
2213 TCGv_i64 tcg_addr;
2215 if (extract32(opt, 1, 1) == 0) {
2216 unallocated_encoding(s);
2217 return;
2220 if (is_vector) {
2221 size |= (opc & 2) << 1;
2222 if (size > 4) {
2223 unallocated_encoding(s);
2224 return;
2226 is_store = !extract32(opc, 0, 1);
2227 if (!fp_access_check(s)) {
2228 return;
2230 } else {
2231 if (size == 3 && opc == 2) {
2232 /* PRFM - prefetch */
2233 return;
2235 if (opc == 3 && size > 1) {
2236 unallocated_encoding(s);
2237 return;
2239 is_store = (opc == 0);
2240 is_signed = extract32(opc, 1, 1);
2241 is_extended = (size < 3) && extract32(opc, 0, 1);
2244 if (rn == 31) {
2245 gen_check_sp_alignment(s);
2247 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2249 tcg_rm = read_cpu_reg(s, rm, 1);
2250 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2252 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2254 if (is_vector) {
2255 if (is_store) {
2256 do_fp_st(s, rt, tcg_addr, size);
2257 } else {
2258 do_fp_ld(s, rt, tcg_addr, size);
2260 } else {
2261 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2262 if (is_store) {
2263 do_gpr_st(s, tcg_rt, tcg_addr, size);
2264 } else {
2265 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2271 * C3.3.13 Load/store (unsigned immediate)
2273 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2274 * +----+-------+---+-----+-----+------------+-------+------+
2275 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2276 * +----+-------+---+-----+-----+------------+-------+------+
2278 * For non-vector:
2279 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2280 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2281 * For vector:
2282 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2283 * opc<0>: 0 -> store, 1 -> load
2284 * Rn: base address register (inc SP)
2285 * Rt: target register
2287 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
2289 int rt = extract32(insn, 0, 5);
2290 int rn = extract32(insn, 5, 5);
2291 unsigned int imm12 = extract32(insn, 10, 12);
2292 bool is_vector = extract32(insn, 26, 1);
2293 int size = extract32(insn, 30, 2);
2294 int opc = extract32(insn, 22, 2);
2295 unsigned int offset;
2297 TCGv_i64 tcg_addr;
2299 bool is_store;
2300 bool is_signed = false;
2301 bool is_extended = false;
2303 if (is_vector) {
2304 size |= (opc & 2) << 1;
2305 if (size > 4) {
2306 unallocated_encoding(s);
2307 return;
2309 is_store = !extract32(opc, 0, 1);
2310 if (!fp_access_check(s)) {
2311 return;
2313 } else {
2314 if (size == 3 && opc == 2) {
2315 /* PRFM - prefetch */
2316 return;
2318 if (opc == 3 && size > 1) {
2319 unallocated_encoding(s);
2320 return;
2322 is_store = (opc == 0);
2323 is_signed = extract32(opc, 1, 1);
2324 is_extended = (size < 3) && extract32(opc, 0, 1);
2327 if (rn == 31) {
2328 gen_check_sp_alignment(s);
2330 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2331 offset = imm12 << size;
2332 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2334 if (is_vector) {
2335 if (is_store) {
2336 do_fp_st(s, rt, tcg_addr, size);
2337 } else {
2338 do_fp_ld(s, rt, tcg_addr, size);
2340 } else {
2341 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2342 if (is_store) {
2343 do_gpr_st(s, tcg_rt, tcg_addr, size);
2344 } else {
2345 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
2350 /* Load/store register (all forms) */
2351 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2353 switch (extract32(insn, 24, 2)) {
2354 case 0:
2355 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2356 disas_ldst_reg_roffset(s, insn);
2357 } else {
2358 /* Load/store register (unscaled immediate)
2359 * Load/store immediate pre/post-indexed
2360 * Load/store register unprivileged
2362 disas_ldst_reg_imm9(s, insn);
2364 break;
2365 case 1:
2366 disas_ldst_reg_unsigned_imm(s, insn);
2367 break;
2368 default:
2369 unallocated_encoding(s);
2370 break;
2374 /* C3.3.1 AdvSIMD load/store multiple structures
2376 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2377 * +---+---+---------------+---+-------------+--------+------+------+------+
2378 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2379 * +---+---+---------------+---+-------------+--------+------+------+------+
2381 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2383 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2384 * +---+---+---------------+---+---+---------+--------+------+------+------+
2385 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2386 * +---+---+---------------+---+---+---------+--------+------+------+------+
2388 * Rt: first (or only) SIMD&FP register to be transferred
2389 * Rn: base address or SP
2390 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2392 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2394 int rt = extract32(insn, 0, 5);
2395 int rn = extract32(insn, 5, 5);
2396 int size = extract32(insn, 10, 2);
2397 int opcode = extract32(insn, 12, 4);
2398 bool is_store = !extract32(insn, 22, 1);
2399 bool is_postidx = extract32(insn, 23, 1);
2400 bool is_q = extract32(insn, 30, 1);
2401 TCGv_i64 tcg_addr, tcg_rn;
2403 int ebytes = 1 << size;
2404 int elements = (is_q ? 128 : 64) / (8 << size);
2405 int rpt; /* num iterations */
2406 int selem; /* structure elements */
2407 int r;
2409 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2410 unallocated_encoding(s);
2411 return;
2414 /* From the shared decode logic */
2415 switch (opcode) {
2416 case 0x0:
2417 rpt = 1;
2418 selem = 4;
2419 break;
2420 case 0x2:
2421 rpt = 4;
2422 selem = 1;
2423 break;
2424 case 0x4:
2425 rpt = 1;
2426 selem = 3;
2427 break;
2428 case 0x6:
2429 rpt = 3;
2430 selem = 1;
2431 break;
2432 case 0x7:
2433 rpt = 1;
2434 selem = 1;
2435 break;
2436 case 0x8:
2437 rpt = 1;
2438 selem = 2;
2439 break;
2440 case 0xa:
2441 rpt = 2;
2442 selem = 1;
2443 break;
2444 default:
2445 unallocated_encoding(s);
2446 return;
2449 if (size == 3 && !is_q && selem != 1) {
2450 /* reserved */
2451 unallocated_encoding(s);
2452 return;
2455 if (!fp_access_check(s)) {
2456 return;
2459 if (rn == 31) {
2460 gen_check_sp_alignment(s);
2463 tcg_rn = cpu_reg_sp(s, rn);
2464 tcg_addr = tcg_temp_new_i64();
2465 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2467 for (r = 0; r < rpt; r++) {
2468 int e;
2469 for (e = 0; e < elements; e++) {
2470 int tt = (rt + r) % 32;
2471 int xs;
2472 for (xs = 0; xs < selem; xs++) {
2473 if (is_store) {
2474 do_vec_st(s, tt, e, tcg_addr, size);
2475 } else {
2476 do_vec_ld(s, tt, e, tcg_addr, size);
2478 /* For non-quad operations, setting a slice of the low
2479 * 64 bits of the register clears the high 64 bits (in
2480 * the ARM ARM pseudocode this is implicit in the fact
2481 * that 'rval' is a 64 bit wide variable). We optimize
2482 * by noticing that we only need to do this the first
2483 * time we touch a register.
2485 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2486 clear_vec_high(s, tt);
2489 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2490 tt = (tt + 1) % 32;
2495 if (is_postidx) {
2496 int rm = extract32(insn, 16, 5);
2497 if (rm == 31) {
2498 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2499 } else {
2500 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2503 tcg_temp_free_i64(tcg_addr);
2506 /* C3.3.3 AdvSIMD load/store single structure
2508 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2509 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2510 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2511 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2513 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2515 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2516 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2517 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2518 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2520 * Rt: first (or only) SIMD&FP register to be transferred
2521 * Rn: base address or SP
2522 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2523 * index = encoded in Q:S:size dependent on size
2525 * lane_size = encoded in R, opc
2526 * transfer width = encoded in opc, S, size
2528 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2530 int rt = extract32(insn, 0, 5);
2531 int rn = extract32(insn, 5, 5);
2532 int size = extract32(insn, 10, 2);
2533 int S = extract32(insn, 12, 1);
2534 int opc = extract32(insn, 13, 3);
2535 int R = extract32(insn, 21, 1);
2536 int is_load = extract32(insn, 22, 1);
2537 int is_postidx = extract32(insn, 23, 1);
2538 int is_q = extract32(insn, 30, 1);
2540 int scale = extract32(opc, 1, 2);
2541 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2542 bool replicate = false;
2543 int index = is_q << 3 | S << 2 | size;
2544 int ebytes, xs;
2545 TCGv_i64 tcg_addr, tcg_rn;
2547 switch (scale) {
2548 case 3:
2549 if (!is_load || S) {
2550 unallocated_encoding(s);
2551 return;
2553 scale = size;
2554 replicate = true;
2555 break;
2556 case 0:
2557 break;
2558 case 1:
2559 if (extract32(size, 0, 1)) {
2560 unallocated_encoding(s);
2561 return;
2563 index >>= 1;
2564 break;
2565 case 2:
2566 if (extract32(size, 1, 1)) {
2567 unallocated_encoding(s);
2568 return;
2570 if (!extract32(size, 0, 1)) {
2571 index >>= 2;
2572 } else {
2573 if (S) {
2574 unallocated_encoding(s);
2575 return;
2577 index >>= 3;
2578 scale = 3;
2580 break;
2581 default:
2582 g_assert_not_reached();
2585 if (!fp_access_check(s)) {
2586 return;
2589 ebytes = 1 << scale;
2591 if (rn == 31) {
2592 gen_check_sp_alignment(s);
2595 tcg_rn = cpu_reg_sp(s, rn);
2596 tcg_addr = tcg_temp_new_i64();
2597 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2599 for (xs = 0; xs < selem; xs++) {
2600 if (replicate) {
2601 /* Load and replicate to all elements */
2602 uint64_t mulconst;
2603 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2605 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2606 get_mem_index(s), MO_TE + scale);
2607 switch (scale) {
2608 case 0:
2609 mulconst = 0x0101010101010101ULL;
2610 break;
2611 case 1:
2612 mulconst = 0x0001000100010001ULL;
2613 break;
2614 case 2:
2615 mulconst = 0x0000000100000001ULL;
2616 break;
2617 case 3:
2618 mulconst = 0;
2619 break;
2620 default:
2621 g_assert_not_reached();
2623 if (mulconst) {
2624 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2626 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2627 if (is_q) {
2628 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2629 } else {
2630 clear_vec_high(s, rt);
2632 tcg_temp_free_i64(tcg_tmp);
2633 } else {
2634 /* Load/store one element per register */
2635 if (is_load) {
2636 do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
2637 } else {
2638 do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
2641 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2642 rt = (rt + 1) % 32;
2645 if (is_postidx) {
2646 int rm = extract32(insn, 16, 5);
2647 if (rm == 31) {
2648 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2649 } else {
2650 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2653 tcg_temp_free_i64(tcg_addr);
2656 /* C3.3 Loads and stores */
2657 static void disas_ldst(DisasContext *s, uint32_t insn)
2659 switch (extract32(insn, 24, 6)) {
2660 case 0x08: /* Load/store exclusive */
2661 disas_ldst_excl(s, insn);
2662 break;
2663 case 0x18: case 0x1c: /* Load register (literal) */
2664 disas_ld_lit(s, insn);
2665 break;
2666 case 0x28: case 0x29:
2667 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2668 disas_ldst_pair(s, insn);
2669 break;
2670 case 0x38: case 0x39:
2671 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2672 disas_ldst_reg(s, insn);
2673 break;
2674 case 0x0c: /* AdvSIMD load/store multiple structures */
2675 disas_ldst_multiple_struct(s, insn);
2676 break;
2677 case 0x0d: /* AdvSIMD load/store single structure */
2678 disas_ldst_single_struct(s, insn);
2679 break;
2680 default:
2681 unallocated_encoding(s);
2682 break;
2686 /* C3.4.6 PC-rel. addressing
2687 * 31 30 29 28 24 23 5 4 0
2688 * +----+-------+-----------+-------------------+------+
2689 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2690 * +----+-------+-----------+-------------------+------+
2692 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2694 unsigned int page, rd;
2695 uint64_t base;
2696 uint64_t offset;
2698 page = extract32(insn, 31, 1);
2699 /* SignExtend(immhi:immlo) -> offset */
2700 offset = sextract64(insn, 5, 19);
2701 offset = offset << 2 | extract32(insn, 29, 2);
2702 rd = extract32(insn, 0, 5);
2703 base = s->pc - 4;
2705 if (page) {
2706 /* ADRP (page based) */
2707 base &= ~0xfff;
2708 offset <<= 12;
2711 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2715 * C3.4.1 Add/subtract (immediate)
2717 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2718 * +--+--+--+-----------+-----+-------------+-----+-----+
2719 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2720 * +--+--+--+-----------+-----+-------------+-----+-----+
2722 * sf: 0 -> 32bit, 1 -> 64bit
2723 * op: 0 -> add , 1 -> sub
2724 * S: 1 -> set flags
2725 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2727 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2729 int rd = extract32(insn, 0, 5);
2730 int rn = extract32(insn, 5, 5);
2731 uint64_t imm = extract32(insn, 10, 12);
2732 int shift = extract32(insn, 22, 2);
2733 bool setflags = extract32(insn, 29, 1);
2734 bool sub_op = extract32(insn, 30, 1);
2735 bool is_64bit = extract32(insn, 31, 1);
2737 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2738 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2739 TCGv_i64 tcg_result;
2741 switch (shift) {
2742 case 0x0:
2743 break;
2744 case 0x1:
2745 imm <<= 12;
2746 break;
2747 default:
2748 unallocated_encoding(s);
2749 return;
2752 tcg_result = tcg_temp_new_i64();
2753 if (!setflags) {
2754 if (sub_op) {
2755 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2756 } else {
2757 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2759 } else {
2760 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2761 if (sub_op) {
2762 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2763 } else {
2764 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2766 tcg_temp_free_i64(tcg_imm);
2769 if (is_64bit) {
2770 tcg_gen_mov_i64(tcg_rd, tcg_result);
2771 } else {
2772 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2775 tcg_temp_free_i64(tcg_result);
2778 /* The input should be a value in the bottom e bits (with higher
2779 * bits zero); returns that value replicated into every element
2780 * of size e in a 64 bit integer.
2782 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2784 assert(e != 0);
2785 while (e < 64) {
2786 mask |= mask << e;
2787 e *= 2;
2789 return mask;
2792 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2793 static inline uint64_t bitmask64(unsigned int length)
2795 assert(length > 0 && length <= 64);
2796 return ~0ULL >> (64 - length);
2799 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2800 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2801 * value (ie should cause a guest UNDEF exception), and true if they are
2802 * valid, in which case the decoded bit pattern is written to result.
2804 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
2805 unsigned int imms, unsigned int immr)
2807 uint64_t mask;
2808 unsigned e, levels, s, r;
2809 int len;
2811 assert(immn < 2 && imms < 64 && immr < 64);
2813 /* The bit patterns we create here are 64 bit patterns which
2814 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
2815 * 64 bits each. Each element contains the same value: a run
2816 * of between 1 and e-1 non-zero bits, rotated within the
2817 * element by between 0 and e-1 bits.
2819 * The element size and run length are encoded into immn (1 bit)
2820 * and imms (6 bits) as follows:
2821 * 64 bit elements: immn = 1, imms = <length of run - 1>
2822 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
2823 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
2824 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
2825 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
2826 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
2827 * Notice that immn = 0, imms = 11111x is the only combination
2828 * not covered by one of the above options; this is reserved.
2829 * Further, <length of run - 1> all-ones is a reserved pattern.
2831 * In all cases the rotation is by immr % e (and immr is 6 bits).
2834 /* First determine the element size */
2835 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
2836 if (len < 1) {
2837 /* This is the immn == 0, imms == 0x11111x case */
2838 return false;
2840 e = 1 << len;
2842 levels = e - 1;
2843 s = imms & levels;
2844 r = immr & levels;
2846 if (s == levels) {
2847 /* <length of run - 1> mustn't be all-ones. */
2848 return false;
2851 /* Create the value of one element: s+1 set bits rotated
2852 * by r within the element (which is e bits wide)...
2854 mask = bitmask64(s + 1);
2855 if (r) {
2856 mask = (mask >> r) | (mask << (e - r));
2857 mask &= bitmask64(e);
2859 /* ...then replicate the element over the whole 64 bit value */
2860 mask = bitfield_replicate(mask, e);
2861 *result = mask;
2862 return true;
2865 /* C3.4.4 Logical (immediate)
2866 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2867 * +----+-----+-------------+---+------+------+------+------+
2868 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
2869 * +----+-----+-------------+---+------+------+------+------+
2871 static void disas_logic_imm(DisasContext *s, uint32_t insn)
2873 unsigned int sf, opc, is_n, immr, imms, rn, rd;
2874 TCGv_i64 tcg_rd, tcg_rn;
2875 uint64_t wmask;
2876 bool is_and = false;
2878 sf = extract32(insn, 31, 1);
2879 opc = extract32(insn, 29, 2);
2880 is_n = extract32(insn, 22, 1);
2881 immr = extract32(insn, 16, 6);
2882 imms = extract32(insn, 10, 6);
2883 rn = extract32(insn, 5, 5);
2884 rd = extract32(insn, 0, 5);
2886 if (!sf && is_n) {
2887 unallocated_encoding(s);
2888 return;
2891 if (opc == 0x3) { /* ANDS */
2892 tcg_rd = cpu_reg(s, rd);
2893 } else {
2894 tcg_rd = cpu_reg_sp(s, rd);
2896 tcg_rn = cpu_reg(s, rn);
2898 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
2899 /* some immediate field values are reserved */
2900 unallocated_encoding(s);
2901 return;
2904 if (!sf) {
2905 wmask &= 0xffffffff;
2908 switch (opc) {
2909 case 0x3: /* ANDS */
2910 case 0x0: /* AND */
2911 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
2912 is_and = true;
2913 break;
2914 case 0x1: /* ORR */
2915 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
2916 break;
2917 case 0x2: /* EOR */
2918 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
2919 break;
2920 default:
2921 assert(FALSE); /* must handle all above */
2922 break;
2925 if (!sf && !is_and) {
2926 /* zero extend final result; we know we can skip this for AND
2927 * since the immediate had the high 32 bits clear.
2929 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2932 if (opc == 3) { /* ANDS */
2933 gen_logic_CC(sf, tcg_rd);
2938 * C3.4.5 Move wide (immediate)
2940 * 31 30 29 28 23 22 21 20 5 4 0
2941 * +--+-----+-------------+-----+----------------+------+
2942 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
2943 * +--+-----+-------------+-----+----------------+------+
2945 * sf: 0 -> 32 bit, 1 -> 64 bit
2946 * opc: 00 -> N, 10 -> Z, 11 -> K
2947 * hw: shift/16 (0,16, and sf only 32, 48)
2949 static void disas_movw_imm(DisasContext *s, uint32_t insn)
2951 int rd = extract32(insn, 0, 5);
2952 uint64_t imm = extract32(insn, 5, 16);
2953 int sf = extract32(insn, 31, 1);
2954 int opc = extract32(insn, 29, 2);
2955 int pos = extract32(insn, 21, 2) << 4;
2956 TCGv_i64 tcg_rd = cpu_reg(s, rd);
2957 TCGv_i64 tcg_imm;
2959 if (!sf && (pos >= 32)) {
2960 unallocated_encoding(s);
2961 return;
2964 switch (opc) {
2965 case 0: /* MOVN */
2966 case 2: /* MOVZ */
2967 imm <<= pos;
2968 if (opc == 0) {
2969 imm = ~imm;
2971 if (!sf) {
2972 imm &= 0xffffffffu;
2974 tcg_gen_movi_i64(tcg_rd, imm);
2975 break;
2976 case 3: /* MOVK */
2977 tcg_imm = tcg_const_i64(imm);
2978 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
2979 tcg_temp_free_i64(tcg_imm);
2980 if (!sf) {
2981 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
2983 break;
2984 default:
2985 unallocated_encoding(s);
2986 break;
2990 /* C3.4.2 Bitfield
2991 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
2992 * +----+-----+-------------+---+------+------+------+------+
2993 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
2994 * +----+-----+-------------+---+------+------+------+------+
2996 static void disas_bitfield(DisasContext *s, uint32_t insn)
2998 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
2999 TCGv_i64 tcg_rd, tcg_tmp;
3001 sf = extract32(insn, 31, 1);
3002 opc = extract32(insn, 29, 2);
3003 n = extract32(insn, 22, 1);
3004 ri = extract32(insn, 16, 6);
3005 si = extract32(insn, 10, 6);
3006 rn = extract32(insn, 5, 5);
3007 rd = extract32(insn, 0, 5);
3008 bitsize = sf ? 64 : 32;
3010 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3011 unallocated_encoding(s);
3012 return;
3015 tcg_rd = cpu_reg(s, rd);
3017 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3018 to be smaller than bitsize, we'll never reference data outside the
3019 low 32-bits anyway. */
3020 tcg_tmp = read_cpu_reg(s, rn, 1);
3022 /* Recognize the common aliases. */
3023 if (opc == 0) { /* SBFM */
3024 if (ri == 0) {
3025 if (si == 7) { /* SXTB */
3026 tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
3027 goto done;
3028 } else if (si == 15) { /* SXTH */
3029 tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
3030 goto done;
3031 } else if (si == 31) { /* SXTW */
3032 tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
3033 goto done;
3036 if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
3037 if (si == 31) {
3038 tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
3040 tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
3041 goto done;
3043 } else if (opc == 2) { /* UBFM */
3044 if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
3045 tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
3046 return;
3048 if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
3049 if (si == 31) {
3050 tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
3052 tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
3053 return;
3055 if (si + 1 == ri && si != bitsize - 1) { /* LSL */
3056 int shift = bitsize - 1 - si;
3057 tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
3058 goto done;
3062 if (opc != 1) { /* SBFM or UBFM */
3063 tcg_gen_movi_i64(tcg_rd, 0);
3066 /* do the bit move operation */
3067 if (si >= ri) {
3068 /* Wd<s-r:0> = Wn<s:r> */
3069 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3070 pos = 0;
3071 len = (si - ri) + 1;
3072 } else {
3073 /* Wd<32+s-r,32-r> = Wn<s:0> */
3074 pos = bitsize - ri;
3075 len = si + 1;
3078 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3080 if (opc == 0) { /* SBFM - sign extend the destination field */
3081 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3082 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3085 done:
3086 if (!sf) { /* zero extend final result */
3087 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3091 /* C3.4.3 Extract
3092 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3093 * +----+------+-------------+---+----+------+--------+------+------+
3094 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3095 * +----+------+-------------+---+----+------+--------+------+------+
3097 static void disas_extract(DisasContext *s, uint32_t insn)
3099 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3101 sf = extract32(insn, 31, 1);
3102 n = extract32(insn, 22, 1);
3103 rm = extract32(insn, 16, 5);
3104 imm = extract32(insn, 10, 6);
3105 rn = extract32(insn, 5, 5);
3106 rd = extract32(insn, 0, 5);
3107 op21 = extract32(insn, 29, 2);
3108 op0 = extract32(insn, 21, 1);
3109 bitsize = sf ? 64 : 32;
3111 if (sf != n || op21 || op0 || imm >= bitsize) {
3112 unallocated_encoding(s);
3113 } else {
3114 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3116 tcg_rd = cpu_reg(s, rd);
3118 if (unlikely(imm == 0)) {
3119 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3120 * so an extract from bit 0 is a special case.
3122 if (sf) {
3123 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3124 } else {
3125 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3127 } else if (rm == rn) { /* ROR */
3128 tcg_rm = cpu_reg(s, rm);
3129 if (sf) {
3130 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3131 } else {
3132 TCGv_i32 tmp = tcg_temp_new_i32();
3133 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3134 tcg_gen_rotri_i32(tmp, tmp, imm);
3135 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3136 tcg_temp_free_i32(tmp);
3138 } else {
3139 tcg_rm = read_cpu_reg(s, rm, sf);
3140 tcg_rn = read_cpu_reg(s, rn, sf);
3141 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3142 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3143 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3144 if (!sf) {
3145 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3151 /* C3.4 Data processing - immediate */
3152 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3154 switch (extract32(insn, 23, 6)) {
3155 case 0x20: case 0x21: /* PC-rel. addressing */
3156 disas_pc_rel_adr(s, insn);
3157 break;
3158 case 0x22: case 0x23: /* Add/subtract (immediate) */
3159 disas_add_sub_imm(s, insn);
3160 break;
3161 case 0x24: /* Logical (immediate) */
3162 disas_logic_imm(s, insn);
3163 break;
3164 case 0x25: /* Move wide (immediate) */
3165 disas_movw_imm(s, insn);
3166 break;
3167 case 0x26: /* Bitfield */
3168 disas_bitfield(s, insn);
3169 break;
3170 case 0x27: /* Extract */
3171 disas_extract(s, insn);
3172 break;
3173 default:
3174 unallocated_encoding(s);
3175 break;
3179 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3180 * Note that it is the caller's responsibility to ensure that the
3181 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3182 * mandated semantics for out of range shifts.
3184 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3185 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3187 switch (shift_type) {
3188 case A64_SHIFT_TYPE_LSL:
3189 tcg_gen_shl_i64(dst, src, shift_amount);
3190 break;
3191 case A64_SHIFT_TYPE_LSR:
3192 tcg_gen_shr_i64(dst, src, shift_amount);
3193 break;
3194 case A64_SHIFT_TYPE_ASR:
3195 if (!sf) {
3196 tcg_gen_ext32s_i64(dst, src);
3198 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3199 break;
3200 case A64_SHIFT_TYPE_ROR:
3201 if (sf) {
3202 tcg_gen_rotr_i64(dst, src, shift_amount);
3203 } else {
3204 TCGv_i32 t0, t1;
3205 t0 = tcg_temp_new_i32();
3206 t1 = tcg_temp_new_i32();
3207 tcg_gen_extrl_i64_i32(t0, src);
3208 tcg_gen_extrl_i64_i32(t1, shift_amount);
3209 tcg_gen_rotr_i32(t0, t0, t1);
3210 tcg_gen_extu_i32_i64(dst, t0);
3211 tcg_temp_free_i32(t0);
3212 tcg_temp_free_i32(t1);
3214 break;
3215 default:
3216 assert(FALSE); /* all shift types should be handled */
3217 break;
3220 if (!sf) { /* zero extend final result */
3221 tcg_gen_ext32u_i64(dst, dst);
3225 /* Shift a TCGv src by immediate, put result in dst.
3226 * The shift amount must be in range (this should always be true as the
3227 * relevant instructions will UNDEF on bad shift immediates).
3229 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3230 enum a64_shift_type shift_type, unsigned int shift_i)
3232 assert(shift_i < (sf ? 64 : 32));
3234 if (shift_i == 0) {
3235 tcg_gen_mov_i64(dst, src);
3236 } else {
3237 TCGv_i64 shift_const;
3239 shift_const = tcg_const_i64(shift_i);
3240 shift_reg(dst, src, sf, shift_type, shift_const);
3241 tcg_temp_free_i64(shift_const);
3245 /* C3.5.10 Logical (shifted register)
3246 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3247 * +----+-----+-----------+-------+---+------+--------+------+------+
3248 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3249 * +----+-----+-----------+-------+---+------+--------+------+------+
3251 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3253 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3254 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3256 sf = extract32(insn, 31, 1);
3257 opc = extract32(insn, 29, 2);
3258 shift_type = extract32(insn, 22, 2);
3259 invert = extract32(insn, 21, 1);
3260 rm = extract32(insn, 16, 5);
3261 shift_amount = extract32(insn, 10, 6);
3262 rn = extract32(insn, 5, 5);
3263 rd = extract32(insn, 0, 5);
3265 if (!sf && (shift_amount & (1 << 5))) {
3266 unallocated_encoding(s);
3267 return;
3270 tcg_rd = cpu_reg(s, rd);
3272 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3273 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3274 * register-register MOV and MVN, so it is worth special casing.
3276 tcg_rm = cpu_reg(s, rm);
3277 if (invert) {
3278 tcg_gen_not_i64(tcg_rd, tcg_rm);
3279 if (!sf) {
3280 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3282 } else {
3283 if (sf) {
3284 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3285 } else {
3286 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3289 return;
3292 tcg_rm = read_cpu_reg(s, rm, sf);
3294 if (shift_amount) {
3295 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3298 tcg_rn = cpu_reg(s, rn);
3300 switch (opc | (invert << 2)) {
3301 case 0: /* AND */
3302 case 3: /* ANDS */
3303 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3304 break;
3305 case 1: /* ORR */
3306 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3307 break;
3308 case 2: /* EOR */
3309 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3310 break;
3311 case 4: /* BIC */
3312 case 7: /* BICS */
3313 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3314 break;
3315 case 5: /* ORN */
3316 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3317 break;
3318 case 6: /* EON */
3319 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3320 break;
3321 default:
3322 assert(FALSE);
3323 break;
3326 if (!sf) {
3327 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3330 if (opc == 3) {
3331 gen_logic_CC(sf, tcg_rd);
3336 * C3.5.1 Add/subtract (extended register)
3338 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3339 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3340 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3341 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3343 * sf: 0 -> 32bit, 1 -> 64bit
3344 * op: 0 -> add , 1 -> sub
3345 * S: 1 -> set flags
3346 * opt: 00
3347 * option: extension type (see DecodeRegExtend)
3348 * imm3: optional shift to Rm
3350 * Rd = Rn + LSL(extend(Rm), amount)
3352 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3354 int rd = extract32(insn, 0, 5);
3355 int rn = extract32(insn, 5, 5);
3356 int imm3 = extract32(insn, 10, 3);
3357 int option = extract32(insn, 13, 3);
3358 int rm = extract32(insn, 16, 5);
3359 bool setflags = extract32(insn, 29, 1);
3360 bool sub_op = extract32(insn, 30, 1);
3361 bool sf = extract32(insn, 31, 1);
3363 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3364 TCGv_i64 tcg_rd;
3365 TCGv_i64 tcg_result;
3367 if (imm3 > 4) {
3368 unallocated_encoding(s);
3369 return;
3372 /* non-flag setting ops may use SP */
3373 if (!setflags) {
3374 tcg_rd = cpu_reg_sp(s, rd);
3375 } else {
3376 tcg_rd = cpu_reg(s, rd);
3378 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3380 tcg_rm = read_cpu_reg(s, rm, sf);
3381 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3383 tcg_result = tcg_temp_new_i64();
3385 if (!setflags) {
3386 if (sub_op) {
3387 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3388 } else {
3389 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3391 } else {
3392 if (sub_op) {
3393 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3394 } else {
3395 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3399 if (sf) {
3400 tcg_gen_mov_i64(tcg_rd, tcg_result);
3401 } else {
3402 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3405 tcg_temp_free_i64(tcg_result);
3409 * C3.5.2 Add/subtract (shifted register)
3411 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3412 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3413 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3414 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3416 * sf: 0 -> 32bit, 1 -> 64bit
3417 * op: 0 -> add , 1 -> sub
3418 * S: 1 -> set flags
3419 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3420 * imm6: Shift amount to apply to Rm before the add/sub
3422 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3424 int rd = extract32(insn, 0, 5);
3425 int rn = extract32(insn, 5, 5);
3426 int imm6 = extract32(insn, 10, 6);
3427 int rm = extract32(insn, 16, 5);
3428 int shift_type = extract32(insn, 22, 2);
3429 bool setflags = extract32(insn, 29, 1);
3430 bool sub_op = extract32(insn, 30, 1);
3431 bool sf = extract32(insn, 31, 1);
3433 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3434 TCGv_i64 tcg_rn, tcg_rm;
3435 TCGv_i64 tcg_result;
3437 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3438 unallocated_encoding(s);
3439 return;
3442 tcg_rn = read_cpu_reg(s, rn, sf);
3443 tcg_rm = read_cpu_reg(s, rm, sf);
3445 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3447 tcg_result = tcg_temp_new_i64();
3449 if (!setflags) {
3450 if (sub_op) {
3451 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3452 } else {
3453 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3455 } else {
3456 if (sub_op) {
3457 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3458 } else {
3459 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3463 if (sf) {
3464 tcg_gen_mov_i64(tcg_rd, tcg_result);
3465 } else {
3466 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3469 tcg_temp_free_i64(tcg_result);
3472 /* C3.5.9 Data-processing (3 source)
3474 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3475 +--+------+-----------+------+------+----+------+------+------+
3476 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3477 +--+------+-----------+------+------+----+------+------+------+
3480 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3482 int rd = extract32(insn, 0, 5);
3483 int rn = extract32(insn, 5, 5);
3484 int ra = extract32(insn, 10, 5);
3485 int rm = extract32(insn, 16, 5);
3486 int op_id = (extract32(insn, 29, 3) << 4) |
3487 (extract32(insn, 21, 3) << 1) |
3488 extract32(insn, 15, 1);
3489 bool sf = extract32(insn, 31, 1);
3490 bool is_sub = extract32(op_id, 0, 1);
3491 bool is_high = extract32(op_id, 2, 1);
3492 bool is_signed = false;
3493 TCGv_i64 tcg_op1;
3494 TCGv_i64 tcg_op2;
3495 TCGv_i64 tcg_tmp;
3497 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3498 switch (op_id) {
3499 case 0x42: /* SMADDL */
3500 case 0x43: /* SMSUBL */
3501 case 0x44: /* SMULH */
3502 is_signed = true;
3503 break;
3504 case 0x0: /* MADD (32bit) */
3505 case 0x1: /* MSUB (32bit) */
3506 case 0x40: /* MADD (64bit) */
3507 case 0x41: /* MSUB (64bit) */
3508 case 0x4a: /* UMADDL */
3509 case 0x4b: /* UMSUBL */
3510 case 0x4c: /* UMULH */
3511 break;
3512 default:
3513 unallocated_encoding(s);
3514 return;
3517 if (is_high) {
3518 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3519 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3520 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3521 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3523 if (is_signed) {
3524 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3525 } else {
3526 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3529 tcg_temp_free_i64(low_bits);
3530 return;
3533 tcg_op1 = tcg_temp_new_i64();
3534 tcg_op2 = tcg_temp_new_i64();
3535 tcg_tmp = tcg_temp_new_i64();
3537 if (op_id < 0x42) {
3538 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3539 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3540 } else {
3541 if (is_signed) {
3542 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3543 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3544 } else {
3545 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3546 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3550 if (ra == 31 && !is_sub) {
3551 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3552 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3553 } else {
3554 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3555 if (is_sub) {
3556 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3557 } else {
3558 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3562 if (!sf) {
3563 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3566 tcg_temp_free_i64(tcg_op1);
3567 tcg_temp_free_i64(tcg_op2);
3568 tcg_temp_free_i64(tcg_tmp);
3571 /* C3.5.3 - Add/subtract (with carry)
3572 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3573 * +--+--+--+------------------------+------+---------+------+-----+
3574 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3575 * +--+--+--+------------------------+------+---------+------+-----+
3576 * [000000]
3579 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3581 unsigned int sf, op, setflags, rm, rn, rd;
3582 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3584 if (extract32(insn, 10, 6) != 0) {
3585 unallocated_encoding(s);
3586 return;
3589 sf = extract32(insn, 31, 1);
3590 op = extract32(insn, 30, 1);
3591 setflags = extract32(insn, 29, 1);
3592 rm = extract32(insn, 16, 5);
3593 rn = extract32(insn, 5, 5);
3594 rd = extract32(insn, 0, 5);
3596 tcg_rd = cpu_reg(s, rd);
3597 tcg_rn = cpu_reg(s, rn);
3599 if (op) {
3600 tcg_y = new_tmp_a64(s);
3601 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3602 } else {
3603 tcg_y = cpu_reg(s, rm);
3606 if (setflags) {
3607 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3608 } else {
3609 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3613 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3614 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3615 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3616 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3617 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3618 * [1] y [0] [0]
3620 static void disas_cc(DisasContext *s, uint32_t insn)
3622 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3623 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3624 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3625 DisasCompare c;
3627 if (!extract32(insn, 29, 1)) {
3628 unallocated_encoding(s);
3629 return;
3631 if (insn & (1 << 10 | 1 << 4)) {
3632 unallocated_encoding(s);
3633 return;
3635 sf = extract32(insn, 31, 1);
3636 op = extract32(insn, 30, 1);
3637 is_imm = extract32(insn, 11, 1);
3638 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3639 cond = extract32(insn, 12, 4);
3640 rn = extract32(insn, 5, 5);
3641 nzcv = extract32(insn, 0, 4);
3643 /* Set T0 = !COND. */
3644 tcg_t0 = tcg_temp_new_i32();
3645 arm_test_cc(&c, cond);
3646 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3647 arm_free_cc(&c);
3649 /* Load the arguments for the new comparison. */
3650 if (is_imm) {
3651 tcg_y = new_tmp_a64(s);
3652 tcg_gen_movi_i64(tcg_y, y);
3653 } else {
3654 tcg_y = cpu_reg(s, y);
3656 tcg_rn = cpu_reg(s, rn);
3658 /* Set the flags for the new comparison. */
3659 tcg_tmp = tcg_temp_new_i64();
3660 if (op) {
3661 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3662 } else {
3663 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3665 tcg_temp_free_i64(tcg_tmp);
3667 /* If COND was false, force the flags to #nzcv. Compute two masks
3668 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3669 * For tcg hosts that support ANDC, we can make do with just T1.
3670 * In either case, allow the tcg optimizer to delete any unused mask.
3672 tcg_t1 = tcg_temp_new_i32();
3673 tcg_t2 = tcg_temp_new_i32();
3674 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3675 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3677 if (nzcv & 8) { /* N */
3678 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3679 } else {
3680 if (TCG_TARGET_HAS_andc_i32) {
3681 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3682 } else {
3683 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3686 if (nzcv & 4) { /* Z */
3687 if (TCG_TARGET_HAS_andc_i32) {
3688 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3689 } else {
3690 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3692 } else {
3693 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3695 if (nzcv & 2) { /* C */
3696 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3697 } else {
3698 if (TCG_TARGET_HAS_andc_i32) {
3699 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3700 } else {
3701 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3704 if (nzcv & 1) { /* V */
3705 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3706 } else {
3707 if (TCG_TARGET_HAS_andc_i32) {
3708 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3709 } else {
3710 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3713 tcg_temp_free_i32(tcg_t0);
3714 tcg_temp_free_i32(tcg_t1);
3715 tcg_temp_free_i32(tcg_t2);
3718 /* C3.5.6 Conditional select
3719 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3720 * +----+----+---+-----------------+------+------+-----+------+------+
3721 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3722 * +----+----+---+-----------------+------+------+-----+------+------+
3724 static void disas_cond_select(DisasContext *s, uint32_t insn)
3726 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3727 TCGv_i64 tcg_rd, zero;
3728 DisasCompare64 c;
3730 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3731 /* S == 1 or op2<1> == 1 */
3732 unallocated_encoding(s);
3733 return;
3735 sf = extract32(insn, 31, 1);
3736 else_inv = extract32(insn, 30, 1);
3737 rm = extract32(insn, 16, 5);
3738 cond = extract32(insn, 12, 4);
3739 else_inc = extract32(insn, 10, 1);
3740 rn = extract32(insn, 5, 5);
3741 rd = extract32(insn, 0, 5);
3743 tcg_rd = cpu_reg(s, rd);
3745 a64_test_cc(&c, cond);
3746 zero = tcg_const_i64(0);
3748 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3749 /* CSET & CSETM. */
3750 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3751 if (else_inv) {
3752 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3754 } else {
3755 TCGv_i64 t_true = cpu_reg(s, rn);
3756 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3757 if (else_inv && else_inc) {
3758 tcg_gen_neg_i64(t_false, t_false);
3759 } else if (else_inv) {
3760 tcg_gen_not_i64(t_false, t_false);
3761 } else if (else_inc) {
3762 tcg_gen_addi_i64(t_false, t_false, 1);
3764 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3767 tcg_temp_free_i64(zero);
3768 a64_free_cc(&c);
3770 if (!sf) {
3771 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3775 static void handle_clz(DisasContext *s, unsigned int sf,
3776 unsigned int rn, unsigned int rd)
3778 TCGv_i64 tcg_rd, tcg_rn;
3779 tcg_rd = cpu_reg(s, rd);
3780 tcg_rn = cpu_reg(s, rn);
3782 if (sf) {
3783 gen_helper_clz64(tcg_rd, tcg_rn);
3784 } else {
3785 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3786 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3787 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3788 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3789 tcg_temp_free_i32(tcg_tmp32);
3793 static void handle_cls(DisasContext *s, unsigned int sf,
3794 unsigned int rn, unsigned int rd)
3796 TCGv_i64 tcg_rd, tcg_rn;
3797 tcg_rd = cpu_reg(s, rd);
3798 tcg_rn = cpu_reg(s, rn);
3800 if (sf) {
3801 gen_helper_cls64(tcg_rd, tcg_rn);
3802 } else {
3803 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3804 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3805 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
3806 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3807 tcg_temp_free_i32(tcg_tmp32);
3811 static void handle_rbit(DisasContext *s, unsigned int sf,
3812 unsigned int rn, unsigned int rd)
3814 TCGv_i64 tcg_rd, tcg_rn;
3815 tcg_rd = cpu_reg(s, rd);
3816 tcg_rn = cpu_reg(s, rn);
3818 if (sf) {
3819 gen_helper_rbit64(tcg_rd, tcg_rn);
3820 } else {
3821 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3822 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3823 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
3824 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3825 tcg_temp_free_i32(tcg_tmp32);
3829 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
3830 static void handle_rev64(DisasContext *s, unsigned int sf,
3831 unsigned int rn, unsigned int rd)
3833 if (!sf) {
3834 unallocated_encoding(s);
3835 return;
3837 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
3840 /* C5.6.149 REV with sf==0, opcode==2
3841 * C5.6.151 REV32 (sf==1, opcode==2)
3843 static void handle_rev32(DisasContext *s, unsigned int sf,
3844 unsigned int rn, unsigned int rd)
3846 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3848 if (sf) {
3849 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3850 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3852 /* bswap32_i64 requires zero high word */
3853 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
3854 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
3855 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3856 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
3857 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
3859 tcg_temp_free_i64(tcg_tmp);
3860 } else {
3861 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
3862 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
3866 /* C5.6.150 REV16 (opcode==1) */
3867 static void handle_rev16(DisasContext *s, unsigned int sf,
3868 unsigned int rn, unsigned int rd)
3870 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3871 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3872 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3874 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
3875 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
3877 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
3878 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3879 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3880 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
3882 if (sf) {
3883 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
3884 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
3885 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3886 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
3888 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
3889 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
3890 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
3893 tcg_temp_free_i64(tcg_tmp);
3896 /* C3.5.7 Data-processing (1 source)
3897 * 31 30 29 28 21 20 16 15 10 9 5 4 0
3898 * +----+---+---+-----------------+---------+--------+------+------+
3899 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
3900 * +----+---+---+-----------------+---------+--------+------+------+
3902 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
3904 unsigned int sf, opcode, rn, rd;
3906 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
3907 unallocated_encoding(s);
3908 return;
3911 sf = extract32(insn, 31, 1);
3912 opcode = extract32(insn, 10, 6);
3913 rn = extract32(insn, 5, 5);
3914 rd = extract32(insn, 0, 5);
3916 switch (opcode) {
3917 case 0: /* RBIT */
3918 handle_rbit(s, sf, rn, rd);
3919 break;
3920 case 1: /* REV16 */
3921 handle_rev16(s, sf, rn, rd);
3922 break;
3923 case 2: /* REV32 */
3924 handle_rev32(s, sf, rn, rd);
3925 break;
3926 case 3: /* REV64 */
3927 handle_rev64(s, sf, rn, rd);
3928 break;
3929 case 4: /* CLZ */
3930 handle_clz(s, sf, rn, rd);
3931 break;
3932 case 5: /* CLS */
3933 handle_cls(s, sf, rn, rd);
3934 break;
3938 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
3939 unsigned int rm, unsigned int rn, unsigned int rd)
3941 TCGv_i64 tcg_n, tcg_m, tcg_rd;
3942 tcg_rd = cpu_reg(s, rd);
3944 if (!sf && is_signed) {
3945 tcg_n = new_tmp_a64(s);
3946 tcg_m = new_tmp_a64(s);
3947 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
3948 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
3949 } else {
3950 tcg_n = read_cpu_reg(s, rn, sf);
3951 tcg_m = read_cpu_reg(s, rm, sf);
3954 if (is_signed) {
3955 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
3956 } else {
3957 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
3960 if (!sf) { /* zero extend final result */
3961 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3965 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
3966 static void handle_shift_reg(DisasContext *s,
3967 enum a64_shift_type shift_type, unsigned int sf,
3968 unsigned int rm, unsigned int rn, unsigned int rd)
3970 TCGv_i64 tcg_shift = tcg_temp_new_i64();
3971 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3972 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
3974 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
3975 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
3976 tcg_temp_free_i64(tcg_shift);
3979 /* CRC32[BHWX], CRC32C[BHWX] */
3980 static void handle_crc32(DisasContext *s,
3981 unsigned int sf, unsigned int sz, bool crc32c,
3982 unsigned int rm, unsigned int rn, unsigned int rd)
3984 TCGv_i64 tcg_acc, tcg_val;
3985 TCGv_i32 tcg_bytes;
3987 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
3988 || (sf == 1 && sz != 3)
3989 || (sf == 0 && sz == 3)) {
3990 unallocated_encoding(s);
3991 return;
3994 if (sz == 3) {
3995 tcg_val = cpu_reg(s, rm);
3996 } else {
3997 uint64_t mask;
3998 switch (sz) {
3999 case 0:
4000 mask = 0xFF;
4001 break;
4002 case 1:
4003 mask = 0xFFFF;
4004 break;
4005 case 2:
4006 mask = 0xFFFFFFFF;
4007 break;
4008 default:
4009 g_assert_not_reached();
4011 tcg_val = new_tmp_a64(s);
4012 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4015 tcg_acc = cpu_reg(s, rn);
4016 tcg_bytes = tcg_const_i32(1 << sz);
4018 if (crc32c) {
4019 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4020 } else {
4021 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4024 tcg_temp_free_i32(tcg_bytes);
4027 /* C3.5.8 Data-processing (2 source)
4028 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4029 * +----+---+---+-----------------+------+--------+------+------+
4030 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4031 * +----+---+---+-----------------+------+--------+------+------+
4033 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4035 unsigned int sf, rm, opcode, rn, rd;
4036 sf = extract32(insn, 31, 1);
4037 rm = extract32(insn, 16, 5);
4038 opcode = extract32(insn, 10, 6);
4039 rn = extract32(insn, 5, 5);
4040 rd = extract32(insn, 0, 5);
4042 if (extract32(insn, 29, 1)) {
4043 unallocated_encoding(s);
4044 return;
4047 switch (opcode) {
4048 case 2: /* UDIV */
4049 handle_div(s, false, sf, rm, rn, rd);
4050 break;
4051 case 3: /* SDIV */
4052 handle_div(s, true, sf, rm, rn, rd);
4053 break;
4054 case 8: /* LSLV */
4055 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4056 break;
4057 case 9: /* LSRV */
4058 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4059 break;
4060 case 10: /* ASRV */
4061 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4062 break;
4063 case 11: /* RORV */
4064 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4065 break;
4066 case 16:
4067 case 17:
4068 case 18:
4069 case 19:
4070 case 20:
4071 case 21:
4072 case 22:
4073 case 23: /* CRC32 */
4075 int sz = extract32(opcode, 0, 2);
4076 bool crc32c = extract32(opcode, 2, 1);
4077 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4078 break;
4080 default:
4081 unallocated_encoding(s);
4082 break;
4086 /* C3.5 Data processing - register */
4087 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4089 switch (extract32(insn, 24, 5)) {
4090 case 0x0a: /* Logical (shifted register) */
4091 disas_logic_reg(s, insn);
4092 break;
4093 case 0x0b: /* Add/subtract */
4094 if (insn & (1 << 21)) { /* (extended register) */
4095 disas_add_sub_ext_reg(s, insn);
4096 } else {
4097 disas_add_sub_reg(s, insn);
4099 break;
4100 case 0x1b: /* Data-processing (3 source) */
4101 disas_data_proc_3src(s, insn);
4102 break;
4103 case 0x1a:
4104 switch (extract32(insn, 21, 3)) {
4105 case 0x0: /* Add/subtract (with carry) */
4106 disas_adc_sbc(s, insn);
4107 break;
4108 case 0x2: /* Conditional compare */
4109 disas_cc(s, insn); /* both imm and reg forms */
4110 break;
4111 case 0x4: /* Conditional select */
4112 disas_cond_select(s, insn);
4113 break;
4114 case 0x6: /* Data-processing */
4115 if (insn & (1 << 30)) { /* (1 source) */
4116 disas_data_proc_1src(s, insn);
4117 } else { /* (2 source) */
4118 disas_data_proc_2src(s, insn);
4120 break;
4121 default:
4122 unallocated_encoding(s);
4123 break;
4125 break;
4126 default:
4127 unallocated_encoding(s);
4128 break;
4132 static void handle_fp_compare(DisasContext *s, bool is_double,
4133 unsigned int rn, unsigned int rm,
4134 bool cmp_with_zero, bool signal_all_nans)
4136 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4137 TCGv_ptr fpst = get_fpstatus_ptr();
4139 if (is_double) {
4140 TCGv_i64 tcg_vn, tcg_vm;
4142 tcg_vn = read_fp_dreg(s, rn);
4143 if (cmp_with_zero) {
4144 tcg_vm = tcg_const_i64(0);
4145 } else {
4146 tcg_vm = read_fp_dreg(s, rm);
4148 if (signal_all_nans) {
4149 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4150 } else {
4151 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4153 tcg_temp_free_i64(tcg_vn);
4154 tcg_temp_free_i64(tcg_vm);
4155 } else {
4156 TCGv_i32 tcg_vn, tcg_vm;
4158 tcg_vn = read_fp_sreg(s, rn);
4159 if (cmp_with_zero) {
4160 tcg_vm = tcg_const_i32(0);
4161 } else {
4162 tcg_vm = read_fp_sreg(s, rm);
4164 if (signal_all_nans) {
4165 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4166 } else {
4167 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4169 tcg_temp_free_i32(tcg_vn);
4170 tcg_temp_free_i32(tcg_vm);
4173 tcg_temp_free_ptr(fpst);
4175 gen_set_nzcv(tcg_flags);
4177 tcg_temp_free_i64(tcg_flags);
4180 /* C3.6.22 Floating point compare
4181 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4182 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4183 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4184 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4186 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4188 unsigned int mos, type, rm, op, rn, opc, op2r;
4190 mos = extract32(insn, 29, 3);
4191 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4192 rm = extract32(insn, 16, 5);
4193 op = extract32(insn, 14, 2);
4194 rn = extract32(insn, 5, 5);
4195 opc = extract32(insn, 3, 2);
4196 op2r = extract32(insn, 0, 3);
4198 if (mos || op || op2r || type > 1) {
4199 unallocated_encoding(s);
4200 return;
4203 if (!fp_access_check(s)) {
4204 return;
4207 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4210 /* C3.6.23 Floating point conditional compare
4211 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4212 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4213 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4214 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4216 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4218 unsigned int mos, type, rm, cond, rn, op, nzcv;
4219 TCGv_i64 tcg_flags;
4220 TCGLabel *label_continue = NULL;
4222 mos = extract32(insn, 29, 3);
4223 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4224 rm = extract32(insn, 16, 5);
4225 cond = extract32(insn, 12, 4);
4226 rn = extract32(insn, 5, 5);
4227 op = extract32(insn, 4, 1);
4228 nzcv = extract32(insn, 0, 4);
4230 if (mos || type > 1) {
4231 unallocated_encoding(s);
4232 return;
4235 if (!fp_access_check(s)) {
4236 return;
4239 if (cond < 0x0e) { /* not always */
4240 TCGLabel *label_match = gen_new_label();
4241 label_continue = gen_new_label();
4242 arm_gen_test_cc(cond, label_match);
4243 /* nomatch: */
4244 tcg_flags = tcg_const_i64(nzcv << 28);
4245 gen_set_nzcv(tcg_flags);
4246 tcg_temp_free_i64(tcg_flags);
4247 tcg_gen_br(label_continue);
4248 gen_set_label(label_match);
4251 handle_fp_compare(s, type, rn, rm, false, op);
4253 if (cond < 0x0e) {
4254 gen_set_label(label_continue);
4258 /* C3.6.24 Floating point conditional select
4259 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4260 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4261 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4262 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4264 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4266 unsigned int mos, type, rm, cond, rn, rd;
4267 TCGv_i64 t_true, t_false, t_zero;
4268 DisasCompare64 c;
4270 mos = extract32(insn, 29, 3);
4271 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4272 rm = extract32(insn, 16, 5);
4273 cond = extract32(insn, 12, 4);
4274 rn = extract32(insn, 5, 5);
4275 rd = extract32(insn, 0, 5);
4277 if (mos || type > 1) {
4278 unallocated_encoding(s);
4279 return;
4282 if (!fp_access_check(s)) {
4283 return;
4286 /* Zero extend sreg inputs to 64 bits now. */
4287 t_true = tcg_temp_new_i64();
4288 t_false = tcg_temp_new_i64();
4289 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4290 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4292 a64_test_cc(&c, cond);
4293 t_zero = tcg_const_i64(0);
4294 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4295 tcg_temp_free_i64(t_zero);
4296 tcg_temp_free_i64(t_false);
4297 a64_free_cc(&c);
4299 /* Note that sregs write back zeros to the high bits,
4300 and we've already done the zero-extension. */
4301 write_fp_dreg(s, rd, t_true);
4302 tcg_temp_free_i64(t_true);
4305 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4306 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4308 TCGv_ptr fpst;
4309 TCGv_i32 tcg_op;
4310 TCGv_i32 tcg_res;
4312 fpst = get_fpstatus_ptr();
4313 tcg_op = read_fp_sreg(s, rn);
4314 tcg_res = tcg_temp_new_i32();
4316 switch (opcode) {
4317 case 0x0: /* FMOV */
4318 tcg_gen_mov_i32(tcg_res, tcg_op);
4319 break;
4320 case 0x1: /* FABS */
4321 gen_helper_vfp_abss(tcg_res, tcg_op);
4322 break;
4323 case 0x2: /* FNEG */
4324 gen_helper_vfp_negs(tcg_res, tcg_op);
4325 break;
4326 case 0x3: /* FSQRT */
4327 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4328 break;
4329 case 0x8: /* FRINTN */
4330 case 0x9: /* FRINTP */
4331 case 0xa: /* FRINTM */
4332 case 0xb: /* FRINTZ */
4333 case 0xc: /* FRINTA */
4335 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4337 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4338 gen_helper_rints(tcg_res, tcg_op, fpst);
4340 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4341 tcg_temp_free_i32(tcg_rmode);
4342 break;
4344 case 0xe: /* FRINTX */
4345 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4346 break;
4347 case 0xf: /* FRINTI */
4348 gen_helper_rints(tcg_res, tcg_op, fpst);
4349 break;
4350 default:
4351 abort();
4354 write_fp_sreg(s, rd, tcg_res);
4356 tcg_temp_free_ptr(fpst);
4357 tcg_temp_free_i32(tcg_op);
4358 tcg_temp_free_i32(tcg_res);
4361 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4362 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4364 TCGv_ptr fpst;
4365 TCGv_i64 tcg_op;
4366 TCGv_i64 tcg_res;
4368 fpst = get_fpstatus_ptr();
4369 tcg_op = read_fp_dreg(s, rn);
4370 tcg_res = tcg_temp_new_i64();
4372 switch (opcode) {
4373 case 0x0: /* FMOV */
4374 tcg_gen_mov_i64(tcg_res, tcg_op);
4375 break;
4376 case 0x1: /* FABS */
4377 gen_helper_vfp_absd(tcg_res, tcg_op);
4378 break;
4379 case 0x2: /* FNEG */
4380 gen_helper_vfp_negd(tcg_res, tcg_op);
4381 break;
4382 case 0x3: /* FSQRT */
4383 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4384 break;
4385 case 0x8: /* FRINTN */
4386 case 0x9: /* FRINTP */
4387 case 0xa: /* FRINTM */
4388 case 0xb: /* FRINTZ */
4389 case 0xc: /* FRINTA */
4391 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4393 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4394 gen_helper_rintd(tcg_res, tcg_op, fpst);
4396 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4397 tcg_temp_free_i32(tcg_rmode);
4398 break;
4400 case 0xe: /* FRINTX */
4401 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4402 break;
4403 case 0xf: /* FRINTI */
4404 gen_helper_rintd(tcg_res, tcg_op, fpst);
4405 break;
4406 default:
4407 abort();
4410 write_fp_dreg(s, rd, tcg_res);
4412 tcg_temp_free_ptr(fpst);
4413 tcg_temp_free_i64(tcg_op);
4414 tcg_temp_free_i64(tcg_res);
4417 static void handle_fp_fcvt(DisasContext *s, int opcode,
4418 int rd, int rn, int dtype, int ntype)
4420 switch (ntype) {
4421 case 0x0:
4423 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4424 if (dtype == 1) {
4425 /* Single to double */
4426 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4427 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4428 write_fp_dreg(s, rd, tcg_rd);
4429 tcg_temp_free_i64(tcg_rd);
4430 } else {
4431 /* Single to half */
4432 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4433 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4434 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4435 write_fp_sreg(s, rd, tcg_rd);
4436 tcg_temp_free_i32(tcg_rd);
4438 tcg_temp_free_i32(tcg_rn);
4439 break;
4441 case 0x1:
4443 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4444 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4445 if (dtype == 0) {
4446 /* Double to single */
4447 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4448 } else {
4449 /* Double to half */
4450 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4451 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4453 write_fp_sreg(s, rd, tcg_rd);
4454 tcg_temp_free_i32(tcg_rd);
4455 tcg_temp_free_i64(tcg_rn);
4456 break;
4458 case 0x3:
4460 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4461 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4462 if (dtype == 0) {
4463 /* Half to single */
4464 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4465 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4466 write_fp_sreg(s, rd, tcg_rd);
4467 tcg_temp_free_i32(tcg_rd);
4468 } else {
4469 /* Half to double */
4470 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4471 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4472 write_fp_dreg(s, rd, tcg_rd);
4473 tcg_temp_free_i64(tcg_rd);
4475 tcg_temp_free_i32(tcg_rn);
4476 break;
4478 default:
4479 abort();
4483 /* C3.6.25 Floating point data-processing (1 source)
4484 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4485 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4486 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4487 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4489 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4491 int type = extract32(insn, 22, 2);
4492 int opcode = extract32(insn, 15, 6);
4493 int rn = extract32(insn, 5, 5);
4494 int rd = extract32(insn, 0, 5);
4496 switch (opcode) {
4497 case 0x4: case 0x5: case 0x7:
4499 /* FCVT between half, single and double precision */
4500 int dtype = extract32(opcode, 0, 2);
4501 if (type == 2 || dtype == type) {
4502 unallocated_encoding(s);
4503 return;
4505 if (!fp_access_check(s)) {
4506 return;
4509 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4510 break;
4512 case 0x0 ... 0x3:
4513 case 0x8 ... 0xc:
4514 case 0xe ... 0xf:
4515 /* 32-to-32 and 64-to-64 ops */
4516 switch (type) {
4517 case 0:
4518 if (!fp_access_check(s)) {
4519 return;
4522 handle_fp_1src_single(s, opcode, rd, rn);
4523 break;
4524 case 1:
4525 if (!fp_access_check(s)) {
4526 return;
4529 handle_fp_1src_double(s, opcode, rd, rn);
4530 break;
4531 default:
4532 unallocated_encoding(s);
4534 break;
4535 default:
4536 unallocated_encoding(s);
4537 break;
4541 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4542 static void handle_fp_2src_single(DisasContext *s, int opcode,
4543 int rd, int rn, int rm)
4545 TCGv_i32 tcg_op1;
4546 TCGv_i32 tcg_op2;
4547 TCGv_i32 tcg_res;
4548 TCGv_ptr fpst;
4550 tcg_res = tcg_temp_new_i32();
4551 fpst = get_fpstatus_ptr();
4552 tcg_op1 = read_fp_sreg(s, rn);
4553 tcg_op2 = read_fp_sreg(s, rm);
4555 switch (opcode) {
4556 case 0x0: /* FMUL */
4557 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4558 break;
4559 case 0x1: /* FDIV */
4560 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4561 break;
4562 case 0x2: /* FADD */
4563 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4564 break;
4565 case 0x3: /* FSUB */
4566 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4567 break;
4568 case 0x4: /* FMAX */
4569 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4570 break;
4571 case 0x5: /* FMIN */
4572 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4573 break;
4574 case 0x6: /* FMAXNM */
4575 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4576 break;
4577 case 0x7: /* FMINNM */
4578 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4579 break;
4580 case 0x8: /* FNMUL */
4581 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4582 gen_helper_vfp_negs(tcg_res, tcg_res);
4583 break;
4586 write_fp_sreg(s, rd, tcg_res);
4588 tcg_temp_free_ptr(fpst);
4589 tcg_temp_free_i32(tcg_op1);
4590 tcg_temp_free_i32(tcg_op2);
4591 tcg_temp_free_i32(tcg_res);
4594 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4595 static void handle_fp_2src_double(DisasContext *s, int opcode,
4596 int rd, int rn, int rm)
4598 TCGv_i64 tcg_op1;
4599 TCGv_i64 tcg_op2;
4600 TCGv_i64 tcg_res;
4601 TCGv_ptr fpst;
4603 tcg_res = tcg_temp_new_i64();
4604 fpst = get_fpstatus_ptr();
4605 tcg_op1 = read_fp_dreg(s, rn);
4606 tcg_op2 = read_fp_dreg(s, rm);
4608 switch (opcode) {
4609 case 0x0: /* FMUL */
4610 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4611 break;
4612 case 0x1: /* FDIV */
4613 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4614 break;
4615 case 0x2: /* FADD */
4616 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4617 break;
4618 case 0x3: /* FSUB */
4619 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4620 break;
4621 case 0x4: /* FMAX */
4622 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4623 break;
4624 case 0x5: /* FMIN */
4625 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4626 break;
4627 case 0x6: /* FMAXNM */
4628 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4629 break;
4630 case 0x7: /* FMINNM */
4631 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4632 break;
4633 case 0x8: /* FNMUL */
4634 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4635 gen_helper_vfp_negd(tcg_res, tcg_res);
4636 break;
4639 write_fp_dreg(s, rd, tcg_res);
4641 tcg_temp_free_ptr(fpst);
4642 tcg_temp_free_i64(tcg_op1);
4643 tcg_temp_free_i64(tcg_op2);
4644 tcg_temp_free_i64(tcg_res);
4647 /* C3.6.26 Floating point data-processing (2 source)
4648 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4649 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4650 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4651 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4653 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4655 int type = extract32(insn, 22, 2);
4656 int rd = extract32(insn, 0, 5);
4657 int rn = extract32(insn, 5, 5);
4658 int rm = extract32(insn, 16, 5);
4659 int opcode = extract32(insn, 12, 4);
4661 if (opcode > 8) {
4662 unallocated_encoding(s);
4663 return;
4666 switch (type) {
4667 case 0:
4668 if (!fp_access_check(s)) {
4669 return;
4671 handle_fp_2src_single(s, opcode, rd, rn, rm);
4672 break;
4673 case 1:
4674 if (!fp_access_check(s)) {
4675 return;
4677 handle_fp_2src_double(s, opcode, rd, rn, rm);
4678 break;
4679 default:
4680 unallocated_encoding(s);
4684 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4685 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4686 int rd, int rn, int rm, int ra)
4688 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4689 TCGv_i32 tcg_res = tcg_temp_new_i32();
4690 TCGv_ptr fpst = get_fpstatus_ptr();
4692 tcg_op1 = read_fp_sreg(s, rn);
4693 tcg_op2 = read_fp_sreg(s, rm);
4694 tcg_op3 = read_fp_sreg(s, ra);
4696 /* These are fused multiply-add, and must be done as one
4697 * floating point operation with no rounding between the
4698 * multiplication and addition steps.
4699 * NB that doing the negations here as separate steps is
4700 * correct : an input NaN should come out with its sign bit
4701 * flipped if it is a negated-input.
4703 if (o1 == true) {
4704 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4707 if (o0 != o1) {
4708 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4711 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4713 write_fp_sreg(s, rd, tcg_res);
4715 tcg_temp_free_ptr(fpst);
4716 tcg_temp_free_i32(tcg_op1);
4717 tcg_temp_free_i32(tcg_op2);
4718 tcg_temp_free_i32(tcg_op3);
4719 tcg_temp_free_i32(tcg_res);
4722 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4723 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4724 int rd, int rn, int rm, int ra)
4726 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4727 TCGv_i64 tcg_res = tcg_temp_new_i64();
4728 TCGv_ptr fpst = get_fpstatus_ptr();
4730 tcg_op1 = read_fp_dreg(s, rn);
4731 tcg_op2 = read_fp_dreg(s, rm);
4732 tcg_op3 = read_fp_dreg(s, ra);
4734 /* These are fused multiply-add, and must be done as one
4735 * floating point operation with no rounding between the
4736 * multiplication and addition steps.
4737 * NB that doing the negations here as separate steps is
4738 * correct : an input NaN should come out with its sign bit
4739 * flipped if it is a negated-input.
4741 if (o1 == true) {
4742 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4745 if (o0 != o1) {
4746 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4749 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4751 write_fp_dreg(s, rd, tcg_res);
4753 tcg_temp_free_ptr(fpst);
4754 tcg_temp_free_i64(tcg_op1);
4755 tcg_temp_free_i64(tcg_op2);
4756 tcg_temp_free_i64(tcg_op3);
4757 tcg_temp_free_i64(tcg_res);
4760 /* C3.6.27 Floating point data-processing (3 source)
4761 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4762 * +---+---+---+-----------+------+----+------+----+------+------+------+
4763 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4764 * +---+---+---+-----------+------+----+------+----+------+------+------+
4766 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4768 int type = extract32(insn, 22, 2);
4769 int rd = extract32(insn, 0, 5);
4770 int rn = extract32(insn, 5, 5);
4771 int ra = extract32(insn, 10, 5);
4772 int rm = extract32(insn, 16, 5);
4773 bool o0 = extract32(insn, 15, 1);
4774 bool o1 = extract32(insn, 21, 1);
4776 switch (type) {
4777 case 0:
4778 if (!fp_access_check(s)) {
4779 return;
4781 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4782 break;
4783 case 1:
4784 if (!fp_access_check(s)) {
4785 return;
4787 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4788 break;
4789 default:
4790 unallocated_encoding(s);
4794 /* C3.6.28 Floating point immediate
4795 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4796 * +---+---+---+-----------+------+---+------------+-------+------+------+
4797 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4798 * +---+---+---+-----------+------+---+------------+-------+------+------+
4800 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4802 int rd = extract32(insn, 0, 5);
4803 int imm8 = extract32(insn, 13, 8);
4804 int is_double = extract32(insn, 22, 2);
4805 uint64_t imm;
4806 TCGv_i64 tcg_res;
4808 if (is_double > 1) {
4809 unallocated_encoding(s);
4810 return;
4813 if (!fp_access_check(s)) {
4814 return;
4817 /* The imm8 encodes the sign bit, enough bits to represent
4818 * an exponent in the range 01....1xx to 10....0xx,
4819 * and the most significant 4 bits of the mantissa; see
4820 * VFPExpandImm() in the v8 ARM ARM.
4822 if (is_double) {
4823 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4824 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
4825 extract32(imm8, 0, 6);
4826 imm <<= 48;
4827 } else {
4828 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
4829 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
4830 (extract32(imm8, 0, 6) << 3);
4831 imm <<= 16;
4834 tcg_res = tcg_const_i64(imm);
4835 write_fp_dreg(s, rd, tcg_res);
4836 tcg_temp_free_i64(tcg_res);
4839 /* Handle floating point <=> fixed point conversions. Note that we can
4840 * also deal with fp <=> integer conversions as a special case (scale == 64)
4841 * OPTME: consider handling that special case specially or at least skipping
4842 * the call to scalbn in the helpers for zero shifts.
4844 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
4845 bool itof, int rmode, int scale, int sf, int type)
4847 bool is_signed = !(opcode & 1);
4848 bool is_double = type;
4849 TCGv_ptr tcg_fpstatus;
4850 TCGv_i32 tcg_shift;
4852 tcg_fpstatus = get_fpstatus_ptr();
4854 tcg_shift = tcg_const_i32(64 - scale);
4856 if (itof) {
4857 TCGv_i64 tcg_int = cpu_reg(s, rn);
4858 if (!sf) {
4859 TCGv_i64 tcg_extend = new_tmp_a64(s);
4861 if (is_signed) {
4862 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
4863 } else {
4864 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
4867 tcg_int = tcg_extend;
4870 if (is_double) {
4871 TCGv_i64 tcg_double = tcg_temp_new_i64();
4872 if (is_signed) {
4873 gen_helper_vfp_sqtod(tcg_double, tcg_int,
4874 tcg_shift, tcg_fpstatus);
4875 } else {
4876 gen_helper_vfp_uqtod(tcg_double, tcg_int,
4877 tcg_shift, tcg_fpstatus);
4879 write_fp_dreg(s, rd, tcg_double);
4880 tcg_temp_free_i64(tcg_double);
4881 } else {
4882 TCGv_i32 tcg_single = tcg_temp_new_i32();
4883 if (is_signed) {
4884 gen_helper_vfp_sqtos(tcg_single, tcg_int,
4885 tcg_shift, tcg_fpstatus);
4886 } else {
4887 gen_helper_vfp_uqtos(tcg_single, tcg_int,
4888 tcg_shift, tcg_fpstatus);
4890 write_fp_sreg(s, rd, tcg_single);
4891 tcg_temp_free_i32(tcg_single);
4893 } else {
4894 TCGv_i64 tcg_int = cpu_reg(s, rd);
4895 TCGv_i32 tcg_rmode;
4897 if (extract32(opcode, 2, 1)) {
4898 /* There are too many rounding modes to all fit into rmode,
4899 * so FCVTA[US] is a special case.
4901 rmode = FPROUNDING_TIEAWAY;
4904 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
4906 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4908 if (is_double) {
4909 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
4910 if (is_signed) {
4911 if (!sf) {
4912 gen_helper_vfp_tosld(tcg_int, tcg_double,
4913 tcg_shift, tcg_fpstatus);
4914 } else {
4915 gen_helper_vfp_tosqd(tcg_int, tcg_double,
4916 tcg_shift, tcg_fpstatus);
4918 } else {
4919 if (!sf) {
4920 gen_helper_vfp_tould(tcg_int, tcg_double,
4921 tcg_shift, tcg_fpstatus);
4922 } else {
4923 gen_helper_vfp_touqd(tcg_int, tcg_double,
4924 tcg_shift, tcg_fpstatus);
4927 tcg_temp_free_i64(tcg_double);
4928 } else {
4929 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
4930 if (sf) {
4931 if (is_signed) {
4932 gen_helper_vfp_tosqs(tcg_int, tcg_single,
4933 tcg_shift, tcg_fpstatus);
4934 } else {
4935 gen_helper_vfp_touqs(tcg_int, tcg_single,
4936 tcg_shift, tcg_fpstatus);
4938 } else {
4939 TCGv_i32 tcg_dest = tcg_temp_new_i32();
4940 if (is_signed) {
4941 gen_helper_vfp_tosls(tcg_dest, tcg_single,
4942 tcg_shift, tcg_fpstatus);
4943 } else {
4944 gen_helper_vfp_touls(tcg_dest, tcg_single,
4945 tcg_shift, tcg_fpstatus);
4947 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
4948 tcg_temp_free_i32(tcg_dest);
4950 tcg_temp_free_i32(tcg_single);
4953 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4954 tcg_temp_free_i32(tcg_rmode);
4956 if (!sf) {
4957 tcg_gen_ext32u_i64(tcg_int, tcg_int);
4961 tcg_temp_free_ptr(tcg_fpstatus);
4962 tcg_temp_free_i32(tcg_shift);
4965 /* C3.6.29 Floating point <-> fixed point conversions
4966 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
4967 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4968 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
4969 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
4971 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
4973 int rd = extract32(insn, 0, 5);
4974 int rn = extract32(insn, 5, 5);
4975 int scale = extract32(insn, 10, 6);
4976 int opcode = extract32(insn, 16, 3);
4977 int rmode = extract32(insn, 19, 2);
4978 int type = extract32(insn, 22, 2);
4979 bool sbit = extract32(insn, 29, 1);
4980 bool sf = extract32(insn, 31, 1);
4981 bool itof;
4983 if (sbit || (type > 1)
4984 || (!sf && scale < 32)) {
4985 unallocated_encoding(s);
4986 return;
4989 switch ((rmode << 3) | opcode) {
4990 case 0x2: /* SCVTF */
4991 case 0x3: /* UCVTF */
4992 itof = true;
4993 break;
4994 case 0x18: /* FCVTZS */
4995 case 0x19: /* FCVTZU */
4996 itof = false;
4997 break;
4998 default:
4999 unallocated_encoding(s);
5000 return;
5003 if (!fp_access_check(s)) {
5004 return;
5007 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5010 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5012 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5013 * without conversion.
5016 if (itof) {
5017 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5019 switch (type) {
5020 case 0:
5022 /* 32 bit */
5023 TCGv_i64 tmp = tcg_temp_new_i64();
5024 tcg_gen_ext32u_i64(tmp, tcg_rn);
5025 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5026 tcg_gen_movi_i64(tmp, 0);
5027 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5028 tcg_temp_free_i64(tmp);
5029 break;
5031 case 1:
5033 /* 64 bit */
5034 TCGv_i64 tmp = tcg_const_i64(0);
5035 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5036 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5037 tcg_temp_free_i64(tmp);
5038 break;
5040 case 2:
5041 /* 64 bit to top half. */
5042 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5043 break;
5045 } else {
5046 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5048 switch (type) {
5049 case 0:
5050 /* 32 bit */
5051 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5052 break;
5053 case 1:
5054 /* 64 bit */
5055 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5056 break;
5057 case 2:
5058 /* 64 bits from top half */
5059 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5060 break;
5065 /* C3.6.30 Floating point <-> integer conversions
5066 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5067 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5068 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5069 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5071 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5073 int rd = extract32(insn, 0, 5);
5074 int rn = extract32(insn, 5, 5);
5075 int opcode = extract32(insn, 16, 3);
5076 int rmode = extract32(insn, 19, 2);
5077 int type = extract32(insn, 22, 2);
5078 bool sbit = extract32(insn, 29, 1);
5079 bool sf = extract32(insn, 31, 1);
5081 if (sbit) {
5082 unallocated_encoding(s);
5083 return;
5086 if (opcode > 5) {
5087 /* FMOV */
5088 bool itof = opcode & 1;
5090 if (rmode >= 2) {
5091 unallocated_encoding(s);
5092 return;
5095 switch (sf << 3 | type << 1 | rmode) {
5096 case 0x0: /* 32 bit */
5097 case 0xa: /* 64 bit */
5098 case 0xd: /* 64 bit to top half of quad */
5099 break;
5100 default:
5101 /* all other sf/type/rmode combinations are invalid */
5102 unallocated_encoding(s);
5103 break;
5106 if (!fp_access_check(s)) {
5107 return;
5109 handle_fmov(s, rd, rn, type, itof);
5110 } else {
5111 /* actual FP conversions */
5112 bool itof = extract32(opcode, 1, 1);
5114 if (type > 1 || (rmode != 0 && opcode > 1)) {
5115 unallocated_encoding(s);
5116 return;
5119 if (!fp_access_check(s)) {
5120 return;
5122 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5126 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5127 * 31 30 29 28 25 24 0
5128 * +---+---+---+---------+-----------------------------+
5129 * | | 0 | | 1 1 1 1 | |
5130 * +---+---+---+---------+-----------------------------+
5132 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5134 if (extract32(insn, 24, 1)) {
5135 /* Floating point data-processing (3 source) */
5136 disas_fp_3src(s, insn);
5137 } else if (extract32(insn, 21, 1) == 0) {
5138 /* Floating point to fixed point conversions */
5139 disas_fp_fixed_conv(s, insn);
5140 } else {
5141 switch (extract32(insn, 10, 2)) {
5142 case 1:
5143 /* Floating point conditional compare */
5144 disas_fp_ccomp(s, insn);
5145 break;
5146 case 2:
5147 /* Floating point data-processing (2 source) */
5148 disas_fp_2src(s, insn);
5149 break;
5150 case 3:
5151 /* Floating point conditional select */
5152 disas_fp_csel(s, insn);
5153 break;
5154 case 0:
5155 switch (ctz32(extract32(insn, 12, 4))) {
5156 case 0: /* [15:12] == xxx1 */
5157 /* Floating point immediate */
5158 disas_fp_imm(s, insn);
5159 break;
5160 case 1: /* [15:12] == xx10 */
5161 /* Floating point compare */
5162 disas_fp_compare(s, insn);
5163 break;
5164 case 2: /* [15:12] == x100 */
5165 /* Floating point data-processing (1 source) */
5166 disas_fp_1src(s, insn);
5167 break;
5168 case 3: /* [15:12] == 1000 */
5169 unallocated_encoding(s);
5170 break;
5171 default: /* [15:12] == 0000 */
5172 /* Floating point <-> integer conversions */
5173 disas_fp_int_conv(s, insn);
5174 break;
5176 break;
5181 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5182 int pos)
5184 /* Extract 64 bits from the middle of two concatenated 64 bit
5185 * vector register slices left:right. The extracted bits start
5186 * at 'pos' bits into the right (least significant) side.
5187 * We return the result in tcg_right, and guarantee not to
5188 * trash tcg_left.
5190 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5191 assert(pos > 0 && pos < 64);
5193 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5194 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5195 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5197 tcg_temp_free_i64(tcg_tmp);
5200 /* C3.6.1 EXT
5201 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5202 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5203 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5204 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5206 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5208 int is_q = extract32(insn, 30, 1);
5209 int op2 = extract32(insn, 22, 2);
5210 int imm4 = extract32(insn, 11, 4);
5211 int rm = extract32(insn, 16, 5);
5212 int rn = extract32(insn, 5, 5);
5213 int rd = extract32(insn, 0, 5);
5214 int pos = imm4 << 3;
5215 TCGv_i64 tcg_resl, tcg_resh;
5217 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5218 unallocated_encoding(s);
5219 return;
5222 if (!fp_access_check(s)) {
5223 return;
5226 tcg_resh = tcg_temp_new_i64();
5227 tcg_resl = tcg_temp_new_i64();
5229 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5230 * either extracting 128 bits from a 128:128 concatenation, or
5231 * extracting 64 bits from a 64:64 concatenation.
5233 if (!is_q) {
5234 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5235 if (pos != 0) {
5236 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5237 do_ext64(s, tcg_resh, tcg_resl, pos);
5239 tcg_gen_movi_i64(tcg_resh, 0);
5240 } else {
5241 TCGv_i64 tcg_hh;
5242 typedef struct {
5243 int reg;
5244 int elt;
5245 } EltPosns;
5246 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5247 EltPosns *elt = eltposns;
5249 if (pos >= 64) {
5250 elt++;
5251 pos -= 64;
5254 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5255 elt++;
5256 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5257 elt++;
5258 if (pos != 0) {
5259 do_ext64(s, tcg_resh, tcg_resl, pos);
5260 tcg_hh = tcg_temp_new_i64();
5261 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5262 do_ext64(s, tcg_hh, tcg_resh, pos);
5263 tcg_temp_free_i64(tcg_hh);
5267 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5268 tcg_temp_free_i64(tcg_resl);
5269 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5270 tcg_temp_free_i64(tcg_resh);
5273 /* C3.6.2 TBL/TBX
5274 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5275 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5276 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5277 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5279 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5281 int op2 = extract32(insn, 22, 2);
5282 int is_q = extract32(insn, 30, 1);
5283 int rm = extract32(insn, 16, 5);
5284 int rn = extract32(insn, 5, 5);
5285 int rd = extract32(insn, 0, 5);
5286 int is_tblx = extract32(insn, 12, 1);
5287 int len = extract32(insn, 13, 2);
5288 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5289 TCGv_i32 tcg_regno, tcg_numregs;
5291 if (op2 != 0) {
5292 unallocated_encoding(s);
5293 return;
5296 if (!fp_access_check(s)) {
5297 return;
5300 /* This does a table lookup: for every byte element in the input
5301 * we index into a table formed from up to four vector registers,
5302 * and then the output is the result of the lookups. Our helper
5303 * function does the lookup operation for a single 64 bit part of
5304 * the input.
5306 tcg_resl = tcg_temp_new_i64();
5307 tcg_resh = tcg_temp_new_i64();
5309 if (is_tblx) {
5310 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5311 } else {
5312 tcg_gen_movi_i64(tcg_resl, 0);
5314 if (is_tblx && is_q) {
5315 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5316 } else {
5317 tcg_gen_movi_i64(tcg_resh, 0);
5320 tcg_idx = tcg_temp_new_i64();
5321 tcg_regno = tcg_const_i32(rn);
5322 tcg_numregs = tcg_const_i32(len + 1);
5323 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5324 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5325 tcg_regno, tcg_numregs);
5326 if (is_q) {
5327 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5328 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5329 tcg_regno, tcg_numregs);
5331 tcg_temp_free_i64(tcg_idx);
5332 tcg_temp_free_i32(tcg_regno);
5333 tcg_temp_free_i32(tcg_numregs);
5335 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5336 tcg_temp_free_i64(tcg_resl);
5337 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5338 tcg_temp_free_i64(tcg_resh);
5341 /* C3.6.3 ZIP/UZP/TRN
5342 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5343 * +---+---+-------------+------+---+------+---+------------------+------+
5344 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5345 * +---+---+-------------+------+---+------+---+------------------+------+
5347 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5349 int rd = extract32(insn, 0, 5);
5350 int rn = extract32(insn, 5, 5);
5351 int rm = extract32(insn, 16, 5);
5352 int size = extract32(insn, 22, 2);
5353 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5354 * bit 2 indicates 1 vs 2 variant of the insn.
5356 int opcode = extract32(insn, 12, 2);
5357 bool part = extract32(insn, 14, 1);
5358 bool is_q = extract32(insn, 30, 1);
5359 int esize = 8 << size;
5360 int i, ofs;
5361 int datasize = is_q ? 128 : 64;
5362 int elements = datasize / esize;
5363 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5365 if (opcode == 0 || (size == 3 && !is_q)) {
5366 unallocated_encoding(s);
5367 return;
5370 if (!fp_access_check(s)) {
5371 return;
5374 tcg_resl = tcg_const_i64(0);
5375 tcg_resh = tcg_const_i64(0);
5376 tcg_res = tcg_temp_new_i64();
5378 for (i = 0; i < elements; i++) {
5379 switch (opcode) {
5380 case 1: /* UZP1/2 */
5382 int midpoint = elements / 2;
5383 if (i < midpoint) {
5384 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5385 } else {
5386 read_vec_element(s, tcg_res, rm,
5387 2 * (i - midpoint) + part, size);
5389 break;
5391 case 2: /* TRN1/2 */
5392 if (i & 1) {
5393 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5394 } else {
5395 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5397 break;
5398 case 3: /* ZIP1/2 */
5400 int base = part * elements / 2;
5401 if (i & 1) {
5402 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5403 } else {
5404 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5406 break;
5408 default:
5409 g_assert_not_reached();
5412 ofs = i * esize;
5413 if (ofs < 64) {
5414 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5415 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5416 } else {
5417 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5418 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5422 tcg_temp_free_i64(tcg_res);
5424 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5425 tcg_temp_free_i64(tcg_resl);
5426 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5427 tcg_temp_free_i64(tcg_resh);
5430 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5431 int opc, bool is_min, TCGv_ptr fpst)
5433 /* Helper function for disas_simd_across_lanes: do a single precision
5434 * min/max operation on the specified two inputs,
5435 * and return the result in tcg_elt1.
5437 if (opc == 0xc) {
5438 if (is_min) {
5439 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5440 } else {
5441 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5443 } else {
5444 assert(opc == 0xf);
5445 if (is_min) {
5446 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5447 } else {
5448 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5453 /* C3.6.4 AdvSIMD across lanes
5454 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5455 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5456 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5457 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5459 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5461 int rd = extract32(insn, 0, 5);
5462 int rn = extract32(insn, 5, 5);
5463 int size = extract32(insn, 22, 2);
5464 int opcode = extract32(insn, 12, 5);
5465 bool is_q = extract32(insn, 30, 1);
5466 bool is_u = extract32(insn, 29, 1);
5467 bool is_fp = false;
5468 bool is_min = false;
5469 int esize;
5470 int elements;
5471 int i;
5472 TCGv_i64 tcg_res, tcg_elt;
5474 switch (opcode) {
5475 case 0x1b: /* ADDV */
5476 if (is_u) {
5477 unallocated_encoding(s);
5478 return;
5480 /* fall through */
5481 case 0x3: /* SADDLV, UADDLV */
5482 case 0xa: /* SMAXV, UMAXV */
5483 case 0x1a: /* SMINV, UMINV */
5484 if (size == 3 || (size == 2 && !is_q)) {
5485 unallocated_encoding(s);
5486 return;
5488 break;
5489 case 0xc: /* FMAXNMV, FMINNMV */
5490 case 0xf: /* FMAXV, FMINV */
5491 if (!is_u || !is_q || extract32(size, 0, 1)) {
5492 unallocated_encoding(s);
5493 return;
5495 /* Bit 1 of size field encodes min vs max, and actual size is always
5496 * 32 bits: adjust the size variable so following code can rely on it
5498 is_min = extract32(size, 1, 1);
5499 is_fp = true;
5500 size = 2;
5501 break;
5502 default:
5503 unallocated_encoding(s);
5504 return;
5507 if (!fp_access_check(s)) {
5508 return;
5511 esize = 8 << size;
5512 elements = (is_q ? 128 : 64) / esize;
5514 tcg_res = tcg_temp_new_i64();
5515 tcg_elt = tcg_temp_new_i64();
5517 /* These instructions operate across all lanes of a vector
5518 * to produce a single result. We can guarantee that a 64
5519 * bit intermediate is sufficient:
5520 * + for [US]ADDLV the maximum element size is 32 bits, and
5521 * the result type is 64 bits
5522 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5523 * same as the element size, which is 32 bits at most
5524 * For the integer operations we can choose to work at 64
5525 * or 32 bits and truncate at the end; for simplicity
5526 * we use 64 bits always. The floating point
5527 * ops do require 32 bit intermediates, though.
5529 if (!is_fp) {
5530 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5532 for (i = 1; i < elements; i++) {
5533 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5535 switch (opcode) {
5536 case 0x03: /* SADDLV / UADDLV */
5537 case 0x1b: /* ADDV */
5538 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5539 break;
5540 case 0x0a: /* SMAXV / UMAXV */
5541 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5542 tcg_res,
5543 tcg_res, tcg_elt, tcg_res, tcg_elt);
5544 break;
5545 case 0x1a: /* SMINV / UMINV */
5546 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5547 tcg_res,
5548 tcg_res, tcg_elt, tcg_res, tcg_elt);
5549 break;
5550 break;
5551 default:
5552 g_assert_not_reached();
5556 } else {
5557 /* Floating point ops which work on 32 bit (single) intermediates.
5558 * Note that correct NaN propagation requires that we do these
5559 * operations in exactly the order specified by the pseudocode.
5561 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5562 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5563 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5564 TCGv_ptr fpst = get_fpstatus_ptr();
5566 assert(esize == 32);
5567 assert(elements == 4);
5569 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5570 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5571 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5572 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5574 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5576 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5577 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5578 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5579 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5581 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5583 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5585 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5586 tcg_temp_free_i32(tcg_elt1);
5587 tcg_temp_free_i32(tcg_elt2);
5588 tcg_temp_free_i32(tcg_elt3);
5589 tcg_temp_free_ptr(fpst);
5592 tcg_temp_free_i64(tcg_elt);
5594 /* Now truncate the result to the width required for the final output */
5595 if (opcode == 0x03) {
5596 /* SADDLV, UADDLV: result is 2*esize */
5597 size++;
5600 switch (size) {
5601 case 0:
5602 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5603 break;
5604 case 1:
5605 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5606 break;
5607 case 2:
5608 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5609 break;
5610 case 3:
5611 break;
5612 default:
5613 g_assert_not_reached();
5616 write_fp_dreg(s, rd, tcg_res);
5617 tcg_temp_free_i64(tcg_res);
5620 /* C6.3.31 DUP (Element, Vector)
5622 * 31 30 29 21 20 16 15 10 9 5 4 0
5623 * +---+---+-------------------+--------+-------------+------+------+
5624 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5625 * +---+---+-------------------+--------+-------------+------+------+
5627 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5629 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5630 int imm5)
5632 int size = ctz32(imm5);
5633 int esize = 8 << size;
5634 int elements = (is_q ? 128 : 64) / esize;
5635 int index, i;
5636 TCGv_i64 tmp;
5638 if (size > 3 || (size == 3 && !is_q)) {
5639 unallocated_encoding(s);
5640 return;
5643 if (!fp_access_check(s)) {
5644 return;
5647 index = imm5 >> (size + 1);
5649 tmp = tcg_temp_new_i64();
5650 read_vec_element(s, tmp, rn, index, size);
5652 for (i = 0; i < elements; i++) {
5653 write_vec_element(s, tmp, rd, i, size);
5656 if (!is_q) {
5657 clear_vec_high(s, rd);
5660 tcg_temp_free_i64(tmp);
5663 /* C6.3.31 DUP (element, scalar)
5664 * 31 21 20 16 15 10 9 5 4 0
5665 * +-----------------------+--------+-------------+------+------+
5666 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5667 * +-----------------------+--------+-------------+------+------+
5669 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5670 int imm5)
5672 int size = ctz32(imm5);
5673 int index;
5674 TCGv_i64 tmp;
5676 if (size > 3) {
5677 unallocated_encoding(s);
5678 return;
5681 if (!fp_access_check(s)) {
5682 return;
5685 index = imm5 >> (size + 1);
5687 /* This instruction just extracts the specified element and
5688 * zero-extends it into the bottom of the destination register.
5690 tmp = tcg_temp_new_i64();
5691 read_vec_element(s, tmp, rn, index, size);
5692 write_fp_dreg(s, rd, tmp);
5693 tcg_temp_free_i64(tmp);
5696 /* C6.3.32 DUP (General)
5698 * 31 30 29 21 20 16 15 10 9 5 4 0
5699 * +---+---+-------------------+--------+-------------+------+------+
5700 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5701 * +---+---+-------------------+--------+-------------+------+------+
5703 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5705 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5706 int imm5)
5708 int size = ctz32(imm5);
5709 int esize = 8 << size;
5710 int elements = (is_q ? 128 : 64)/esize;
5711 int i = 0;
5713 if (size > 3 || ((size == 3) && !is_q)) {
5714 unallocated_encoding(s);
5715 return;
5718 if (!fp_access_check(s)) {
5719 return;
5722 for (i = 0; i < elements; i++) {
5723 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5725 if (!is_q) {
5726 clear_vec_high(s, rd);
5730 /* C6.3.150 INS (Element)
5732 * 31 21 20 16 15 14 11 10 9 5 4 0
5733 * +-----------------------+--------+------------+---+------+------+
5734 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5735 * +-----------------------+--------+------------+---+------+------+
5737 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5738 * index: encoded in imm5<4:size+1>
5740 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5741 int imm4, int imm5)
5743 int size = ctz32(imm5);
5744 int src_index, dst_index;
5745 TCGv_i64 tmp;
5747 if (size > 3) {
5748 unallocated_encoding(s);
5749 return;
5752 if (!fp_access_check(s)) {
5753 return;
5756 dst_index = extract32(imm5, 1+size, 5);
5757 src_index = extract32(imm4, size, 4);
5759 tmp = tcg_temp_new_i64();
5761 read_vec_element(s, tmp, rn, src_index, size);
5762 write_vec_element(s, tmp, rd, dst_index, size);
5764 tcg_temp_free_i64(tmp);
5768 /* C6.3.151 INS (General)
5770 * 31 21 20 16 15 10 9 5 4 0
5771 * +-----------------------+--------+-------------+------+------+
5772 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5773 * +-----------------------+--------+-------------+------+------+
5775 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5776 * index: encoded in imm5<4:size+1>
5778 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5780 int size = ctz32(imm5);
5781 int idx;
5783 if (size > 3) {
5784 unallocated_encoding(s);
5785 return;
5788 if (!fp_access_check(s)) {
5789 return;
5792 idx = extract32(imm5, 1 + size, 4 - size);
5793 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5797 * C6.3.321 UMOV (General)
5798 * C6.3.237 SMOV (General)
5800 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5801 * +---+---+-------------------+--------+-------------+------+------+
5802 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
5803 * +---+---+-------------------+--------+-------------+------+------+
5805 * U: unsigned when set
5806 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5808 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
5809 int rn, int rd, int imm5)
5811 int size = ctz32(imm5);
5812 int element;
5813 TCGv_i64 tcg_rd;
5815 /* Check for UnallocatedEncodings */
5816 if (is_signed) {
5817 if (size > 2 || (size == 2 && !is_q)) {
5818 unallocated_encoding(s);
5819 return;
5821 } else {
5822 if (size > 3
5823 || (size < 3 && is_q)
5824 || (size == 3 && !is_q)) {
5825 unallocated_encoding(s);
5826 return;
5830 if (!fp_access_check(s)) {
5831 return;
5834 element = extract32(imm5, 1+size, 4);
5836 tcg_rd = cpu_reg(s, rd);
5837 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
5838 if (is_signed && !is_q) {
5839 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5843 /* C3.6.5 AdvSIMD copy
5844 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
5845 * +---+---+----+-----------------+------+---+------+---+------+------+
5846 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5847 * +---+---+----+-----------------+------+---+------+---+------+------+
5849 static void disas_simd_copy(DisasContext *s, uint32_t insn)
5851 int rd = extract32(insn, 0, 5);
5852 int rn = extract32(insn, 5, 5);
5853 int imm4 = extract32(insn, 11, 4);
5854 int op = extract32(insn, 29, 1);
5855 int is_q = extract32(insn, 30, 1);
5856 int imm5 = extract32(insn, 16, 5);
5858 if (op) {
5859 if (is_q) {
5860 /* INS (element) */
5861 handle_simd_inse(s, rd, rn, imm4, imm5);
5862 } else {
5863 unallocated_encoding(s);
5865 } else {
5866 switch (imm4) {
5867 case 0:
5868 /* DUP (element - vector) */
5869 handle_simd_dupe(s, is_q, rd, rn, imm5);
5870 break;
5871 case 1:
5872 /* DUP (general) */
5873 handle_simd_dupg(s, is_q, rd, rn, imm5);
5874 break;
5875 case 3:
5876 if (is_q) {
5877 /* INS (general) */
5878 handle_simd_insg(s, rd, rn, imm5);
5879 } else {
5880 unallocated_encoding(s);
5882 break;
5883 case 5:
5884 case 7:
5885 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
5886 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
5887 break;
5888 default:
5889 unallocated_encoding(s);
5890 break;
5895 /* C3.6.6 AdvSIMD modified immediate
5896 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
5897 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5898 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
5899 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
5901 * There are a number of operations that can be carried out here:
5902 * MOVI - move (shifted) imm into register
5903 * MVNI - move inverted (shifted) imm into register
5904 * ORR - bitwise OR of (shifted) imm with register
5905 * BIC - bitwise clear of (shifted) imm with register
5907 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
5909 int rd = extract32(insn, 0, 5);
5910 int cmode = extract32(insn, 12, 4);
5911 int cmode_3_1 = extract32(cmode, 1, 3);
5912 int cmode_0 = extract32(cmode, 0, 1);
5913 int o2 = extract32(insn, 11, 1);
5914 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
5915 bool is_neg = extract32(insn, 29, 1);
5916 bool is_q = extract32(insn, 30, 1);
5917 uint64_t imm = 0;
5918 TCGv_i64 tcg_rd, tcg_imm;
5919 int i;
5921 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
5922 unallocated_encoding(s);
5923 return;
5926 if (!fp_access_check(s)) {
5927 return;
5930 /* See AdvSIMDExpandImm() in ARM ARM */
5931 switch (cmode_3_1) {
5932 case 0: /* Replicate(Zeros(24):imm8, 2) */
5933 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
5934 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
5935 case 3: /* Replicate(imm8:Zeros(24), 2) */
5937 int shift = cmode_3_1 * 8;
5938 imm = bitfield_replicate(abcdefgh << shift, 32);
5939 break;
5941 case 4: /* Replicate(Zeros(8):imm8, 4) */
5942 case 5: /* Replicate(imm8:Zeros(8), 4) */
5944 int shift = (cmode_3_1 & 0x1) * 8;
5945 imm = bitfield_replicate(abcdefgh << shift, 16);
5946 break;
5948 case 6:
5949 if (cmode_0) {
5950 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
5951 imm = (abcdefgh << 16) | 0xffff;
5952 } else {
5953 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
5954 imm = (abcdefgh << 8) | 0xff;
5956 imm = bitfield_replicate(imm, 32);
5957 break;
5958 case 7:
5959 if (!cmode_0 && !is_neg) {
5960 imm = bitfield_replicate(abcdefgh, 8);
5961 } else if (!cmode_0 && is_neg) {
5962 int i;
5963 imm = 0;
5964 for (i = 0; i < 8; i++) {
5965 if ((abcdefgh) & (1 << i)) {
5966 imm |= 0xffULL << (i * 8);
5969 } else if (cmode_0) {
5970 if (is_neg) {
5971 imm = (abcdefgh & 0x3f) << 48;
5972 if (abcdefgh & 0x80) {
5973 imm |= 0x8000000000000000ULL;
5975 if (abcdefgh & 0x40) {
5976 imm |= 0x3fc0000000000000ULL;
5977 } else {
5978 imm |= 0x4000000000000000ULL;
5980 } else {
5981 imm = (abcdefgh & 0x3f) << 19;
5982 if (abcdefgh & 0x80) {
5983 imm |= 0x80000000;
5985 if (abcdefgh & 0x40) {
5986 imm |= 0x3e000000;
5987 } else {
5988 imm |= 0x40000000;
5990 imm |= (imm << 32);
5993 break;
5996 if (cmode_3_1 != 7 && is_neg) {
5997 imm = ~imm;
6000 tcg_imm = tcg_const_i64(imm);
6001 tcg_rd = new_tmp_a64(s);
6003 for (i = 0; i < 2; i++) {
6004 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6006 if (i == 1 && !is_q) {
6007 /* non-quad ops clear high half of vector */
6008 tcg_gen_movi_i64(tcg_rd, 0);
6009 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6010 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6011 if (is_neg) {
6012 /* AND (BIC) */
6013 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6014 } else {
6015 /* ORR */
6016 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6018 } else {
6019 /* MOVI */
6020 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6022 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6025 tcg_temp_free_i64(tcg_imm);
6028 /* C3.6.7 AdvSIMD scalar copy
6029 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6030 * +-----+----+-----------------+------+---+------+---+------+------+
6031 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6032 * +-----+----+-----------------+------+---+------+---+------+------+
6034 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6036 int rd = extract32(insn, 0, 5);
6037 int rn = extract32(insn, 5, 5);
6038 int imm4 = extract32(insn, 11, 4);
6039 int imm5 = extract32(insn, 16, 5);
6040 int op = extract32(insn, 29, 1);
6042 if (op != 0 || imm4 != 0) {
6043 unallocated_encoding(s);
6044 return;
6047 /* DUP (element, scalar) */
6048 handle_simd_dupes(s, rd, rn, imm5);
6051 /* C3.6.8 AdvSIMD scalar pairwise
6052 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6053 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6054 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6055 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6057 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6059 int u = extract32(insn, 29, 1);
6060 int size = extract32(insn, 22, 2);
6061 int opcode = extract32(insn, 12, 5);
6062 int rn = extract32(insn, 5, 5);
6063 int rd = extract32(insn, 0, 5);
6064 TCGv_ptr fpst;
6066 /* For some ops (the FP ones), size[1] is part of the encoding.
6067 * For ADDP strictly it is not but size[1] is always 1 for valid
6068 * encodings.
6070 opcode |= (extract32(size, 1, 1) << 5);
6072 switch (opcode) {
6073 case 0x3b: /* ADDP */
6074 if (u || size != 3) {
6075 unallocated_encoding(s);
6076 return;
6078 if (!fp_access_check(s)) {
6079 return;
6082 TCGV_UNUSED_PTR(fpst);
6083 break;
6084 case 0xc: /* FMAXNMP */
6085 case 0xd: /* FADDP */
6086 case 0xf: /* FMAXP */
6087 case 0x2c: /* FMINNMP */
6088 case 0x2f: /* FMINP */
6089 /* FP op, size[0] is 32 or 64 bit */
6090 if (!u) {
6091 unallocated_encoding(s);
6092 return;
6094 if (!fp_access_check(s)) {
6095 return;
6098 size = extract32(size, 0, 1) ? 3 : 2;
6099 fpst = get_fpstatus_ptr();
6100 break;
6101 default:
6102 unallocated_encoding(s);
6103 return;
6106 if (size == 3) {
6107 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6108 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6109 TCGv_i64 tcg_res = tcg_temp_new_i64();
6111 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6112 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6114 switch (opcode) {
6115 case 0x3b: /* ADDP */
6116 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6117 break;
6118 case 0xc: /* FMAXNMP */
6119 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6120 break;
6121 case 0xd: /* FADDP */
6122 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6123 break;
6124 case 0xf: /* FMAXP */
6125 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6126 break;
6127 case 0x2c: /* FMINNMP */
6128 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6129 break;
6130 case 0x2f: /* FMINP */
6131 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6132 break;
6133 default:
6134 g_assert_not_reached();
6137 write_fp_dreg(s, rd, tcg_res);
6139 tcg_temp_free_i64(tcg_op1);
6140 tcg_temp_free_i64(tcg_op2);
6141 tcg_temp_free_i64(tcg_res);
6142 } else {
6143 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6144 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6145 TCGv_i32 tcg_res = tcg_temp_new_i32();
6147 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6148 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6150 switch (opcode) {
6151 case 0xc: /* FMAXNMP */
6152 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6153 break;
6154 case 0xd: /* FADDP */
6155 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6156 break;
6157 case 0xf: /* FMAXP */
6158 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6159 break;
6160 case 0x2c: /* FMINNMP */
6161 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6162 break;
6163 case 0x2f: /* FMINP */
6164 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6165 break;
6166 default:
6167 g_assert_not_reached();
6170 write_fp_sreg(s, rd, tcg_res);
6172 tcg_temp_free_i32(tcg_op1);
6173 tcg_temp_free_i32(tcg_op2);
6174 tcg_temp_free_i32(tcg_res);
6177 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6178 tcg_temp_free_ptr(fpst);
6183 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6185 * This code is handles the common shifting code and is used by both
6186 * the vector and scalar code.
6188 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6189 TCGv_i64 tcg_rnd, bool accumulate,
6190 bool is_u, int size, int shift)
6192 bool extended_result = false;
6193 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6194 int ext_lshift = 0;
6195 TCGv_i64 tcg_src_hi;
6197 if (round && size == 3) {
6198 extended_result = true;
6199 ext_lshift = 64 - shift;
6200 tcg_src_hi = tcg_temp_new_i64();
6201 } else if (shift == 64) {
6202 if (!accumulate && is_u) {
6203 /* result is zero */
6204 tcg_gen_movi_i64(tcg_res, 0);
6205 return;
6209 /* Deal with the rounding step */
6210 if (round) {
6211 if (extended_result) {
6212 TCGv_i64 tcg_zero = tcg_const_i64(0);
6213 if (!is_u) {
6214 /* take care of sign extending tcg_res */
6215 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6216 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6217 tcg_src, tcg_src_hi,
6218 tcg_rnd, tcg_zero);
6219 } else {
6220 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6221 tcg_src, tcg_zero,
6222 tcg_rnd, tcg_zero);
6224 tcg_temp_free_i64(tcg_zero);
6225 } else {
6226 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6230 /* Now do the shift right */
6231 if (round && extended_result) {
6232 /* extended case, >64 bit precision required */
6233 if (ext_lshift == 0) {
6234 /* special case, only high bits matter */
6235 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6236 } else {
6237 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6238 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6239 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6241 } else {
6242 if (is_u) {
6243 if (shift == 64) {
6244 /* essentially shifting in 64 zeros */
6245 tcg_gen_movi_i64(tcg_src, 0);
6246 } else {
6247 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6249 } else {
6250 if (shift == 64) {
6251 /* effectively extending the sign-bit */
6252 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6253 } else {
6254 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6259 if (accumulate) {
6260 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6261 } else {
6262 tcg_gen_mov_i64(tcg_res, tcg_src);
6265 if (extended_result) {
6266 tcg_temp_free_i64(tcg_src_hi);
6270 /* Common SHL/SLI - Shift left with an optional insert */
6271 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6272 bool insert, int shift)
6274 if (insert) { /* SLI */
6275 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6276 } else { /* SHL */
6277 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6281 /* SRI: shift right with insert */
6282 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6283 int size, int shift)
6285 int esize = 8 << size;
6287 /* shift count same as element size is valid but does nothing;
6288 * special case to avoid potential shift by 64.
6290 if (shift != esize) {
6291 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6292 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6296 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6297 static void handle_scalar_simd_shri(DisasContext *s,
6298 bool is_u, int immh, int immb,
6299 int opcode, int rn, int rd)
6301 const int size = 3;
6302 int immhb = immh << 3 | immb;
6303 int shift = 2 * (8 << size) - immhb;
6304 bool accumulate = false;
6305 bool round = false;
6306 bool insert = false;
6307 TCGv_i64 tcg_rn;
6308 TCGv_i64 tcg_rd;
6309 TCGv_i64 tcg_round;
6311 if (!extract32(immh, 3, 1)) {
6312 unallocated_encoding(s);
6313 return;
6316 if (!fp_access_check(s)) {
6317 return;
6320 switch (opcode) {
6321 case 0x02: /* SSRA / USRA (accumulate) */
6322 accumulate = true;
6323 break;
6324 case 0x04: /* SRSHR / URSHR (rounding) */
6325 round = true;
6326 break;
6327 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6328 accumulate = round = true;
6329 break;
6330 case 0x08: /* SRI */
6331 insert = true;
6332 break;
6335 if (round) {
6336 uint64_t round_const = 1ULL << (shift - 1);
6337 tcg_round = tcg_const_i64(round_const);
6338 } else {
6339 TCGV_UNUSED_I64(tcg_round);
6342 tcg_rn = read_fp_dreg(s, rn);
6343 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6345 if (insert) {
6346 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6347 } else {
6348 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6349 accumulate, is_u, size, shift);
6352 write_fp_dreg(s, rd, tcg_rd);
6354 tcg_temp_free_i64(tcg_rn);
6355 tcg_temp_free_i64(tcg_rd);
6356 if (round) {
6357 tcg_temp_free_i64(tcg_round);
6361 /* SHL/SLI - Scalar shift left */
6362 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6363 int immh, int immb, int opcode,
6364 int rn, int rd)
6366 int size = 32 - clz32(immh) - 1;
6367 int immhb = immh << 3 | immb;
6368 int shift = immhb - (8 << size);
6369 TCGv_i64 tcg_rn = new_tmp_a64(s);
6370 TCGv_i64 tcg_rd = new_tmp_a64(s);
6372 if (!extract32(immh, 3, 1)) {
6373 unallocated_encoding(s);
6374 return;
6377 if (!fp_access_check(s)) {
6378 return;
6381 tcg_rn = read_fp_dreg(s, rn);
6382 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6384 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6386 write_fp_dreg(s, rd, tcg_rd);
6388 tcg_temp_free_i64(tcg_rn);
6389 tcg_temp_free_i64(tcg_rd);
6392 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6393 * (signed/unsigned) narrowing */
6394 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6395 bool is_u_shift, bool is_u_narrow,
6396 int immh, int immb, int opcode,
6397 int rn, int rd)
6399 int immhb = immh << 3 | immb;
6400 int size = 32 - clz32(immh) - 1;
6401 int esize = 8 << size;
6402 int shift = (2 * esize) - immhb;
6403 int elements = is_scalar ? 1 : (64 / esize);
6404 bool round = extract32(opcode, 0, 1);
6405 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6406 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6407 TCGv_i32 tcg_rd_narrowed;
6408 TCGv_i64 tcg_final;
6410 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6411 { gen_helper_neon_narrow_sat_s8,
6412 gen_helper_neon_unarrow_sat8 },
6413 { gen_helper_neon_narrow_sat_s16,
6414 gen_helper_neon_unarrow_sat16 },
6415 { gen_helper_neon_narrow_sat_s32,
6416 gen_helper_neon_unarrow_sat32 },
6417 { NULL, NULL },
6419 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6420 gen_helper_neon_narrow_sat_u8,
6421 gen_helper_neon_narrow_sat_u16,
6422 gen_helper_neon_narrow_sat_u32,
6423 NULL
6425 NeonGenNarrowEnvFn *narrowfn;
6427 int i;
6429 assert(size < 4);
6431 if (extract32(immh, 3, 1)) {
6432 unallocated_encoding(s);
6433 return;
6436 if (!fp_access_check(s)) {
6437 return;
6440 if (is_u_shift) {
6441 narrowfn = unsigned_narrow_fns[size];
6442 } else {
6443 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6446 tcg_rn = tcg_temp_new_i64();
6447 tcg_rd = tcg_temp_new_i64();
6448 tcg_rd_narrowed = tcg_temp_new_i32();
6449 tcg_final = tcg_const_i64(0);
6451 if (round) {
6452 uint64_t round_const = 1ULL << (shift - 1);
6453 tcg_round = tcg_const_i64(round_const);
6454 } else {
6455 TCGV_UNUSED_I64(tcg_round);
6458 for (i = 0; i < elements; i++) {
6459 read_vec_element(s, tcg_rn, rn, i, ldop);
6460 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6461 false, is_u_shift, size+1, shift);
6462 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6463 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6464 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6467 if (!is_q) {
6468 clear_vec_high(s, rd);
6469 write_vec_element(s, tcg_final, rd, 0, MO_64);
6470 } else {
6471 write_vec_element(s, tcg_final, rd, 1, MO_64);
6474 if (round) {
6475 tcg_temp_free_i64(tcg_round);
6477 tcg_temp_free_i64(tcg_rn);
6478 tcg_temp_free_i64(tcg_rd);
6479 tcg_temp_free_i32(tcg_rd_narrowed);
6480 tcg_temp_free_i64(tcg_final);
6481 return;
6484 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6485 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6486 bool src_unsigned, bool dst_unsigned,
6487 int immh, int immb, int rn, int rd)
6489 int immhb = immh << 3 | immb;
6490 int size = 32 - clz32(immh) - 1;
6491 int shift = immhb - (8 << size);
6492 int pass;
6494 assert(immh != 0);
6495 assert(!(scalar && is_q));
6497 if (!scalar) {
6498 if (!is_q && extract32(immh, 3, 1)) {
6499 unallocated_encoding(s);
6500 return;
6503 /* Since we use the variable-shift helpers we must
6504 * replicate the shift count into each element of
6505 * the tcg_shift value.
6507 switch (size) {
6508 case 0:
6509 shift |= shift << 8;
6510 /* fall through */
6511 case 1:
6512 shift |= shift << 16;
6513 break;
6514 case 2:
6515 case 3:
6516 break;
6517 default:
6518 g_assert_not_reached();
6522 if (!fp_access_check(s)) {
6523 return;
6526 if (size == 3) {
6527 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6528 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6529 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6530 { NULL, gen_helper_neon_qshl_u64 },
6532 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6533 int maxpass = is_q ? 2 : 1;
6535 for (pass = 0; pass < maxpass; pass++) {
6536 TCGv_i64 tcg_op = tcg_temp_new_i64();
6538 read_vec_element(s, tcg_op, rn, pass, MO_64);
6539 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6540 write_vec_element(s, tcg_op, rd, pass, MO_64);
6542 tcg_temp_free_i64(tcg_op);
6544 tcg_temp_free_i64(tcg_shift);
6546 if (!is_q) {
6547 clear_vec_high(s, rd);
6549 } else {
6550 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6551 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6553 { gen_helper_neon_qshl_s8,
6554 gen_helper_neon_qshl_s16,
6555 gen_helper_neon_qshl_s32 },
6556 { gen_helper_neon_qshlu_s8,
6557 gen_helper_neon_qshlu_s16,
6558 gen_helper_neon_qshlu_s32 }
6559 }, {
6560 { NULL, NULL, NULL },
6561 { gen_helper_neon_qshl_u8,
6562 gen_helper_neon_qshl_u16,
6563 gen_helper_neon_qshl_u32 }
6566 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6567 TCGMemOp memop = scalar ? size : MO_32;
6568 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6570 for (pass = 0; pass < maxpass; pass++) {
6571 TCGv_i32 tcg_op = tcg_temp_new_i32();
6573 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6574 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6575 if (scalar) {
6576 switch (size) {
6577 case 0:
6578 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6579 break;
6580 case 1:
6581 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6582 break;
6583 case 2:
6584 break;
6585 default:
6586 g_assert_not_reached();
6588 write_fp_sreg(s, rd, tcg_op);
6589 } else {
6590 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6593 tcg_temp_free_i32(tcg_op);
6595 tcg_temp_free_i32(tcg_shift);
6597 if (!is_q && !scalar) {
6598 clear_vec_high(s, rd);
6603 /* Common vector code for handling integer to FP conversion */
6604 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6605 int elements, int is_signed,
6606 int fracbits, int size)
6608 bool is_double = size == 3 ? true : false;
6609 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6610 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6611 TCGv_i64 tcg_int = tcg_temp_new_i64();
6612 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6613 int pass;
6615 for (pass = 0; pass < elements; pass++) {
6616 read_vec_element(s, tcg_int, rn, pass, mop);
6618 if (is_double) {
6619 TCGv_i64 tcg_double = tcg_temp_new_i64();
6620 if (is_signed) {
6621 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6622 tcg_shift, tcg_fpst);
6623 } else {
6624 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6625 tcg_shift, tcg_fpst);
6627 if (elements == 1) {
6628 write_fp_dreg(s, rd, tcg_double);
6629 } else {
6630 write_vec_element(s, tcg_double, rd, pass, MO_64);
6632 tcg_temp_free_i64(tcg_double);
6633 } else {
6634 TCGv_i32 tcg_single = tcg_temp_new_i32();
6635 if (is_signed) {
6636 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6637 tcg_shift, tcg_fpst);
6638 } else {
6639 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6640 tcg_shift, tcg_fpst);
6642 if (elements == 1) {
6643 write_fp_sreg(s, rd, tcg_single);
6644 } else {
6645 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6647 tcg_temp_free_i32(tcg_single);
6651 if (!is_double && elements == 2) {
6652 clear_vec_high(s, rd);
6655 tcg_temp_free_i64(tcg_int);
6656 tcg_temp_free_ptr(tcg_fpst);
6657 tcg_temp_free_i32(tcg_shift);
6660 /* UCVTF/SCVTF - Integer to FP conversion */
6661 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6662 bool is_q, bool is_u,
6663 int immh, int immb, int opcode,
6664 int rn, int rd)
6666 bool is_double = extract32(immh, 3, 1);
6667 int size = is_double ? MO_64 : MO_32;
6668 int elements;
6669 int immhb = immh << 3 | immb;
6670 int fracbits = (is_double ? 128 : 64) - immhb;
6672 if (!extract32(immh, 2, 2)) {
6673 unallocated_encoding(s);
6674 return;
6677 if (is_scalar) {
6678 elements = 1;
6679 } else {
6680 elements = is_double ? 2 : is_q ? 4 : 2;
6681 if (is_double && !is_q) {
6682 unallocated_encoding(s);
6683 return;
6687 if (!fp_access_check(s)) {
6688 return;
6691 /* immh == 0 would be a failure of the decode logic */
6692 g_assert(immh);
6694 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6697 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6698 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6699 bool is_q, bool is_u,
6700 int immh, int immb, int rn, int rd)
6702 bool is_double = extract32(immh, 3, 1);
6703 int immhb = immh << 3 | immb;
6704 int fracbits = (is_double ? 128 : 64) - immhb;
6705 int pass;
6706 TCGv_ptr tcg_fpstatus;
6707 TCGv_i32 tcg_rmode, tcg_shift;
6709 if (!extract32(immh, 2, 2)) {
6710 unallocated_encoding(s);
6711 return;
6714 if (!is_scalar && !is_q && is_double) {
6715 unallocated_encoding(s);
6716 return;
6719 if (!fp_access_check(s)) {
6720 return;
6723 assert(!(is_scalar && is_q));
6725 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6726 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6727 tcg_fpstatus = get_fpstatus_ptr();
6728 tcg_shift = tcg_const_i32(fracbits);
6730 if (is_double) {
6731 int maxpass = is_scalar ? 1 : 2;
6733 for (pass = 0; pass < maxpass; pass++) {
6734 TCGv_i64 tcg_op = tcg_temp_new_i64();
6736 read_vec_element(s, tcg_op, rn, pass, MO_64);
6737 if (is_u) {
6738 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6739 } else {
6740 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6742 write_vec_element(s, tcg_op, rd, pass, MO_64);
6743 tcg_temp_free_i64(tcg_op);
6745 if (!is_q) {
6746 clear_vec_high(s, rd);
6748 } else {
6749 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6750 for (pass = 0; pass < maxpass; pass++) {
6751 TCGv_i32 tcg_op = tcg_temp_new_i32();
6753 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6754 if (is_u) {
6755 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6756 } else {
6757 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6759 if (is_scalar) {
6760 write_fp_sreg(s, rd, tcg_op);
6761 } else {
6762 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6764 tcg_temp_free_i32(tcg_op);
6766 if (!is_q && !is_scalar) {
6767 clear_vec_high(s, rd);
6771 tcg_temp_free_ptr(tcg_fpstatus);
6772 tcg_temp_free_i32(tcg_shift);
6773 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6774 tcg_temp_free_i32(tcg_rmode);
6777 /* C3.6.9 AdvSIMD scalar shift by immediate
6778 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6779 * +-----+---+-------------+------+------+--------+---+------+------+
6780 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6781 * +-----+---+-------------+------+------+--------+---+------+------+
6783 * This is the scalar version so it works on a fixed sized registers
6785 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6787 int rd = extract32(insn, 0, 5);
6788 int rn = extract32(insn, 5, 5);
6789 int opcode = extract32(insn, 11, 5);
6790 int immb = extract32(insn, 16, 3);
6791 int immh = extract32(insn, 19, 4);
6792 bool is_u = extract32(insn, 29, 1);
6794 if (immh == 0) {
6795 unallocated_encoding(s);
6796 return;
6799 switch (opcode) {
6800 case 0x08: /* SRI */
6801 if (!is_u) {
6802 unallocated_encoding(s);
6803 return;
6805 /* fall through */
6806 case 0x00: /* SSHR / USHR */
6807 case 0x02: /* SSRA / USRA */
6808 case 0x04: /* SRSHR / URSHR */
6809 case 0x06: /* SRSRA / URSRA */
6810 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
6811 break;
6812 case 0x0a: /* SHL / SLI */
6813 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
6814 break;
6815 case 0x1c: /* SCVTF, UCVTF */
6816 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
6817 opcode, rn, rd);
6818 break;
6819 case 0x10: /* SQSHRUN, SQSHRUN2 */
6820 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
6821 if (!is_u) {
6822 unallocated_encoding(s);
6823 return;
6825 handle_vec_simd_sqshrn(s, true, false, false, true,
6826 immh, immb, opcode, rn, rd);
6827 break;
6828 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
6829 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
6830 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
6831 immh, immb, opcode, rn, rd);
6832 break;
6833 case 0xc: /* SQSHLU */
6834 if (!is_u) {
6835 unallocated_encoding(s);
6836 return;
6838 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
6839 break;
6840 case 0xe: /* SQSHL, UQSHL */
6841 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
6842 break;
6843 case 0x1f: /* FCVTZS, FCVTZU */
6844 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
6845 break;
6846 default:
6847 unallocated_encoding(s);
6848 break;
6852 /* C3.6.10 AdvSIMD scalar three different
6853 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6854 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6855 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
6856 * +-----+---+-----------+------+---+------+--------+-----+------+------+
6858 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
6860 bool is_u = extract32(insn, 29, 1);
6861 int size = extract32(insn, 22, 2);
6862 int opcode = extract32(insn, 12, 4);
6863 int rm = extract32(insn, 16, 5);
6864 int rn = extract32(insn, 5, 5);
6865 int rd = extract32(insn, 0, 5);
6867 if (is_u) {
6868 unallocated_encoding(s);
6869 return;
6872 switch (opcode) {
6873 case 0x9: /* SQDMLAL, SQDMLAL2 */
6874 case 0xb: /* SQDMLSL, SQDMLSL2 */
6875 case 0xd: /* SQDMULL, SQDMULL2 */
6876 if (size == 0 || size == 3) {
6877 unallocated_encoding(s);
6878 return;
6880 break;
6881 default:
6882 unallocated_encoding(s);
6883 return;
6886 if (!fp_access_check(s)) {
6887 return;
6890 if (size == 2) {
6891 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6892 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6893 TCGv_i64 tcg_res = tcg_temp_new_i64();
6895 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
6896 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
6898 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
6899 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
6901 switch (opcode) {
6902 case 0xd: /* SQDMULL, SQDMULL2 */
6903 break;
6904 case 0xb: /* SQDMLSL, SQDMLSL2 */
6905 tcg_gen_neg_i64(tcg_res, tcg_res);
6906 /* fall through */
6907 case 0x9: /* SQDMLAL, SQDMLAL2 */
6908 read_vec_element(s, tcg_op1, rd, 0, MO_64);
6909 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
6910 tcg_res, tcg_op1);
6911 break;
6912 default:
6913 g_assert_not_reached();
6916 write_fp_dreg(s, rd, tcg_res);
6918 tcg_temp_free_i64(tcg_op1);
6919 tcg_temp_free_i64(tcg_op2);
6920 tcg_temp_free_i64(tcg_res);
6921 } else {
6922 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6923 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6924 TCGv_i64 tcg_res = tcg_temp_new_i64();
6926 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
6927 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
6929 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
6930 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
6932 switch (opcode) {
6933 case 0xd: /* SQDMULL, SQDMULL2 */
6934 break;
6935 case 0xb: /* SQDMLSL, SQDMLSL2 */
6936 gen_helper_neon_negl_u32(tcg_res, tcg_res);
6937 /* fall through */
6938 case 0x9: /* SQDMLAL, SQDMLAL2 */
6940 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
6941 read_vec_element(s, tcg_op3, rd, 0, MO_32);
6942 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
6943 tcg_res, tcg_op3);
6944 tcg_temp_free_i64(tcg_op3);
6945 break;
6947 default:
6948 g_assert_not_reached();
6951 tcg_gen_ext32u_i64(tcg_res, tcg_res);
6952 write_fp_dreg(s, rd, tcg_res);
6954 tcg_temp_free_i32(tcg_op1);
6955 tcg_temp_free_i32(tcg_op2);
6956 tcg_temp_free_i64(tcg_res);
6960 static void handle_3same_64(DisasContext *s, int opcode, bool u,
6961 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
6963 /* Handle 64x64->64 opcodes which are shared between the scalar
6964 * and vector 3-same groups. We cover every opcode where size == 3
6965 * is valid in either the three-reg-same (integer, not pairwise)
6966 * or scalar-three-reg-same groups. (Some opcodes are not yet
6967 * implemented.)
6969 TCGCond cond;
6971 switch (opcode) {
6972 case 0x1: /* SQADD */
6973 if (u) {
6974 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6975 } else {
6976 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6978 break;
6979 case 0x5: /* SQSUB */
6980 if (u) {
6981 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6982 } else {
6983 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
6985 break;
6986 case 0x6: /* CMGT, CMHI */
6987 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
6988 * We implement this using setcond (test) and then negating.
6990 cond = u ? TCG_COND_GTU : TCG_COND_GT;
6991 do_cmop:
6992 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
6993 tcg_gen_neg_i64(tcg_rd, tcg_rd);
6994 break;
6995 case 0x7: /* CMGE, CMHS */
6996 cond = u ? TCG_COND_GEU : TCG_COND_GE;
6997 goto do_cmop;
6998 case 0x11: /* CMTST, CMEQ */
6999 if (u) {
7000 cond = TCG_COND_EQ;
7001 goto do_cmop;
7003 /* CMTST : test is "if (X & Y != 0)". */
7004 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7005 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7006 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7007 break;
7008 case 0x8: /* SSHL, USHL */
7009 if (u) {
7010 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7011 } else {
7012 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7014 break;
7015 case 0x9: /* SQSHL, UQSHL */
7016 if (u) {
7017 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7018 } else {
7019 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7021 break;
7022 case 0xa: /* SRSHL, URSHL */
7023 if (u) {
7024 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7025 } else {
7026 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7028 break;
7029 case 0xb: /* SQRSHL, UQRSHL */
7030 if (u) {
7031 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7032 } else {
7033 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7035 break;
7036 case 0x10: /* ADD, SUB */
7037 if (u) {
7038 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7039 } else {
7040 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7042 break;
7043 default:
7044 g_assert_not_reached();
7048 /* Handle the 3-same-operands float operations; shared by the scalar
7049 * and vector encodings. The caller must filter out any encodings
7050 * not allocated for the encoding it is dealing with.
7052 static void handle_3same_float(DisasContext *s, int size, int elements,
7053 int fpopcode, int rd, int rn, int rm)
7055 int pass;
7056 TCGv_ptr fpst = get_fpstatus_ptr();
7058 for (pass = 0; pass < elements; pass++) {
7059 if (size) {
7060 /* Double */
7061 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7062 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7063 TCGv_i64 tcg_res = tcg_temp_new_i64();
7065 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7066 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7068 switch (fpopcode) {
7069 case 0x39: /* FMLS */
7070 /* As usual for ARM, separate negation for fused multiply-add */
7071 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7072 /* fall through */
7073 case 0x19: /* FMLA */
7074 read_vec_element(s, tcg_res, rd, pass, MO_64);
7075 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7076 tcg_res, fpst);
7077 break;
7078 case 0x18: /* FMAXNM */
7079 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7080 break;
7081 case 0x1a: /* FADD */
7082 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7083 break;
7084 case 0x1b: /* FMULX */
7085 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7086 break;
7087 case 0x1c: /* FCMEQ */
7088 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7089 break;
7090 case 0x1e: /* FMAX */
7091 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7092 break;
7093 case 0x1f: /* FRECPS */
7094 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7095 break;
7096 case 0x38: /* FMINNM */
7097 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7098 break;
7099 case 0x3a: /* FSUB */
7100 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7101 break;
7102 case 0x3e: /* FMIN */
7103 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7104 break;
7105 case 0x3f: /* FRSQRTS */
7106 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7107 break;
7108 case 0x5b: /* FMUL */
7109 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7110 break;
7111 case 0x5c: /* FCMGE */
7112 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7113 break;
7114 case 0x5d: /* FACGE */
7115 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7116 break;
7117 case 0x5f: /* FDIV */
7118 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7119 break;
7120 case 0x7a: /* FABD */
7121 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7122 gen_helper_vfp_absd(tcg_res, tcg_res);
7123 break;
7124 case 0x7c: /* FCMGT */
7125 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7126 break;
7127 case 0x7d: /* FACGT */
7128 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7129 break;
7130 default:
7131 g_assert_not_reached();
7134 write_vec_element(s, tcg_res, rd, pass, MO_64);
7136 tcg_temp_free_i64(tcg_res);
7137 tcg_temp_free_i64(tcg_op1);
7138 tcg_temp_free_i64(tcg_op2);
7139 } else {
7140 /* Single */
7141 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7142 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7143 TCGv_i32 tcg_res = tcg_temp_new_i32();
7145 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7146 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7148 switch (fpopcode) {
7149 case 0x39: /* FMLS */
7150 /* As usual for ARM, separate negation for fused multiply-add */
7151 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7152 /* fall through */
7153 case 0x19: /* FMLA */
7154 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7155 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7156 tcg_res, fpst);
7157 break;
7158 case 0x1a: /* FADD */
7159 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7160 break;
7161 case 0x1b: /* FMULX */
7162 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7163 break;
7164 case 0x1c: /* FCMEQ */
7165 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7166 break;
7167 case 0x1e: /* FMAX */
7168 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7169 break;
7170 case 0x1f: /* FRECPS */
7171 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7172 break;
7173 case 0x18: /* FMAXNM */
7174 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7175 break;
7176 case 0x38: /* FMINNM */
7177 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7178 break;
7179 case 0x3a: /* FSUB */
7180 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7181 break;
7182 case 0x3e: /* FMIN */
7183 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7184 break;
7185 case 0x3f: /* FRSQRTS */
7186 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7187 break;
7188 case 0x5b: /* FMUL */
7189 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7190 break;
7191 case 0x5c: /* FCMGE */
7192 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7193 break;
7194 case 0x5d: /* FACGE */
7195 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7196 break;
7197 case 0x5f: /* FDIV */
7198 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7199 break;
7200 case 0x7a: /* FABD */
7201 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7202 gen_helper_vfp_abss(tcg_res, tcg_res);
7203 break;
7204 case 0x7c: /* FCMGT */
7205 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7206 break;
7207 case 0x7d: /* FACGT */
7208 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7209 break;
7210 default:
7211 g_assert_not_reached();
7214 if (elements == 1) {
7215 /* scalar single so clear high part */
7216 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7218 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7219 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7220 tcg_temp_free_i64(tcg_tmp);
7221 } else {
7222 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7225 tcg_temp_free_i32(tcg_res);
7226 tcg_temp_free_i32(tcg_op1);
7227 tcg_temp_free_i32(tcg_op2);
7231 tcg_temp_free_ptr(fpst);
7233 if ((elements << size) < 4) {
7234 /* scalar, or non-quad vector op */
7235 clear_vec_high(s, rd);
7239 /* C3.6.11 AdvSIMD scalar three same
7240 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7241 * +-----+---+-----------+------+---+------+--------+---+------+------+
7242 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7243 * +-----+---+-----------+------+---+------+--------+---+------+------+
7245 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7247 int rd = extract32(insn, 0, 5);
7248 int rn = extract32(insn, 5, 5);
7249 int opcode = extract32(insn, 11, 5);
7250 int rm = extract32(insn, 16, 5);
7251 int size = extract32(insn, 22, 2);
7252 bool u = extract32(insn, 29, 1);
7253 TCGv_i64 tcg_rd;
7255 if (opcode >= 0x18) {
7256 /* Floating point: U, size[1] and opcode indicate operation */
7257 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7258 switch (fpopcode) {
7259 case 0x1b: /* FMULX */
7260 case 0x1f: /* FRECPS */
7261 case 0x3f: /* FRSQRTS */
7262 case 0x5d: /* FACGE */
7263 case 0x7d: /* FACGT */
7264 case 0x1c: /* FCMEQ */
7265 case 0x5c: /* FCMGE */
7266 case 0x7c: /* FCMGT */
7267 case 0x7a: /* FABD */
7268 break;
7269 default:
7270 unallocated_encoding(s);
7271 return;
7274 if (!fp_access_check(s)) {
7275 return;
7278 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7279 return;
7282 switch (opcode) {
7283 case 0x1: /* SQADD, UQADD */
7284 case 0x5: /* SQSUB, UQSUB */
7285 case 0x9: /* SQSHL, UQSHL */
7286 case 0xb: /* SQRSHL, UQRSHL */
7287 break;
7288 case 0x8: /* SSHL, USHL */
7289 case 0xa: /* SRSHL, URSHL */
7290 case 0x6: /* CMGT, CMHI */
7291 case 0x7: /* CMGE, CMHS */
7292 case 0x11: /* CMTST, CMEQ */
7293 case 0x10: /* ADD, SUB (vector) */
7294 if (size != 3) {
7295 unallocated_encoding(s);
7296 return;
7298 break;
7299 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7300 if (size != 1 && size != 2) {
7301 unallocated_encoding(s);
7302 return;
7304 break;
7305 default:
7306 unallocated_encoding(s);
7307 return;
7310 if (!fp_access_check(s)) {
7311 return;
7314 tcg_rd = tcg_temp_new_i64();
7316 if (size == 3) {
7317 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7318 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7320 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7321 tcg_temp_free_i64(tcg_rn);
7322 tcg_temp_free_i64(tcg_rm);
7323 } else {
7324 /* Do a single operation on the lowest element in the vector.
7325 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7326 * no side effects for all these operations.
7327 * OPTME: special-purpose helpers would avoid doing some
7328 * unnecessary work in the helper for the 8 and 16 bit cases.
7330 NeonGenTwoOpEnvFn *genenvfn;
7331 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7332 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7333 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7335 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7336 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7338 switch (opcode) {
7339 case 0x1: /* SQADD, UQADD */
7341 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7342 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7343 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7344 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7346 genenvfn = fns[size][u];
7347 break;
7349 case 0x5: /* SQSUB, UQSUB */
7351 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7352 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7353 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7354 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7356 genenvfn = fns[size][u];
7357 break;
7359 case 0x9: /* SQSHL, UQSHL */
7361 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7362 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7363 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7364 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7366 genenvfn = fns[size][u];
7367 break;
7369 case 0xb: /* SQRSHL, UQRSHL */
7371 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7372 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7373 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7374 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7376 genenvfn = fns[size][u];
7377 break;
7379 case 0x16: /* SQDMULH, SQRDMULH */
7381 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7382 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7383 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7385 assert(size == 1 || size == 2);
7386 genenvfn = fns[size - 1][u];
7387 break;
7389 default:
7390 g_assert_not_reached();
7393 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7394 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7395 tcg_temp_free_i32(tcg_rd32);
7396 tcg_temp_free_i32(tcg_rn);
7397 tcg_temp_free_i32(tcg_rm);
7400 write_fp_dreg(s, rd, tcg_rd);
7402 tcg_temp_free_i64(tcg_rd);
7405 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7406 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7407 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7409 /* Handle 64->64 opcodes which are shared between the scalar and
7410 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7411 * is valid in either group and also the double-precision fp ops.
7412 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7413 * requires them.
7415 TCGCond cond;
7417 switch (opcode) {
7418 case 0x4: /* CLS, CLZ */
7419 if (u) {
7420 gen_helper_clz64(tcg_rd, tcg_rn);
7421 } else {
7422 gen_helper_cls64(tcg_rd, tcg_rn);
7424 break;
7425 case 0x5: /* NOT */
7426 /* This opcode is shared with CNT and RBIT but we have earlier
7427 * enforced that size == 3 if and only if this is the NOT insn.
7429 tcg_gen_not_i64(tcg_rd, tcg_rn);
7430 break;
7431 case 0x7: /* SQABS, SQNEG */
7432 if (u) {
7433 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7434 } else {
7435 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7437 break;
7438 case 0xa: /* CMLT */
7439 /* 64 bit integer comparison against zero, result is
7440 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7441 * subtracting 1.
7443 cond = TCG_COND_LT;
7444 do_cmop:
7445 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7446 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7447 break;
7448 case 0x8: /* CMGT, CMGE */
7449 cond = u ? TCG_COND_GE : TCG_COND_GT;
7450 goto do_cmop;
7451 case 0x9: /* CMEQ, CMLE */
7452 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7453 goto do_cmop;
7454 case 0xb: /* ABS, NEG */
7455 if (u) {
7456 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7457 } else {
7458 TCGv_i64 tcg_zero = tcg_const_i64(0);
7459 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7460 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7461 tcg_rn, tcg_rd);
7462 tcg_temp_free_i64(tcg_zero);
7464 break;
7465 case 0x2f: /* FABS */
7466 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7467 break;
7468 case 0x6f: /* FNEG */
7469 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7470 break;
7471 case 0x7f: /* FSQRT */
7472 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7473 break;
7474 case 0x1a: /* FCVTNS */
7475 case 0x1b: /* FCVTMS */
7476 case 0x1c: /* FCVTAS */
7477 case 0x3a: /* FCVTPS */
7478 case 0x3b: /* FCVTZS */
7480 TCGv_i32 tcg_shift = tcg_const_i32(0);
7481 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7482 tcg_temp_free_i32(tcg_shift);
7483 break;
7485 case 0x5a: /* FCVTNU */
7486 case 0x5b: /* FCVTMU */
7487 case 0x5c: /* FCVTAU */
7488 case 0x7a: /* FCVTPU */
7489 case 0x7b: /* FCVTZU */
7491 TCGv_i32 tcg_shift = tcg_const_i32(0);
7492 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7493 tcg_temp_free_i32(tcg_shift);
7494 break;
7496 case 0x18: /* FRINTN */
7497 case 0x19: /* FRINTM */
7498 case 0x38: /* FRINTP */
7499 case 0x39: /* FRINTZ */
7500 case 0x58: /* FRINTA */
7501 case 0x79: /* FRINTI */
7502 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7503 break;
7504 case 0x59: /* FRINTX */
7505 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7506 break;
7507 default:
7508 g_assert_not_reached();
7512 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7513 bool is_scalar, bool is_u, bool is_q,
7514 int size, int rn, int rd)
7516 bool is_double = (size == 3);
7517 TCGv_ptr fpst;
7519 if (!fp_access_check(s)) {
7520 return;
7523 fpst = get_fpstatus_ptr();
7525 if (is_double) {
7526 TCGv_i64 tcg_op = tcg_temp_new_i64();
7527 TCGv_i64 tcg_zero = tcg_const_i64(0);
7528 TCGv_i64 tcg_res = tcg_temp_new_i64();
7529 NeonGenTwoDoubleOPFn *genfn;
7530 bool swap = false;
7531 int pass;
7533 switch (opcode) {
7534 case 0x2e: /* FCMLT (zero) */
7535 swap = true;
7536 /* fallthrough */
7537 case 0x2c: /* FCMGT (zero) */
7538 genfn = gen_helper_neon_cgt_f64;
7539 break;
7540 case 0x2d: /* FCMEQ (zero) */
7541 genfn = gen_helper_neon_ceq_f64;
7542 break;
7543 case 0x6d: /* FCMLE (zero) */
7544 swap = true;
7545 /* fall through */
7546 case 0x6c: /* FCMGE (zero) */
7547 genfn = gen_helper_neon_cge_f64;
7548 break;
7549 default:
7550 g_assert_not_reached();
7553 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7554 read_vec_element(s, tcg_op, rn, pass, MO_64);
7555 if (swap) {
7556 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7557 } else {
7558 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7560 write_vec_element(s, tcg_res, rd, pass, MO_64);
7562 if (is_scalar) {
7563 clear_vec_high(s, rd);
7566 tcg_temp_free_i64(tcg_res);
7567 tcg_temp_free_i64(tcg_zero);
7568 tcg_temp_free_i64(tcg_op);
7569 } else {
7570 TCGv_i32 tcg_op = tcg_temp_new_i32();
7571 TCGv_i32 tcg_zero = tcg_const_i32(0);
7572 TCGv_i32 tcg_res = tcg_temp_new_i32();
7573 NeonGenTwoSingleOPFn *genfn;
7574 bool swap = false;
7575 int pass, maxpasses;
7577 switch (opcode) {
7578 case 0x2e: /* FCMLT (zero) */
7579 swap = true;
7580 /* fall through */
7581 case 0x2c: /* FCMGT (zero) */
7582 genfn = gen_helper_neon_cgt_f32;
7583 break;
7584 case 0x2d: /* FCMEQ (zero) */
7585 genfn = gen_helper_neon_ceq_f32;
7586 break;
7587 case 0x6d: /* FCMLE (zero) */
7588 swap = true;
7589 /* fall through */
7590 case 0x6c: /* FCMGE (zero) */
7591 genfn = gen_helper_neon_cge_f32;
7592 break;
7593 default:
7594 g_assert_not_reached();
7597 if (is_scalar) {
7598 maxpasses = 1;
7599 } else {
7600 maxpasses = is_q ? 4 : 2;
7603 for (pass = 0; pass < maxpasses; pass++) {
7604 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7605 if (swap) {
7606 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7607 } else {
7608 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7610 if (is_scalar) {
7611 write_fp_sreg(s, rd, tcg_res);
7612 } else {
7613 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7616 tcg_temp_free_i32(tcg_res);
7617 tcg_temp_free_i32(tcg_zero);
7618 tcg_temp_free_i32(tcg_op);
7619 if (!is_q && !is_scalar) {
7620 clear_vec_high(s, rd);
7624 tcg_temp_free_ptr(fpst);
7627 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7628 bool is_scalar, bool is_u, bool is_q,
7629 int size, int rn, int rd)
7631 bool is_double = (size == 3);
7632 TCGv_ptr fpst = get_fpstatus_ptr();
7634 if (is_double) {
7635 TCGv_i64 tcg_op = tcg_temp_new_i64();
7636 TCGv_i64 tcg_res = tcg_temp_new_i64();
7637 int pass;
7639 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7640 read_vec_element(s, tcg_op, rn, pass, MO_64);
7641 switch (opcode) {
7642 case 0x3d: /* FRECPE */
7643 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7644 break;
7645 case 0x3f: /* FRECPX */
7646 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7647 break;
7648 case 0x7d: /* FRSQRTE */
7649 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7650 break;
7651 default:
7652 g_assert_not_reached();
7654 write_vec_element(s, tcg_res, rd, pass, MO_64);
7656 if (is_scalar) {
7657 clear_vec_high(s, rd);
7660 tcg_temp_free_i64(tcg_res);
7661 tcg_temp_free_i64(tcg_op);
7662 } else {
7663 TCGv_i32 tcg_op = tcg_temp_new_i32();
7664 TCGv_i32 tcg_res = tcg_temp_new_i32();
7665 int pass, maxpasses;
7667 if (is_scalar) {
7668 maxpasses = 1;
7669 } else {
7670 maxpasses = is_q ? 4 : 2;
7673 for (pass = 0; pass < maxpasses; pass++) {
7674 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7676 switch (opcode) {
7677 case 0x3c: /* URECPE */
7678 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7679 break;
7680 case 0x3d: /* FRECPE */
7681 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7682 break;
7683 case 0x3f: /* FRECPX */
7684 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7685 break;
7686 case 0x7d: /* FRSQRTE */
7687 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7688 break;
7689 default:
7690 g_assert_not_reached();
7693 if (is_scalar) {
7694 write_fp_sreg(s, rd, tcg_res);
7695 } else {
7696 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7699 tcg_temp_free_i32(tcg_res);
7700 tcg_temp_free_i32(tcg_op);
7701 if (!is_q && !is_scalar) {
7702 clear_vec_high(s, rd);
7705 tcg_temp_free_ptr(fpst);
7708 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7709 int opcode, bool u, bool is_q,
7710 int size, int rn, int rd)
7712 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7713 * in the source becomes a size element in the destination).
7715 int pass;
7716 TCGv_i32 tcg_res[2];
7717 int destelt = is_q ? 2 : 0;
7718 int passes = scalar ? 1 : 2;
7720 if (scalar) {
7721 tcg_res[1] = tcg_const_i32(0);
7724 for (pass = 0; pass < passes; pass++) {
7725 TCGv_i64 tcg_op = tcg_temp_new_i64();
7726 NeonGenNarrowFn *genfn = NULL;
7727 NeonGenNarrowEnvFn *genenvfn = NULL;
7729 if (scalar) {
7730 read_vec_element(s, tcg_op, rn, pass, size + 1);
7731 } else {
7732 read_vec_element(s, tcg_op, rn, pass, MO_64);
7734 tcg_res[pass] = tcg_temp_new_i32();
7736 switch (opcode) {
7737 case 0x12: /* XTN, SQXTUN */
7739 static NeonGenNarrowFn * const xtnfns[3] = {
7740 gen_helper_neon_narrow_u8,
7741 gen_helper_neon_narrow_u16,
7742 tcg_gen_extrl_i64_i32,
7744 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7745 gen_helper_neon_unarrow_sat8,
7746 gen_helper_neon_unarrow_sat16,
7747 gen_helper_neon_unarrow_sat32,
7749 if (u) {
7750 genenvfn = sqxtunfns[size];
7751 } else {
7752 genfn = xtnfns[size];
7754 break;
7756 case 0x14: /* SQXTN, UQXTN */
7758 static NeonGenNarrowEnvFn * const fns[3][2] = {
7759 { gen_helper_neon_narrow_sat_s8,
7760 gen_helper_neon_narrow_sat_u8 },
7761 { gen_helper_neon_narrow_sat_s16,
7762 gen_helper_neon_narrow_sat_u16 },
7763 { gen_helper_neon_narrow_sat_s32,
7764 gen_helper_neon_narrow_sat_u32 },
7766 genenvfn = fns[size][u];
7767 break;
7769 case 0x16: /* FCVTN, FCVTN2 */
7770 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7771 if (size == 2) {
7772 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7773 } else {
7774 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7775 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7776 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7777 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7778 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7779 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7780 tcg_temp_free_i32(tcg_lo);
7781 tcg_temp_free_i32(tcg_hi);
7783 break;
7784 case 0x56: /* FCVTXN, FCVTXN2 */
7785 /* 64 bit to 32 bit float conversion
7786 * with von Neumann rounding (round to odd)
7788 assert(size == 2);
7789 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7790 break;
7791 default:
7792 g_assert_not_reached();
7795 if (genfn) {
7796 genfn(tcg_res[pass], tcg_op);
7797 } else if (genenvfn) {
7798 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7801 tcg_temp_free_i64(tcg_op);
7804 for (pass = 0; pass < 2; pass++) {
7805 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
7806 tcg_temp_free_i32(tcg_res[pass]);
7808 if (!is_q) {
7809 clear_vec_high(s, rd);
7813 /* Remaining saturating accumulating ops */
7814 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
7815 bool is_q, int size, int rn, int rd)
7817 bool is_double = (size == 3);
7819 if (is_double) {
7820 TCGv_i64 tcg_rn = tcg_temp_new_i64();
7821 TCGv_i64 tcg_rd = tcg_temp_new_i64();
7822 int pass;
7824 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7825 read_vec_element(s, tcg_rn, rn, pass, MO_64);
7826 read_vec_element(s, tcg_rd, rd, pass, MO_64);
7828 if (is_u) { /* USQADD */
7829 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7830 } else { /* SUQADD */
7831 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7833 write_vec_element(s, tcg_rd, rd, pass, MO_64);
7835 if (is_scalar) {
7836 clear_vec_high(s, rd);
7839 tcg_temp_free_i64(tcg_rd);
7840 tcg_temp_free_i64(tcg_rn);
7841 } else {
7842 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7843 TCGv_i32 tcg_rd = tcg_temp_new_i32();
7844 int pass, maxpasses;
7846 if (is_scalar) {
7847 maxpasses = 1;
7848 } else {
7849 maxpasses = is_q ? 4 : 2;
7852 for (pass = 0; pass < maxpasses; pass++) {
7853 if (is_scalar) {
7854 read_vec_element_i32(s, tcg_rn, rn, pass, size);
7855 read_vec_element_i32(s, tcg_rd, rd, pass, size);
7856 } else {
7857 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
7858 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7861 if (is_u) { /* USQADD */
7862 switch (size) {
7863 case 0:
7864 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7865 break;
7866 case 1:
7867 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7868 break;
7869 case 2:
7870 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7871 break;
7872 default:
7873 g_assert_not_reached();
7875 } else { /* SUQADD */
7876 switch (size) {
7877 case 0:
7878 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7879 break;
7880 case 1:
7881 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7882 break;
7883 case 2:
7884 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
7885 break;
7886 default:
7887 g_assert_not_reached();
7891 if (is_scalar) {
7892 TCGv_i64 tcg_zero = tcg_const_i64(0);
7893 write_vec_element(s, tcg_zero, rd, 0, MO_64);
7894 tcg_temp_free_i64(tcg_zero);
7896 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
7899 if (!is_q) {
7900 clear_vec_high(s, rd);
7903 tcg_temp_free_i32(tcg_rd);
7904 tcg_temp_free_i32(tcg_rn);
7908 /* C3.6.12 AdvSIMD scalar two reg misc
7909 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7910 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7911 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
7912 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7914 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
7916 int rd = extract32(insn, 0, 5);
7917 int rn = extract32(insn, 5, 5);
7918 int opcode = extract32(insn, 12, 5);
7919 int size = extract32(insn, 22, 2);
7920 bool u = extract32(insn, 29, 1);
7921 bool is_fcvt = false;
7922 int rmode;
7923 TCGv_i32 tcg_rmode;
7924 TCGv_ptr tcg_fpstatus;
7926 switch (opcode) {
7927 case 0x3: /* USQADD / SUQADD*/
7928 if (!fp_access_check(s)) {
7929 return;
7931 handle_2misc_satacc(s, true, u, false, size, rn, rd);
7932 return;
7933 case 0x7: /* SQABS / SQNEG */
7934 break;
7935 case 0xa: /* CMLT */
7936 if (u) {
7937 unallocated_encoding(s);
7938 return;
7940 /* fall through */
7941 case 0x8: /* CMGT, CMGE */
7942 case 0x9: /* CMEQ, CMLE */
7943 case 0xb: /* ABS, NEG */
7944 if (size != 3) {
7945 unallocated_encoding(s);
7946 return;
7948 break;
7949 case 0x12: /* SQXTUN */
7950 if (!u) {
7951 unallocated_encoding(s);
7952 return;
7954 /* fall through */
7955 case 0x14: /* SQXTN, UQXTN */
7956 if (size == 3) {
7957 unallocated_encoding(s);
7958 return;
7960 if (!fp_access_check(s)) {
7961 return;
7963 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
7964 return;
7965 case 0xc ... 0xf:
7966 case 0x16 ... 0x1d:
7967 case 0x1f:
7968 /* Floating point: U, size[1] and opcode indicate operation;
7969 * size[0] indicates single or double precision.
7971 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
7972 size = extract32(size, 0, 1) ? 3 : 2;
7973 switch (opcode) {
7974 case 0x2c: /* FCMGT (zero) */
7975 case 0x2d: /* FCMEQ (zero) */
7976 case 0x2e: /* FCMLT (zero) */
7977 case 0x6c: /* FCMGE (zero) */
7978 case 0x6d: /* FCMLE (zero) */
7979 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
7980 return;
7981 case 0x1d: /* SCVTF */
7982 case 0x5d: /* UCVTF */
7984 bool is_signed = (opcode == 0x1d);
7985 if (!fp_access_check(s)) {
7986 return;
7988 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
7989 return;
7991 case 0x3d: /* FRECPE */
7992 case 0x3f: /* FRECPX */
7993 case 0x7d: /* FRSQRTE */
7994 if (!fp_access_check(s)) {
7995 return;
7997 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
7998 return;
7999 case 0x1a: /* FCVTNS */
8000 case 0x1b: /* FCVTMS */
8001 case 0x3a: /* FCVTPS */
8002 case 0x3b: /* FCVTZS */
8003 case 0x5a: /* FCVTNU */
8004 case 0x5b: /* FCVTMU */
8005 case 0x7a: /* FCVTPU */
8006 case 0x7b: /* FCVTZU */
8007 is_fcvt = true;
8008 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8009 break;
8010 case 0x1c: /* FCVTAS */
8011 case 0x5c: /* FCVTAU */
8012 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8013 is_fcvt = true;
8014 rmode = FPROUNDING_TIEAWAY;
8015 break;
8016 case 0x56: /* FCVTXN, FCVTXN2 */
8017 if (size == 2) {
8018 unallocated_encoding(s);
8019 return;
8021 if (!fp_access_check(s)) {
8022 return;
8024 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8025 return;
8026 default:
8027 unallocated_encoding(s);
8028 return;
8030 break;
8031 default:
8032 unallocated_encoding(s);
8033 return;
8036 if (!fp_access_check(s)) {
8037 return;
8040 if (is_fcvt) {
8041 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8042 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8043 tcg_fpstatus = get_fpstatus_ptr();
8044 } else {
8045 TCGV_UNUSED_I32(tcg_rmode);
8046 TCGV_UNUSED_PTR(tcg_fpstatus);
8049 if (size == 3) {
8050 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8051 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8053 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8054 write_fp_dreg(s, rd, tcg_rd);
8055 tcg_temp_free_i64(tcg_rd);
8056 tcg_temp_free_i64(tcg_rn);
8057 } else {
8058 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8059 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8061 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8063 switch (opcode) {
8064 case 0x7: /* SQABS, SQNEG */
8066 NeonGenOneOpEnvFn *genfn;
8067 static NeonGenOneOpEnvFn * const fns[3][2] = {
8068 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8069 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8070 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8072 genfn = fns[size][u];
8073 genfn(tcg_rd, cpu_env, tcg_rn);
8074 break;
8076 case 0x1a: /* FCVTNS */
8077 case 0x1b: /* FCVTMS */
8078 case 0x1c: /* FCVTAS */
8079 case 0x3a: /* FCVTPS */
8080 case 0x3b: /* FCVTZS */
8082 TCGv_i32 tcg_shift = tcg_const_i32(0);
8083 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8084 tcg_temp_free_i32(tcg_shift);
8085 break;
8087 case 0x5a: /* FCVTNU */
8088 case 0x5b: /* FCVTMU */
8089 case 0x5c: /* FCVTAU */
8090 case 0x7a: /* FCVTPU */
8091 case 0x7b: /* FCVTZU */
8093 TCGv_i32 tcg_shift = tcg_const_i32(0);
8094 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8095 tcg_temp_free_i32(tcg_shift);
8096 break;
8098 default:
8099 g_assert_not_reached();
8102 write_fp_sreg(s, rd, tcg_rd);
8103 tcg_temp_free_i32(tcg_rd);
8104 tcg_temp_free_i32(tcg_rn);
8107 if (is_fcvt) {
8108 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8109 tcg_temp_free_i32(tcg_rmode);
8110 tcg_temp_free_ptr(tcg_fpstatus);
8114 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8115 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8116 int immh, int immb, int opcode, int rn, int rd)
8118 int size = 32 - clz32(immh) - 1;
8119 int immhb = immh << 3 | immb;
8120 int shift = 2 * (8 << size) - immhb;
8121 bool accumulate = false;
8122 bool round = false;
8123 bool insert = false;
8124 int dsize = is_q ? 128 : 64;
8125 int esize = 8 << size;
8126 int elements = dsize/esize;
8127 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8128 TCGv_i64 tcg_rn = new_tmp_a64(s);
8129 TCGv_i64 tcg_rd = new_tmp_a64(s);
8130 TCGv_i64 tcg_round;
8131 int i;
8133 if (extract32(immh, 3, 1) && !is_q) {
8134 unallocated_encoding(s);
8135 return;
8138 if (size > 3 && !is_q) {
8139 unallocated_encoding(s);
8140 return;
8143 if (!fp_access_check(s)) {
8144 return;
8147 switch (opcode) {
8148 case 0x02: /* SSRA / USRA (accumulate) */
8149 accumulate = true;
8150 break;
8151 case 0x04: /* SRSHR / URSHR (rounding) */
8152 round = true;
8153 break;
8154 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8155 accumulate = round = true;
8156 break;
8157 case 0x08: /* SRI */
8158 insert = true;
8159 break;
8162 if (round) {
8163 uint64_t round_const = 1ULL << (shift - 1);
8164 tcg_round = tcg_const_i64(round_const);
8165 } else {
8166 TCGV_UNUSED_I64(tcg_round);
8169 for (i = 0; i < elements; i++) {
8170 read_vec_element(s, tcg_rn, rn, i, memop);
8171 if (accumulate || insert) {
8172 read_vec_element(s, tcg_rd, rd, i, memop);
8175 if (insert) {
8176 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8177 } else {
8178 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8179 accumulate, is_u, size, shift);
8182 write_vec_element(s, tcg_rd, rd, i, size);
8185 if (!is_q) {
8186 clear_vec_high(s, rd);
8189 if (round) {
8190 tcg_temp_free_i64(tcg_round);
8194 /* SHL/SLI - Vector shift left */
8195 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8196 int immh, int immb, int opcode, int rn, int rd)
8198 int size = 32 - clz32(immh) - 1;
8199 int immhb = immh << 3 | immb;
8200 int shift = immhb - (8 << size);
8201 int dsize = is_q ? 128 : 64;
8202 int esize = 8 << size;
8203 int elements = dsize/esize;
8204 TCGv_i64 tcg_rn = new_tmp_a64(s);
8205 TCGv_i64 tcg_rd = new_tmp_a64(s);
8206 int i;
8208 if (extract32(immh, 3, 1) && !is_q) {
8209 unallocated_encoding(s);
8210 return;
8213 if (size > 3 && !is_q) {
8214 unallocated_encoding(s);
8215 return;
8218 if (!fp_access_check(s)) {
8219 return;
8222 for (i = 0; i < elements; i++) {
8223 read_vec_element(s, tcg_rn, rn, i, size);
8224 if (insert) {
8225 read_vec_element(s, tcg_rd, rd, i, size);
8228 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8230 write_vec_element(s, tcg_rd, rd, i, size);
8233 if (!is_q) {
8234 clear_vec_high(s, rd);
8238 /* USHLL/SHLL - Vector shift left with widening */
8239 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8240 int immh, int immb, int opcode, int rn, int rd)
8242 int size = 32 - clz32(immh) - 1;
8243 int immhb = immh << 3 | immb;
8244 int shift = immhb - (8 << size);
8245 int dsize = 64;
8246 int esize = 8 << size;
8247 int elements = dsize/esize;
8248 TCGv_i64 tcg_rn = new_tmp_a64(s);
8249 TCGv_i64 tcg_rd = new_tmp_a64(s);
8250 int i;
8252 if (size >= 3) {
8253 unallocated_encoding(s);
8254 return;
8257 if (!fp_access_check(s)) {
8258 return;
8261 /* For the LL variants the store is larger than the load,
8262 * so if rd == rn we would overwrite parts of our input.
8263 * So load everything right now and use shifts in the main loop.
8265 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8267 for (i = 0; i < elements; i++) {
8268 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8269 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8270 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8271 write_vec_element(s, tcg_rd, rd, i, size + 1);
8275 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8276 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8277 int immh, int immb, int opcode, int rn, int rd)
8279 int immhb = immh << 3 | immb;
8280 int size = 32 - clz32(immh) - 1;
8281 int dsize = 64;
8282 int esize = 8 << size;
8283 int elements = dsize/esize;
8284 int shift = (2 * esize) - immhb;
8285 bool round = extract32(opcode, 0, 1);
8286 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8287 TCGv_i64 tcg_round;
8288 int i;
8290 if (extract32(immh, 3, 1)) {
8291 unallocated_encoding(s);
8292 return;
8295 if (!fp_access_check(s)) {
8296 return;
8299 tcg_rn = tcg_temp_new_i64();
8300 tcg_rd = tcg_temp_new_i64();
8301 tcg_final = tcg_temp_new_i64();
8302 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8304 if (round) {
8305 uint64_t round_const = 1ULL << (shift - 1);
8306 tcg_round = tcg_const_i64(round_const);
8307 } else {
8308 TCGV_UNUSED_I64(tcg_round);
8311 for (i = 0; i < elements; i++) {
8312 read_vec_element(s, tcg_rn, rn, i, size+1);
8313 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8314 false, true, size+1, shift);
8316 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8319 if (!is_q) {
8320 clear_vec_high(s, rd);
8321 write_vec_element(s, tcg_final, rd, 0, MO_64);
8322 } else {
8323 write_vec_element(s, tcg_final, rd, 1, MO_64);
8326 if (round) {
8327 tcg_temp_free_i64(tcg_round);
8329 tcg_temp_free_i64(tcg_rn);
8330 tcg_temp_free_i64(tcg_rd);
8331 tcg_temp_free_i64(tcg_final);
8332 return;
8336 /* C3.6.14 AdvSIMD shift by immediate
8337 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8338 * +---+---+---+-------------+------+------+--------+---+------+------+
8339 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8340 * +---+---+---+-------------+------+------+--------+---+------+------+
8342 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8344 int rd = extract32(insn, 0, 5);
8345 int rn = extract32(insn, 5, 5);
8346 int opcode = extract32(insn, 11, 5);
8347 int immb = extract32(insn, 16, 3);
8348 int immh = extract32(insn, 19, 4);
8349 bool is_u = extract32(insn, 29, 1);
8350 bool is_q = extract32(insn, 30, 1);
8352 switch (opcode) {
8353 case 0x08: /* SRI */
8354 if (!is_u) {
8355 unallocated_encoding(s);
8356 return;
8358 /* fall through */
8359 case 0x00: /* SSHR / USHR */
8360 case 0x02: /* SSRA / USRA (accumulate) */
8361 case 0x04: /* SRSHR / URSHR (rounding) */
8362 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8363 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8364 break;
8365 case 0x0a: /* SHL / SLI */
8366 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8367 break;
8368 case 0x10: /* SHRN */
8369 case 0x11: /* RSHRN / SQRSHRUN */
8370 if (is_u) {
8371 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8372 opcode, rn, rd);
8373 } else {
8374 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8376 break;
8377 case 0x12: /* SQSHRN / UQSHRN */
8378 case 0x13: /* SQRSHRN / UQRSHRN */
8379 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8380 opcode, rn, rd);
8381 break;
8382 case 0x14: /* SSHLL / USHLL */
8383 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8384 break;
8385 case 0x1c: /* SCVTF / UCVTF */
8386 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8387 opcode, rn, rd);
8388 break;
8389 case 0xc: /* SQSHLU */
8390 if (!is_u) {
8391 unallocated_encoding(s);
8392 return;
8394 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8395 break;
8396 case 0xe: /* SQSHL, UQSHL */
8397 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8398 break;
8399 case 0x1f: /* FCVTZS/ FCVTZU */
8400 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8401 return;
8402 default:
8403 unallocated_encoding(s);
8404 return;
8408 /* Generate code to do a "long" addition or subtraction, ie one done in
8409 * TCGv_i64 on vector lanes twice the width specified by size.
8411 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8412 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8414 static NeonGenTwo64OpFn * const fns[3][2] = {
8415 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8416 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8417 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8419 NeonGenTwo64OpFn *genfn;
8420 assert(size < 3);
8422 genfn = fns[size][is_sub];
8423 genfn(tcg_res, tcg_op1, tcg_op2);
8426 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8427 int opcode, int rd, int rn, int rm)
8429 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8430 TCGv_i64 tcg_res[2];
8431 int pass, accop;
8433 tcg_res[0] = tcg_temp_new_i64();
8434 tcg_res[1] = tcg_temp_new_i64();
8436 /* Does this op do an adding accumulate, a subtracting accumulate,
8437 * or no accumulate at all?
8439 switch (opcode) {
8440 case 5:
8441 case 8:
8442 case 9:
8443 accop = 1;
8444 break;
8445 case 10:
8446 case 11:
8447 accop = -1;
8448 break;
8449 default:
8450 accop = 0;
8451 break;
8454 if (accop != 0) {
8455 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8456 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8459 /* size == 2 means two 32x32->64 operations; this is worth special
8460 * casing because we can generally handle it inline.
8462 if (size == 2) {
8463 for (pass = 0; pass < 2; pass++) {
8464 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8465 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8466 TCGv_i64 tcg_passres;
8467 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8469 int elt = pass + is_q * 2;
8471 read_vec_element(s, tcg_op1, rn, elt, memop);
8472 read_vec_element(s, tcg_op2, rm, elt, memop);
8474 if (accop == 0) {
8475 tcg_passres = tcg_res[pass];
8476 } else {
8477 tcg_passres = tcg_temp_new_i64();
8480 switch (opcode) {
8481 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8482 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8483 break;
8484 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8485 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8486 break;
8487 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8488 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8490 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8491 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8493 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8494 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8495 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8496 tcg_passres,
8497 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8498 tcg_temp_free_i64(tcg_tmp1);
8499 tcg_temp_free_i64(tcg_tmp2);
8500 break;
8502 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8503 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8504 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8505 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8506 break;
8507 case 9: /* SQDMLAL, SQDMLAL2 */
8508 case 11: /* SQDMLSL, SQDMLSL2 */
8509 case 13: /* SQDMULL, SQDMULL2 */
8510 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8511 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8512 tcg_passres, tcg_passres);
8513 break;
8514 default:
8515 g_assert_not_reached();
8518 if (opcode == 9 || opcode == 11) {
8519 /* saturating accumulate ops */
8520 if (accop < 0) {
8521 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8523 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8524 tcg_res[pass], tcg_passres);
8525 } else if (accop > 0) {
8526 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8527 } else if (accop < 0) {
8528 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8531 if (accop != 0) {
8532 tcg_temp_free_i64(tcg_passres);
8535 tcg_temp_free_i64(tcg_op1);
8536 tcg_temp_free_i64(tcg_op2);
8538 } else {
8539 /* size 0 or 1, generally helper functions */
8540 for (pass = 0; pass < 2; pass++) {
8541 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8542 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8543 TCGv_i64 tcg_passres;
8544 int elt = pass + is_q * 2;
8546 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8547 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8549 if (accop == 0) {
8550 tcg_passres = tcg_res[pass];
8551 } else {
8552 tcg_passres = tcg_temp_new_i64();
8555 switch (opcode) {
8556 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8557 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8559 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8560 static NeonGenWidenFn * const widenfns[2][2] = {
8561 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8562 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8564 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8566 widenfn(tcg_op2_64, tcg_op2);
8567 widenfn(tcg_passres, tcg_op1);
8568 gen_neon_addl(size, (opcode == 2), tcg_passres,
8569 tcg_passres, tcg_op2_64);
8570 tcg_temp_free_i64(tcg_op2_64);
8571 break;
8573 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8574 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8575 if (size == 0) {
8576 if (is_u) {
8577 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8578 } else {
8579 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8581 } else {
8582 if (is_u) {
8583 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8584 } else {
8585 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8588 break;
8589 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8590 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8591 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8592 if (size == 0) {
8593 if (is_u) {
8594 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8595 } else {
8596 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8598 } else {
8599 if (is_u) {
8600 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8601 } else {
8602 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8605 break;
8606 case 9: /* SQDMLAL, SQDMLAL2 */
8607 case 11: /* SQDMLSL, SQDMLSL2 */
8608 case 13: /* SQDMULL, SQDMULL2 */
8609 assert(size == 1);
8610 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8611 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8612 tcg_passres, tcg_passres);
8613 break;
8614 case 14: /* PMULL */
8615 assert(size == 0);
8616 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8617 break;
8618 default:
8619 g_assert_not_reached();
8621 tcg_temp_free_i32(tcg_op1);
8622 tcg_temp_free_i32(tcg_op2);
8624 if (accop != 0) {
8625 if (opcode == 9 || opcode == 11) {
8626 /* saturating accumulate ops */
8627 if (accop < 0) {
8628 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8630 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8631 tcg_res[pass],
8632 tcg_passres);
8633 } else {
8634 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8635 tcg_res[pass], tcg_passres);
8637 tcg_temp_free_i64(tcg_passres);
8642 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8643 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8644 tcg_temp_free_i64(tcg_res[0]);
8645 tcg_temp_free_i64(tcg_res[1]);
8648 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8649 int opcode, int rd, int rn, int rm)
8651 TCGv_i64 tcg_res[2];
8652 int part = is_q ? 2 : 0;
8653 int pass;
8655 for (pass = 0; pass < 2; pass++) {
8656 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8657 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8658 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8659 static NeonGenWidenFn * const widenfns[3][2] = {
8660 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8661 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8662 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8664 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8666 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8667 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8668 widenfn(tcg_op2_wide, tcg_op2);
8669 tcg_temp_free_i32(tcg_op2);
8670 tcg_res[pass] = tcg_temp_new_i64();
8671 gen_neon_addl(size, (opcode == 3),
8672 tcg_res[pass], tcg_op1, tcg_op2_wide);
8673 tcg_temp_free_i64(tcg_op1);
8674 tcg_temp_free_i64(tcg_op2_wide);
8677 for (pass = 0; pass < 2; pass++) {
8678 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8679 tcg_temp_free_i64(tcg_res[pass]);
8683 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8685 tcg_gen_addi_i64(in, in, 1U << 31);
8686 tcg_gen_extrh_i64_i32(res, in);
8689 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8690 int opcode, int rd, int rn, int rm)
8692 TCGv_i32 tcg_res[2];
8693 int part = is_q ? 2 : 0;
8694 int pass;
8696 for (pass = 0; pass < 2; pass++) {
8697 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8698 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8699 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8700 static NeonGenNarrowFn * const narrowfns[3][2] = {
8701 { gen_helper_neon_narrow_high_u8,
8702 gen_helper_neon_narrow_round_high_u8 },
8703 { gen_helper_neon_narrow_high_u16,
8704 gen_helper_neon_narrow_round_high_u16 },
8705 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8707 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8709 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8710 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8712 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8714 tcg_temp_free_i64(tcg_op1);
8715 tcg_temp_free_i64(tcg_op2);
8717 tcg_res[pass] = tcg_temp_new_i32();
8718 gennarrow(tcg_res[pass], tcg_wideres);
8719 tcg_temp_free_i64(tcg_wideres);
8722 for (pass = 0; pass < 2; pass++) {
8723 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8724 tcg_temp_free_i32(tcg_res[pass]);
8726 if (!is_q) {
8727 clear_vec_high(s, rd);
8731 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8733 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8734 * is the only three-reg-diff instruction which produces a
8735 * 128-bit wide result from a single operation. However since
8736 * it's possible to calculate the two halves more or less
8737 * separately we just use two helper calls.
8739 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8740 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8741 TCGv_i64 tcg_res = tcg_temp_new_i64();
8743 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8744 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8745 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8746 write_vec_element(s, tcg_res, rd, 0, MO_64);
8747 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8748 write_vec_element(s, tcg_res, rd, 1, MO_64);
8750 tcg_temp_free_i64(tcg_op1);
8751 tcg_temp_free_i64(tcg_op2);
8752 tcg_temp_free_i64(tcg_res);
8755 /* C3.6.15 AdvSIMD three different
8756 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8757 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8758 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8759 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8761 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8763 /* Instructions in this group fall into three basic classes
8764 * (in each case with the operation working on each element in
8765 * the input vectors):
8766 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8767 * 128 bit input)
8768 * (2) wide 64 x 128 -> 128
8769 * (3) narrowing 128 x 128 -> 64
8770 * Here we do initial decode, catch unallocated cases and
8771 * dispatch to separate functions for each class.
8773 int is_q = extract32(insn, 30, 1);
8774 int is_u = extract32(insn, 29, 1);
8775 int size = extract32(insn, 22, 2);
8776 int opcode = extract32(insn, 12, 4);
8777 int rm = extract32(insn, 16, 5);
8778 int rn = extract32(insn, 5, 5);
8779 int rd = extract32(insn, 0, 5);
8781 switch (opcode) {
8782 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8783 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8784 /* 64 x 128 -> 128 */
8785 if (size == 3) {
8786 unallocated_encoding(s);
8787 return;
8789 if (!fp_access_check(s)) {
8790 return;
8792 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8793 break;
8794 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8795 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8796 /* 128 x 128 -> 64 */
8797 if (size == 3) {
8798 unallocated_encoding(s);
8799 return;
8801 if (!fp_access_check(s)) {
8802 return;
8804 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
8805 break;
8806 case 14: /* PMULL, PMULL2 */
8807 if (is_u || size == 1 || size == 2) {
8808 unallocated_encoding(s);
8809 return;
8811 if (size == 3) {
8812 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
8813 unallocated_encoding(s);
8814 return;
8816 if (!fp_access_check(s)) {
8817 return;
8819 handle_pmull_64(s, is_q, rd, rn, rm);
8820 return;
8822 goto is_widening;
8823 case 9: /* SQDMLAL, SQDMLAL2 */
8824 case 11: /* SQDMLSL, SQDMLSL2 */
8825 case 13: /* SQDMULL, SQDMULL2 */
8826 if (is_u || size == 0) {
8827 unallocated_encoding(s);
8828 return;
8830 /* fall through */
8831 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8832 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8833 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8834 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8835 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8836 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8837 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
8838 /* 64 x 64 -> 128 */
8839 if (size == 3) {
8840 unallocated_encoding(s);
8841 return;
8843 is_widening:
8844 if (!fp_access_check(s)) {
8845 return;
8848 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
8849 break;
8850 default:
8851 /* opcode 15 not allocated */
8852 unallocated_encoding(s);
8853 break;
8857 /* Logic op (opcode == 3) subgroup of C3.6.16. */
8858 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
8860 int rd = extract32(insn, 0, 5);
8861 int rn = extract32(insn, 5, 5);
8862 int rm = extract32(insn, 16, 5);
8863 int size = extract32(insn, 22, 2);
8864 bool is_u = extract32(insn, 29, 1);
8865 bool is_q = extract32(insn, 30, 1);
8866 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
8867 int pass;
8869 if (!fp_access_check(s)) {
8870 return;
8873 tcg_op1 = tcg_temp_new_i64();
8874 tcg_op2 = tcg_temp_new_i64();
8875 tcg_res[0] = tcg_temp_new_i64();
8876 tcg_res[1] = tcg_temp_new_i64();
8878 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
8879 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8880 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8882 if (!is_u) {
8883 switch (size) {
8884 case 0: /* AND */
8885 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
8886 break;
8887 case 1: /* BIC */
8888 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8889 break;
8890 case 2: /* ORR */
8891 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
8892 break;
8893 case 3: /* ORN */
8894 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
8895 break;
8897 } else {
8898 if (size != 0) {
8899 /* B* ops need res loaded to operate on */
8900 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8903 switch (size) {
8904 case 0: /* EOR */
8905 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
8906 break;
8907 case 1: /* BSL bitwise select */
8908 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
8909 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8910 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
8911 break;
8912 case 2: /* BIT, bitwise insert if true */
8913 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8914 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
8915 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8916 break;
8917 case 3: /* BIF, bitwise insert if false */
8918 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
8919 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
8920 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
8921 break;
8926 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8927 if (!is_q) {
8928 tcg_gen_movi_i64(tcg_res[1], 0);
8930 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8932 tcg_temp_free_i64(tcg_op1);
8933 tcg_temp_free_i64(tcg_op2);
8934 tcg_temp_free_i64(tcg_res[0]);
8935 tcg_temp_free_i64(tcg_res[1]);
8938 /* Helper functions for 32 bit comparisons */
8939 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8941 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
8944 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8946 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
8949 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8951 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
8954 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
8956 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
8959 /* Pairwise op subgroup of C3.6.16.
8961 * This is called directly or via the handle_3same_float for float pairwise
8962 * operations where the opcode and size are calculated differently.
8964 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
8965 int size, int rn, int rm, int rd)
8967 TCGv_ptr fpst;
8968 int pass;
8970 /* Floating point operations need fpst */
8971 if (opcode >= 0x58) {
8972 fpst = get_fpstatus_ptr();
8973 } else {
8974 TCGV_UNUSED_PTR(fpst);
8977 if (!fp_access_check(s)) {
8978 return;
8981 /* These operations work on the concatenated rm:rn, with each pair of
8982 * adjacent elements being operated on to produce an element in the result.
8984 if (size == 3) {
8985 TCGv_i64 tcg_res[2];
8987 for (pass = 0; pass < 2; pass++) {
8988 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8989 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8990 int passreg = (pass == 0) ? rn : rm;
8992 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
8993 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
8994 tcg_res[pass] = tcg_temp_new_i64();
8996 switch (opcode) {
8997 case 0x17: /* ADDP */
8998 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
8999 break;
9000 case 0x58: /* FMAXNMP */
9001 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9002 break;
9003 case 0x5a: /* FADDP */
9004 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9005 break;
9006 case 0x5e: /* FMAXP */
9007 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9008 break;
9009 case 0x78: /* FMINNMP */
9010 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9011 break;
9012 case 0x7e: /* FMINP */
9013 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9014 break;
9015 default:
9016 g_assert_not_reached();
9019 tcg_temp_free_i64(tcg_op1);
9020 tcg_temp_free_i64(tcg_op2);
9023 for (pass = 0; pass < 2; pass++) {
9024 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9025 tcg_temp_free_i64(tcg_res[pass]);
9027 } else {
9028 int maxpass = is_q ? 4 : 2;
9029 TCGv_i32 tcg_res[4];
9031 for (pass = 0; pass < maxpass; pass++) {
9032 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9033 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9034 NeonGenTwoOpFn *genfn = NULL;
9035 int passreg = pass < (maxpass / 2) ? rn : rm;
9036 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9038 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9039 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9040 tcg_res[pass] = tcg_temp_new_i32();
9042 switch (opcode) {
9043 case 0x17: /* ADDP */
9045 static NeonGenTwoOpFn * const fns[3] = {
9046 gen_helper_neon_padd_u8,
9047 gen_helper_neon_padd_u16,
9048 tcg_gen_add_i32,
9050 genfn = fns[size];
9051 break;
9053 case 0x14: /* SMAXP, UMAXP */
9055 static NeonGenTwoOpFn * const fns[3][2] = {
9056 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9057 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9058 { gen_max_s32, gen_max_u32 },
9060 genfn = fns[size][u];
9061 break;
9063 case 0x15: /* SMINP, UMINP */
9065 static NeonGenTwoOpFn * const fns[3][2] = {
9066 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9067 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9068 { gen_min_s32, gen_min_u32 },
9070 genfn = fns[size][u];
9071 break;
9073 /* The FP operations are all on single floats (32 bit) */
9074 case 0x58: /* FMAXNMP */
9075 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9076 break;
9077 case 0x5a: /* FADDP */
9078 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9079 break;
9080 case 0x5e: /* FMAXP */
9081 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9082 break;
9083 case 0x78: /* FMINNMP */
9084 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9085 break;
9086 case 0x7e: /* FMINP */
9087 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9088 break;
9089 default:
9090 g_assert_not_reached();
9093 /* FP ops called directly, otherwise call now */
9094 if (genfn) {
9095 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9098 tcg_temp_free_i32(tcg_op1);
9099 tcg_temp_free_i32(tcg_op2);
9102 for (pass = 0; pass < maxpass; pass++) {
9103 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9104 tcg_temp_free_i32(tcg_res[pass]);
9106 if (!is_q) {
9107 clear_vec_high(s, rd);
9111 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9112 tcg_temp_free_ptr(fpst);
9116 /* Floating point op subgroup of C3.6.16. */
9117 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9119 /* For floating point ops, the U, size[1] and opcode bits
9120 * together indicate the operation. size[0] indicates single
9121 * or double.
9123 int fpopcode = extract32(insn, 11, 5)
9124 | (extract32(insn, 23, 1) << 5)
9125 | (extract32(insn, 29, 1) << 6);
9126 int is_q = extract32(insn, 30, 1);
9127 int size = extract32(insn, 22, 1);
9128 int rm = extract32(insn, 16, 5);
9129 int rn = extract32(insn, 5, 5);
9130 int rd = extract32(insn, 0, 5);
9132 int datasize = is_q ? 128 : 64;
9133 int esize = 32 << size;
9134 int elements = datasize / esize;
9136 if (size == 1 && !is_q) {
9137 unallocated_encoding(s);
9138 return;
9141 switch (fpopcode) {
9142 case 0x58: /* FMAXNMP */
9143 case 0x5a: /* FADDP */
9144 case 0x5e: /* FMAXP */
9145 case 0x78: /* FMINNMP */
9146 case 0x7e: /* FMINP */
9147 if (size && !is_q) {
9148 unallocated_encoding(s);
9149 return;
9151 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9152 rn, rm, rd);
9153 return;
9154 case 0x1b: /* FMULX */
9155 case 0x1f: /* FRECPS */
9156 case 0x3f: /* FRSQRTS */
9157 case 0x5d: /* FACGE */
9158 case 0x7d: /* FACGT */
9159 case 0x19: /* FMLA */
9160 case 0x39: /* FMLS */
9161 case 0x18: /* FMAXNM */
9162 case 0x1a: /* FADD */
9163 case 0x1c: /* FCMEQ */
9164 case 0x1e: /* FMAX */
9165 case 0x38: /* FMINNM */
9166 case 0x3a: /* FSUB */
9167 case 0x3e: /* FMIN */
9168 case 0x5b: /* FMUL */
9169 case 0x5c: /* FCMGE */
9170 case 0x5f: /* FDIV */
9171 case 0x7a: /* FABD */
9172 case 0x7c: /* FCMGT */
9173 if (!fp_access_check(s)) {
9174 return;
9177 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9178 return;
9179 default:
9180 unallocated_encoding(s);
9181 return;
9185 /* Integer op subgroup of C3.6.16. */
9186 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9188 int is_q = extract32(insn, 30, 1);
9189 int u = extract32(insn, 29, 1);
9190 int size = extract32(insn, 22, 2);
9191 int opcode = extract32(insn, 11, 5);
9192 int rm = extract32(insn, 16, 5);
9193 int rn = extract32(insn, 5, 5);
9194 int rd = extract32(insn, 0, 5);
9195 int pass;
9197 switch (opcode) {
9198 case 0x13: /* MUL, PMUL */
9199 if (u && size != 0) {
9200 unallocated_encoding(s);
9201 return;
9203 /* fall through */
9204 case 0x0: /* SHADD, UHADD */
9205 case 0x2: /* SRHADD, URHADD */
9206 case 0x4: /* SHSUB, UHSUB */
9207 case 0xc: /* SMAX, UMAX */
9208 case 0xd: /* SMIN, UMIN */
9209 case 0xe: /* SABD, UABD */
9210 case 0xf: /* SABA, UABA */
9211 case 0x12: /* MLA, MLS */
9212 if (size == 3) {
9213 unallocated_encoding(s);
9214 return;
9216 break;
9217 case 0x16: /* SQDMULH, SQRDMULH */
9218 if (size == 0 || size == 3) {
9219 unallocated_encoding(s);
9220 return;
9222 break;
9223 default:
9224 if (size == 3 && !is_q) {
9225 unallocated_encoding(s);
9226 return;
9228 break;
9231 if (!fp_access_check(s)) {
9232 return;
9235 if (size == 3) {
9236 assert(is_q);
9237 for (pass = 0; pass < 2; pass++) {
9238 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9239 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9240 TCGv_i64 tcg_res = tcg_temp_new_i64();
9242 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9243 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9245 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9247 write_vec_element(s, tcg_res, rd, pass, MO_64);
9249 tcg_temp_free_i64(tcg_res);
9250 tcg_temp_free_i64(tcg_op1);
9251 tcg_temp_free_i64(tcg_op2);
9253 } else {
9254 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9255 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9256 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9257 TCGv_i32 tcg_res = tcg_temp_new_i32();
9258 NeonGenTwoOpFn *genfn = NULL;
9259 NeonGenTwoOpEnvFn *genenvfn = NULL;
9261 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9262 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9264 switch (opcode) {
9265 case 0x0: /* SHADD, UHADD */
9267 static NeonGenTwoOpFn * const fns[3][2] = {
9268 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9269 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9270 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9272 genfn = fns[size][u];
9273 break;
9275 case 0x1: /* SQADD, UQADD */
9277 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9278 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9279 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9280 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9282 genenvfn = fns[size][u];
9283 break;
9285 case 0x2: /* SRHADD, URHADD */
9287 static NeonGenTwoOpFn * const fns[3][2] = {
9288 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9289 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9290 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9292 genfn = fns[size][u];
9293 break;
9295 case 0x4: /* SHSUB, UHSUB */
9297 static NeonGenTwoOpFn * const fns[3][2] = {
9298 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9299 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9300 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9302 genfn = fns[size][u];
9303 break;
9305 case 0x5: /* SQSUB, UQSUB */
9307 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9308 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9309 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9310 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9312 genenvfn = fns[size][u];
9313 break;
9315 case 0x6: /* CMGT, CMHI */
9317 static NeonGenTwoOpFn * const fns[3][2] = {
9318 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9319 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9320 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9322 genfn = fns[size][u];
9323 break;
9325 case 0x7: /* CMGE, CMHS */
9327 static NeonGenTwoOpFn * const fns[3][2] = {
9328 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9329 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9330 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9332 genfn = fns[size][u];
9333 break;
9335 case 0x8: /* SSHL, USHL */
9337 static NeonGenTwoOpFn * const fns[3][2] = {
9338 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9339 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9340 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9342 genfn = fns[size][u];
9343 break;
9345 case 0x9: /* SQSHL, UQSHL */
9347 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9348 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9349 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9350 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9352 genenvfn = fns[size][u];
9353 break;
9355 case 0xa: /* SRSHL, URSHL */
9357 static NeonGenTwoOpFn * const fns[3][2] = {
9358 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9359 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9360 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9362 genfn = fns[size][u];
9363 break;
9365 case 0xb: /* SQRSHL, UQRSHL */
9367 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9368 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9369 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9370 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9372 genenvfn = fns[size][u];
9373 break;
9375 case 0xc: /* SMAX, UMAX */
9377 static NeonGenTwoOpFn * const fns[3][2] = {
9378 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9379 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9380 { gen_max_s32, gen_max_u32 },
9382 genfn = fns[size][u];
9383 break;
9386 case 0xd: /* SMIN, UMIN */
9388 static NeonGenTwoOpFn * const fns[3][2] = {
9389 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9390 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9391 { gen_min_s32, gen_min_u32 },
9393 genfn = fns[size][u];
9394 break;
9396 case 0xe: /* SABD, UABD */
9397 case 0xf: /* SABA, UABA */
9399 static NeonGenTwoOpFn * const fns[3][2] = {
9400 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9401 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9402 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9404 genfn = fns[size][u];
9405 break;
9407 case 0x10: /* ADD, SUB */
9409 static NeonGenTwoOpFn * const fns[3][2] = {
9410 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9411 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9412 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9414 genfn = fns[size][u];
9415 break;
9417 case 0x11: /* CMTST, CMEQ */
9419 static NeonGenTwoOpFn * const fns[3][2] = {
9420 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9421 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9422 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9424 genfn = fns[size][u];
9425 break;
9427 case 0x13: /* MUL, PMUL */
9428 if (u) {
9429 /* PMUL */
9430 assert(size == 0);
9431 genfn = gen_helper_neon_mul_p8;
9432 break;
9434 /* fall through : MUL */
9435 case 0x12: /* MLA, MLS */
9437 static NeonGenTwoOpFn * const fns[3] = {
9438 gen_helper_neon_mul_u8,
9439 gen_helper_neon_mul_u16,
9440 tcg_gen_mul_i32,
9442 genfn = fns[size];
9443 break;
9445 case 0x16: /* SQDMULH, SQRDMULH */
9447 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9448 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9449 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9451 assert(size == 1 || size == 2);
9452 genenvfn = fns[size - 1][u];
9453 break;
9455 default:
9456 g_assert_not_reached();
9459 if (genenvfn) {
9460 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9461 } else {
9462 genfn(tcg_res, tcg_op1, tcg_op2);
9465 if (opcode == 0xf || opcode == 0x12) {
9466 /* SABA, UABA, MLA, MLS: accumulating ops */
9467 static NeonGenTwoOpFn * const fns[3][2] = {
9468 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9469 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9470 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9472 bool is_sub = (opcode == 0x12 && u); /* MLS */
9474 genfn = fns[size][is_sub];
9475 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9476 genfn(tcg_res, tcg_op1, tcg_res);
9479 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9481 tcg_temp_free_i32(tcg_res);
9482 tcg_temp_free_i32(tcg_op1);
9483 tcg_temp_free_i32(tcg_op2);
9487 if (!is_q) {
9488 clear_vec_high(s, rd);
9492 /* C3.6.16 AdvSIMD three same
9493 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9494 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9495 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9496 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9498 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9500 int opcode = extract32(insn, 11, 5);
9502 switch (opcode) {
9503 case 0x3: /* logic ops */
9504 disas_simd_3same_logic(s, insn);
9505 break;
9506 case 0x17: /* ADDP */
9507 case 0x14: /* SMAXP, UMAXP */
9508 case 0x15: /* SMINP, UMINP */
9510 /* Pairwise operations */
9511 int is_q = extract32(insn, 30, 1);
9512 int u = extract32(insn, 29, 1);
9513 int size = extract32(insn, 22, 2);
9514 int rm = extract32(insn, 16, 5);
9515 int rn = extract32(insn, 5, 5);
9516 int rd = extract32(insn, 0, 5);
9517 if (opcode == 0x17) {
9518 if (u || (size == 3 && !is_q)) {
9519 unallocated_encoding(s);
9520 return;
9522 } else {
9523 if (size == 3) {
9524 unallocated_encoding(s);
9525 return;
9528 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9529 break;
9531 case 0x18 ... 0x31:
9532 /* floating point ops, sz[1] and U are part of opcode */
9533 disas_simd_3same_float(s, insn);
9534 break;
9535 default:
9536 disas_simd_3same_int(s, insn);
9537 break;
9541 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9542 int size, int rn, int rd)
9544 /* Handle 2-reg-misc ops which are widening (so each size element
9545 * in the source becomes a 2*size element in the destination.
9546 * The only instruction like this is FCVTL.
9548 int pass;
9550 if (size == 3) {
9551 /* 32 -> 64 bit fp conversion */
9552 TCGv_i64 tcg_res[2];
9553 int srcelt = is_q ? 2 : 0;
9555 for (pass = 0; pass < 2; pass++) {
9556 TCGv_i32 tcg_op = tcg_temp_new_i32();
9557 tcg_res[pass] = tcg_temp_new_i64();
9559 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9560 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9561 tcg_temp_free_i32(tcg_op);
9563 for (pass = 0; pass < 2; pass++) {
9564 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9565 tcg_temp_free_i64(tcg_res[pass]);
9567 } else {
9568 /* 16 -> 32 bit fp conversion */
9569 int srcelt = is_q ? 4 : 0;
9570 TCGv_i32 tcg_res[4];
9572 for (pass = 0; pass < 4; pass++) {
9573 tcg_res[pass] = tcg_temp_new_i32();
9575 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9576 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9577 cpu_env);
9579 for (pass = 0; pass < 4; pass++) {
9580 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9581 tcg_temp_free_i32(tcg_res[pass]);
9586 static void handle_rev(DisasContext *s, int opcode, bool u,
9587 bool is_q, int size, int rn, int rd)
9589 int op = (opcode << 1) | u;
9590 int opsz = op + size;
9591 int grp_size = 3 - opsz;
9592 int dsize = is_q ? 128 : 64;
9593 int i;
9595 if (opsz >= 3) {
9596 unallocated_encoding(s);
9597 return;
9600 if (!fp_access_check(s)) {
9601 return;
9604 if (size == 0) {
9605 /* Special case bytes, use bswap op on each group of elements */
9606 int groups = dsize / (8 << grp_size);
9608 for (i = 0; i < groups; i++) {
9609 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9611 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9612 switch (grp_size) {
9613 case MO_16:
9614 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9615 break;
9616 case MO_32:
9617 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9618 break;
9619 case MO_64:
9620 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9621 break;
9622 default:
9623 g_assert_not_reached();
9625 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9626 tcg_temp_free_i64(tcg_tmp);
9628 if (!is_q) {
9629 clear_vec_high(s, rd);
9631 } else {
9632 int revmask = (1 << grp_size) - 1;
9633 int esize = 8 << size;
9634 int elements = dsize / esize;
9635 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9636 TCGv_i64 tcg_rd = tcg_const_i64(0);
9637 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9639 for (i = 0; i < elements; i++) {
9640 int e_rev = (i & 0xf) ^ revmask;
9641 int off = e_rev * esize;
9642 read_vec_element(s, tcg_rn, rn, i, size);
9643 if (off >= 64) {
9644 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9645 tcg_rn, off - 64, esize);
9646 } else {
9647 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9650 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9651 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9653 tcg_temp_free_i64(tcg_rd_hi);
9654 tcg_temp_free_i64(tcg_rd);
9655 tcg_temp_free_i64(tcg_rn);
9659 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9660 bool is_q, int size, int rn, int rd)
9662 /* Implement the pairwise operations from 2-misc:
9663 * SADDLP, UADDLP, SADALP, UADALP.
9664 * These all add pairs of elements in the input to produce a
9665 * double-width result element in the output (possibly accumulating).
9667 bool accum = (opcode == 0x6);
9668 int maxpass = is_q ? 2 : 1;
9669 int pass;
9670 TCGv_i64 tcg_res[2];
9672 if (size == 2) {
9673 /* 32 + 32 -> 64 op */
9674 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9676 for (pass = 0; pass < maxpass; pass++) {
9677 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9678 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9680 tcg_res[pass] = tcg_temp_new_i64();
9682 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9683 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9684 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9685 if (accum) {
9686 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9687 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9690 tcg_temp_free_i64(tcg_op1);
9691 tcg_temp_free_i64(tcg_op2);
9693 } else {
9694 for (pass = 0; pass < maxpass; pass++) {
9695 TCGv_i64 tcg_op = tcg_temp_new_i64();
9696 NeonGenOneOpFn *genfn;
9697 static NeonGenOneOpFn * const fns[2][2] = {
9698 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9699 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9702 genfn = fns[size][u];
9704 tcg_res[pass] = tcg_temp_new_i64();
9706 read_vec_element(s, tcg_op, rn, pass, MO_64);
9707 genfn(tcg_res[pass], tcg_op);
9709 if (accum) {
9710 read_vec_element(s, tcg_op, rd, pass, MO_64);
9711 if (size == 0) {
9712 gen_helper_neon_addl_u16(tcg_res[pass],
9713 tcg_res[pass], tcg_op);
9714 } else {
9715 gen_helper_neon_addl_u32(tcg_res[pass],
9716 tcg_res[pass], tcg_op);
9719 tcg_temp_free_i64(tcg_op);
9722 if (!is_q) {
9723 tcg_res[1] = tcg_const_i64(0);
9725 for (pass = 0; pass < 2; pass++) {
9726 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9727 tcg_temp_free_i64(tcg_res[pass]);
9731 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9733 /* Implement SHLL and SHLL2 */
9734 int pass;
9735 int part = is_q ? 2 : 0;
9736 TCGv_i64 tcg_res[2];
9738 for (pass = 0; pass < 2; pass++) {
9739 static NeonGenWidenFn * const widenfns[3] = {
9740 gen_helper_neon_widen_u8,
9741 gen_helper_neon_widen_u16,
9742 tcg_gen_extu_i32_i64,
9744 NeonGenWidenFn *widenfn = widenfns[size];
9745 TCGv_i32 tcg_op = tcg_temp_new_i32();
9747 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9748 tcg_res[pass] = tcg_temp_new_i64();
9749 widenfn(tcg_res[pass], tcg_op);
9750 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9752 tcg_temp_free_i32(tcg_op);
9755 for (pass = 0; pass < 2; pass++) {
9756 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9757 tcg_temp_free_i64(tcg_res[pass]);
9761 /* C3.6.17 AdvSIMD two reg misc
9762 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9763 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9764 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9765 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9767 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9769 int size = extract32(insn, 22, 2);
9770 int opcode = extract32(insn, 12, 5);
9771 bool u = extract32(insn, 29, 1);
9772 bool is_q = extract32(insn, 30, 1);
9773 int rn = extract32(insn, 5, 5);
9774 int rd = extract32(insn, 0, 5);
9775 bool need_fpstatus = false;
9776 bool need_rmode = false;
9777 int rmode = -1;
9778 TCGv_i32 tcg_rmode;
9779 TCGv_ptr tcg_fpstatus;
9781 switch (opcode) {
9782 case 0x0: /* REV64, REV32 */
9783 case 0x1: /* REV16 */
9784 handle_rev(s, opcode, u, is_q, size, rn, rd);
9785 return;
9786 case 0x5: /* CNT, NOT, RBIT */
9787 if (u && size == 0) {
9788 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9789 size = 3;
9790 break;
9791 } else if (u && size == 1) {
9792 /* RBIT */
9793 break;
9794 } else if (!u && size == 0) {
9795 /* CNT */
9796 break;
9798 unallocated_encoding(s);
9799 return;
9800 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9801 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9802 if (size == 3) {
9803 unallocated_encoding(s);
9804 return;
9806 if (!fp_access_check(s)) {
9807 return;
9810 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
9811 return;
9812 case 0x4: /* CLS, CLZ */
9813 if (size == 3) {
9814 unallocated_encoding(s);
9815 return;
9817 break;
9818 case 0x2: /* SADDLP, UADDLP */
9819 case 0x6: /* SADALP, UADALP */
9820 if (size == 3) {
9821 unallocated_encoding(s);
9822 return;
9824 if (!fp_access_check(s)) {
9825 return;
9827 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
9828 return;
9829 case 0x13: /* SHLL, SHLL2 */
9830 if (u == 0 || size == 3) {
9831 unallocated_encoding(s);
9832 return;
9834 if (!fp_access_check(s)) {
9835 return;
9837 handle_shll(s, is_q, size, rn, rd);
9838 return;
9839 case 0xa: /* CMLT */
9840 if (u == 1) {
9841 unallocated_encoding(s);
9842 return;
9844 /* fall through */
9845 case 0x8: /* CMGT, CMGE */
9846 case 0x9: /* CMEQ, CMLE */
9847 case 0xb: /* ABS, NEG */
9848 if (size == 3 && !is_q) {
9849 unallocated_encoding(s);
9850 return;
9852 break;
9853 case 0x3: /* SUQADD, USQADD */
9854 if (size == 3 && !is_q) {
9855 unallocated_encoding(s);
9856 return;
9858 if (!fp_access_check(s)) {
9859 return;
9861 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
9862 return;
9863 case 0x7: /* SQABS, SQNEG */
9864 if (size == 3 && !is_q) {
9865 unallocated_encoding(s);
9866 return;
9868 break;
9869 case 0xc ... 0xf:
9870 case 0x16 ... 0x1d:
9871 case 0x1f:
9873 /* Floating point: U, size[1] and opcode indicate operation;
9874 * size[0] indicates single or double precision.
9876 int is_double = extract32(size, 0, 1);
9877 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9878 size = is_double ? 3 : 2;
9879 switch (opcode) {
9880 case 0x2f: /* FABS */
9881 case 0x6f: /* FNEG */
9882 if (size == 3 && !is_q) {
9883 unallocated_encoding(s);
9884 return;
9886 break;
9887 case 0x1d: /* SCVTF */
9888 case 0x5d: /* UCVTF */
9890 bool is_signed = (opcode == 0x1d) ? true : false;
9891 int elements = is_double ? 2 : is_q ? 4 : 2;
9892 if (is_double && !is_q) {
9893 unallocated_encoding(s);
9894 return;
9896 if (!fp_access_check(s)) {
9897 return;
9899 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
9900 return;
9902 case 0x2c: /* FCMGT (zero) */
9903 case 0x2d: /* FCMEQ (zero) */
9904 case 0x2e: /* FCMLT (zero) */
9905 case 0x6c: /* FCMGE (zero) */
9906 case 0x6d: /* FCMLE (zero) */
9907 if (size == 3 && !is_q) {
9908 unallocated_encoding(s);
9909 return;
9911 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
9912 return;
9913 case 0x7f: /* FSQRT */
9914 if (size == 3 && !is_q) {
9915 unallocated_encoding(s);
9916 return;
9918 break;
9919 case 0x1a: /* FCVTNS */
9920 case 0x1b: /* FCVTMS */
9921 case 0x3a: /* FCVTPS */
9922 case 0x3b: /* FCVTZS */
9923 case 0x5a: /* FCVTNU */
9924 case 0x5b: /* FCVTMU */
9925 case 0x7a: /* FCVTPU */
9926 case 0x7b: /* FCVTZU */
9927 need_fpstatus = true;
9928 need_rmode = true;
9929 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9930 if (size == 3 && !is_q) {
9931 unallocated_encoding(s);
9932 return;
9934 break;
9935 case 0x5c: /* FCVTAU */
9936 case 0x1c: /* FCVTAS */
9937 need_fpstatus = true;
9938 need_rmode = true;
9939 rmode = FPROUNDING_TIEAWAY;
9940 if (size == 3 && !is_q) {
9941 unallocated_encoding(s);
9942 return;
9944 break;
9945 case 0x3c: /* URECPE */
9946 if (size == 3) {
9947 unallocated_encoding(s);
9948 return;
9950 /* fall through */
9951 case 0x3d: /* FRECPE */
9952 case 0x7d: /* FRSQRTE */
9953 if (size == 3 && !is_q) {
9954 unallocated_encoding(s);
9955 return;
9957 if (!fp_access_check(s)) {
9958 return;
9960 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
9961 return;
9962 case 0x56: /* FCVTXN, FCVTXN2 */
9963 if (size == 2) {
9964 unallocated_encoding(s);
9965 return;
9967 /* fall through */
9968 case 0x16: /* FCVTN, FCVTN2 */
9969 /* handle_2misc_narrow does a 2*size -> size operation, but these
9970 * instructions encode the source size rather than dest size.
9972 if (!fp_access_check(s)) {
9973 return;
9975 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
9976 return;
9977 case 0x17: /* FCVTL, FCVTL2 */
9978 if (!fp_access_check(s)) {
9979 return;
9981 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
9982 return;
9983 case 0x18: /* FRINTN */
9984 case 0x19: /* FRINTM */
9985 case 0x38: /* FRINTP */
9986 case 0x39: /* FRINTZ */
9987 need_rmode = true;
9988 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9989 /* fall through */
9990 case 0x59: /* FRINTX */
9991 case 0x79: /* FRINTI */
9992 need_fpstatus = true;
9993 if (size == 3 && !is_q) {
9994 unallocated_encoding(s);
9995 return;
9997 break;
9998 case 0x58: /* FRINTA */
9999 need_rmode = true;
10000 rmode = FPROUNDING_TIEAWAY;
10001 need_fpstatus = true;
10002 if (size == 3 && !is_q) {
10003 unallocated_encoding(s);
10004 return;
10006 break;
10007 case 0x7c: /* URSQRTE */
10008 if (size == 3) {
10009 unallocated_encoding(s);
10010 return;
10012 need_fpstatus = true;
10013 break;
10014 default:
10015 unallocated_encoding(s);
10016 return;
10018 break;
10020 default:
10021 unallocated_encoding(s);
10022 return;
10025 if (!fp_access_check(s)) {
10026 return;
10029 if (need_fpstatus) {
10030 tcg_fpstatus = get_fpstatus_ptr();
10031 } else {
10032 TCGV_UNUSED_PTR(tcg_fpstatus);
10034 if (need_rmode) {
10035 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10036 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10037 } else {
10038 TCGV_UNUSED_I32(tcg_rmode);
10041 if (size == 3) {
10042 /* All 64-bit element operations can be shared with scalar 2misc */
10043 int pass;
10045 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10046 TCGv_i64 tcg_op = tcg_temp_new_i64();
10047 TCGv_i64 tcg_res = tcg_temp_new_i64();
10049 read_vec_element(s, tcg_op, rn, pass, MO_64);
10051 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10052 tcg_rmode, tcg_fpstatus);
10054 write_vec_element(s, tcg_res, rd, pass, MO_64);
10056 tcg_temp_free_i64(tcg_res);
10057 tcg_temp_free_i64(tcg_op);
10059 } else {
10060 int pass;
10062 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10063 TCGv_i32 tcg_op = tcg_temp_new_i32();
10064 TCGv_i32 tcg_res = tcg_temp_new_i32();
10065 TCGCond cond;
10067 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10069 if (size == 2) {
10070 /* Special cases for 32 bit elements */
10071 switch (opcode) {
10072 case 0xa: /* CMLT */
10073 /* 32 bit integer comparison against zero, result is
10074 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10075 * and inverting.
10077 cond = TCG_COND_LT;
10078 do_cmop:
10079 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10080 tcg_gen_neg_i32(tcg_res, tcg_res);
10081 break;
10082 case 0x8: /* CMGT, CMGE */
10083 cond = u ? TCG_COND_GE : TCG_COND_GT;
10084 goto do_cmop;
10085 case 0x9: /* CMEQ, CMLE */
10086 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10087 goto do_cmop;
10088 case 0x4: /* CLS */
10089 if (u) {
10090 gen_helper_clz32(tcg_res, tcg_op);
10091 } else {
10092 gen_helper_cls32(tcg_res, tcg_op);
10094 break;
10095 case 0x7: /* SQABS, SQNEG */
10096 if (u) {
10097 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10098 } else {
10099 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10101 break;
10102 case 0xb: /* ABS, NEG */
10103 if (u) {
10104 tcg_gen_neg_i32(tcg_res, tcg_op);
10105 } else {
10106 TCGv_i32 tcg_zero = tcg_const_i32(0);
10107 tcg_gen_neg_i32(tcg_res, tcg_op);
10108 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10109 tcg_zero, tcg_op, tcg_res);
10110 tcg_temp_free_i32(tcg_zero);
10112 break;
10113 case 0x2f: /* FABS */
10114 gen_helper_vfp_abss(tcg_res, tcg_op);
10115 break;
10116 case 0x6f: /* FNEG */
10117 gen_helper_vfp_negs(tcg_res, tcg_op);
10118 break;
10119 case 0x7f: /* FSQRT */
10120 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10121 break;
10122 case 0x1a: /* FCVTNS */
10123 case 0x1b: /* FCVTMS */
10124 case 0x1c: /* FCVTAS */
10125 case 0x3a: /* FCVTPS */
10126 case 0x3b: /* FCVTZS */
10128 TCGv_i32 tcg_shift = tcg_const_i32(0);
10129 gen_helper_vfp_tosls(tcg_res, tcg_op,
10130 tcg_shift, tcg_fpstatus);
10131 tcg_temp_free_i32(tcg_shift);
10132 break;
10134 case 0x5a: /* FCVTNU */
10135 case 0x5b: /* FCVTMU */
10136 case 0x5c: /* FCVTAU */
10137 case 0x7a: /* FCVTPU */
10138 case 0x7b: /* FCVTZU */
10140 TCGv_i32 tcg_shift = tcg_const_i32(0);
10141 gen_helper_vfp_touls(tcg_res, tcg_op,
10142 tcg_shift, tcg_fpstatus);
10143 tcg_temp_free_i32(tcg_shift);
10144 break;
10146 case 0x18: /* FRINTN */
10147 case 0x19: /* FRINTM */
10148 case 0x38: /* FRINTP */
10149 case 0x39: /* FRINTZ */
10150 case 0x58: /* FRINTA */
10151 case 0x79: /* FRINTI */
10152 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10153 break;
10154 case 0x59: /* FRINTX */
10155 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10156 break;
10157 case 0x7c: /* URSQRTE */
10158 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10159 break;
10160 default:
10161 g_assert_not_reached();
10163 } else {
10164 /* Use helpers for 8 and 16 bit elements */
10165 switch (opcode) {
10166 case 0x5: /* CNT, RBIT */
10167 /* For these two insns size is part of the opcode specifier
10168 * (handled earlier); they always operate on byte elements.
10170 if (u) {
10171 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10172 } else {
10173 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10175 break;
10176 case 0x7: /* SQABS, SQNEG */
10178 NeonGenOneOpEnvFn *genfn;
10179 static NeonGenOneOpEnvFn * const fns[2][2] = {
10180 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10181 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10183 genfn = fns[size][u];
10184 genfn(tcg_res, cpu_env, tcg_op);
10185 break;
10187 case 0x8: /* CMGT, CMGE */
10188 case 0x9: /* CMEQ, CMLE */
10189 case 0xa: /* CMLT */
10191 static NeonGenTwoOpFn * const fns[3][2] = {
10192 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10193 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10194 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10196 NeonGenTwoOpFn *genfn;
10197 int comp;
10198 bool reverse;
10199 TCGv_i32 tcg_zero = tcg_const_i32(0);
10201 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10202 comp = (opcode - 0x8) * 2 + u;
10203 /* ...but LE, LT are implemented as reverse GE, GT */
10204 reverse = (comp > 2);
10205 if (reverse) {
10206 comp = 4 - comp;
10208 genfn = fns[comp][size];
10209 if (reverse) {
10210 genfn(tcg_res, tcg_zero, tcg_op);
10211 } else {
10212 genfn(tcg_res, tcg_op, tcg_zero);
10214 tcg_temp_free_i32(tcg_zero);
10215 break;
10217 case 0xb: /* ABS, NEG */
10218 if (u) {
10219 TCGv_i32 tcg_zero = tcg_const_i32(0);
10220 if (size) {
10221 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10222 } else {
10223 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10225 tcg_temp_free_i32(tcg_zero);
10226 } else {
10227 if (size) {
10228 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10229 } else {
10230 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10233 break;
10234 case 0x4: /* CLS, CLZ */
10235 if (u) {
10236 if (size == 0) {
10237 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10238 } else {
10239 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10241 } else {
10242 if (size == 0) {
10243 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10244 } else {
10245 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10248 break;
10249 default:
10250 g_assert_not_reached();
10254 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10256 tcg_temp_free_i32(tcg_res);
10257 tcg_temp_free_i32(tcg_op);
10260 if (!is_q) {
10261 clear_vec_high(s, rd);
10264 if (need_rmode) {
10265 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10266 tcg_temp_free_i32(tcg_rmode);
10268 if (need_fpstatus) {
10269 tcg_temp_free_ptr(tcg_fpstatus);
10273 /* C3.6.13 AdvSIMD scalar x indexed element
10274 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10275 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10276 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10277 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10278 * C3.6.18 AdvSIMD vector x indexed element
10279 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10280 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10281 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10282 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10284 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10286 /* This encoding has two kinds of instruction:
10287 * normal, where we perform elt x idxelt => elt for each
10288 * element in the vector
10289 * long, where we perform elt x idxelt and generate a result of
10290 * double the width of the input element
10291 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10293 bool is_scalar = extract32(insn, 28, 1);
10294 bool is_q = extract32(insn, 30, 1);
10295 bool u = extract32(insn, 29, 1);
10296 int size = extract32(insn, 22, 2);
10297 int l = extract32(insn, 21, 1);
10298 int m = extract32(insn, 20, 1);
10299 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10300 int rm = extract32(insn, 16, 4);
10301 int opcode = extract32(insn, 12, 4);
10302 int h = extract32(insn, 11, 1);
10303 int rn = extract32(insn, 5, 5);
10304 int rd = extract32(insn, 0, 5);
10305 bool is_long = false;
10306 bool is_fp = false;
10307 int index;
10308 TCGv_ptr fpst;
10310 switch (opcode) {
10311 case 0x0: /* MLA */
10312 case 0x4: /* MLS */
10313 if (!u || is_scalar) {
10314 unallocated_encoding(s);
10315 return;
10317 break;
10318 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10319 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10320 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10321 if (is_scalar) {
10322 unallocated_encoding(s);
10323 return;
10325 is_long = true;
10326 break;
10327 case 0x3: /* SQDMLAL, SQDMLAL2 */
10328 case 0x7: /* SQDMLSL, SQDMLSL2 */
10329 case 0xb: /* SQDMULL, SQDMULL2 */
10330 is_long = true;
10331 /* fall through */
10332 case 0xc: /* SQDMULH */
10333 case 0xd: /* SQRDMULH */
10334 if (u) {
10335 unallocated_encoding(s);
10336 return;
10338 break;
10339 case 0x8: /* MUL */
10340 if (u || is_scalar) {
10341 unallocated_encoding(s);
10342 return;
10344 break;
10345 case 0x1: /* FMLA */
10346 case 0x5: /* FMLS */
10347 if (u) {
10348 unallocated_encoding(s);
10349 return;
10351 /* fall through */
10352 case 0x9: /* FMUL, FMULX */
10353 if (!extract32(size, 1, 1)) {
10354 unallocated_encoding(s);
10355 return;
10357 is_fp = true;
10358 break;
10359 default:
10360 unallocated_encoding(s);
10361 return;
10364 if (is_fp) {
10365 /* low bit of size indicates single/double */
10366 size = extract32(size, 0, 1) ? 3 : 2;
10367 if (size == 2) {
10368 index = h << 1 | l;
10369 } else {
10370 if (l || !is_q) {
10371 unallocated_encoding(s);
10372 return;
10374 index = h;
10376 rm |= (m << 4);
10377 } else {
10378 switch (size) {
10379 case 1:
10380 index = h << 2 | l << 1 | m;
10381 break;
10382 case 2:
10383 index = h << 1 | l;
10384 rm |= (m << 4);
10385 break;
10386 default:
10387 unallocated_encoding(s);
10388 return;
10392 if (!fp_access_check(s)) {
10393 return;
10396 if (is_fp) {
10397 fpst = get_fpstatus_ptr();
10398 } else {
10399 TCGV_UNUSED_PTR(fpst);
10402 if (size == 3) {
10403 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10404 int pass;
10406 assert(is_fp && is_q && !is_long);
10408 read_vec_element(s, tcg_idx, rm, index, MO_64);
10410 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10411 TCGv_i64 tcg_op = tcg_temp_new_i64();
10412 TCGv_i64 tcg_res = tcg_temp_new_i64();
10414 read_vec_element(s, tcg_op, rn, pass, MO_64);
10416 switch (opcode) {
10417 case 0x5: /* FMLS */
10418 /* As usual for ARM, separate negation for fused multiply-add */
10419 gen_helper_vfp_negd(tcg_op, tcg_op);
10420 /* fall through */
10421 case 0x1: /* FMLA */
10422 read_vec_element(s, tcg_res, rd, pass, MO_64);
10423 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10424 break;
10425 case 0x9: /* FMUL, FMULX */
10426 if (u) {
10427 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10428 } else {
10429 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10431 break;
10432 default:
10433 g_assert_not_reached();
10436 write_vec_element(s, tcg_res, rd, pass, MO_64);
10437 tcg_temp_free_i64(tcg_op);
10438 tcg_temp_free_i64(tcg_res);
10441 if (is_scalar) {
10442 clear_vec_high(s, rd);
10445 tcg_temp_free_i64(tcg_idx);
10446 } else if (!is_long) {
10447 /* 32 bit floating point, or 16 or 32 bit integer.
10448 * For the 16 bit scalar case we use the usual Neon helpers and
10449 * rely on the fact that 0 op 0 == 0 with no side effects.
10451 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10452 int pass, maxpasses;
10454 if (is_scalar) {
10455 maxpasses = 1;
10456 } else {
10457 maxpasses = is_q ? 4 : 2;
10460 read_vec_element_i32(s, tcg_idx, rm, index, size);
10462 if (size == 1 && !is_scalar) {
10463 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10464 * the index into both halves of the 32 bit tcg_idx and then use
10465 * the usual Neon helpers.
10467 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10470 for (pass = 0; pass < maxpasses; pass++) {
10471 TCGv_i32 tcg_op = tcg_temp_new_i32();
10472 TCGv_i32 tcg_res = tcg_temp_new_i32();
10474 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10476 switch (opcode) {
10477 case 0x0: /* MLA */
10478 case 0x4: /* MLS */
10479 case 0x8: /* MUL */
10481 static NeonGenTwoOpFn * const fns[2][2] = {
10482 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10483 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10485 NeonGenTwoOpFn *genfn;
10486 bool is_sub = opcode == 0x4;
10488 if (size == 1) {
10489 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10490 } else {
10491 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10493 if (opcode == 0x8) {
10494 break;
10496 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10497 genfn = fns[size - 1][is_sub];
10498 genfn(tcg_res, tcg_op, tcg_res);
10499 break;
10501 case 0x5: /* FMLS */
10502 /* As usual for ARM, separate negation for fused multiply-add */
10503 gen_helper_vfp_negs(tcg_op, tcg_op);
10504 /* fall through */
10505 case 0x1: /* FMLA */
10506 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10507 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10508 break;
10509 case 0x9: /* FMUL, FMULX */
10510 if (u) {
10511 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10512 } else {
10513 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10515 break;
10516 case 0xc: /* SQDMULH */
10517 if (size == 1) {
10518 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10519 tcg_op, tcg_idx);
10520 } else {
10521 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10522 tcg_op, tcg_idx);
10524 break;
10525 case 0xd: /* SQRDMULH */
10526 if (size == 1) {
10527 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10528 tcg_op, tcg_idx);
10529 } else {
10530 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10531 tcg_op, tcg_idx);
10533 break;
10534 default:
10535 g_assert_not_reached();
10538 if (is_scalar) {
10539 write_fp_sreg(s, rd, tcg_res);
10540 } else {
10541 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10544 tcg_temp_free_i32(tcg_op);
10545 tcg_temp_free_i32(tcg_res);
10548 tcg_temp_free_i32(tcg_idx);
10550 if (!is_q) {
10551 clear_vec_high(s, rd);
10553 } else {
10554 /* long ops: 16x16->32 or 32x32->64 */
10555 TCGv_i64 tcg_res[2];
10556 int pass;
10557 bool satop = extract32(opcode, 0, 1);
10558 TCGMemOp memop = MO_32;
10560 if (satop || !u) {
10561 memop |= MO_SIGN;
10564 if (size == 2) {
10565 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10567 read_vec_element(s, tcg_idx, rm, index, memop);
10569 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10570 TCGv_i64 tcg_op = tcg_temp_new_i64();
10571 TCGv_i64 tcg_passres;
10572 int passelt;
10574 if (is_scalar) {
10575 passelt = 0;
10576 } else {
10577 passelt = pass + (is_q * 2);
10580 read_vec_element(s, tcg_op, rn, passelt, memop);
10582 tcg_res[pass] = tcg_temp_new_i64();
10584 if (opcode == 0xa || opcode == 0xb) {
10585 /* Non-accumulating ops */
10586 tcg_passres = tcg_res[pass];
10587 } else {
10588 tcg_passres = tcg_temp_new_i64();
10591 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10592 tcg_temp_free_i64(tcg_op);
10594 if (satop) {
10595 /* saturating, doubling */
10596 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10597 tcg_passres, tcg_passres);
10600 if (opcode == 0xa || opcode == 0xb) {
10601 continue;
10604 /* Accumulating op: handle accumulate step */
10605 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10607 switch (opcode) {
10608 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10609 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10610 break;
10611 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10612 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10613 break;
10614 case 0x7: /* SQDMLSL, SQDMLSL2 */
10615 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10616 /* fall through */
10617 case 0x3: /* SQDMLAL, SQDMLAL2 */
10618 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10619 tcg_res[pass],
10620 tcg_passres);
10621 break;
10622 default:
10623 g_assert_not_reached();
10625 tcg_temp_free_i64(tcg_passres);
10627 tcg_temp_free_i64(tcg_idx);
10629 if (is_scalar) {
10630 clear_vec_high(s, rd);
10632 } else {
10633 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10635 assert(size == 1);
10636 read_vec_element_i32(s, tcg_idx, rm, index, size);
10638 if (!is_scalar) {
10639 /* The simplest way to handle the 16x16 indexed ops is to
10640 * duplicate the index into both halves of the 32 bit tcg_idx
10641 * and then use the usual Neon helpers.
10643 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10646 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10647 TCGv_i32 tcg_op = tcg_temp_new_i32();
10648 TCGv_i64 tcg_passres;
10650 if (is_scalar) {
10651 read_vec_element_i32(s, tcg_op, rn, pass, size);
10652 } else {
10653 read_vec_element_i32(s, tcg_op, rn,
10654 pass + (is_q * 2), MO_32);
10657 tcg_res[pass] = tcg_temp_new_i64();
10659 if (opcode == 0xa || opcode == 0xb) {
10660 /* Non-accumulating ops */
10661 tcg_passres = tcg_res[pass];
10662 } else {
10663 tcg_passres = tcg_temp_new_i64();
10666 if (memop & MO_SIGN) {
10667 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10668 } else {
10669 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10671 if (satop) {
10672 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10673 tcg_passres, tcg_passres);
10675 tcg_temp_free_i32(tcg_op);
10677 if (opcode == 0xa || opcode == 0xb) {
10678 continue;
10681 /* Accumulating op: handle accumulate step */
10682 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10684 switch (opcode) {
10685 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10686 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10687 tcg_passres);
10688 break;
10689 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10690 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10691 tcg_passres);
10692 break;
10693 case 0x7: /* SQDMLSL, SQDMLSL2 */
10694 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10695 /* fall through */
10696 case 0x3: /* SQDMLAL, SQDMLAL2 */
10697 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10698 tcg_res[pass],
10699 tcg_passres);
10700 break;
10701 default:
10702 g_assert_not_reached();
10704 tcg_temp_free_i64(tcg_passres);
10706 tcg_temp_free_i32(tcg_idx);
10708 if (is_scalar) {
10709 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10713 if (is_scalar) {
10714 tcg_res[1] = tcg_const_i64(0);
10717 for (pass = 0; pass < 2; pass++) {
10718 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10719 tcg_temp_free_i64(tcg_res[pass]);
10723 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10724 tcg_temp_free_ptr(fpst);
10728 /* C3.6.19 Crypto AES
10729 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10730 * +-----------------+------+-----------+--------+-----+------+------+
10731 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10732 * +-----------------+------+-----------+--------+-----+------+------+
10734 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10736 int size = extract32(insn, 22, 2);
10737 int opcode = extract32(insn, 12, 5);
10738 int rn = extract32(insn, 5, 5);
10739 int rd = extract32(insn, 0, 5);
10740 int decrypt;
10741 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10742 CryptoThreeOpEnvFn *genfn;
10744 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10745 || size != 0) {
10746 unallocated_encoding(s);
10747 return;
10750 switch (opcode) {
10751 case 0x4: /* AESE */
10752 decrypt = 0;
10753 genfn = gen_helper_crypto_aese;
10754 break;
10755 case 0x6: /* AESMC */
10756 decrypt = 0;
10757 genfn = gen_helper_crypto_aesmc;
10758 break;
10759 case 0x5: /* AESD */
10760 decrypt = 1;
10761 genfn = gen_helper_crypto_aese;
10762 break;
10763 case 0x7: /* AESIMC */
10764 decrypt = 1;
10765 genfn = gen_helper_crypto_aesmc;
10766 break;
10767 default:
10768 unallocated_encoding(s);
10769 return;
10772 /* Note that we convert the Vx register indexes into the
10773 * index within the vfp.regs[] array, so we can share the
10774 * helper with the AArch32 instructions.
10776 tcg_rd_regno = tcg_const_i32(rd << 1);
10777 tcg_rn_regno = tcg_const_i32(rn << 1);
10778 tcg_decrypt = tcg_const_i32(decrypt);
10780 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10782 tcg_temp_free_i32(tcg_rd_regno);
10783 tcg_temp_free_i32(tcg_rn_regno);
10784 tcg_temp_free_i32(tcg_decrypt);
10787 /* C3.6.20 Crypto three-reg SHA
10788 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10789 * +-----------------+------+---+------+---+--------+-----+------+------+
10790 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10791 * +-----------------+------+---+------+---+--------+-----+------+------+
10793 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10795 int size = extract32(insn, 22, 2);
10796 int opcode = extract32(insn, 12, 3);
10797 int rm = extract32(insn, 16, 5);
10798 int rn = extract32(insn, 5, 5);
10799 int rd = extract32(insn, 0, 5);
10800 CryptoThreeOpEnvFn *genfn;
10801 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10802 int feature = ARM_FEATURE_V8_SHA256;
10804 if (size != 0) {
10805 unallocated_encoding(s);
10806 return;
10809 switch (opcode) {
10810 case 0: /* SHA1C */
10811 case 1: /* SHA1P */
10812 case 2: /* SHA1M */
10813 case 3: /* SHA1SU0 */
10814 genfn = NULL;
10815 feature = ARM_FEATURE_V8_SHA1;
10816 break;
10817 case 4: /* SHA256H */
10818 genfn = gen_helper_crypto_sha256h;
10819 break;
10820 case 5: /* SHA256H2 */
10821 genfn = gen_helper_crypto_sha256h2;
10822 break;
10823 case 6: /* SHA256SU1 */
10824 genfn = gen_helper_crypto_sha256su1;
10825 break;
10826 default:
10827 unallocated_encoding(s);
10828 return;
10831 if (!arm_dc_feature(s, feature)) {
10832 unallocated_encoding(s);
10833 return;
10836 tcg_rd_regno = tcg_const_i32(rd << 1);
10837 tcg_rn_regno = tcg_const_i32(rn << 1);
10838 tcg_rm_regno = tcg_const_i32(rm << 1);
10840 if (genfn) {
10841 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
10842 } else {
10843 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
10845 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
10846 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
10847 tcg_temp_free_i32(tcg_opcode);
10850 tcg_temp_free_i32(tcg_rd_regno);
10851 tcg_temp_free_i32(tcg_rn_regno);
10852 tcg_temp_free_i32(tcg_rm_regno);
10855 /* C3.6.21 Crypto two-reg SHA
10856 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10857 * +-----------------+------+-----------+--------+-----+------+------+
10858 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10859 * +-----------------+------+-----------+--------+-----+------+------+
10861 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
10863 int size = extract32(insn, 22, 2);
10864 int opcode = extract32(insn, 12, 5);
10865 int rn = extract32(insn, 5, 5);
10866 int rd = extract32(insn, 0, 5);
10867 CryptoTwoOpEnvFn *genfn;
10868 int feature;
10869 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
10871 if (size != 0) {
10872 unallocated_encoding(s);
10873 return;
10876 switch (opcode) {
10877 case 0: /* SHA1H */
10878 feature = ARM_FEATURE_V8_SHA1;
10879 genfn = gen_helper_crypto_sha1h;
10880 break;
10881 case 1: /* SHA1SU1 */
10882 feature = ARM_FEATURE_V8_SHA1;
10883 genfn = gen_helper_crypto_sha1su1;
10884 break;
10885 case 2: /* SHA256SU0 */
10886 feature = ARM_FEATURE_V8_SHA256;
10887 genfn = gen_helper_crypto_sha256su0;
10888 break;
10889 default:
10890 unallocated_encoding(s);
10891 return;
10894 if (!arm_dc_feature(s, feature)) {
10895 unallocated_encoding(s);
10896 return;
10899 tcg_rd_regno = tcg_const_i32(rd << 1);
10900 tcg_rn_regno = tcg_const_i32(rn << 1);
10902 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
10904 tcg_temp_free_i32(tcg_rd_regno);
10905 tcg_temp_free_i32(tcg_rn_regno);
10908 /* C3.6 Data processing - SIMD, inc Crypto
10910 * As the decode gets a little complex we are using a table based
10911 * approach for this part of the decode.
10913 static const AArch64DecodeTable data_proc_simd[] = {
10914 /* pattern , mask , fn */
10915 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
10916 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
10917 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
10918 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
10919 { 0x0e000400, 0x9fe08400, disas_simd_copy },
10920 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
10921 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
10922 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
10923 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
10924 { 0x0e000000, 0xbf208c00, disas_simd_tb },
10925 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
10926 { 0x2e000000, 0xbf208400, disas_simd_ext },
10927 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
10928 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
10929 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
10930 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
10931 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
10932 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
10933 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
10934 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
10935 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
10936 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
10937 { 0x00000000, 0x00000000, NULL }
10940 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
10942 /* Note that this is called with all non-FP cases from
10943 * table C3-6 so it must UNDEF for entries not specifically
10944 * allocated to instructions in that table.
10946 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
10947 if (fn) {
10948 fn(s, insn);
10949 } else {
10950 unallocated_encoding(s);
10954 /* C3.6 Data processing - SIMD and floating point */
10955 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
10957 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
10958 disas_data_proc_fp(s, insn);
10959 } else {
10960 /* SIMD, including crypto */
10961 disas_data_proc_simd(s, insn);
10965 /* C3.1 A64 instruction index by encoding */
10966 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
10968 uint32_t insn;
10970 insn = arm_ldl_code(env, s->pc, s->bswap_code);
10971 s->insn = insn;
10972 s->pc += 4;
10974 s->fp_access_checked = false;
10976 switch (extract32(insn, 25, 4)) {
10977 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
10978 unallocated_encoding(s);
10979 break;
10980 case 0x8: case 0x9: /* Data processing - immediate */
10981 disas_data_proc_imm(s, insn);
10982 break;
10983 case 0xa: case 0xb: /* Branch, exception generation and system insns */
10984 disas_b_exc_sys(s, insn);
10985 break;
10986 case 0x4:
10987 case 0x6:
10988 case 0xc:
10989 case 0xe: /* Loads and stores */
10990 disas_ldst(s, insn);
10991 break;
10992 case 0x5:
10993 case 0xd: /* Data processing - register */
10994 disas_data_proc_reg(s, insn);
10995 break;
10996 case 0x7:
10997 case 0xf: /* Data processing - SIMD and floating point */
10998 disas_data_proc_simd_fp(s, insn);
10999 break;
11000 default:
11001 assert(FALSE); /* all 15 cases should be handled above */
11002 break;
11005 /* if we allocated any temporaries, free them here */
11006 free_tmp_a64(s);
11009 void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
11011 CPUState *cs = CPU(cpu);
11012 CPUARMState *env = &cpu->env;
11013 DisasContext dc1, *dc = &dc1;
11014 target_ulong pc_start;
11015 target_ulong next_page_start;
11016 int num_insns;
11017 int max_insns;
11019 pc_start = tb->pc;
11021 dc->tb = tb;
11023 dc->is_jmp = DISAS_NEXT;
11024 dc->pc = pc_start;
11025 dc->singlestep_enabled = cs->singlestep_enabled;
11026 dc->condjmp = 0;
11028 dc->aarch64 = 1;
11029 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11030 * there is no secure EL1, so we route exceptions to EL3.
11032 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11033 !arm_el_is_aa64(env, 3);
11034 dc->thumb = 0;
11035 dc->bswap_code = 0;
11036 dc->condexec_mask = 0;
11037 dc->condexec_cond = 0;
11038 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11039 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11040 #if !defined(CONFIG_USER_ONLY)
11041 dc->user = (dc->current_el == 0);
11042 #endif
11043 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11044 dc->vec_len = 0;
11045 dc->vec_stride = 0;
11046 dc->cp_regs = cpu->cp_regs;
11047 dc->features = env->features;
11049 /* Single step state. The code-generation logic here is:
11050 * SS_ACTIVE == 0:
11051 * generate code with no special handling for single-stepping (except
11052 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11053 * this happens anyway because those changes are all system register or
11054 * PSTATE writes).
11055 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11056 * emit code for one insn
11057 * emit code to clear PSTATE.SS
11058 * emit code to generate software step exception for completed step
11059 * end TB (as usual for having generated an exception)
11060 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11061 * emit code to generate a software step exception
11062 * end the TB
11064 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11065 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11066 dc->is_ldex = false;
11067 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11069 init_tmp_a64_array(dc);
11071 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11072 num_insns = 0;
11073 max_insns = tb->cflags & CF_COUNT_MASK;
11074 if (max_insns == 0) {
11075 max_insns = CF_COUNT_MASK;
11077 if (max_insns > TCG_MAX_INSNS) {
11078 max_insns = TCG_MAX_INSNS;
11081 gen_tb_start(tb);
11083 tcg_clear_temp_count();
11085 do {
11086 tcg_gen_insn_start(dc->pc, 0);
11087 num_insns++;
11089 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11090 CPUBreakpoint *bp;
11091 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11092 if (bp->pc == dc->pc) {
11093 if (bp->flags & BP_CPU) {
11094 gen_a64_set_pc_im(dc->pc);
11095 gen_helper_check_breakpoints(cpu_env);
11096 /* End the TB early; it likely won't be executed */
11097 dc->is_jmp = DISAS_UPDATE;
11098 } else {
11099 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11100 /* The address covered by the breakpoint must be
11101 included in [tb->pc, tb->pc + tb->size) in order
11102 to for it to be properly cleared -- thus we
11103 increment the PC here so that the logic setting
11104 tb->size below does the right thing. */
11105 dc->pc += 4;
11106 goto done_generating;
11108 break;
11113 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11114 gen_io_start();
11117 if (dc->ss_active && !dc->pstate_ss) {
11118 /* Singlestep state is Active-pending.
11119 * If we're in this state at the start of a TB then either
11120 * a) we just took an exception to an EL which is being debugged
11121 * and this is the first insn in the exception handler
11122 * b) debug exceptions were masked and we just unmasked them
11123 * without changing EL (eg by clearing PSTATE.D)
11124 * In either case we're going to take a swstep exception in the
11125 * "did not step an insn" case, and so the syndrome ISV and EX
11126 * bits should be zero.
11128 assert(num_insns == 1);
11129 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11130 default_exception_el(dc));
11131 dc->is_jmp = DISAS_EXC;
11132 break;
11135 disas_a64_insn(env, dc);
11137 if (tcg_check_temp_count()) {
11138 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11139 dc->pc);
11142 /* Translation stops when a conditional branch is encountered.
11143 * Otherwise the subsequent code could get translated several times.
11144 * Also stop translation when a page boundary is reached. This
11145 * ensures prefetch aborts occur at the right place.
11147 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11148 !cs->singlestep_enabled &&
11149 !singlestep &&
11150 !dc->ss_active &&
11151 dc->pc < next_page_start &&
11152 num_insns < max_insns);
11154 if (tb->cflags & CF_LAST_IO) {
11155 gen_io_end();
11158 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11159 && dc->is_jmp != DISAS_EXC) {
11160 /* Note that this means single stepping WFI doesn't halt the CPU.
11161 * For conditional branch insns this is harmless unreachable code as
11162 * gen_goto_tb() has already handled emitting the debug exception
11163 * (and thus a tb-jump is not possible when singlestepping).
11165 assert(dc->is_jmp != DISAS_TB_JUMP);
11166 if (dc->is_jmp != DISAS_JUMP) {
11167 gen_a64_set_pc_im(dc->pc);
11169 if (cs->singlestep_enabled) {
11170 gen_exception_internal(EXCP_DEBUG);
11171 } else {
11172 gen_step_complete_exception(dc);
11174 } else {
11175 switch (dc->is_jmp) {
11176 case DISAS_NEXT:
11177 gen_goto_tb(dc, 1, dc->pc);
11178 break;
11179 default:
11180 case DISAS_UPDATE:
11181 gen_a64_set_pc_im(dc->pc);
11182 /* fall through */
11183 case DISAS_JUMP:
11184 /* indicate that the hash table must be used to find the next TB */
11185 tcg_gen_exit_tb(0);
11186 break;
11187 case DISAS_TB_JUMP:
11188 case DISAS_EXC:
11189 case DISAS_SWI:
11190 break;
11191 case DISAS_WFE:
11192 gen_a64_set_pc_im(dc->pc);
11193 gen_helper_wfe(cpu_env);
11194 break;
11195 case DISAS_YIELD:
11196 gen_a64_set_pc_im(dc->pc);
11197 gen_helper_yield(cpu_env);
11198 break;
11199 case DISAS_WFI:
11200 /* This is a special case because we don't want to just halt the CPU
11201 * if trying to debug across a WFI.
11203 gen_a64_set_pc_im(dc->pc);
11204 gen_helper_wfi(cpu_env);
11205 /* The helper doesn't necessarily throw an exception, but we
11206 * must go back to the main loop to check for interrupts anyway.
11208 tcg_gen_exit_tb(0);
11209 break;
11213 done_generating:
11214 gen_tb_end(tb, num_insns);
11216 #ifdef DEBUG_DISAS
11217 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
11218 qemu_log("----------------\n");
11219 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11220 log_target_disas(cs, pc_start, dc->pc - pc_start,
11221 4 | (dc->bswap_code << 1));
11222 qemu_log("\n");
11224 #endif
11225 tb->size = dc->pc - pc_start;
11226 tb->icount = num_insns;