4 * This implements a subset of the remote protocol as described in:
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
8 * Copyright (c) 2003-2005 Fabrice Bellard
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 * SPDX-License-Identifier: LGPL-2.0+
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
46 #define MAX_PACKET_LENGTH 4096
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "sysemu/runstate.h"
52 #include "hw/semihosting/semihost.h"
53 #include "exec/exec-all.h"
55 #ifdef CONFIG_USER_ONLY
56 #define GDB_ATTACHED "0"
58 #define GDB_ATTACHED "1"
61 #ifndef CONFIG_USER_ONLY
62 static int phy_memory_mode
;
65 static inline int target_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
66 uint8_t *buf
, int len
, bool is_write
)
70 #ifndef CONFIG_USER_ONLY
71 if (phy_memory_mode
) {
73 cpu_physical_memory_write(addr
, buf
, len
);
75 cpu_physical_memory_read(addr
, buf
, len
);
81 cc
= CPU_GET_CLASS(cpu
);
82 if (cc
->memory_rw_debug
) {
83 return cc
->memory_rw_debug(cpu
, addr
, buf
, len
, is_write
);
85 return cpu_memory_rw_debug(cpu
, addr
, buf
, len
, is_write
);
88 /* Return the GDB index for a given vCPU state.
90 * For user mode this is simply the thread id. In system mode GDB
91 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
93 static inline int cpu_gdb_index(CPUState
*cpu
)
95 #if defined(CONFIG_USER_ONLY)
96 TaskState
*ts
= (TaskState
*) cpu
->opaque
;
99 return cpu
->cpu_index
+ 1;
109 GDB_SIGNAL_ALRM
= 14,
111 GDB_SIGNAL_XCPU
= 24,
112 GDB_SIGNAL_UNKNOWN
= 143
115 #ifdef CONFIG_USER_ONLY
117 /* Map target signal numbers to GDB protocol signal numbers and vice
118 * versa. For user emulation's currently supported systems, we can
119 * assume most signals are defined.
122 static int gdb_signal_table
[] = {
282 /* In system mode we only need SIGINT and SIGTRAP; other signals
283 are not yet supported. */
290 static int gdb_signal_table
[] = {
300 #ifdef CONFIG_USER_ONLY
301 static int target_signal_to_gdb (int sig
)
304 for (i
= 0; i
< ARRAY_SIZE (gdb_signal_table
); i
++)
305 if (gdb_signal_table
[i
] == sig
)
307 return GDB_SIGNAL_UNKNOWN
;
311 static int gdb_signal_to_target (int sig
)
313 if (sig
< ARRAY_SIZE (gdb_signal_table
))
314 return gdb_signal_table
[sig
];
319 typedef struct GDBRegisterState
{
325 struct GDBRegisterState
*next
;
328 typedef struct GDBProcess
{
332 char target_xml
[1024];
344 typedef struct GDBState
{
345 bool init
; /* have we been initialised? */
346 CPUState
*c_cpu
; /* current CPU for step/continue ops */
347 CPUState
*g_cpu
; /* current CPU for other ops */
348 CPUState
*query_cpu
; /* for q{f|s}ThreadInfo */
349 enum RSState state
; /* parsing state */
350 char line_buf
[MAX_PACKET_LENGTH
];
352 int line_sum
; /* running checksum */
353 int line_csum
; /* checksum at the end of the packet */
354 uint8_t last_packet
[MAX_PACKET_LENGTH
+ 4];
357 #ifdef CONFIG_USER_ONLY
365 GDBProcess
*processes
;
367 char syscall_buf
[256];
368 gdb_syscall_complete_cb current_syscall_cb
;
372 /* By default use no IRQs and no timers while single stepping so as to
373 * make single stepping like an ICE HW step.
375 static int sstep_flags
= SSTEP_ENABLE
|SSTEP_NOIRQ
|SSTEP_NOTIMER
;
377 static GDBState gdbserver_state
;
379 static void init_gdbserver_state(void)
381 g_assert(!gdbserver_state
.init
);
382 memset(&gdbserver_state
, 0, sizeof(GDBState
));
383 gdbserver_state
.init
= true;
384 gdbserver_state
.str_buf
= g_string_new(NULL
);
387 #ifndef CONFIG_USER_ONLY
388 static void reset_gdbserver_state(void)
390 g_free(gdbserver_state
.processes
);
391 gdbserver_state
.processes
= NULL
;
392 gdbserver_state
.process_num
= 0;
398 #ifdef CONFIG_USER_ONLY
399 /* XXX: This is not thread safe. Do we care? */
400 static int gdbserver_fd
= -1;
402 static int get_char(void)
408 ret
= qemu_recv(gdbserver_state
.fd
, &ch
, 1, 0);
410 if (errno
== ECONNRESET
)
411 gdbserver_state
.fd
= -1;
414 } else if (ret
== 0) {
415 close(gdbserver_state
.fd
);
416 gdbserver_state
.fd
= -1;
432 /* Decide if either remote gdb syscalls or native file IO should be used. */
433 int use_gdb_syscalls(void)
435 SemihostingTarget target
= semihosting_get_target();
436 if (target
== SEMIHOSTING_TARGET_NATIVE
) {
437 /* -semihosting-config target=native */
439 } else if (target
== SEMIHOSTING_TARGET_GDB
) {
440 /* -semihosting-config target=gdb */
444 /* -semihosting-config target=auto */
445 /* On the first call check if gdb is connected and remember. */
446 if (gdb_syscall_mode
== GDB_SYS_UNKNOWN
) {
447 gdb_syscall_mode
= gdbserver_state
.init
?
448 GDB_SYS_ENABLED
: GDB_SYS_DISABLED
;
450 return gdb_syscall_mode
== GDB_SYS_ENABLED
;
453 /* Resume execution. */
454 static inline void gdb_continue(void)
457 #ifdef CONFIG_USER_ONLY
458 gdbserver_state
.running_state
= 1;
459 trace_gdbstub_op_continue();
461 if (!runstate_needs_reset()) {
462 trace_gdbstub_op_continue();
469 * Resume execution, per CPU actions. For user-mode emulation it's
470 * equivalent to gdb_continue.
472 static int gdb_continue_partial(char *newstates
)
476 #ifdef CONFIG_USER_ONLY
478 * This is not exactly accurate, but it's an improvement compared to the
479 * previous situation, where only one CPU would be single-stepped.
482 if (newstates
[cpu
->cpu_index
] == 's') {
483 trace_gdbstub_op_stepping(cpu
->cpu_index
);
484 cpu_single_step(cpu
, sstep_flags
);
487 gdbserver_state
.running_state
= 1;
491 if (!runstate_needs_reset()) {
492 if (vm_prepare_start()) {
497 switch (newstates
[cpu
->cpu_index
]) {
500 break; /* nothing to do here */
502 trace_gdbstub_op_stepping(cpu
->cpu_index
);
503 cpu_single_step(cpu
, sstep_flags
);
508 trace_gdbstub_op_continue_cpu(cpu
->cpu_index
);
519 qemu_clock_enable(QEMU_CLOCK_VIRTUAL
, true);
525 static void put_buffer(const uint8_t *buf
, int len
)
527 #ifdef CONFIG_USER_ONLY
531 ret
= send(gdbserver_state
.fd
, buf
, len
, 0);
541 /* XXX this blocks entire thread. Rewrite to use
542 * qemu_chr_fe_write and background I/O callbacks */
543 qemu_chr_fe_write_all(&gdbserver_state
.chr
, buf
, len
);
547 static inline int fromhex(int v
)
549 if (v
>= '0' && v
<= '9')
551 else if (v
>= 'A' && v
<= 'F')
553 else if (v
>= 'a' && v
<= 'f')
559 static inline int tohex(int v
)
567 /* writes 2*len+1 bytes in buf */
568 static void memtohex(GString
*buf
, const uint8_t *mem
, int len
)
571 for(i
= 0; i
< len
; i
++) {
573 g_string_append_c(buf
, tohex(c
>> 4));
574 g_string_append_c(buf
, tohex(c
& 0xf));
576 g_string_append_c(buf
, '\0');
579 static void hextomem(uint8_t *mem
, const char *buf
, int len
)
583 for(i
= 0; i
< len
; i
++) {
584 mem
[i
] = (fromhex(buf
[0]) << 4) | fromhex(buf
[1]);
589 static void hexdump(const char *buf
, int len
,
590 void (*trace_fn
)(size_t ofs
, char const *text
))
592 char line_buffer
[3 * 16 + 4 + 16 + 1];
595 for (i
= 0; i
< len
|| (i
& 0xF); ++i
) {
596 size_t byte_ofs
= i
& 15;
599 memset(line_buffer
, ' ', 3 * 16 + 4 + 16);
600 line_buffer
[3 * 16 + 4 + 16] = 0;
603 size_t col_group
= (i
>> 2) & 3;
604 size_t hex_col
= byte_ofs
* 3 + col_group
;
605 size_t txt_col
= 3 * 16 + 4 + byte_ofs
;
610 line_buffer
[hex_col
+ 0] = tohex((value
>> 4) & 0xF);
611 line_buffer
[hex_col
+ 1] = tohex((value
>> 0) & 0xF);
612 line_buffer
[txt_col
+ 0] = (value
>= ' ' && value
< 127)
618 trace_fn(i
& -16, line_buffer
);
622 /* return -1 if error, 0 if OK */
623 static int put_packet_binary(const char *buf
, int len
, bool dump
)
627 uint8_t *ps
= &gdbserver_state
.last_packet
[0];
629 if (dump
&& trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY
)) {
630 hexdump(buf
, len
, trace_gdbstub_io_binaryreply
);
639 for(i
= 0; i
< len
; i
++) {
643 *(p
++) = tohex((csum
>> 4) & 0xf);
644 *(p
++) = tohex((csum
) & 0xf);
646 gdbserver_state
.last_packet_len
= p
- ps
;
647 put_buffer(ps
, gdbserver_state
.last_packet_len
);
649 #ifdef CONFIG_USER_ONLY
662 /* return -1 if error, 0 if OK */
663 static int put_packet(const char *buf
)
665 trace_gdbstub_io_reply(buf
);
667 return put_packet_binary(buf
, strlen(buf
), false);
670 static void put_strbuf(void)
672 put_packet(gdbserver_state
.str_buf
->str
);
675 /* Encode data using the encoding for 'x' packets. */
676 static void memtox(GString
*buf
, const char *mem
, int len
)
683 case '#': case '$': case '*': case '}':
684 g_string_append_c(buf
, '}');
685 g_string_append_c(buf
, c
^ 0x20);
688 g_string_append_c(buf
, c
);
694 static uint32_t gdb_get_cpu_pid(CPUState
*cpu
)
696 /* TODO: In user mode, we should use the task state PID */
697 if (cpu
->cluster_index
== UNASSIGNED_CLUSTER_INDEX
) {
698 /* Return the default process' PID */
699 int index
= gdbserver_state
.process_num
- 1;
700 return gdbserver_state
.processes
[index
].pid
;
702 return cpu
->cluster_index
+ 1;
705 static GDBProcess
*gdb_get_process(uint32_t pid
)
710 /* 0 means any process, we take the first one */
711 return &gdbserver_state
.processes
[0];
714 for (i
= 0; i
< gdbserver_state
.process_num
; i
++) {
715 if (gdbserver_state
.processes
[i
].pid
== pid
) {
716 return &gdbserver_state
.processes
[i
];
723 static GDBProcess
*gdb_get_cpu_process(CPUState
*cpu
)
725 return gdb_get_process(gdb_get_cpu_pid(cpu
));
728 static CPUState
*find_cpu(uint32_t thread_id
)
733 if (cpu_gdb_index(cpu
) == thread_id
) {
741 static CPUState
*get_first_cpu_in_process(GDBProcess
*process
)
746 if (gdb_get_cpu_pid(cpu
) == process
->pid
) {
754 static CPUState
*gdb_next_cpu_in_process(CPUState
*cpu
)
756 uint32_t pid
= gdb_get_cpu_pid(cpu
);
760 if (gdb_get_cpu_pid(cpu
) == pid
) {
770 /* Return the cpu following @cpu, while ignoring unattached processes. */
771 static CPUState
*gdb_next_attached_cpu(CPUState
*cpu
)
776 if (gdb_get_cpu_process(cpu
)->attached
) {
786 /* Return the first attached cpu */
787 static CPUState
*gdb_first_attached_cpu(void)
789 CPUState
*cpu
= first_cpu
;
790 GDBProcess
*process
= gdb_get_cpu_process(cpu
);
792 if (!process
->attached
) {
793 return gdb_next_attached_cpu(cpu
);
799 static CPUState
*gdb_get_cpu(uint32_t pid
, uint32_t tid
)
805 /* 0 means any process/thread, we take the first attached one */
806 return gdb_first_attached_cpu();
807 } else if (pid
&& !tid
) {
808 /* any thread in a specific process */
809 process
= gdb_get_process(pid
);
811 if (process
== NULL
) {
815 if (!process
->attached
) {
819 return get_first_cpu_in_process(process
);
821 /* a specific thread */
828 process
= gdb_get_cpu_process(cpu
);
830 if (pid
&& process
->pid
!= pid
) {
834 if (!process
->attached
) {
842 static const char *get_feature_xml(const char *p
, const char **newp
,
848 CPUState
*cpu
= get_first_cpu_in_process(process
);
849 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
852 while (p
[len
] && p
[len
] != ':')
857 if (strncmp(p
, "target.xml", len
) == 0) {
858 char *buf
= process
->target_xml
;
859 const size_t buf_sz
= sizeof(process
->target_xml
);
861 /* Generate the XML description for this CPU. */
866 "<?xml version=\"1.0\"?>"
867 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
869 if (cc
->gdb_arch_name
) {
870 gchar
*arch
= cc
->gdb_arch_name(cpu
);
871 pstrcat(buf
, buf_sz
, "<architecture>");
872 pstrcat(buf
, buf_sz
, arch
);
873 pstrcat(buf
, buf_sz
, "</architecture>");
876 pstrcat(buf
, buf_sz
, "<xi:include href=\"");
877 pstrcat(buf
, buf_sz
, cc
->gdb_core_xml_file
);
878 pstrcat(buf
, buf_sz
, "\"/>");
879 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
880 pstrcat(buf
, buf_sz
, "<xi:include href=\"");
881 pstrcat(buf
, buf_sz
, r
->xml
);
882 pstrcat(buf
, buf_sz
, "\"/>");
884 pstrcat(buf
, buf_sz
, "</target>");
888 if (cc
->gdb_get_dynamic_xml
) {
889 char *xmlname
= g_strndup(p
, len
);
890 const char *xml
= cc
->gdb_get_dynamic_xml(cpu
, xmlname
);
898 name
= xml_builtin
[i
][0];
899 if (!name
|| (strncmp(name
, p
, len
) == 0 && strlen(name
) == len
))
902 return name
? xml_builtin
[i
][1] : NULL
;
905 static int gdb_read_register(CPUState
*cpu
, uint8_t *mem_buf
, int reg
)
907 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
908 CPUArchState
*env
= cpu
->env_ptr
;
911 if (reg
< cc
->gdb_num_core_regs
) {
912 return cc
->gdb_read_register(cpu
, mem_buf
, reg
);
915 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
916 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
917 return r
->get_reg(env
, mem_buf
, reg
- r
->base_reg
);
923 static int gdb_write_register(CPUState
*cpu
, uint8_t *mem_buf
, int reg
)
925 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
926 CPUArchState
*env
= cpu
->env_ptr
;
929 if (reg
< cc
->gdb_num_core_regs
) {
930 return cc
->gdb_write_register(cpu
, mem_buf
, reg
);
933 for (r
= cpu
->gdb_regs
; r
; r
= r
->next
) {
934 if (r
->base_reg
<= reg
&& reg
< r
->base_reg
+ r
->num_regs
) {
935 return r
->set_reg(env
, mem_buf
, reg
- r
->base_reg
);
941 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
942 specifies the first register number and these registers are included in
943 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
944 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
947 void gdb_register_coprocessor(CPUState
*cpu
,
948 gdb_reg_cb get_reg
, gdb_reg_cb set_reg
,
949 int num_regs
, const char *xml
, int g_pos
)
952 GDBRegisterState
**p
;
956 /* Check for duplicates. */
957 if (strcmp((*p
)->xml
, xml
) == 0)
962 s
= g_new0(GDBRegisterState
, 1);
963 s
->base_reg
= cpu
->gdb_num_regs
;
964 s
->num_regs
= num_regs
;
965 s
->get_reg
= get_reg
;
966 s
->set_reg
= set_reg
;
969 /* Add to end of list. */
970 cpu
->gdb_num_regs
+= num_regs
;
973 if (g_pos
!= s
->base_reg
) {
974 error_report("Error: Bad gdb register numbering for '%s', "
975 "expected %d got %d", xml
, g_pos
, s
->base_reg
);
977 cpu
->gdb_num_g_regs
= cpu
->gdb_num_regs
;
982 #ifndef CONFIG_USER_ONLY
983 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
984 static inline int xlat_gdb_type(CPUState
*cpu
, int gdbtype
)
986 static const int xlat
[] = {
987 [GDB_WATCHPOINT_WRITE
] = BP_GDB
| BP_MEM_WRITE
,
988 [GDB_WATCHPOINT_READ
] = BP_GDB
| BP_MEM_READ
,
989 [GDB_WATCHPOINT_ACCESS
] = BP_GDB
| BP_MEM_ACCESS
,
992 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
993 int cputype
= xlat
[gdbtype
];
995 if (cc
->gdb_stop_before_watchpoint
) {
996 cputype
|= BP_STOP_BEFORE_ACCESS
;
1002 static int gdb_breakpoint_insert(int type
, target_ulong addr
, target_ulong len
)
1007 if (kvm_enabled()) {
1008 return kvm_insert_breakpoint(gdbserver_state
.c_cpu
, addr
, len
, type
);
1012 case GDB_BREAKPOINT_SW
:
1013 case GDB_BREAKPOINT_HW
:
1015 err
= cpu_breakpoint_insert(cpu
, addr
, BP_GDB
, NULL
);
1021 #ifndef CONFIG_USER_ONLY
1022 case GDB_WATCHPOINT_WRITE
:
1023 case GDB_WATCHPOINT_READ
:
1024 case GDB_WATCHPOINT_ACCESS
:
1026 err
= cpu_watchpoint_insert(cpu
, addr
, len
,
1027 xlat_gdb_type(cpu
, type
), NULL
);
1039 static int gdb_breakpoint_remove(int type
, target_ulong addr
, target_ulong len
)
1044 if (kvm_enabled()) {
1045 return kvm_remove_breakpoint(gdbserver_state
.c_cpu
, addr
, len
, type
);
1049 case GDB_BREAKPOINT_SW
:
1050 case GDB_BREAKPOINT_HW
:
1052 err
= cpu_breakpoint_remove(cpu
, addr
, BP_GDB
);
1058 #ifndef CONFIG_USER_ONLY
1059 case GDB_WATCHPOINT_WRITE
:
1060 case GDB_WATCHPOINT_READ
:
1061 case GDB_WATCHPOINT_ACCESS
:
1063 err
= cpu_watchpoint_remove(cpu
, addr
, len
,
1064 xlat_gdb_type(cpu
, type
));
1075 static inline void gdb_cpu_breakpoint_remove_all(CPUState
*cpu
)
1077 cpu_breakpoint_remove_all(cpu
, BP_GDB
);
1078 #ifndef CONFIG_USER_ONLY
1079 cpu_watchpoint_remove_all(cpu
, BP_GDB
);
1083 static void gdb_process_breakpoint_remove_all(GDBProcess
*p
)
1085 CPUState
*cpu
= get_first_cpu_in_process(p
);
1088 gdb_cpu_breakpoint_remove_all(cpu
);
1089 cpu
= gdb_next_cpu_in_process(cpu
);
1093 static void gdb_breakpoint_remove_all(void)
1097 if (kvm_enabled()) {
1098 kvm_remove_all_breakpoints(gdbserver_state
.c_cpu
);
1103 gdb_cpu_breakpoint_remove_all(cpu
);
1107 static void gdb_set_cpu_pc(target_ulong pc
)
1109 CPUState
*cpu
= gdbserver_state
.c_cpu
;
1111 cpu_synchronize_state(cpu
);
1112 cpu_set_pc(cpu
, pc
);
1115 static void gdb_append_thread_id(CPUState
*cpu
, GString
*buf
)
1117 if (gdbserver_state
.multiprocess
) {
1118 g_string_append_printf(buf
, "p%02x.%02x",
1119 gdb_get_cpu_pid(cpu
), cpu_gdb_index(cpu
));
1121 g_string_append_printf(buf
, "%02x", cpu_gdb_index(cpu
));
1125 typedef enum GDBThreadIdKind
{
1127 GDB_ALL_THREADS
, /* One process, all threads */
1132 static GDBThreadIdKind
read_thread_id(const char *buf
, const char **end_buf
,
1133 uint32_t *pid
, uint32_t *tid
)
1140 ret
= qemu_strtoul(buf
, &buf
, 16, &p
);
1143 return GDB_READ_THREAD_ERR
;
1152 ret
= qemu_strtoul(buf
, &buf
, 16, &t
);
1155 return GDB_READ_THREAD_ERR
;
1161 return GDB_ALL_PROCESSES
;
1169 return GDB_ALL_THREADS
;
1176 return GDB_ONE_THREAD
;
1180 * gdb_handle_vcont - Parses and handles a vCont packet.
1181 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1182 * a format error, 0 on success.
1184 static int gdb_handle_vcont(const char *p
)
1186 int res
, signal
= 0;
1191 GDBProcess
*process
;
1193 GDBThreadIdKind kind
;
1194 #ifdef CONFIG_USER_ONLY
1195 int max_cpus
= 1; /* global variable max_cpus exists only in system mode */
1198 max_cpus
= max_cpus
<= cpu
->cpu_index
? cpu
->cpu_index
+ 1 : max_cpus
;
1201 MachineState
*ms
= MACHINE(qdev_get_machine());
1202 unsigned int max_cpus
= ms
->smp
.max_cpus
;
1204 /* uninitialised CPUs stay 0 */
1205 newstates
= g_new0(char, max_cpus
);
1207 /* mark valid CPUs with 1 */
1209 newstates
[cpu
->cpu_index
] = 1;
1213 * res keeps track of what error we are returning, with -ENOTSUP meaning
1214 * that the command is unknown or unsupported, thus returning an empty
1215 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1216 * or incorrect parameters passed.
1226 if (cur_action
== 'C' || cur_action
== 'S') {
1227 cur_action
= qemu_tolower(cur_action
);
1228 res
= qemu_strtoul(p
+ 1, &p
, 16, &tmp
);
1232 signal
= gdb_signal_to_target(tmp
);
1233 } else if (cur_action
!= 'c' && cur_action
!= 's') {
1234 /* unknown/invalid/unsupported command */
1239 if (*p
== '\0' || *p
== ';') {
1241 * No thread specifier, action is on "all threads". The
1242 * specification is unclear regarding the process to act on. We
1243 * choose all processes.
1245 kind
= GDB_ALL_PROCESSES
;
1246 } else if (*p
++ == ':') {
1247 kind
= read_thread_id(p
, &p
, &pid
, &tid
);
1254 case GDB_READ_THREAD_ERR
:
1258 case GDB_ALL_PROCESSES
:
1259 cpu
= gdb_first_attached_cpu();
1261 if (newstates
[cpu
->cpu_index
] == 1) {
1262 newstates
[cpu
->cpu_index
] = cur_action
;
1265 cpu
= gdb_next_attached_cpu(cpu
);
1269 case GDB_ALL_THREADS
:
1270 process
= gdb_get_process(pid
);
1272 if (!process
->attached
) {
1277 cpu
= get_first_cpu_in_process(process
);
1279 if (newstates
[cpu
->cpu_index
] == 1) {
1280 newstates
[cpu
->cpu_index
] = cur_action
;
1283 cpu
= gdb_next_cpu_in_process(cpu
);
1287 case GDB_ONE_THREAD
:
1288 cpu
= gdb_get_cpu(pid
, tid
);
1290 /* invalid CPU/thread specified */
1296 /* only use if no previous match occourred */
1297 if (newstates
[cpu
->cpu_index
] == 1) {
1298 newstates
[cpu
->cpu_index
] = cur_action
;
1303 gdbserver_state
.signal
= signal
;
1304 gdb_continue_partial(newstates
);
1312 typedef union GdbCmdVariant
{
1315 unsigned long val_ul
;
1316 unsigned long long val_ull
;
1318 GDBThreadIdKind kind
;
1324 static const char *cmd_next_param(const char *param
, const char delimiter
)
1326 static const char all_delimiters
[] = ",;:=";
1327 char curr_delimiters
[2] = {0};
1328 const char *delimiters
;
1330 if (delimiter
== '?') {
1331 delimiters
= all_delimiters
;
1332 } else if (delimiter
== '0') {
1333 return strchr(param
, '\0');
1334 } else if (delimiter
== '.' && *param
) {
1337 curr_delimiters
[0] = delimiter
;
1338 delimiters
= curr_delimiters
;
1341 param
+= strcspn(param
, delimiters
);
1348 static int cmd_parse_params(const char *data
, const char *schema
,
1349 GdbCmdVariant
*params
, int *num_params
)
1352 const char *curr_schema
, *curr_data
;
1360 curr_schema
= schema
;
1363 while (curr_schema
[0] && curr_schema
[1] && *curr_data
) {
1364 switch (curr_schema
[0]) {
1366 if (qemu_strtoul(curr_data
, &curr_data
, 16,
1367 ¶ms
[curr_param
].val_ul
)) {
1371 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1374 if (qemu_strtou64(curr_data
, &curr_data
, 16,
1375 (uint64_t *)¶ms
[curr_param
].val_ull
)) {
1379 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1382 params
[curr_param
].data
= curr_data
;
1384 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1387 params
[curr_param
].opcode
= *(uint8_t *)curr_data
;
1389 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1392 params
[curr_param
].thread_id
.kind
=
1393 read_thread_id(curr_data
, &curr_data
,
1394 ¶ms
[curr_param
].thread_id
.pid
,
1395 ¶ms
[curr_param
].thread_id
.tid
);
1397 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1400 curr_data
= cmd_next_param(curr_data
, curr_schema
[1]);
1408 *num_params
= curr_param
;
1412 typedef struct GdbCmdContext
{
1413 GdbCmdVariant
*params
;
1415 uint8_t mem_buf
[MAX_PACKET_LENGTH
];
1418 typedef void (*GdbCmdHandler
)(GdbCmdContext
*gdb_ctx
, void *user_ctx
);
1421 * cmd_startswith -> cmd is compared using startswith
1424 * schema definitions:
1425 * Each schema parameter entry consists of 2 chars,
1426 * the first char represents the parameter type handling
1427 * the second char represents the delimiter for the next parameter
1429 * Currently supported schema types:
1430 * 'l' -> unsigned long (stored in .val_ul)
1431 * 'L' -> unsigned long long (stored in .val_ull)
1432 * 's' -> string (stored in .data)
1433 * 'o' -> single char (stored in .opcode)
1434 * 't' -> thread id (stored in .thread_id)
1435 * '?' -> skip according to delimiter
1437 * Currently supported delimiters:
1438 * '?' -> Stop at any delimiter (",;:=\0")
1439 * '0' -> Stop at "\0"
1440 * '.' -> Skip 1 char unless reached "\0"
1441 * Any other value is treated as the delimiter value itself
1443 typedef struct GdbCmdParseEntry
{
1444 GdbCmdHandler handler
;
1446 bool cmd_startswith
;
1450 static inline int startswith(const char *string
, const char *pattern
)
1452 return !strncmp(string
, pattern
, strlen(pattern
));
1455 static int process_string_cmd(void *user_ctx
, const char *data
,
1456 const GdbCmdParseEntry
*cmds
, int num_cmds
)
1458 int i
, schema_len
, max_num_params
= 0;
1459 GdbCmdContext gdb_ctx
;
1465 for (i
= 0; i
< num_cmds
; i
++) {
1466 const GdbCmdParseEntry
*cmd
= &cmds
[i
];
1467 g_assert(cmd
->handler
&& cmd
->cmd
);
1469 if ((cmd
->cmd_startswith
&& !startswith(data
, cmd
->cmd
)) ||
1470 (!cmd
->cmd_startswith
&& strcmp(cmd
->cmd
, data
))) {
1475 schema_len
= strlen(cmd
->schema
);
1476 if (schema_len
% 2) {
1480 max_num_params
= schema_len
/ 2;
1484 (GdbCmdVariant
*)alloca(sizeof(*gdb_ctx
.params
) * max_num_params
);
1485 memset(gdb_ctx
.params
, 0, sizeof(*gdb_ctx
.params
) * max_num_params
);
1487 if (cmd_parse_params(&data
[strlen(cmd
->cmd
)], cmd
->schema
,
1488 gdb_ctx
.params
, &gdb_ctx
.num_params
)) {
1492 cmd
->handler(&gdb_ctx
, user_ctx
);
1499 static void run_cmd_parser(const char *data
, const GdbCmdParseEntry
*cmd
)
1505 g_string_set_size(gdbserver_state
.str_buf
, 0);
1507 /* In case there was an error during the command parsing we must
1508 * send a NULL packet to indicate the command is not supported */
1509 if (process_string_cmd(NULL
, data
, cmd
, 1)) {
1514 static void handle_detach(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1516 GDBProcess
*process
;
1519 if (gdbserver_state
.multiprocess
) {
1520 if (!gdb_ctx
->num_params
) {
1525 pid
= gdb_ctx
->params
[0].val_ul
;
1528 process
= gdb_get_process(pid
);
1529 gdb_process_breakpoint_remove_all(process
);
1530 process
->attached
= false;
1532 if (pid
== gdb_get_cpu_pid(gdbserver_state
.c_cpu
)) {
1533 gdbserver_state
.c_cpu
= gdb_first_attached_cpu();
1536 if (pid
== gdb_get_cpu_pid(gdbserver_state
.g_cpu
)) {
1537 gdbserver_state
.g_cpu
= gdb_first_attached_cpu();
1540 if (!gdbserver_state
.c_cpu
) {
1541 /* No more process attached */
1542 gdb_syscall_mode
= GDB_SYS_DISABLED
;
1548 static void handle_thread_alive(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1552 if (!gdb_ctx
->num_params
) {
1557 if (gdb_ctx
->params
[0].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
1562 cpu
= gdb_get_cpu(gdb_ctx
->params
[0].thread_id
.pid
,
1563 gdb_ctx
->params
[0].thread_id
.tid
);
1572 static void handle_continue(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1574 if (gdb_ctx
->num_params
) {
1575 gdb_set_cpu_pc(gdb_ctx
->params
[0].val_ull
);
1578 gdbserver_state
.signal
= 0;
1582 static void handle_cont_with_sig(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1584 unsigned long signal
= 0;
1587 * Note: C sig;[addr] is currently unsupported and we simply
1588 * omit the addr parameter
1590 if (gdb_ctx
->num_params
) {
1591 signal
= gdb_ctx
->params
[0].val_ul
;
1594 gdbserver_state
.signal
= gdb_signal_to_target(signal
);
1595 if (gdbserver_state
.signal
== -1) {
1596 gdbserver_state
.signal
= 0;
1601 static void handle_set_thread(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1605 if (gdb_ctx
->num_params
!= 2) {
1610 if (gdb_ctx
->params
[1].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
1615 if (gdb_ctx
->params
[1].thread_id
.kind
!= GDB_ONE_THREAD
) {
1620 cpu
= gdb_get_cpu(gdb_ctx
->params
[1].thread_id
.pid
,
1621 gdb_ctx
->params
[1].thread_id
.tid
);
1628 * Note: This command is deprecated and modern gdb's will be using the
1629 * vCont command instead.
1631 switch (gdb_ctx
->params
[0].opcode
) {
1633 gdbserver_state
.c_cpu
= cpu
;
1637 gdbserver_state
.g_cpu
= cpu
;
1646 static void handle_insert_bp(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1650 if (gdb_ctx
->num_params
!= 3) {
1655 res
= gdb_breakpoint_insert(gdb_ctx
->params
[0].val_ul
,
1656 gdb_ctx
->params
[1].val_ull
,
1657 gdb_ctx
->params
[2].val_ull
);
1661 } else if (res
== -ENOSYS
) {
1669 static void handle_remove_bp(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1673 if (gdb_ctx
->num_params
!= 3) {
1678 res
= gdb_breakpoint_remove(gdb_ctx
->params
[0].val_ul
,
1679 gdb_ctx
->params
[1].val_ull
,
1680 gdb_ctx
->params
[2].val_ull
);
1684 } else if (res
== -ENOSYS
) {
1693 * handle_set/get_reg
1695 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1696 * This works, but can be very slow. Anything new enough to understand
1697 * XML also knows how to use this properly. However to use this we
1698 * need to define a local XML file as well as be talking to a
1699 * reasonably modern gdb. Responding with an empty packet will cause
1700 * the remote gdb to fallback to older methods.
1703 static void handle_set_reg(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1712 if (gdb_ctx
->num_params
!= 2) {
1717 reg_size
= strlen(gdb_ctx
->params
[1].data
) / 2;
1718 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[1].data
, reg_size
);
1719 gdb_write_register(gdbserver_state
.g_cpu
, gdb_ctx
->mem_buf
,
1720 gdb_ctx
->params
[0].val_ull
);
1724 static void handle_get_reg(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1733 if (!gdb_ctx
->num_params
) {
1738 reg_size
= gdb_read_register(gdbserver_state
.g_cpu
, gdb_ctx
->mem_buf
,
1739 gdb_ctx
->params
[0].val_ull
);
1745 memtohex(gdbserver_state
.str_buf
, gdb_ctx
->mem_buf
, reg_size
);
1749 static void handle_write_mem(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1751 if (gdb_ctx
->num_params
!= 3) {
1756 /* hextomem() reads 2*len bytes */
1757 if (gdb_ctx
->params
[1].val_ull
> strlen(gdb_ctx
->params
[2].data
) / 2) {
1762 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[2].data
,
1763 gdb_ctx
->params
[1].val_ull
);
1764 if (target_memory_rw_debug(gdbserver_state
.g_cpu
, gdb_ctx
->params
[0].val_ull
,
1766 gdb_ctx
->params
[1].val_ull
, true)) {
1774 static void handle_read_mem(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1776 if (gdb_ctx
->num_params
!= 2) {
1781 /* memtohex() doubles the required space */
1782 if (gdb_ctx
->params
[1].val_ull
> MAX_PACKET_LENGTH
/ 2) {
1787 if (target_memory_rw_debug(gdbserver_state
.g_cpu
, gdb_ctx
->params
[0].val_ull
,
1789 gdb_ctx
->params
[1].val_ull
, false)) {
1794 memtohex(gdbserver_state
.str_buf
, gdb_ctx
->mem_buf
, gdb_ctx
->params
[1].val_ull
);
1798 static void handle_write_all_regs(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1800 target_ulong addr
, len
;
1804 if (!gdb_ctx
->num_params
) {
1808 cpu_synchronize_state(gdbserver_state
.g_cpu
);
1809 registers
= gdb_ctx
->mem_buf
;
1810 len
= strlen(gdb_ctx
->params
[0].data
) / 2;
1811 hextomem(registers
, gdb_ctx
->params
[0].data
, len
);
1812 for (addr
= 0; addr
< gdbserver_state
.g_cpu
->gdb_num_g_regs
&& len
> 0;
1814 reg_size
= gdb_write_register(gdbserver_state
.g_cpu
, registers
, addr
);
1816 registers
+= reg_size
;
1821 static void handle_read_all_regs(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1823 target_ulong addr
, len
;
1825 cpu_synchronize_state(gdbserver_state
.g_cpu
);
1827 for (addr
= 0; addr
< gdbserver_state
.g_cpu
->gdb_num_g_regs
; addr
++) {
1828 len
+= gdb_read_register(gdbserver_state
.g_cpu
, gdb_ctx
->mem_buf
+ len
,
1832 memtohex(gdbserver_state
.str_buf
, gdb_ctx
->mem_buf
, len
);
1836 static void handle_file_io(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1838 if (gdb_ctx
->num_params
>= 1 && gdbserver_state
.current_syscall_cb
) {
1839 target_ulong ret
, err
;
1841 ret
= (target_ulong
)gdb_ctx
->params
[0].val_ull
;
1842 if (gdb_ctx
->num_params
>= 2) {
1843 err
= (target_ulong
)gdb_ctx
->params
[1].val_ull
;
1847 gdbserver_state
.current_syscall_cb(gdbserver_state
.c_cpu
, ret
, err
);
1848 gdbserver_state
.current_syscall_cb
= NULL
;
1851 if (gdb_ctx
->num_params
>= 3 && gdb_ctx
->params
[2].opcode
== (uint8_t)'C') {
1859 static void handle_step(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1861 if (gdb_ctx
->num_params
) {
1862 gdb_set_cpu_pc((target_ulong
)gdb_ctx
->params
[0].val_ull
);
1865 cpu_single_step(gdbserver_state
.c_cpu
, sstep_flags
);
1869 static void handle_v_cont_query(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1871 put_packet("vCont;c;C;s;S");
1874 static void handle_v_cont(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1878 if (!gdb_ctx
->num_params
) {
1882 res
= gdb_handle_vcont(gdb_ctx
->params
[0].data
);
1883 if ((res
== -EINVAL
) || (res
== -ERANGE
)) {
1890 static void handle_v_attach(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1892 GDBProcess
*process
;
1895 g_string_assign(gdbserver_state
.str_buf
, "E22");
1896 if (!gdb_ctx
->num_params
) {
1900 process
= gdb_get_process(gdb_ctx
->params
[0].val_ul
);
1905 cpu
= get_first_cpu_in_process(process
);
1910 process
->attached
= true;
1911 gdbserver_state
.g_cpu
= cpu
;
1912 gdbserver_state
.c_cpu
= cpu
;
1914 g_string_printf(gdbserver_state
.str_buf
, "T%02xthread:", GDB_SIGNAL_TRAP
);
1915 gdb_append_thread_id(cpu
, gdbserver_state
.str_buf
);
1916 g_string_append_c(gdbserver_state
.str_buf
, ';');
1921 static void handle_v_kill(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1923 /* Kill the target */
1925 error_report("QEMU: Terminated via GDBstub");
1929 static GdbCmdParseEntry gdb_v_commands_table
[] = {
1930 /* Order is important if has same prefix */
1932 .handler
= handle_v_cont_query
,
1937 .handler
= handle_v_cont
,
1939 .cmd_startswith
= 1,
1943 .handler
= handle_v_attach
,
1945 .cmd_startswith
= 1,
1949 .handler
= handle_v_kill
,
1955 static void handle_v_commands(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1957 if (!gdb_ctx
->num_params
) {
1961 if (process_string_cmd(NULL
, gdb_ctx
->params
[0].data
,
1962 gdb_v_commands_table
,
1963 ARRAY_SIZE(gdb_v_commands_table
))) {
1968 static void handle_query_qemu_sstepbits(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1970 g_string_printf(gdbserver_state
.str_buf
, "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1971 SSTEP_ENABLE
, SSTEP_NOIRQ
, SSTEP_NOTIMER
);
1975 static void handle_set_qemu_sstep(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1977 if (!gdb_ctx
->num_params
) {
1981 sstep_flags
= gdb_ctx
->params
[0].val_ul
;
1985 static void handle_query_qemu_sstep(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1987 g_string_printf(gdbserver_state
.str_buf
, "0x%x", sstep_flags
);
1991 static void handle_query_curr_tid(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
1994 GDBProcess
*process
;
1997 * "Current thread" remains vague in the spec, so always return
1998 * the first thread of the current process (gdb returns the
2001 process
= gdb_get_cpu_process(gdbserver_state
.g_cpu
);
2002 cpu
= get_first_cpu_in_process(process
);
2003 g_string_assign(gdbserver_state
.str_buf
, "QC");
2004 gdb_append_thread_id(cpu
, gdbserver_state
.str_buf
);
2008 static void handle_query_threads(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2010 if (!gdbserver_state
.query_cpu
) {
2015 g_string_assign(gdbserver_state
.str_buf
, "m");
2016 gdb_append_thread_id(gdbserver_state
.query_cpu
, gdbserver_state
.str_buf
);
2018 gdbserver_state
.query_cpu
= gdb_next_attached_cpu(gdbserver_state
.query_cpu
);
2021 static void handle_query_first_threads(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2023 gdbserver_state
.query_cpu
= gdb_first_attached_cpu();
2024 handle_query_threads(gdb_ctx
, user_ctx
);
2027 static void handle_query_thread_extra(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2029 g_autoptr(GString
) rs
= g_string_new(NULL
);
2032 if (!gdb_ctx
->num_params
||
2033 gdb_ctx
->params
[0].thread_id
.kind
== GDB_READ_THREAD_ERR
) {
2038 cpu
= gdb_get_cpu(gdb_ctx
->params
[0].thread_id
.pid
,
2039 gdb_ctx
->params
[0].thread_id
.tid
);
2044 cpu_synchronize_state(cpu
);
2046 if (gdbserver_state
.multiprocess
&& (gdbserver_state
.process_num
> 1)) {
2047 /* Print the CPU model and name in multiprocess mode */
2048 ObjectClass
*oc
= object_get_class(OBJECT(cpu
));
2049 const char *cpu_model
= object_class_get_name(oc
);
2050 g_autofree
char *cpu_name
;
2051 cpu_name
= object_get_canonical_path_component(OBJECT(cpu
));
2052 g_string_printf(rs
, "%s %s [%s]", cpu_model
, cpu_name
,
2053 cpu
->halted
? "halted " : "running");
2055 g_string_printf(rs
, "CPU#%d [%s]", cpu
->cpu_index
,
2056 cpu
->halted
? "halted " : "running");
2058 trace_gdbstub_op_extra_info(rs
->str
);
2059 memtohex(gdbserver_state
.str_buf
, (uint8_t *)rs
->str
, rs
->len
);
2063 #ifdef CONFIG_USER_ONLY
2064 static void handle_query_offsets(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2068 ts
= gdbserver_state
.c_cpu
->opaque
;
2069 g_string_printf(gdbserver_state
.str_buf
,
2070 "Text=" TARGET_ABI_FMT_lx
2071 ";Data=" TARGET_ABI_FMT_lx
2072 ";Bss=" TARGET_ABI_FMT_lx
,
2073 ts
->info
->code_offset
,
2074 ts
->info
->data_offset
,
2075 ts
->info
->data_offset
);
2079 static void handle_query_rcmd(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2083 if (!gdb_ctx
->num_params
) {
2088 len
= strlen(gdb_ctx
->params
[0].data
);
2095 hextomem(gdb_ctx
->mem_buf
, gdb_ctx
->params
[0].data
, len
);
2096 gdb_ctx
->mem_buf
[len
++] = 0;
2097 qemu_chr_be_write(gdbserver_state
.mon_chr
, gdb_ctx
->mem_buf
, len
);
2103 static void handle_query_supported(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2107 g_string_printf(gdbserver_state
.str_buf
, "PacketSize=%x", MAX_PACKET_LENGTH
);
2108 cc
= CPU_GET_CLASS(first_cpu
);
2109 if (cc
->gdb_core_xml_file
) {
2110 g_string_append(gdbserver_state
.str_buf
, ";qXfer:features:read+");
2113 if (gdb_ctx
->num_params
&&
2114 strstr(gdb_ctx
->params
[0].data
, "multiprocess+")) {
2115 gdbserver_state
.multiprocess
= true;
2118 g_string_append(gdbserver_state
.str_buf
, ";multiprocess+");
2122 static void handle_query_xfer_features(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2124 GDBProcess
*process
;
2126 unsigned long len
, total_len
, addr
;
2130 if (gdb_ctx
->num_params
< 3) {
2135 process
= gdb_get_cpu_process(gdbserver_state
.g_cpu
);
2136 cc
= CPU_GET_CLASS(gdbserver_state
.g_cpu
);
2137 if (!cc
->gdb_core_xml_file
) {
2143 p
= gdb_ctx
->params
[0].data
;
2144 xml
= get_feature_xml(p
, &p
, process
);
2150 addr
= gdb_ctx
->params
[1].val_ul
;
2151 len
= gdb_ctx
->params
[2].val_ul
;
2152 total_len
= strlen(xml
);
2153 if (addr
> total_len
) {
2158 if (len
> (MAX_PACKET_LENGTH
- 5) / 2) {
2159 len
= (MAX_PACKET_LENGTH
- 5) / 2;
2162 if (len
< total_len
- addr
) {
2163 g_string_assign(gdbserver_state
.str_buf
, "m");
2164 memtox(gdbserver_state
.str_buf
, xml
+ addr
, len
);
2166 g_string_assign(gdbserver_state
.str_buf
, "l");
2167 memtox(gdbserver_state
.str_buf
, xml
+ addr
, total_len
- addr
);
2170 put_packet_binary(gdbserver_state
.str_buf
->str
,
2171 gdbserver_state
.str_buf
->len
, true);
2174 static void handle_query_attached(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2176 put_packet(GDB_ATTACHED
);
2179 static void handle_query_qemu_supported(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2181 g_string_printf(gdbserver_state
.str_buf
, "sstepbits;sstep");
2182 #ifndef CONFIG_USER_ONLY
2183 g_string_append(gdbserver_state
.str_buf
, ";PhyMemMode");
2188 #ifndef CONFIG_USER_ONLY
2189 static void handle_query_qemu_phy_mem_mode(GdbCmdContext
*gdb_ctx
,
2192 g_string_printf(gdbserver_state
.str_buf
, "%d", phy_memory_mode
);
2196 static void handle_set_qemu_phy_mem_mode(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2198 if (!gdb_ctx
->num_params
) {
2203 if (!gdb_ctx
->params
[0].val_ul
) {
2204 phy_memory_mode
= 0;
2206 phy_memory_mode
= 1;
2212 static GdbCmdParseEntry gdb_gen_query_set_common_table
[] = {
2213 /* Order is important if has same prefix */
2215 .handler
= handle_query_qemu_sstepbits
,
2216 .cmd
= "qemu.sstepbits",
2219 .handler
= handle_query_qemu_sstep
,
2220 .cmd
= "qemu.sstep",
2223 .handler
= handle_set_qemu_sstep
,
2224 .cmd
= "qemu.sstep=",
2225 .cmd_startswith
= 1,
2230 static GdbCmdParseEntry gdb_gen_query_table
[] = {
2232 .handler
= handle_query_curr_tid
,
2236 .handler
= handle_query_threads
,
2237 .cmd
= "sThreadInfo",
2240 .handler
= handle_query_first_threads
,
2241 .cmd
= "fThreadInfo",
2244 .handler
= handle_query_thread_extra
,
2245 .cmd
= "ThreadExtraInfo,",
2246 .cmd_startswith
= 1,
2249 #ifdef CONFIG_USER_ONLY
2251 .handler
= handle_query_offsets
,
2256 .handler
= handle_query_rcmd
,
2258 .cmd_startswith
= 1,
2263 .handler
= handle_query_supported
,
2264 .cmd
= "Supported:",
2265 .cmd_startswith
= 1,
2269 .handler
= handle_query_supported
,
2274 .handler
= handle_query_xfer_features
,
2275 .cmd
= "Xfer:features:read:",
2276 .cmd_startswith
= 1,
2280 .handler
= handle_query_attached
,
2285 .handler
= handle_query_attached
,
2289 .handler
= handle_query_qemu_supported
,
2290 .cmd
= "qemu.Supported",
2292 #ifndef CONFIG_USER_ONLY
2294 .handler
= handle_query_qemu_phy_mem_mode
,
2295 .cmd
= "qemu.PhyMemMode",
2300 static GdbCmdParseEntry gdb_gen_set_table
[] = {
2301 /* Order is important if has same prefix */
2303 .handler
= handle_set_qemu_sstep
,
2304 .cmd
= "qemu.sstep:",
2305 .cmd_startswith
= 1,
2308 #ifndef CONFIG_USER_ONLY
2310 .handler
= handle_set_qemu_phy_mem_mode
,
2311 .cmd
= "qemu.PhyMemMode:",
2312 .cmd_startswith
= 1,
2318 static void handle_gen_query(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2320 if (!gdb_ctx
->num_params
) {
2324 if (!process_string_cmd(NULL
, gdb_ctx
->params
[0].data
,
2325 gdb_gen_query_set_common_table
,
2326 ARRAY_SIZE(gdb_gen_query_set_common_table
))) {
2330 if (process_string_cmd(NULL
, gdb_ctx
->params
[0].data
,
2331 gdb_gen_query_table
,
2332 ARRAY_SIZE(gdb_gen_query_table
))) {
2337 static void handle_gen_set(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2339 if (!gdb_ctx
->num_params
) {
2343 if (!process_string_cmd(NULL
, gdb_ctx
->params
[0].data
,
2344 gdb_gen_query_set_common_table
,
2345 ARRAY_SIZE(gdb_gen_query_set_common_table
))) {
2349 if (process_string_cmd(NULL
, gdb_ctx
->params
[0].data
,
2351 ARRAY_SIZE(gdb_gen_set_table
))) {
2356 static void handle_target_halt(GdbCmdContext
*gdb_ctx
, void *user_ctx
)
2358 g_string_printf(gdbserver_state
.str_buf
, "T%02xthread:", GDB_SIGNAL_TRAP
);
2359 gdb_append_thread_id(gdbserver_state
.c_cpu
, gdbserver_state
.str_buf
);
2360 g_string_append_c(gdbserver_state
.str_buf
, ';');
2363 * Remove all the breakpoints when this query is issued,
2364 * because gdb is doing an initial connect and the state
2365 * should be cleaned up.
2367 gdb_breakpoint_remove_all();
2370 static int gdb_handle_packet(const char *line_buf
)
2372 const GdbCmdParseEntry
*cmd_parser
= NULL
;
2374 trace_gdbstub_io_command(line_buf
);
2376 switch (line_buf
[0]) {
2382 static const GdbCmdParseEntry target_halted_cmd_desc
= {
2383 .handler
= handle_target_halt
,
2387 cmd_parser
= &target_halted_cmd_desc
;
2392 static const GdbCmdParseEntry continue_cmd_desc
= {
2393 .handler
= handle_continue
,
2395 .cmd_startswith
= 1,
2398 cmd_parser
= &continue_cmd_desc
;
2403 static const GdbCmdParseEntry cont_with_sig_cmd_desc
= {
2404 .handler
= handle_cont_with_sig
,
2406 .cmd_startswith
= 1,
2409 cmd_parser
= &cont_with_sig_cmd_desc
;
2414 static const GdbCmdParseEntry v_cmd_desc
= {
2415 .handler
= handle_v_commands
,
2417 .cmd_startswith
= 1,
2420 cmd_parser
= &v_cmd_desc
;
2424 /* Kill the target */
2425 error_report("QEMU: Terminated via GDBstub");
2429 static const GdbCmdParseEntry detach_cmd_desc
= {
2430 .handler
= handle_detach
,
2432 .cmd_startswith
= 1,
2435 cmd_parser
= &detach_cmd_desc
;
2440 static const GdbCmdParseEntry step_cmd_desc
= {
2441 .handler
= handle_step
,
2443 .cmd_startswith
= 1,
2446 cmd_parser
= &step_cmd_desc
;
2451 static const GdbCmdParseEntry file_io_cmd_desc
= {
2452 .handler
= handle_file_io
,
2454 .cmd_startswith
= 1,
2457 cmd_parser
= &file_io_cmd_desc
;
2462 static const GdbCmdParseEntry read_all_regs_cmd_desc
= {
2463 .handler
= handle_read_all_regs
,
2467 cmd_parser
= &read_all_regs_cmd_desc
;
2472 static const GdbCmdParseEntry write_all_regs_cmd_desc
= {
2473 .handler
= handle_write_all_regs
,
2475 .cmd_startswith
= 1,
2478 cmd_parser
= &write_all_regs_cmd_desc
;
2483 static const GdbCmdParseEntry read_mem_cmd_desc
= {
2484 .handler
= handle_read_mem
,
2486 .cmd_startswith
= 1,
2489 cmd_parser
= &read_mem_cmd_desc
;
2494 static const GdbCmdParseEntry write_mem_cmd_desc
= {
2495 .handler
= handle_write_mem
,
2497 .cmd_startswith
= 1,
2500 cmd_parser
= &write_mem_cmd_desc
;
2505 static const GdbCmdParseEntry get_reg_cmd_desc
= {
2506 .handler
= handle_get_reg
,
2508 .cmd_startswith
= 1,
2511 cmd_parser
= &get_reg_cmd_desc
;
2516 static const GdbCmdParseEntry set_reg_cmd_desc
= {
2517 .handler
= handle_set_reg
,
2519 .cmd_startswith
= 1,
2522 cmd_parser
= &set_reg_cmd_desc
;
2527 static const GdbCmdParseEntry insert_bp_cmd_desc
= {
2528 .handler
= handle_insert_bp
,
2530 .cmd_startswith
= 1,
2533 cmd_parser
= &insert_bp_cmd_desc
;
2538 static const GdbCmdParseEntry remove_bp_cmd_desc
= {
2539 .handler
= handle_remove_bp
,
2541 .cmd_startswith
= 1,
2544 cmd_parser
= &remove_bp_cmd_desc
;
2549 static const GdbCmdParseEntry set_thread_cmd_desc
= {
2550 .handler
= handle_set_thread
,
2552 .cmd_startswith
= 1,
2555 cmd_parser
= &set_thread_cmd_desc
;
2560 static const GdbCmdParseEntry thread_alive_cmd_desc
= {
2561 .handler
= handle_thread_alive
,
2563 .cmd_startswith
= 1,
2566 cmd_parser
= &thread_alive_cmd_desc
;
2571 static const GdbCmdParseEntry gen_query_cmd_desc
= {
2572 .handler
= handle_gen_query
,
2574 .cmd_startswith
= 1,
2577 cmd_parser
= &gen_query_cmd_desc
;
2582 static const GdbCmdParseEntry gen_set_cmd_desc
= {
2583 .handler
= handle_gen_set
,
2585 .cmd_startswith
= 1,
2588 cmd_parser
= &gen_set_cmd_desc
;
2592 /* put empty packet */
2598 run_cmd_parser(line_buf
, cmd_parser
);
2604 void gdb_set_stop_cpu(CPUState
*cpu
)
2606 GDBProcess
*p
= gdb_get_cpu_process(cpu
);
2610 * Having a stop CPU corresponding to a process that is not attached
2611 * confuses GDB. So we ignore the request.
2616 gdbserver_state
.c_cpu
= cpu
;
2617 gdbserver_state
.g_cpu
= cpu
;
2620 #ifndef CONFIG_USER_ONLY
2621 static void gdb_vm_state_change(void *opaque
, int running
, RunState state
)
2623 CPUState
*cpu
= gdbserver_state
.c_cpu
;
2624 g_autoptr(GString
) buf
= g_string_new(NULL
);
2625 g_autoptr(GString
) tid
= g_string_new(NULL
);
2629 if (running
|| gdbserver_state
.state
== RS_INACTIVE
) {
2632 /* Is there a GDB syscall waiting to be sent? */
2633 if (gdbserver_state
.current_syscall_cb
) {
2634 put_packet(gdbserver_state
.syscall_buf
);
2639 /* No process attached */
2643 gdb_append_thread_id(cpu
, tid
);
2646 case RUN_STATE_DEBUG
:
2647 if (cpu
->watchpoint_hit
) {
2648 switch (cpu
->watchpoint_hit
->flags
& BP_MEM_ACCESS
) {
2659 trace_gdbstub_hit_watchpoint(type
, cpu_gdb_index(cpu
),
2660 (target_ulong
)cpu
->watchpoint_hit
->vaddr
);
2661 g_string_printf(buf
, "T%02xthread:%s;%swatch:" TARGET_FMT_lx
";",
2662 GDB_SIGNAL_TRAP
, tid
->str
, type
,
2663 (target_ulong
)cpu
->watchpoint_hit
->vaddr
);
2664 cpu
->watchpoint_hit
= NULL
;
2667 trace_gdbstub_hit_break();
2670 ret
= GDB_SIGNAL_TRAP
;
2672 case RUN_STATE_PAUSED
:
2673 trace_gdbstub_hit_paused();
2674 ret
= GDB_SIGNAL_INT
;
2676 case RUN_STATE_SHUTDOWN
:
2677 trace_gdbstub_hit_shutdown();
2678 ret
= GDB_SIGNAL_QUIT
;
2680 case RUN_STATE_IO_ERROR
:
2681 trace_gdbstub_hit_io_error();
2682 ret
= GDB_SIGNAL_IO
;
2684 case RUN_STATE_WATCHDOG
:
2685 trace_gdbstub_hit_watchdog();
2686 ret
= GDB_SIGNAL_ALRM
;
2688 case RUN_STATE_INTERNAL_ERROR
:
2689 trace_gdbstub_hit_internal_error();
2690 ret
= GDB_SIGNAL_ABRT
;
2692 case RUN_STATE_SAVE_VM
:
2693 case RUN_STATE_RESTORE_VM
:
2695 case RUN_STATE_FINISH_MIGRATE
:
2696 ret
= GDB_SIGNAL_XCPU
;
2699 trace_gdbstub_hit_unknown(state
);
2700 ret
= GDB_SIGNAL_UNKNOWN
;
2703 gdb_set_stop_cpu(cpu
);
2704 g_string_printf(buf
, "T%02xthread:%s;", ret
, tid
->str
);
2707 put_packet(buf
->str
);
2709 /* disable single step if it was enabled */
2710 cpu_single_step(cpu
, 0);
2714 /* Send a gdb syscall request.
2715 This accepts limited printf-style format specifiers, specifically:
2716 %x - target_ulong argument printed in hex.
2717 %lx - 64-bit argument printed in hex.
2718 %s - string pointer (target_ulong) and length (int) pair. */
2719 void gdb_do_syscallv(gdb_syscall_complete_cb cb
, const char *fmt
, va_list va
)
2726 if (!gdbserver_state
.init
) {
2730 gdbserver_state
.current_syscall_cb
= cb
;
2731 #ifndef CONFIG_USER_ONLY
2732 vm_stop(RUN_STATE_DEBUG
);
2734 p
= &gdbserver_state
.syscall_buf
[0];
2735 p_end
= &gdbserver_state
.syscall_buf
[sizeof(gdbserver_state
.syscall_buf
)];
2742 addr
= va_arg(va
, target_ulong
);
2743 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
, addr
);
2746 if (*(fmt
++) != 'x')
2748 i64
= va_arg(va
, uint64_t);
2749 p
+= snprintf(p
, p_end
- p
, "%" PRIx64
, i64
);
2752 addr
= va_arg(va
, target_ulong
);
2753 p
+= snprintf(p
, p_end
- p
, TARGET_FMT_lx
"/%x",
2754 addr
, va_arg(va
, int));
2758 error_report("gdbstub: Bad syscall format string '%s'",
2767 #ifdef CONFIG_USER_ONLY
2768 put_packet(gdbserver_state
.syscall_buf
);
2769 /* Return control to gdb for it to process the syscall request.
2770 * Since the protocol requires that gdb hands control back to us
2771 * using a "here are the results" F packet, we don't need to check
2772 * gdb_handlesig's return value (which is the signal to deliver if
2773 * execution was resumed via a continue packet).
2775 gdb_handlesig(gdbserver_state
.c_cpu
, 0);
2777 /* In this case wait to send the syscall packet until notification that
2778 the CPU has stopped. This must be done because if the packet is sent
2779 now the reply from the syscall request could be received while the CPU
2780 is still in the running state, which can cause packets to be dropped
2781 and state transition 'T' packets to be sent while the syscall is still
2783 qemu_cpu_kick(gdbserver_state
.c_cpu
);
2787 void gdb_do_syscall(gdb_syscall_complete_cb cb
, const char *fmt
, ...)
2792 gdb_do_syscallv(cb
, fmt
, va
);
2796 static void gdb_read_byte(uint8_t ch
)
2800 #ifndef CONFIG_USER_ONLY
2801 if (gdbserver_state
.last_packet_len
) {
2802 /* Waiting for a response to the last packet. If we see the start
2803 of a new command then abandon the previous response. */
2805 trace_gdbstub_err_got_nack();
2806 put_buffer((uint8_t *)gdbserver_state
.last_packet
, gdbserver_state
.last_packet_len
);
2807 } else if (ch
== '+') {
2808 trace_gdbstub_io_got_ack();
2810 trace_gdbstub_io_got_unexpected(ch
);
2813 if (ch
== '+' || ch
== '$')
2814 gdbserver_state
.last_packet_len
= 0;
2818 if (runstate_is_running()) {
2819 /* when the CPU is running, we cannot do anything except stop
2820 it when receiving a char */
2821 vm_stop(RUN_STATE_PAUSED
);
2825 switch(gdbserver_state
.state
) {
2828 /* start of command packet */
2829 gdbserver_state
.line_buf_index
= 0;
2830 gdbserver_state
.line_sum
= 0;
2831 gdbserver_state
.state
= RS_GETLINE
;
2833 trace_gdbstub_err_garbage(ch
);
2838 /* start escape sequence */
2839 gdbserver_state
.state
= RS_GETLINE_ESC
;
2840 gdbserver_state
.line_sum
+= ch
;
2841 } else if (ch
== '*') {
2842 /* start run length encoding sequence */
2843 gdbserver_state
.state
= RS_GETLINE_RLE
;
2844 gdbserver_state
.line_sum
+= ch
;
2845 } else if (ch
== '#') {
2846 /* end of command, start of checksum*/
2847 gdbserver_state
.state
= RS_CHKSUM1
;
2848 } else if (gdbserver_state
.line_buf_index
>= sizeof(gdbserver_state
.line_buf
) - 1) {
2849 trace_gdbstub_err_overrun();
2850 gdbserver_state
.state
= RS_IDLE
;
2852 /* unescaped command character */
2853 gdbserver_state
.line_buf
[gdbserver_state
.line_buf_index
++] = ch
;
2854 gdbserver_state
.line_sum
+= ch
;
2857 case RS_GETLINE_ESC
:
2859 /* unexpected end of command in escape sequence */
2860 gdbserver_state
.state
= RS_CHKSUM1
;
2861 } else if (gdbserver_state
.line_buf_index
>= sizeof(gdbserver_state
.line_buf
) - 1) {
2862 /* command buffer overrun */
2863 trace_gdbstub_err_overrun();
2864 gdbserver_state
.state
= RS_IDLE
;
2866 /* parse escaped character and leave escape state */
2867 gdbserver_state
.line_buf
[gdbserver_state
.line_buf_index
++] = ch
^ 0x20;
2868 gdbserver_state
.line_sum
+= ch
;
2869 gdbserver_state
.state
= RS_GETLINE
;
2872 case RS_GETLINE_RLE
:
2874 * Run-length encoding is explained in "Debugging with GDB /
2875 * Appendix E GDB Remote Serial Protocol / Overview".
2877 if (ch
< ' ' || ch
== '#' || ch
== '$' || ch
> 126) {
2878 /* invalid RLE count encoding */
2879 trace_gdbstub_err_invalid_repeat(ch
);
2880 gdbserver_state
.state
= RS_GETLINE
;
2882 /* decode repeat length */
2883 int repeat
= ch
- ' ' + 3;
2884 if (gdbserver_state
.line_buf_index
+ repeat
>= sizeof(gdbserver_state
.line_buf
) - 1) {
2885 /* that many repeats would overrun the command buffer */
2886 trace_gdbstub_err_overrun();
2887 gdbserver_state
.state
= RS_IDLE
;
2888 } else if (gdbserver_state
.line_buf_index
< 1) {
2889 /* got a repeat but we have nothing to repeat */
2890 trace_gdbstub_err_invalid_rle();
2891 gdbserver_state
.state
= RS_GETLINE
;
2893 /* repeat the last character */
2894 memset(gdbserver_state
.line_buf
+ gdbserver_state
.line_buf_index
,
2895 gdbserver_state
.line_buf
[gdbserver_state
.line_buf_index
- 1], repeat
);
2896 gdbserver_state
.line_buf_index
+= repeat
;
2897 gdbserver_state
.line_sum
+= ch
;
2898 gdbserver_state
.state
= RS_GETLINE
;
2903 /* get high hex digit of checksum */
2904 if (!isxdigit(ch
)) {
2905 trace_gdbstub_err_checksum_invalid(ch
);
2906 gdbserver_state
.state
= RS_GETLINE
;
2909 gdbserver_state
.line_buf
[gdbserver_state
.line_buf_index
] = '\0';
2910 gdbserver_state
.line_csum
= fromhex(ch
) << 4;
2911 gdbserver_state
.state
= RS_CHKSUM2
;
2914 /* get low hex digit of checksum */
2915 if (!isxdigit(ch
)) {
2916 trace_gdbstub_err_checksum_invalid(ch
);
2917 gdbserver_state
.state
= RS_GETLINE
;
2920 gdbserver_state
.line_csum
|= fromhex(ch
);
2922 if (gdbserver_state
.line_csum
!= (gdbserver_state
.line_sum
& 0xff)) {
2923 trace_gdbstub_err_checksum_incorrect(gdbserver_state
.line_sum
, gdbserver_state
.line_csum
);
2924 /* send NAK reply */
2926 put_buffer(&reply
, 1);
2927 gdbserver_state
.state
= RS_IDLE
;
2929 /* send ACK reply */
2931 put_buffer(&reply
, 1);
2932 gdbserver_state
.state
= gdb_handle_packet(gdbserver_state
.line_buf
);
2941 /* Tell the remote gdb that the process has exited. */
2942 void gdb_exit(CPUArchState
*env
, int code
)
2946 if (!gdbserver_state
.init
) {
2949 #ifdef CONFIG_USER_ONLY
2950 if (gdbserver_fd
< 0 || gdbserver_state
.fd
< 0) {
2955 trace_gdbstub_op_exiting((uint8_t)code
);
2957 snprintf(buf
, sizeof(buf
), "W%02x", (uint8_t)code
);
2960 #ifndef CONFIG_USER_ONLY
2961 qemu_chr_fe_deinit(&gdbserver_state
.chr
, true);
2966 * Create the process that will contain all the "orphan" CPUs (that are not
2967 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2968 * be attachable and thus will be invisible to the user.
2970 static void create_default_process(GDBState
*s
)
2972 GDBProcess
*process
;
2975 if (gdbserver_state
.process_num
) {
2976 max_pid
= s
->processes
[s
->process_num
- 1].pid
;
2979 s
->processes
= g_renew(GDBProcess
, s
->processes
, ++s
->process_num
);
2980 process
= &s
->processes
[s
->process_num
- 1];
2982 /* We need an available PID slot for this process */
2983 assert(max_pid
< UINT32_MAX
);
2985 process
->pid
= max_pid
+ 1;
2986 process
->attached
= false;
2987 process
->target_xml
[0] = '\0';
2990 #ifdef CONFIG_USER_ONLY
2992 gdb_handlesig(CPUState
*cpu
, int sig
)
2997 if (gdbserver_fd
< 0 || gdbserver_state
.fd
< 0) {
3001 /* disable single step if it was enabled */
3002 cpu_single_step(cpu
, 0);
3006 snprintf(buf
, sizeof(buf
), "S%02x", target_signal_to_gdb(sig
));
3009 /* put_packet() might have detected that the peer terminated the
3011 if (gdbserver_state
.fd
< 0) {
3016 gdbserver_state
.state
= RS_IDLE
;
3017 gdbserver_state
.running_state
= 0;
3018 while (gdbserver_state
.running_state
== 0) {
3019 n
= read(gdbserver_state
.fd
, buf
, 256);
3023 for (i
= 0; i
< n
; i
++) {
3024 gdb_read_byte(buf
[i
]);
3027 /* XXX: Connection closed. Should probably wait for another
3028 connection before continuing. */
3030 close(gdbserver_state
.fd
);
3032 gdbserver_state
.fd
= -1;
3036 sig
= gdbserver_state
.signal
;
3037 gdbserver_state
.signal
= 0;
3041 /* Tell the remote gdb that the process has exited due to SIG. */
3042 void gdb_signalled(CPUArchState
*env
, int sig
)
3046 if (gdbserver_fd
< 0 || gdbserver_state
.fd
< 0) {
3050 snprintf(buf
, sizeof(buf
), "X%02x", target_signal_to_gdb(sig
));
3054 static bool gdb_accept(void)
3056 struct sockaddr_in sockaddr
;
3061 len
= sizeof(sockaddr
);
3062 fd
= accept(gdbserver_fd
, (struct sockaddr
*)&sockaddr
, &len
);
3063 if (fd
< 0 && errno
!= EINTR
) {
3066 } else if (fd
>= 0) {
3067 qemu_set_cloexec(fd
);
3072 /* set short latency */
3073 if (socket_set_nodelay(fd
)) {
3074 perror("setsockopt");
3079 init_gdbserver_state();
3080 create_default_process(&gdbserver_state
);
3081 gdbserver_state
.processes
[0].attached
= true;
3082 gdbserver_state
.c_cpu
= gdb_first_attached_cpu();
3083 gdbserver_state
.g_cpu
= gdbserver_state
.c_cpu
;
3084 gdbserver_state
.fd
= fd
;
3085 gdb_has_xml
= false;
3089 static int gdbserver_open(int port
)
3091 struct sockaddr_in sockaddr
;
3094 fd
= socket(PF_INET
, SOCK_STREAM
, 0);
3099 qemu_set_cloexec(fd
);
3101 socket_set_fast_reuse(fd
);
3103 sockaddr
.sin_family
= AF_INET
;
3104 sockaddr
.sin_port
= htons(port
);
3105 sockaddr
.sin_addr
.s_addr
= 0;
3106 ret
= bind(fd
, (struct sockaddr
*)&sockaddr
, sizeof(sockaddr
));
3112 ret
= listen(fd
, 1);
3121 int gdbserver_start(int port
)
3123 gdbserver_fd
= gdbserver_open(port
);
3124 if (gdbserver_fd
< 0)
3126 /* accept connections */
3127 if (!gdb_accept()) {
3128 close(gdbserver_fd
);
3135 /* Disable gdb stub for child processes. */
3136 void gdbserver_fork(CPUState
*cpu
)
3138 if (gdbserver_fd
< 0 || gdbserver_state
.fd
< 0) {
3141 close(gdbserver_state
.fd
);
3142 gdbserver_state
.fd
= -1;
3143 cpu_breakpoint_remove_all(cpu
, BP_GDB
);
3144 cpu_watchpoint_remove_all(cpu
, BP_GDB
);
3147 static int gdb_chr_can_receive(void *opaque
)
3149 /* We can handle an arbitrarily large amount of data.
3150 Pick the maximum packet size, which is as good as anything. */
3151 return MAX_PACKET_LENGTH
;
3154 static void gdb_chr_receive(void *opaque
, const uint8_t *buf
, int size
)
3158 for (i
= 0; i
< size
; i
++) {
3159 gdb_read_byte(buf
[i
]);
3163 static void gdb_chr_event(void *opaque
, QEMUChrEvent event
)
3166 GDBState
*s
= (GDBState
*) opaque
;
3169 case CHR_EVENT_OPENED
:
3170 /* Start with first process attached, others detached */
3171 for (i
= 0; i
< s
->process_num
; i
++) {
3172 s
->processes
[i
].attached
= !i
;
3175 s
->c_cpu
= gdb_first_attached_cpu();
3176 s
->g_cpu
= s
->c_cpu
;
3178 vm_stop(RUN_STATE_PAUSED
);
3179 gdb_has_xml
= false;
3186 static void gdb_monitor_output(const char *msg
, int len
)
3188 g_autoptr(GString
) buf
= g_string_new("O");
3189 memtohex(buf
, (uint8_t *)msg
, len
);
3190 put_packet(buf
->str
);
3193 static int gdb_monitor_write(Chardev
*chr
, const uint8_t *buf
, int len
)
3195 const char *p
= (const char *)buf
;
3198 max_sz
= (sizeof(gdbserver_state
.last_packet
) - 2) / 2;
3200 if (len
<= max_sz
) {
3201 gdb_monitor_output(p
, len
);
3204 gdb_monitor_output(p
, max_sz
);
3212 static void gdb_sigterm_handler(int signal
)
3214 if (runstate_is_running()) {
3215 vm_stop(RUN_STATE_PAUSED
);
3220 static void gdb_monitor_open(Chardev
*chr
, ChardevBackend
*backend
,
3221 bool *be_opened
, Error
**errp
)
3226 static void char_gdb_class_init(ObjectClass
*oc
, void *data
)
3228 ChardevClass
*cc
= CHARDEV_CLASS(oc
);
3230 cc
->internal
= true;
3231 cc
->open
= gdb_monitor_open
;
3232 cc
->chr_write
= gdb_monitor_write
;
3235 #define TYPE_CHARDEV_GDB "chardev-gdb"
3237 static const TypeInfo char_gdb_type_info
= {
3238 .name
= TYPE_CHARDEV_GDB
,
3239 .parent
= TYPE_CHARDEV
,
3240 .class_init
= char_gdb_class_init
,
3243 static int find_cpu_clusters(Object
*child
, void *opaque
)
3245 if (object_dynamic_cast(child
, TYPE_CPU_CLUSTER
)) {
3246 GDBState
*s
= (GDBState
*) opaque
;
3247 CPUClusterState
*cluster
= CPU_CLUSTER(child
);
3248 GDBProcess
*process
;
3250 s
->processes
= g_renew(GDBProcess
, s
->processes
, ++s
->process_num
);
3252 process
= &s
->processes
[s
->process_num
- 1];
3255 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3256 * runtime, we enforce here that the machine does not use a cluster ID
3257 * that would lead to PID 0.
3259 assert(cluster
->cluster_id
!= UINT32_MAX
);
3260 process
->pid
= cluster
->cluster_id
+ 1;
3261 process
->attached
= false;
3262 process
->target_xml
[0] = '\0';
3267 return object_child_foreach(child
, find_cpu_clusters
, opaque
);
3270 static int pid_order(const void *a
, const void *b
)
3272 GDBProcess
*pa
= (GDBProcess
*) a
;
3273 GDBProcess
*pb
= (GDBProcess
*) b
;
3275 if (pa
->pid
< pb
->pid
) {
3277 } else if (pa
->pid
> pb
->pid
) {
3284 static void create_processes(GDBState
*s
)
3286 object_child_foreach(object_get_root(), find_cpu_clusters
, s
);
3288 if (gdbserver_state
.processes
) {
3290 qsort(gdbserver_state
.processes
, gdbserver_state
.process_num
, sizeof(gdbserver_state
.processes
[0]), pid_order
);
3293 create_default_process(s
);
3296 int gdbserver_start(const char *device
)
3298 trace_gdbstub_op_start(device
);
3300 char gdbstub_device_name
[128];
3301 Chardev
*chr
= NULL
;
3305 error_report("gdbstub: meaningless to attach gdb to a "
3306 "machine without any CPU.");
3312 if (strcmp(device
, "none") != 0) {
3313 if (strstart(device
, "tcp:", NULL
)) {
3314 /* enforce required TCP attributes */
3315 snprintf(gdbstub_device_name
, sizeof(gdbstub_device_name
),
3316 "%s,nowait,nodelay,server", device
);
3317 device
= gdbstub_device_name
;
3320 else if (strcmp(device
, "stdio") == 0) {
3321 struct sigaction act
;
3323 memset(&act
, 0, sizeof(act
));
3324 act
.sa_handler
= gdb_sigterm_handler
;
3325 sigaction(SIGINT
, &act
, NULL
);
3329 * FIXME: it's a bit weird to allow using a mux chardev here
3330 * and implicitly setup a monitor. We may want to break this.
3332 chr
= qemu_chr_new_noreplay("gdb", device
, true, NULL
);
3337 if (!gdbserver_state
.init
) {
3338 init_gdbserver_state();
3340 qemu_add_vm_change_state_handler(gdb_vm_state_change
, NULL
);
3342 /* Initialize a monitor terminal for gdb */
3343 mon_chr
= qemu_chardev_new(NULL
, TYPE_CHARDEV_GDB
,
3344 NULL
, NULL
, &error_abort
);
3345 monitor_init_hmp(mon_chr
, false, &error_abort
);
3347 qemu_chr_fe_deinit(&gdbserver_state
.chr
, true);
3348 mon_chr
= gdbserver_state
.mon_chr
;
3349 reset_gdbserver_state();
3352 create_processes(&gdbserver_state
);
3355 qemu_chr_fe_init(&gdbserver_state
.chr
, chr
, &error_abort
);
3356 qemu_chr_fe_set_handlers(&gdbserver_state
.chr
, gdb_chr_can_receive
,
3357 gdb_chr_receive
, gdb_chr_event
,
3358 NULL
, &gdbserver_state
, NULL
, true);
3360 gdbserver_state
.state
= chr
? RS_IDLE
: RS_INACTIVE
;
3361 gdbserver_state
.mon_chr
= mon_chr
;
3362 gdbserver_state
.current_syscall_cb
= NULL
;
3367 void gdbserver_cleanup(void)
3369 if (gdbserver_state
.init
) {
3374 static void register_types(void)
3376 type_register_static(&char_gdb_type_info
);
3379 type_init(register_types
);