migration/postcopy: PostcopyState is already set in loadvm_postcopy_handle_advise()
[qemu/ar7.git] / gdbstub.c
blobb470aec8eaecc31aebc52ce891bb8ba36f0c03ce
1 /*
2 * gdb server stub
4 * This implements a subset of the remote protocol as described in:
6 * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html
8 * Copyright (c) 2003-2005 Fabrice Bellard
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 * SPDX-License-Identifier: LGPL-2.0+
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qapi/error.h"
29 #include "qemu/error-report.h"
30 #include "qemu/ctype.h"
31 #include "qemu/cutils.h"
32 #include "qemu/module.h"
33 #include "trace-root.h"
34 #ifdef CONFIG_USER_ONLY
35 #include "qemu.h"
36 #else
37 #include "monitor/monitor.h"
38 #include "chardev/char.h"
39 #include "chardev/char-fe.h"
40 #include "sysemu/sysemu.h"
41 #include "exec/gdbstub.h"
42 #include "hw/cpu/cluster.h"
43 #include "hw/boards.h"
44 #endif
46 #define MAX_PACKET_LENGTH 4096
48 #include "qemu/sockets.h"
49 #include "sysemu/hw_accel.h"
50 #include "sysemu/kvm.h"
51 #include "hw/semihosting/semihost.h"
52 #include "exec/exec-all.h"
54 #ifdef CONFIG_USER_ONLY
55 #define GDB_ATTACHED "0"
56 #else
57 #define GDB_ATTACHED "1"
58 #endif
60 #ifndef CONFIG_USER_ONLY
61 static int phy_memory_mode;
62 #endif
64 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
65 uint8_t *buf, int len, bool is_write)
67 CPUClass *cc;
69 #ifndef CONFIG_USER_ONLY
70 if (phy_memory_mode) {
71 if (is_write) {
72 cpu_physical_memory_write(addr, buf, len);
73 } else {
74 cpu_physical_memory_read(addr, buf, len);
76 return 0;
78 #endif
80 cc = CPU_GET_CLASS(cpu);
81 if (cc->memory_rw_debug) {
82 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
84 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
87 /* Return the GDB index for a given vCPU state.
89 * For user mode this is simply the thread id. In system mode GDB
90 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
92 static inline int cpu_gdb_index(CPUState *cpu)
94 #if defined(CONFIG_USER_ONLY)
95 TaskState *ts = (TaskState *) cpu->opaque;
96 return ts->ts_tid;
97 #else
98 return cpu->cpu_index + 1;
99 #endif
102 enum {
103 GDB_SIGNAL_0 = 0,
104 GDB_SIGNAL_INT = 2,
105 GDB_SIGNAL_QUIT = 3,
106 GDB_SIGNAL_TRAP = 5,
107 GDB_SIGNAL_ABRT = 6,
108 GDB_SIGNAL_ALRM = 14,
109 GDB_SIGNAL_IO = 23,
110 GDB_SIGNAL_XCPU = 24,
111 GDB_SIGNAL_UNKNOWN = 143
114 #ifdef CONFIG_USER_ONLY
116 /* Map target signal numbers to GDB protocol signal numbers and vice
117 * versa. For user emulation's currently supported systems, we can
118 * assume most signals are defined.
121 static int gdb_signal_table[] = {
123 TARGET_SIGHUP,
124 TARGET_SIGINT,
125 TARGET_SIGQUIT,
126 TARGET_SIGILL,
127 TARGET_SIGTRAP,
128 TARGET_SIGABRT,
129 -1, /* SIGEMT */
130 TARGET_SIGFPE,
131 TARGET_SIGKILL,
132 TARGET_SIGBUS,
133 TARGET_SIGSEGV,
134 TARGET_SIGSYS,
135 TARGET_SIGPIPE,
136 TARGET_SIGALRM,
137 TARGET_SIGTERM,
138 TARGET_SIGURG,
139 TARGET_SIGSTOP,
140 TARGET_SIGTSTP,
141 TARGET_SIGCONT,
142 TARGET_SIGCHLD,
143 TARGET_SIGTTIN,
144 TARGET_SIGTTOU,
145 TARGET_SIGIO,
146 TARGET_SIGXCPU,
147 TARGET_SIGXFSZ,
148 TARGET_SIGVTALRM,
149 TARGET_SIGPROF,
150 TARGET_SIGWINCH,
151 -1, /* SIGLOST */
152 TARGET_SIGUSR1,
153 TARGET_SIGUSR2,
154 #ifdef TARGET_SIGPWR
155 TARGET_SIGPWR,
156 #else
158 #endif
159 -1, /* SIGPOLL */
171 #ifdef __SIGRTMIN
172 __SIGRTMIN + 1,
173 __SIGRTMIN + 2,
174 __SIGRTMIN + 3,
175 __SIGRTMIN + 4,
176 __SIGRTMIN + 5,
177 __SIGRTMIN + 6,
178 __SIGRTMIN + 7,
179 __SIGRTMIN + 8,
180 __SIGRTMIN + 9,
181 __SIGRTMIN + 10,
182 __SIGRTMIN + 11,
183 __SIGRTMIN + 12,
184 __SIGRTMIN + 13,
185 __SIGRTMIN + 14,
186 __SIGRTMIN + 15,
187 __SIGRTMIN + 16,
188 __SIGRTMIN + 17,
189 __SIGRTMIN + 18,
190 __SIGRTMIN + 19,
191 __SIGRTMIN + 20,
192 __SIGRTMIN + 21,
193 __SIGRTMIN + 22,
194 __SIGRTMIN + 23,
195 __SIGRTMIN + 24,
196 __SIGRTMIN + 25,
197 __SIGRTMIN + 26,
198 __SIGRTMIN + 27,
199 __SIGRTMIN + 28,
200 __SIGRTMIN + 29,
201 __SIGRTMIN + 30,
202 __SIGRTMIN + 31,
203 -1, /* SIGCANCEL */
204 __SIGRTMIN,
205 __SIGRTMIN + 32,
206 __SIGRTMIN + 33,
207 __SIGRTMIN + 34,
208 __SIGRTMIN + 35,
209 __SIGRTMIN + 36,
210 __SIGRTMIN + 37,
211 __SIGRTMIN + 38,
212 __SIGRTMIN + 39,
213 __SIGRTMIN + 40,
214 __SIGRTMIN + 41,
215 __SIGRTMIN + 42,
216 __SIGRTMIN + 43,
217 __SIGRTMIN + 44,
218 __SIGRTMIN + 45,
219 __SIGRTMIN + 46,
220 __SIGRTMIN + 47,
221 __SIGRTMIN + 48,
222 __SIGRTMIN + 49,
223 __SIGRTMIN + 50,
224 __SIGRTMIN + 51,
225 __SIGRTMIN + 52,
226 __SIGRTMIN + 53,
227 __SIGRTMIN + 54,
228 __SIGRTMIN + 55,
229 __SIGRTMIN + 56,
230 __SIGRTMIN + 57,
231 __SIGRTMIN + 58,
232 __SIGRTMIN + 59,
233 __SIGRTMIN + 60,
234 __SIGRTMIN + 61,
235 __SIGRTMIN + 62,
236 __SIGRTMIN + 63,
237 __SIGRTMIN + 64,
238 __SIGRTMIN + 65,
239 __SIGRTMIN + 66,
240 __SIGRTMIN + 67,
241 __SIGRTMIN + 68,
242 __SIGRTMIN + 69,
243 __SIGRTMIN + 70,
244 __SIGRTMIN + 71,
245 __SIGRTMIN + 72,
246 __SIGRTMIN + 73,
247 __SIGRTMIN + 74,
248 __SIGRTMIN + 75,
249 __SIGRTMIN + 76,
250 __SIGRTMIN + 77,
251 __SIGRTMIN + 78,
252 __SIGRTMIN + 79,
253 __SIGRTMIN + 80,
254 __SIGRTMIN + 81,
255 __SIGRTMIN + 82,
256 __SIGRTMIN + 83,
257 __SIGRTMIN + 84,
258 __SIGRTMIN + 85,
259 __SIGRTMIN + 86,
260 __SIGRTMIN + 87,
261 __SIGRTMIN + 88,
262 __SIGRTMIN + 89,
263 __SIGRTMIN + 90,
264 __SIGRTMIN + 91,
265 __SIGRTMIN + 92,
266 __SIGRTMIN + 93,
267 __SIGRTMIN + 94,
268 __SIGRTMIN + 95,
269 -1, /* SIGINFO */
270 -1, /* UNKNOWN */
271 -1, /* DEFAULT */
278 #endif
280 #else
281 /* In system mode we only need SIGINT and SIGTRAP; other signals
282 are not yet supported. */
284 enum {
285 TARGET_SIGINT = 2,
286 TARGET_SIGTRAP = 5
289 static int gdb_signal_table[] = {
292 TARGET_SIGINT,
295 TARGET_SIGTRAP
297 #endif
299 #ifdef CONFIG_USER_ONLY
300 static int target_signal_to_gdb (int sig)
302 int i;
303 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
304 if (gdb_signal_table[i] == sig)
305 return i;
306 return GDB_SIGNAL_UNKNOWN;
308 #endif
310 static int gdb_signal_to_target (int sig)
312 if (sig < ARRAY_SIZE (gdb_signal_table))
313 return gdb_signal_table[sig];
314 else
315 return -1;
318 typedef struct GDBRegisterState {
319 int base_reg;
320 int num_regs;
321 gdb_reg_cb get_reg;
322 gdb_reg_cb set_reg;
323 const char *xml;
324 struct GDBRegisterState *next;
325 } GDBRegisterState;
327 typedef struct GDBProcess {
328 uint32_t pid;
329 bool attached;
331 char target_xml[1024];
332 } GDBProcess;
334 enum RSState {
335 RS_INACTIVE,
336 RS_IDLE,
337 RS_GETLINE,
338 RS_GETLINE_ESC,
339 RS_GETLINE_RLE,
340 RS_CHKSUM1,
341 RS_CHKSUM2,
343 typedef struct GDBState {
344 CPUState *c_cpu; /* current CPU for step/continue ops */
345 CPUState *g_cpu; /* current CPU for other ops */
346 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
347 enum RSState state; /* parsing state */
348 char line_buf[MAX_PACKET_LENGTH];
349 int line_buf_index;
350 int line_sum; /* running checksum */
351 int line_csum; /* checksum at the end of the packet */
352 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
353 int last_packet_len;
354 int signal;
355 #ifdef CONFIG_USER_ONLY
356 int fd;
357 int running_state;
358 #else
359 CharBackend chr;
360 Chardev *mon_chr;
361 #endif
362 bool multiprocess;
363 GDBProcess *processes;
364 int process_num;
365 char syscall_buf[256];
366 gdb_syscall_complete_cb current_syscall_cb;
367 } GDBState;
369 /* By default use no IRQs and no timers while single stepping so as to
370 * make single stepping like an ICE HW step.
372 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
374 static GDBState *gdbserver_state;
376 bool gdb_has_xml;
378 #ifdef CONFIG_USER_ONLY
379 /* XXX: This is not thread safe. Do we care? */
380 static int gdbserver_fd = -1;
382 static int get_char(GDBState *s)
384 uint8_t ch;
385 int ret;
387 for(;;) {
388 ret = qemu_recv(s->fd, &ch, 1, 0);
389 if (ret < 0) {
390 if (errno == ECONNRESET)
391 s->fd = -1;
392 if (errno != EINTR)
393 return -1;
394 } else if (ret == 0) {
395 close(s->fd);
396 s->fd = -1;
397 return -1;
398 } else {
399 break;
402 return ch;
404 #endif
406 static enum {
407 GDB_SYS_UNKNOWN,
408 GDB_SYS_ENABLED,
409 GDB_SYS_DISABLED,
410 } gdb_syscall_mode;
412 /* Decide if either remote gdb syscalls or native file IO should be used. */
413 int use_gdb_syscalls(void)
415 SemihostingTarget target = semihosting_get_target();
416 if (target == SEMIHOSTING_TARGET_NATIVE) {
417 /* -semihosting-config target=native */
418 return false;
419 } else if (target == SEMIHOSTING_TARGET_GDB) {
420 /* -semihosting-config target=gdb */
421 return true;
424 /* -semihosting-config target=auto */
425 /* On the first call check if gdb is connected and remember. */
426 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
427 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
428 : GDB_SYS_DISABLED);
430 return gdb_syscall_mode == GDB_SYS_ENABLED;
433 /* Resume execution. */
434 static inline void gdb_continue(GDBState *s)
437 #ifdef CONFIG_USER_ONLY
438 s->running_state = 1;
439 trace_gdbstub_op_continue();
440 #else
441 if (!runstate_needs_reset()) {
442 trace_gdbstub_op_continue();
443 vm_start();
445 #endif
449 * Resume execution, per CPU actions. For user-mode emulation it's
450 * equivalent to gdb_continue.
452 static int gdb_continue_partial(GDBState *s, char *newstates)
454 CPUState *cpu;
455 int res = 0;
456 #ifdef CONFIG_USER_ONLY
458 * This is not exactly accurate, but it's an improvement compared to the
459 * previous situation, where only one CPU would be single-stepped.
461 CPU_FOREACH(cpu) {
462 if (newstates[cpu->cpu_index] == 's') {
463 trace_gdbstub_op_stepping(cpu->cpu_index);
464 cpu_single_step(cpu, sstep_flags);
467 s->running_state = 1;
468 #else
469 int flag = 0;
471 if (!runstate_needs_reset()) {
472 if (vm_prepare_start()) {
473 return 0;
476 CPU_FOREACH(cpu) {
477 switch (newstates[cpu->cpu_index]) {
478 case 0:
479 case 1:
480 break; /* nothing to do here */
481 case 's':
482 trace_gdbstub_op_stepping(cpu->cpu_index);
483 cpu_single_step(cpu, sstep_flags);
484 cpu_resume(cpu);
485 flag = 1;
486 break;
487 case 'c':
488 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
489 cpu_resume(cpu);
490 flag = 1;
491 break;
492 default:
493 res = -1;
494 break;
498 if (flag) {
499 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
501 #endif
502 return res;
505 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
507 #ifdef CONFIG_USER_ONLY
508 int ret;
510 while (len > 0) {
511 ret = send(s->fd, buf, len, 0);
512 if (ret < 0) {
513 if (errno != EINTR)
514 return;
515 } else {
516 buf += ret;
517 len -= ret;
520 #else
521 /* XXX this blocks entire thread. Rewrite to use
522 * qemu_chr_fe_write and background I/O callbacks */
523 qemu_chr_fe_write_all(&s->chr, buf, len);
524 #endif
527 static inline int fromhex(int v)
529 if (v >= '0' && v <= '9')
530 return v - '0';
531 else if (v >= 'A' && v <= 'F')
532 return v - 'A' + 10;
533 else if (v >= 'a' && v <= 'f')
534 return v - 'a' + 10;
535 else
536 return 0;
539 static inline int tohex(int v)
541 if (v < 10)
542 return v + '0';
543 else
544 return v - 10 + 'a';
547 /* writes 2*len+1 bytes in buf */
548 static void memtohex(char *buf, const uint8_t *mem, int len)
550 int i, c;
551 char *q;
552 q = buf;
553 for(i = 0; i < len; i++) {
554 c = mem[i];
555 *q++ = tohex(c >> 4);
556 *q++ = tohex(c & 0xf);
558 *q = '\0';
561 static void hextomem(uint8_t *mem, const char *buf, int len)
563 int i;
565 for(i = 0; i < len; i++) {
566 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
567 buf += 2;
571 static void hexdump(const char *buf, int len,
572 void (*trace_fn)(size_t ofs, char const *text))
574 char line_buffer[3 * 16 + 4 + 16 + 1];
576 size_t i;
577 for (i = 0; i < len || (i & 0xF); ++i) {
578 size_t byte_ofs = i & 15;
580 if (byte_ofs == 0) {
581 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
582 line_buffer[3 * 16 + 4 + 16] = 0;
585 size_t col_group = (i >> 2) & 3;
586 size_t hex_col = byte_ofs * 3 + col_group;
587 size_t txt_col = 3 * 16 + 4 + byte_ofs;
589 if (i < len) {
590 char value = buf[i];
592 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
593 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
594 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
595 ? value
596 : '.';
599 if (byte_ofs == 0xF)
600 trace_fn(i & -16, line_buffer);
604 /* return -1 if error, 0 if OK */
605 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
607 int csum, i;
608 uint8_t *p;
610 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
611 hexdump(buf, len, trace_gdbstub_io_binaryreply);
614 for(;;) {
615 p = s->last_packet;
616 *(p++) = '$';
617 memcpy(p, buf, len);
618 p += len;
619 csum = 0;
620 for(i = 0; i < len; i++) {
621 csum += buf[i];
623 *(p++) = '#';
624 *(p++) = tohex((csum >> 4) & 0xf);
625 *(p++) = tohex((csum) & 0xf);
627 s->last_packet_len = p - s->last_packet;
628 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
630 #ifdef CONFIG_USER_ONLY
631 i = get_char(s);
632 if (i < 0)
633 return -1;
634 if (i == '+')
635 break;
636 #else
637 break;
638 #endif
640 return 0;
643 /* return -1 if error, 0 if OK */
644 static int put_packet(GDBState *s, const char *buf)
646 trace_gdbstub_io_reply(buf);
648 return put_packet_binary(s, buf, strlen(buf), false);
651 /* Encode data using the encoding for 'x' packets. */
652 static int memtox(char *buf, const char *mem, int len)
654 char *p = buf;
655 char c;
657 while (len--) {
658 c = *(mem++);
659 switch (c) {
660 case '#': case '$': case '*': case '}':
661 *(p++) = '}';
662 *(p++) = c ^ 0x20;
663 break;
664 default:
665 *(p++) = c;
666 break;
669 return p - buf;
672 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
674 /* TODO: In user mode, we should use the task state PID */
675 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
676 /* Return the default process' PID */
677 return s->processes[s->process_num - 1].pid;
679 return cpu->cluster_index + 1;
682 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
684 int i;
686 if (!pid) {
687 /* 0 means any process, we take the first one */
688 return &s->processes[0];
691 for (i = 0; i < s->process_num; i++) {
692 if (s->processes[i].pid == pid) {
693 return &s->processes[i];
697 return NULL;
700 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
702 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
705 static CPUState *find_cpu(uint32_t thread_id)
707 CPUState *cpu;
709 CPU_FOREACH(cpu) {
710 if (cpu_gdb_index(cpu) == thread_id) {
711 return cpu;
715 return NULL;
718 static CPUState *get_first_cpu_in_process(const GDBState *s,
719 GDBProcess *process)
721 CPUState *cpu;
723 CPU_FOREACH(cpu) {
724 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
725 return cpu;
729 return NULL;
732 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
734 uint32_t pid = gdb_get_cpu_pid(s, cpu);
735 cpu = CPU_NEXT(cpu);
737 while (cpu) {
738 if (gdb_get_cpu_pid(s, cpu) == pid) {
739 break;
742 cpu = CPU_NEXT(cpu);
745 return cpu;
748 /* Return the cpu following @cpu, while ignoring unattached processes. */
749 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
751 cpu = CPU_NEXT(cpu);
753 while (cpu) {
754 if (gdb_get_cpu_process(s, cpu)->attached) {
755 break;
758 cpu = CPU_NEXT(cpu);
761 return cpu;
764 /* Return the first attached cpu */
765 static CPUState *gdb_first_attached_cpu(const GDBState *s)
767 CPUState *cpu = first_cpu;
768 GDBProcess *process = gdb_get_cpu_process(s, cpu);
770 if (!process->attached) {
771 return gdb_next_attached_cpu(s, cpu);
774 return cpu;
777 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
779 GDBProcess *process;
780 CPUState *cpu;
782 if (!pid && !tid) {
783 /* 0 means any process/thread, we take the first attached one */
784 return gdb_first_attached_cpu(s);
785 } else if (pid && !tid) {
786 /* any thread in a specific process */
787 process = gdb_get_process(s, pid);
789 if (process == NULL) {
790 return NULL;
793 if (!process->attached) {
794 return NULL;
797 return get_first_cpu_in_process(s, process);
798 } else {
799 /* a specific thread */
800 cpu = find_cpu(tid);
802 if (cpu == NULL) {
803 return NULL;
806 process = gdb_get_cpu_process(s, cpu);
808 if (pid && process->pid != pid) {
809 return NULL;
812 if (!process->attached) {
813 return NULL;
816 return cpu;
820 static const char *get_feature_xml(const GDBState *s, const char *p,
821 const char **newp, GDBProcess *process)
823 size_t len;
824 int i;
825 const char *name;
826 CPUState *cpu = get_first_cpu_in_process(s, process);
827 CPUClass *cc = CPU_GET_CLASS(cpu);
829 len = 0;
830 while (p[len] && p[len] != ':')
831 len++;
832 *newp = p + len;
834 name = NULL;
835 if (strncmp(p, "target.xml", len) == 0) {
836 char *buf = process->target_xml;
837 const size_t buf_sz = sizeof(process->target_xml);
839 /* Generate the XML description for this CPU. */
840 if (!buf[0]) {
841 GDBRegisterState *r;
843 pstrcat(buf, buf_sz,
844 "<?xml version=\"1.0\"?>"
845 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
846 "<target>");
847 if (cc->gdb_arch_name) {
848 gchar *arch = cc->gdb_arch_name(cpu);
849 pstrcat(buf, buf_sz, "<architecture>");
850 pstrcat(buf, buf_sz, arch);
851 pstrcat(buf, buf_sz, "</architecture>");
852 g_free(arch);
854 pstrcat(buf, buf_sz, "<xi:include href=\"");
855 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
856 pstrcat(buf, buf_sz, "\"/>");
857 for (r = cpu->gdb_regs; r; r = r->next) {
858 pstrcat(buf, buf_sz, "<xi:include href=\"");
859 pstrcat(buf, buf_sz, r->xml);
860 pstrcat(buf, buf_sz, "\"/>");
862 pstrcat(buf, buf_sz, "</target>");
864 return buf;
866 if (cc->gdb_get_dynamic_xml) {
867 char *xmlname = g_strndup(p, len);
868 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
870 g_free(xmlname);
871 if (xml) {
872 return xml;
875 for (i = 0; ; i++) {
876 name = xml_builtin[i][0];
877 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
878 break;
880 return name ? xml_builtin[i][1] : NULL;
883 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
885 CPUClass *cc = CPU_GET_CLASS(cpu);
886 CPUArchState *env = cpu->env_ptr;
887 GDBRegisterState *r;
889 if (reg < cc->gdb_num_core_regs) {
890 return cc->gdb_read_register(cpu, mem_buf, reg);
893 for (r = cpu->gdb_regs; r; r = r->next) {
894 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
895 return r->get_reg(env, mem_buf, reg - r->base_reg);
898 return 0;
901 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
903 CPUClass *cc = CPU_GET_CLASS(cpu);
904 CPUArchState *env = cpu->env_ptr;
905 GDBRegisterState *r;
907 if (reg < cc->gdb_num_core_regs) {
908 return cc->gdb_write_register(cpu, mem_buf, reg);
911 for (r = cpu->gdb_regs; r; r = r->next) {
912 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
913 return r->set_reg(env, mem_buf, reg - r->base_reg);
916 return 0;
919 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
920 specifies the first register number and these registers are included in
921 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
922 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
925 void gdb_register_coprocessor(CPUState *cpu,
926 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
927 int num_regs, const char *xml, int g_pos)
929 GDBRegisterState *s;
930 GDBRegisterState **p;
932 p = &cpu->gdb_regs;
933 while (*p) {
934 /* Check for duplicates. */
935 if (strcmp((*p)->xml, xml) == 0)
936 return;
937 p = &(*p)->next;
940 s = g_new0(GDBRegisterState, 1);
941 s->base_reg = cpu->gdb_num_regs;
942 s->num_regs = num_regs;
943 s->get_reg = get_reg;
944 s->set_reg = set_reg;
945 s->xml = xml;
947 /* Add to end of list. */
948 cpu->gdb_num_regs += num_regs;
949 *p = s;
950 if (g_pos) {
951 if (g_pos != s->base_reg) {
952 error_report("Error: Bad gdb register numbering for '%s', "
953 "expected %d got %d", xml, g_pos, s->base_reg);
954 } else {
955 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
960 #ifndef CONFIG_USER_ONLY
961 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
962 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
964 static const int xlat[] = {
965 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
966 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
967 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
970 CPUClass *cc = CPU_GET_CLASS(cpu);
971 int cputype = xlat[gdbtype];
973 if (cc->gdb_stop_before_watchpoint) {
974 cputype |= BP_STOP_BEFORE_ACCESS;
976 return cputype;
978 #endif
980 static int gdb_breakpoint_insert(int type, target_ulong addr, target_ulong len)
982 CPUState *cpu;
983 int err = 0;
985 if (kvm_enabled()) {
986 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
989 switch (type) {
990 case GDB_BREAKPOINT_SW:
991 case GDB_BREAKPOINT_HW:
992 CPU_FOREACH(cpu) {
993 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
994 if (err) {
995 break;
998 return err;
999 #ifndef CONFIG_USER_ONLY
1000 case GDB_WATCHPOINT_WRITE:
1001 case GDB_WATCHPOINT_READ:
1002 case GDB_WATCHPOINT_ACCESS:
1003 CPU_FOREACH(cpu) {
1004 err = cpu_watchpoint_insert(cpu, addr, len,
1005 xlat_gdb_type(cpu, type), NULL);
1006 if (err) {
1007 break;
1010 return err;
1011 #endif
1012 default:
1013 return -ENOSYS;
1017 static int gdb_breakpoint_remove(int type, target_ulong addr, target_ulong len)
1019 CPUState *cpu;
1020 int err = 0;
1022 if (kvm_enabled()) {
1023 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1026 switch (type) {
1027 case GDB_BREAKPOINT_SW:
1028 case GDB_BREAKPOINT_HW:
1029 CPU_FOREACH(cpu) {
1030 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1031 if (err) {
1032 break;
1035 return err;
1036 #ifndef CONFIG_USER_ONLY
1037 case GDB_WATCHPOINT_WRITE:
1038 case GDB_WATCHPOINT_READ:
1039 case GDB_WATCHPOINT_ACCESS:
1040 CPU_FOREACH(cpu) {
1041 err = cpu_watchpoint_remove(cpu, addr, len,
1042 xlat_gdb_type(cpu, type));
1043 if (err)
1044 break;
1046 return err;
1047 #endif
1048 default:
1049 return -ENOSYS;
1053 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1055 cpu_breakpoint_remove_all(cpu, BP_GDB);
1056 #ifndef CONFIG_USER_ONLY
1057 cpu_watchpoint_remove_all(cpu, BP_GDB);
1058 #endif
1061 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1063 CPUState *cpu = get_first_cpu_in_process(s, p);
1065 while (cpu) {
1066 gdb_cpu_breakpoint_remove_all(cpu);
1067 cpu = gdb_next_cpu_in_process(s, cpu);
1071 static void gdb_breakpoint_remove_all(void)
1073 CPUState *cpu;
1075 if (kvm_enabled()) {
1076 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1077 return;
1080 CPU_FOREACH(cpu) {
1081 gdb_cpu_breakpoint_remove_all(cpu);
1085 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1087 CPUState *cpu = s->c_cpu;
1089 cpu_synchronize_state(cpu);
1090 cpu_set_pc(cpu, pc);
1093 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1094 char *buf, size_t buf_size)
1096 if (s->multiprocess) {
1097 snprintf(buf, buf_size, "p%02x.%02x",
1098 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1099 } else {
1100 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1103 return buf;
1106 typedef enum GDBThreadIdKind {
1107 GDB_ONE_THREAD = 0,
1108 GDB_ALL_THREADS, /* One process, all threads */
1109 GDB_ALL_PROCESSES,
1110 GDB_READ_THREAD_ERR
1111 } GDBThreadIdKind;
1113 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1114 uint32_t *pid, uint32_t *tid)
1116 unsigned long p, t;
1117 int ret;
1119 if (*buf == 'p') {
1120 buf++;
1121 ret = qemu_strtoul(buf, &buf, 16, &p);
1123 if (ret) {
1124 return GDB_READ_THREAD_ERR;
1127 /* Skip '.' */
1128 buf++;
1129 } else {
1130 p = 1;
1133 ret = qemu_strtoul(buf, &buf, 16, &t);
1135 if (ret) {
1136 return GDB_READ_THREAD_ERR;
1139 *end_buf = buf;
1141 if (p == -1) {
1142 return GDB_ALL_PROCESSES;
1145 if (pid) {
1146 *pid = p;
1149 if (t == -1) {
1150 return GDB_ALL_THREADS;
1153 if (tid) {
1154 *tid = t;
1157 return GDB_ONE_THREAD;
1161 * gdb_handle_vcont - Parses and handles a vCont packet.
1162 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1163 * a format error, 0 on success.
1165 static int gdb_handle_vcont(GDBState *s, const char *p)
1167 int res, signal = 0;
1168 char cur_action;
1169 char *newstates;
1170 unsigned long tmp;
1171 uint32_t pid, tid;
1172 GDBProcess *process;
1173 CPUState *cpu;
1174 GDBThreadIdKind kind;
1175 #ifdef CONFIG_USER_ONLY
1176 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1178 CPU_FOREACH(cpu) {
1179 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1181 #else
1182 MachineState *ms = MACHINE(qdev_get_machine());
1183 unsigned int max_cpus = ms->smp.max_cpus;
1184 #endif
1185 /* uninitialised CPUs stay 0 */
1186 newstates = g_new0(char, max_cpus);
1188 /* mark valid CPUs with 1 */
1189 CPU_FOREACH(cpu) {
1190 newstates[cpu->cpu_index] = 1;
1194 * res keeps track of what error we are returning, with -ENOTSUP meaning
1195 * that the command is unknown or unsupported, thus returning an empty
1196 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1197 * or incorrect parameters passed.
1199 res = 0;
1200 while (*p) {
1201 if (*p++ != ';') {
1202 res = -ENOTSUP;
1203 goto out;
1206 cur_action = *p++;
1207 if (cur_action == 'C' || cur_action == 'S') {
1208 cur_action = qemu_tolower(cur_action);
1209 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1210 if (res) {
1211 goto out;
1213 signal = gdb_signal_to_target(tmp);
1214 } else if (cur_action != 'c' && cur_action != 's') {
1215 /* unknown/invalid/unsupported command */
1216 res = -ENOTSUP;
1217 goto out;
1220 if (*p == '\0' || *p == ';') {
1222 * No thread specifier, action is on "all threads". The
1223 * specification is unclear regarding the process to act on. We
1224 * choose all processes.
1226 kind = GDB_ALL_PROCESSES;
1227 } else if (*p++ == ':') {
1228 kind = read_thread_id(p, &p, &pid, &tid);
1229 } else {
1230 res = -ENOTSUP;
1231 goto out;
1234 switch (kind) {
1235 case GDB_READ_THREAD_ERR:
1236 res = -EINVAL;
1237 goto out;
1239 case GDB_ALL_PROCESSES:
1240 cpu = gdb_first_attached_cpu(s);
1241 while (cpu) {
1242 if (newstates[cpu->cpu_index] == 1) {
1243 newstates[cpu->cpu_index] = cur_action;
1246 cpu = gdb_next_attached_cpu(s, cpu);
1248 break;
1250 case GDB_ALL_THREADS:
1251 process = gdb_get_process(s, pid);
1253 if (!process->attached) {
1254 res = -EINVAL;
1255 goto out;
1258 cpu = get_first_cpu_in_process(s, process);
1259 while (cpu) {
1260 if (newstates[cpu->cpu_index] == 1) {
1261 newstates[cpu->cpu_index] = cur_action;
1264 cpu = gdb_next_cpu_in_process(s, cpu);
1266 break;
1268 case GDB_ONE_THREAD:
1269 cpu = gdb_get_cpu(s, pid, tid);
1271 /* invalid CPU/thread specified */
1272 if (!cpu) {
1273 res = -EINVAL;
1274 goto out;
1277 /* only use if no previous match occourred */
1278 if (newstates[cpu->cpu_index] == 1) {
1279 newstates[cpu->cpu_index] = cur_action;
1281 break;
1284 s->signal = signal;
1285 gdb_continue_partial(s, newstates);
1287 out:
1288 g_free(newstates);
1290 return res;
1293 typedef union GdbCmdVariant {
1294 const char *data;
1295 uint8_t opcode;
1296 unsigned long val_ul;
1297 unsigned long long val_ull;
1298 struct {
1299 GDBThreadIdKind kind;
1300 uint32_t pid;
1301 uint32_t tid;
1302 } thread_id;
1303 } GdbCmdVariant;
1305 static const char *cmd_next_param(const char *param, const char delimiter)
1307 static const char all_delimiters[] = ",;:=";
1308 char curr_delimiters[2] = {0};
1309 const char *delimiters;
1311 if (delimiter == '?') {
1312 delimiters = all_delimiters;
1313 } else if (delimiter == '0') {
1314 return strchr(param, '\0');
1315 } else if (delimiter == '.' && *param) {
1316 return param + 1;
1317 } else {
1318 curr_delimiters[0] = delimiter;
1319 delimiters = curr_delimiters;
1322 param += strcspn(param, delimiters);
1323 if (*param) {
1324 param++;
1326 return param;
1329 static int cmd_parse_params(const char *data, const char *schema,
1330 GdbCmdVariant *params, int *num_params)
1332 int curr_param;
1333 const char *curr_schema, *curr_data;
1335 *num_params = 0;
1337 if (!schema) {
1338 return 0;
1341 curr_schema = schema;
1342 curr_param = 0;
1343 curr_data = data;
1344 while (curr_schema[0] && curr_schema[1] && *curr_data) {
1345 switch (curr_schema[0]) {
1346 case 'l':
1347 if (qemu_strtoul(curr_data, &curr_data, 16,
1348 &params[curr_param].val_ul)) {
1349 return -EINVAL;
1351 curr_param++;
1352 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1353 break;
1354 case 'L':
1355 if (qemu_strtou64(curr_data, &curr_data, 16,
1356 (uint64_t *)&params[curr_param].val_ull)) {
1357 return -EINVAL;
1359 curr_param++;
1360 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1361 break;
1362 case 's':
1363 params[curr_param].data = curr_data;
1364 curr_param++;
1365 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1366 break;
1367 case 'o':
1368 params[curr_param].opcode = *(uint8_t *)curr_data;
1369 curr_param++;
1370 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1371 break;
1372 case 't':
1373 params[curr_param].thread_id.kind =
1374 read_thread_id(curr_data, &curr_data,
1375 &params[curr_param].thread_id.pid,
1376 &params[curr_param].thread_id.tid);
1377 curr_param++;
1378 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1379 break;
1380 case '?':
1381 curr_data = cmd_next_param(curr_data, curr_schema[1]);
1382 break;
1383 default:
1384 return -EINVAL;
1386 curr_schema += 2;
1389 *num_params = curr_param;
1390 return 0;
1393 typedef struct GdbCmdContext {
1394 GDBState *s;
1395 GdbCmdVariant *params;
1396 int num_params;
1397 uint8_t mem_buf[MAX_PACKET_LENGTH];
1398 char str_buf[MAX_PACKET_LENGTH + 1];
1399 } GdbCmdContext;
1401 typedef void (*GdbCmdHandler)(GdbCmdContext *gdb_ctx, void *user_ctx);
1404 * cmd_startswith -> cmd is compared using startswith
1407 * schema definitions:
1408 * Each schema parameter entry consists of 2 chars,
1409 * the first char represents the parameter type handling
1410 * the second char represents the delimiter for the next parameter
1412 * Currently supported schema types:
1413 * 'l' -> unsigned long (stored in .val_ul)
1414 * 'L' -> unsigned long long (stored in .val_ull)
1415 * 's' -> string (stored in .data)
1416 * 'o' -> single char (stored in .opcode)
1417 * 't' -> thread id (stored in .thread_id)
1418 * '?' -> skip according to delimiter
1420 * Currently supported delimiters:
1421 * '?' -> Stop at any delimiter (",;:=\0")
1422 * '0' -> Stop at "\0"
1423 * '.' -> Skip 1 char unless reached "\0"
1424 * Any other value is treated as the delimiter value itself
1426 typedef struct GdbCmdParseEntry {
1427 GdbCmdHandler handler;
1428 const char *cmd;
1429 bool cmd_startswith;
1430 const char *schema;
1431 } GdbCmdParseEntry;
1433 static inline int startswith(const char *string, const char *pattern)
1435 return !strncmp(string, pattern, strlen(pattern));
1438 static int process_string_cmd(GDBState *s, void *user_ctx, const char *data,
1439 const GdbCmdParseEntry *cmds, int num_cmds)
1441 int i, schema_len, max_num_params = 0;
1442 GdbCmdContext gdb_ctx;
1444 if (!cmds) {
1445 return -1;
1448 for (i = 0; i < num_cmds; i++) {
1449 const GdbCmdParseEntry *cmd = &cmds[i];
1450 g_assert(cmd->handler && cmd->cmd);
1452 if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) ||
1453 (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) {
1454 continue;
1457 if (cmd->schema) {
1458 schema_len = strlen(cmd->schema);
1459 if (schema_len % 2) {
1460 return -2;
1463 max_num_params = schema_len / 2;
1466 gdb_ctx.params =
1467 (GdbCmdVariant *)alloca(sizeof(*gdb_ctx.params) * max_num_params);
1468 memset(gdb_ctx.params, 0, sizeof(*gdb_ctx.params) * max_num_params);
1470 if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema,
1471 gdb_ctx.params, &gdb_ctx.num_params)) {
1472 return -1;
1475 gdb_ctx.s = s;
1476 cmd->handler(&gdb_ctx, user_ctx);
1477 return 0;
1480 return -1;
1483 static void run_cmd_parser(GDBState *s, const char *data,
1484 const GdbCmdParseEntry *cmd)
1486 if (!data) {
1487 return;
1490 /* In case there was an error during the command parsing we must
1491 * send a NULL packet to indicate the command is not supported */
1492 if (process_string_cmd(s, NULL, data, cmd, 1)) {
1493 put_packet(s, "");
1497 static void handle_detach(GdbCmdContext *gdb_ctx, void *user_ctx)
1499 GDBProcess *process;
1500 GDBState *s = gdb_ctx->s;
1501 uint32_t pid = 1;
1503 if (s->multiprocess) {
1504 if (!gdb_ctx->num_params) {
1505 put_packet(s, "E22");
1506 return;
1509 pid = gdb_ctx->params[0].val_ul;
1512 process = gdb_get_process(s, pid);
1513 gdb_process_breakpoint_remove_all(s, process);
1514 process->attached = false;
1516 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1517 s->c_cpu = gdb_first_attached_cpu(s);
1520 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1521 s->g_cpu = gdb_first_attached_cpu(s);
1524 if (!s->c_cpu) {
1525 /* No more process attached */
1526 gdb_syscall_mode = GDB_SYS_DISABLED;
1527 gdb_continue(s);
1529 put_packet(s, "OK");
1532 static void handle_thread_alive(GdbCmdContext *gdb_ctx, void *user_ctx)
1534 CPUState *cpu;
1536 if (!gdb_ctx->num_params) {
1537 put_packet(gdb_ctx->s, "E22");
1538 return;
1541 if (gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
1542 put_packet(gdb_ctx->s, "E22");
1543 return;
1546 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
1547 gdb_ctx->params[0].thread_id.tid);
1548 if (!cpu) {
1549 put_packet(gdb_ctx->s, "E22");
1550 return;
1553 put_packet(gdb_ctx->s, "OK");
1556 static void handle_continue(GdbCmdContext *gdb_ctx, void *user_ctx)
1558 if (gdb_ctx->num_params) {
1559 gdb_set_cpu_pc(gdb_ctx->s, gdb_ctx->params[0].val_ull);
1562 gdb_ctx->s->signal = 0;
1563 gdb_continue(gdb_ctx->s);
1566 static void handle_cont_with_sig(GdbCmdContext *gdb_ctx, void *user_ctx)
1568 unsigned long signal = 0;
1571 * Note: C sig;[addr] is currently unsupported and we simply
1572 * omit the addr parameter
1574 if (gdb_ctx->num_params) {
1575 signal = gdb_ctx->params[0].val_ul;
1578 gdb_ctx->s->signal = gdb_signal_to_target(signal);
1579 if (gdb_ctx->s->signal == -1) {
1580 gdb_ctx->s->signal = 0;
1582 gdb_continue(gdb_ctx->s);
1585 static void handle_set_thread(GdbCmdContext *gdb_ctx, void *user_ctx)
1587 CPUState *cpu;
1589 if (gdb_ctx->num_params != 2) {
1590 put_packet(gdb_ctx->s, "E22");
1591 return;
1594 if (gdb_ctx->params[1].thread_id.kind == GDB_READ_THREAD_ERR) {
1595 put_packet(gdb_ctx->s, "E22");
1596 return;
1599 if (gdb_ctx->params[1].thread_id.kind != GDB_ONE_THREAD) {
1600 put_packet(gdb_ctx->s, "OK");
1601 return;
1604 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[1].thread_id.pid,
1605 gdb_ctx->params[1].thread_id.tid);
1606 if (!cpu) {
1607 put_packet(gdb_ctx->s, "E22");
1608 return;
1612 * Note: This command is deprecated and modern gdb's will be using the
1613 * vCont command instead.
1615 switch (gdb_ctx->params[0].opcode) {
1616 case 'c':
1617 gdb_ctx->s->c_cpu = cpu;
1618 put_packet(gdb_ctx->s, "OK");
1619 break;
1620 case 'g':
1621 gdb_ctx->s->g_cpu = cpu;
1622 put_packet(gdb_ctx->s, "OK");
1623 break;
1624 default:
1625 put_packet(gdb_ctx->s, "E22");
1626 break;
1630 static void handle_insert_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1632 int res;
1634 if (gdb_ctx->num_params != 3) {
1635 put_packet(gdb_ctx->s, "E22");
1636 return;
1639 res = gdb_breakpoint_insert(gdb_ctx->params[0].val_ul,
1640 gdb_ctx->params[1].val_ull,
1641 gdb_ctx->params[2].val_ull);
1642 if (res >= 0) {
1643 put_packet(gdb_ctx->s, "OK");
1644 return;
1645 } else if (res == -ENOSYS) {
1646 put_packet(gdb_ctx->s, "");
1647 return;
1650 put_packet(gdb_ctx->s, "E22");
1653 static void handle_remove_bp(GdbCmdContext *gdb_ctx, void *user_ctx)
1655 int res;
1657 if (gdb_ctx->num_params != 3) {
1658 put_packet(gdb_ctx->s, "E22");
1659 return;
1662 res = gdb_breakpoint_remove(gdb_ctx->params[0].val_ul,
1663 gdb_ctx->params[1].val_ull,
1664 gdb_ctx->params[2].val_ull);
1665 if (res >= 0) {
1666 put_packet(gdb_ctx->s, "OK");
1667 return;
1668 } else if (res == -ENOSYS) {
1669 put_packet(gdb_ctx->s, "");
1670 return;
1673 put_packet(gdb_ctx->s, "E22");
1677 * handle_set/get_reg
1679 * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available.
1680 * This works, but can be very slow. Anything new enough to understand
1681 * XML also knows how to use this properly. However to use this we
1682 * need to define a local XML file as well as be talking to a
1683 * reasonably modern gdb. Responding with an empty packet will cause
1684 * the remote gdb to fallback to older methods.
1687 static void handle_set_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1689 int reg_size;
1691 if (!gdb_has_xml) {
1692 put_packet(gdb_ctx->s, "");
1693 return;
1696 if (gdb_ctx->num_params != 2) {
1697 put_packet(gdb_ctx->s, "E22");
1698 return;
1701 reg_size = strlen(gdb_ctx->params[1].data) / 2;
1702 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[1].data, reg_size);
1703 gdb_write_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1704 gdb_ctx->params[0].val_ull);
1705 put_packet(gdb_ctx->s, "OK");
1708 static void handle_get_reg(GdbCmdContext *gdb_ctx, void *user_ctx)
1710 int reg_size;
1712 if (!gdb_has_xml) {
1713 put_packet(gdb_ctx->s, "");
1714 return;
1717 if (!gdb_ctx->num_params) {
1718 put_packet(gdb_ctx->s, "E14");
1719 return;
1722 reg_size = gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf,
1723 gdb_ctx->params[0].val_ull);
1724 if (!reg_size) {
1725 put_packet(gdb_ctx->s, "E14");
1726 return;
1729 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, reg_size);
1730 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1733 static void handle_write_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1735 if (gdb_ctx->num_params != 3) {
1736 put_packet(gdb_ctx->s, "E22");
1737 return;
1740 /* hextomem() reads 2*len bytes */
1741 if (gdb_ctx->params[1].val_ull > strlen(gdb_ctx->params[2].data) / 2) {
1742 put_packet(gdb_ctx->s, "E22");
1743 return;
1746 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[2].data,
1747 gdb_ctx->params[1].val_ull);
1748 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1749 gdb_ctx->mem_buf,
1750 gdb_ctx->params[1].val_ull, true)) {
1751 put_packet(gdb_ctx->s, "E14");
1752 return;
1755 put_packet(gdb_ctx->s, "OK");
1758 static void handle_read_mem(GdbCmdContext *gdb_ctx, void *user_ctx)
1760 if (gdb_ctx->num_params != 2) {
1761 put_packet(gdb_ctx->s, "E22");
1762 return;
1765 /* memtohex() doubles the required space */
1766 if (gdb_ctx->params[1].val_ull > MAX_PACKET_LENGTH / 2) {
1767 put_packet(gdb_ctx->s, "E22");
1768 return;
1771 if (target_memory_rw_debug(gdb_ctx->s->g_cpu, gdb_ctx->params[0].val_ull,
1772 gdb_ctx->mem_buf,
1773 gdb_ctx->params[1].val_ull, false)) {
1774 put_packet(gdb_ctx->s, "E14");
1775 return;
1778 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, gdb_ctx->params[1].val_ull);
1779 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1782 static void handle_write_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1784 target_ulong addr, len;
1785 uint8_t *registers;
1786 int reg_size;
1788 if (!gdb_ctx->num_params) {
1789 return;
1792 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1793 registers = gdb_ctx->mem_buf;
1794 len = strlen(gdb_ctx->params[0].data) / 2;
1795 hextomem(registers, gdb_ctx->params[0].data, len);
1796 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs && len > 0;
1797 addr++) {
1798 reg_size = gdb_write_register(gdb_ctx->s->g_cpu, registers, addr);
1799 len -= reg_size;
1800 registers += reg_size;
1802 put_packet(gdb_ctx->s, "OK");
1805 static void handle_read_all_regs(GdbCmdContext *gdb_ctx, void *user_ctx)
1807 target_ulong addr, len;
1809 cpu_synchronize_state(gdb_ctx->s->g_cpu);
1810 len = 0;
1811 for (addr = 0; addr < gdb_ctx->s->g_cpu->gdb_num_g_regs; addr++) {
1812 len += gdb_read_register(gdb_ctx->s->g_cpu, gdb_ctx->mem_buf + len,
1813 addr);
1816 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
1817 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1820 static void handle_file_io(GdbCmdContext *gdb_ctx, void *user_ctx)
1822 if (gdb_ctx->num_params >= 2 && gdb_ctx->s->current_syscall_cb) {
1823 target_ulong ret, err;
1825 ret = (target_ulong)gdb_ctx->params[0].val_ull;
1826 err = (target_ulong)gdb_ctx->params[1].val_ull;
1827 gdb_ctx->s->current_syscall_cb(gdb_ctx->s->c_cpu, ret, err);
1828 gdb_ctx->s->current_syscall_cb = NULL;
1831 if (gdb_ctx->num_params >= 3 && gdb_ctx->params[2].opcode == (uint8_t)'C') {
1832 put_packet(gdb_ctx->s, "T02");
1833 return;
1836 gdb_continue(gdb_ctx->s);
1839 static void handle_step(GdbCmdContext *gdb_ctx, void *user_ctx)
1841 if (gdb_ctx->num_params) {
1842 gdb_set_cpu_pc(gdb_ctx->s, (target_ulong)gdb_ctx->params[0].val_ull);
1845 cpu_single_step(gdb_ctx->s->c_cpu, sstep_flags);
1846 gdb_continue(gdb_ctx->s);
1849 static void handle_v_cont_query(GdbCmdContext *gdb_ctx, void *user_ctx)
1851 put_packet(gdb_ctx->s, "vCont;c;C;s;S");
1854 static void handle_v_cont(GdbCmdContext *gdb_ctx, void *user_ctx)
1856 int res;
1858 if (!gdb_ctx->num_params) {
1859 return;
1862 res = gdb_handle_vcont(gdb_ctx->s, gdb_ctx->params[0].data);
1863 if ((res == -EINVAL) || (res == -ERANGE)) {
1864 put_packet(gdb_ctx->s, "E22");
1865 } else if (res) {
1866 put_packet(gdb_ctx->s, "");
1870 static void handle_v_attach(GdbCmdContext *gdb_ctx, void *user_ctx)
1872 GDBProcess *process;
1873 CPUState *cpu;
1874 char thread_id[16];
1876 pstrcpy(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "E22");
1877 if (!gdb_ctx->num_params) {
1878 goto cleanup;
1881 process = gdb_get_process(gdb_ctx->s, gdb_ctx->params[0].val_ul);
1882 if (!process) {
1883 goto cleanup;
1886 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1887 if (!cpu) {
1888 goto cleanup;
1891 process->attached = true;
1892 gdb_ctx->s->g_cpu = cpu;
1893 gdb_ctx->s->c_cpu = cpu;
1895 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1896 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
1897 GDB_SIGNAL_TRAP, thread_id);
1898 cleanup:
1899 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1902 static void handle_v_kill(GdbCmdContext *gdb_ctx, void *user_ctx)
1904 /* Kill the target */
1905 put_packet(gdb_ctx->s, "OK");
1906 error_report("QEMU: Terminated via GDBstub");
1907 exit(0);
1910 static GdbCmdParseEntry gdb_v_commands_table[] = {
1911 /* Order is important if has same prefix */
1913 .handler = handle_v_cont_query,
1914 .cmd = "Cont?",
1915 .cmd_startswith = 1
1918 .handler = handle_v_cont,
1919 .cmd = "Cont",
1920 .cmd_startswith = 1,
1921 .schema = "s0"
1924 .handler = handle_v_attach,
1925 .cmd = "Attach;",
1926 .cmd_startswith = 1,
1927 .schema = "l0"
1930 .handler = handle_v_kill,
1931 .cmd = "Kill;",
1932 .cmd_startswith = 1
1936 static void handle_v_commands(GdbCmdContext *gdb_ctx, void *user_ctx)
1938 if (!gdb_ctx->num_params) {
1939 return;
1942 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
1943 gdb_v_commands_table,
1944 ARRAY_SIZE(gdb_v_commands_table))) {
1945 put_packet(gdb_ctx->s, "");
1949 static void handle_query_qemu_sstepbits(GdbCmdContext *gdb_ctx, void *user_ctx)
1951 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
1952 "ENABLE=%x,NOIRQ=%x,NOTIMER=%x", SSTEP_ENABLE,
1953 SSTEP_NOIRQ, SSTEP_NOTIMER);
1954 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1957 static void handle_set_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1959 if (!gdb_ctx->num_params) {
1960 return;
1963 sstep_flags = gdb_ctx->params[0].val_ul;
1964 put_packet(gdb_ctx->s, "OK");
1967 static void handle_query_qemu_sstep(GdbCmdContext *gdb_ctx, void *user_ctx)
1969 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "0x%x", sstep_flags);
1970 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1973 static void handle_query_curr_tid(GdbCmdContext *gdb_ctx, void *user_ctx)
1975 CPUState *cpu;
1976 GDBProcess *process;
1977 char thread_id[16];
1980 * "Current thread" remains vague in the spec, so always return
1981 * the first thread of the current process (gdb returns the
1982 * first thread).
1984 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
1985 cpu = get_first_cpu_in_process(gdb_ctx->s, process);
1986 gdb_fmt_thread_id(gdb_ctx->s, cpu, thread_id, sizeof(thread_id));
1987 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "QC%s", thread_id);
1988 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
1991 static void handle_query_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
1993 char thread_id[16];
1995 if (!gdb_ctx->s->query_cpu) {
1996 put_packet(gdb_ctx->s, "l");
1997 return;
2000 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->query_cpu, thread_id,
2001 sizeof(thread_id));
2002 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "m%s", thread_id);
2003 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2004 gdb_ctx->s->query_cpu =
2005 gdb_next_attached_cpu(gdb_ctx->s, gdb_ctx->s->query_cpu);
2008 static void handle_query_first_threads(GdbCmdContext *gdb_ctx, void *user_ctx)
2010 gdb_ctx->s->query_cpu = gdb_first_attached_cpu(gdb_ctx->s);
2011 handle_query_threads(gdb_ctx, user_ctx);
2014 static void handle_query_thread_extra(GdbCmdContext *gdb_ctx, void *user_ctx)
2016 CPUState *cpu;
2017 int len;
2019 if (!gdb_ctx->num_params ||
2020 gdb_ctx->params[0].thread_id.kind == GDB_READ_THREAD_ERR) {
2021 put_packet(gdb_ctx->s, "E22");
2022 return;
2025 cpu = gdb_get_cpu(gdb_ctx->s, gdb_ctx->params[0].thread_id.pid,
2026 gdb_ctx->params[0].thread_id.tid);
2027 if (!cpu) {
2028 return;
2031 cpu_synchronize_state(cpu);
2033 if (gdb_ctx->s->multiprocess && (gdb_ctx->s->process_num > 1)) {
2034 /* Print the CPU model and name in multiprocess mode */
2035 ObjectClass *oc = object_get_class(OBJECT(cpu));
2036 const char *cpu_model = object_class_get_name(oc);
2037 char *cpu_name = object_get_canonical_path_component(OBJECT(cpu));
2038 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2039 "%s %s [%s]", cpu_model, cpu_name,
2040 cpu->halted ? "halted " : "running");
2041 g_free(cpu_name);
2042 } else {
2043 /* memtohex() doubles the required space */
2044 len = snprintf((char *)gdb_ctx->mem_buf, sizeof(gdb_ctx->str_buf) / 2,
2045 "CPU#%d [%s]", cpu->cpu_index,
2046 cpu->halted ? "halted " : "running");
2048 trace_gdbstub_op_extra_info((char *)gdb_ctx->mem_buf);
2049 memtohex(gdb_ctx->str_buf, gdb_ctx->mem_buf, len);
2050 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2053 #ifdef CONFIG_USER_ONLY
2054 static void handle_query_offsets(GdbCmdContext *gdb_ctx, void *user_ctx)
2056 TaskState *ts;
2058 ts = gdb_ctx->s->c_cpu->opaque;
2059 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2060 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2061 ";Bss=" TARGET_ABI_FMT_lx,
2062 ts->info->code_offset,
2063 ts->info->data_offset,
2064 ts->info->data_offset);
2065 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2067 #else
2068 static void handle_query_rcmd(GdbCmdContext *gdb_ctx, void *user_ctx)
2070 int len;
2072 if (!gdb_ctx->num_params) {
2073 put_packet(gdb_ctx->s, "E22");
2074 return;
2077 len = strlen(gdb_ctx->params[0].data);
2078 if (len % 2) {
2079 put_packet(gdb_ctx->s, "E01");
2080 return;
2083 len = len / 2;
2084 hextomem(gdb_ctx->mem_buf, gdb_ctx->params[0].data, len);
2085 gdb_ctx->mem_buf[len++] = 0;
2086 qemu_chr_be_write(gdb_ctx->s->mon_chr, gdb_ctx->mem_buf, len);
2087 put_packet(gdb_ctx->s, "OK");
2090 #endif
2092 static void handle_query_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2094 CPUClass *cc;
2096 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "PacketSize=%x",
2097 MAX_PACKET_LENGTH);
2098 cc = CPU_GET_CLASS(first_cpu);
2099 if (cc->gdb_core_xml_file) {
2100 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf),
2101 ";qXfer:features:read+");
2104 if (gdb_ctx->num_params &&
2105 strstr(gdb_ctx->params[0].data, "multiprocess+")) {
2106 gdb_ctx->s->multiprocess = true;
2109 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";multiprocess+");
2110 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2113 static void handle_query_xfer_features(GdbCmdContext *gdb_ctx, void *user_ctx)
2115 GDBProcess *process;
2116 CPUClass *cc;
2117 unsigned long len, total_len, addr;
2118 const char *xml;
2119 const char *p;
2121 if (gdb_ctx->num_params < 3) {
2122 put_packet(gdb_ctx->s, "E22");
2123 return;
2126 process = gdb_get_cpu_process(gdb_ctx->s, gdb_ctx->s->g_cpu);
2127 cc = CPU_GET_CLASS(gdb_ctx->s->g_cpu);
2128 if (!cc->gdb_core_xml_file) {
2129 put_packet(gdb_ctx->s, "");
2130 return;
2133 gdb_has_xml = true;
2134 p = gdb_ctx->params[0].data;
2135 xml = get_feature_xml(gdb_ctx->s, p, &p, process);
2136 if (!xml) {
2137 put_packet(gdb_ctx->s, "E00");
2138 return;
2141 addr = gdb_ctx->params[1].val_ul;
2142 len = gdb_ctx->params[2].val_ul;
2143 total_len = strlen(xml);
2144 if (addr > total_len) {
2145 put_packet(gdb_ctx->s, "E00");
2146 return;
2149 if (len > (MAX_PACKET_LENGTH - 5) / 2) {
2150 len = (MAX_PACKET_LENGTH - 5) / 2;
2153 if (len < total_len - addr) {
2154 gdb_ctx->str_buf[0] = 'm';
2155 len = memtox(gdb_ctx->str_buf + 1, xml + addr, len);
2156 } else {
2157 gdb_ctx->str_buf[0] = 'l';
2158 len = memtox(gdb_ctx->str_buf + 1, xml + addr, total_len - addr);
2161 put_packet_binary(gdb_ctx->s, gdb_ctx->str_buf, len + 1, true);
2164 static void handle_query_attached(GdbCmdContext *gdb_ctx, void *user_ctx)
2166 put_packet(gdb_ctx->s, GDB_ATTACHED);
2169 static void handle_query_qemu_supported(GdbCmdContext *gdb_ctx, void *user_ctx)
2171 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "sstepbits;sstep");
2172 #ifndef CONFIG_USER_ONLY
2173 pstrcat(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), ";PhyMemMode");
2174 #endif
2175 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2178 #ifndef CONFIG_USER_ONLY
2179 static void handle_query_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx,
2180 void *user_ctx)
2182 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "%d", phy_memory_mode);
2183 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2186 static void handle_set_qemu_phy_mem_mode(GdbCmdContext *gdb_ctx, void *user_ctx)
2188 if (!gdb_ctx->num_params) {
2189 put_packet(gdb_ctx->s, "E22");
2190 return;
2193 if (!gdb_ctx->params[0].val_ul) {
2194 phy_memory_mode = 0;
2195 } else {
2196 phy_memory_mode = 1;
2198 put_packet(gdb_ctx->s, "OK");
2200 #endif
2202 static GdbCmdParseEntry gdb_gen_query_set_common_table[] = {
2203 /* Order is important if has same prefix */
2205 .handler = handle_query_qemu_sstepbits,
2206 .cmd = "qemu.sstepbits",
2209 .handler = handle_query_qemu_sstep,
2210 .cmd = "qemu.sstep",
2213 .handler = handle_set_qemu_sstep,
2214 .cmd = "qemu.sstep=",
2215 .cmd_startswith = 1,
2216 .schema = "l0"
2220 static GdbCmdParseEntry gdb_gen_query_table[] = {
2222 .handler = handle_query_curr_tid,
2223 .cmd = "C",
2226 .handler = handle_query_threads,
2227 .cmd = "sThreadInfo",
2230 .handler = handle_query_first_threads,
2231 .cmd = "fThreadInfo",
2234 .handler = handle_query_thread_extra,
2235 .cmd = "ThreadExtraInfo,",
2236 .cmd_startswith = 1,
2237 .schema = "t0"
2239 #ifdef CONFIG_USER_ONLY
2241 .handler = handle_query_offsets,
2242 .cmd = "Offsets",
2244 #else
2246 .handler = handle_query_rcmd,
2247 .cmd = "Rcmd,",
2248 .cmd_startswith = 1,
2249 .schema = "s0"
2251 #endif
2253 .handler = handle_query_supported,
2254 .cmd = "Supported:",
2255 .cmd_startswith = 1,
2256 .schema = "s0"
2259 .handler = handle_query_supported,
2260 .cmd = "Supported",
2261 .schema = "s0"
2264 .handler = handle_query_xfer_features,
2265 .cmd = "Xfer:features:read:",
2266 .cmd_startswith = 1,
2267 .schema = "s:l,l0"
2270 .handler = handle_query_attached,
2271 .cmd = "Attached:",
2272 .cmd_startswith = 1
2275 .handler = handle_query_attached,
2276 .cmd = "Attached",
2279 .handler = handle_query_qemu_supported,
2280 .cmd = "qemu.Supported",
2282 #ifndef CONFIG_USER_ONLY
2284 .handler = handle_query_qemu_phy_mem_mode,
2285 .cmd = "qemu.PhyMemMode",
2287 #endif
2290 static GdbCmdParseEntry gdb_gen_set_table[] = {
2291 /* Order is important if has same prefix */
2293 .handler = handle_set_qemu_sstep,
2294 .cmd = "qemu.sstep:",
2295 .cmd_startswith = 1,
2296 .schema = "l0"
2298 #ifndef CONFIG_USER_ONLY
2300 .handler = handle_set_qemu_phy_mem_mode,
2301 .cmd = "qemu.PhyMemMode:",
2302 .cmd_startswith = 1,
2303 .schema = "l0"
2305 #endif
2308 static void handle_gen_query(GdbCmdContext *gdb_ctx, void *user_ctx)
2310 if (!gdb_ctx->num_params) {
2311 return;
2314 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2315 gdb_gen_query_set_common_table,
2316 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2317 return;
2320 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2321 gdb_gen_query_table,
2322 ARRAY_SIZE(gdb_gen_query_table))) {
2323 put_packet(gdb_ctx->s, "");
2327 static void handle_gen_set(GdbCmdContext *gdb_ctx, void *user_ctx)
2329 if (!gdb_ctx->num_params) {
2330 return;
2333 if (!process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2334 gdb_gen_query_set_common_table,
2335 ARRAY_SIZE(gdb_gen_query_set_common_table))) {
2336 return;
2339 if (process_string_cmd(gdb_ctx->s, NULL, gdb_ctx->params[0].data,
2340 gdb_gen_set_table,
2341 ARRAY_SIZE(gdb_gen_set_table))) {
2342 put_packet(gdb_ctx->s, "");
2346 static void handle_target_halt(GdbCmdContext *gdb_ctx, void *user_ctx)
2348 char thread_id[16];
2350 gdb_fmt_thread_id(gdb_ctx->s, gdb_ctx->s->c_cpu, thread_id,
2351 sizeof(thread_id));
2352 snprintf(gdb_ctx->str_buf, sizeof(gdb_ctx->str_buf), "T%02xthread:%s;",
2353 GDB_SIGNAL_TRAP, thread_id);
2354 put_packet(gdb_ctx->s, gdb_ctx->str_buf);
2356 * Remove all the breakpoints when this query is issued,
2357 * because gdb is doing an initial connect and the state
2358 * should be cleaned up.
2360 gdb_breakpoint_remove_all();
2363 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2365 const GdbCmdParseEntry *cmd_parser = NULL;
2367 trace_gdbstub_io_command(line_buf);
2369 switch (line_buf[0]) {
2370 case '!':
2371 put_packet(s, "OK");
2372 break;
2373 case '?':
2375 static const GdbCmdParseEntry target_halted_cmd_desc = {
2376 .handler = handle_target_halt,
2377 .cmd = "?",
2378 .cmd_startswith = 1
2380 cmd_parser = &target_halted_cmd_desc;
2382 break;
2383 case 'c':
2385 static const GdbCmdParseEntry continue_cmd_desc = {
2386 .handler = handle_continue,
2387 .cmd = "c",
2388 .cmd_startswith = 1,
2389 .schema = "L0"
2391 cmd_parser = &continue_cmd_desc;
2393 break;
2394 case 'C':
2396 static const GdbCmdParseEntry cont_with_sig_cmd_desc = {
2397 .handler = handle_cont_with_sig,
2398 .cmd = "C",
2399 .cmd_startswith = 1,
2400 .schema = "l0"
2402 cmd_parser = &cont_with_sig_cmd_desc;
2404 break;
2405 case 'v':
2407 static const GdbCmdParseEntry v_cmd_desc = {
2408 .handler = handle_v_commands,
2409 .cmd = "v",
2410 .cmd_startswith = 1,
2411 .schema = "s0"
2413 cmd_parser = &v_cmd_desc;
2415 break;
2416 case 'k':
2417 /* Kill the target */
2418 error_report("QEMU: Terminated via GDBstub");
2419 exit(0);
2420 case 'D':
2422 static const GdbCmdParseEntry detach_cmd_desc = {
2423 .handler = handle_detach,
2424 .cmd = "D",
2425 .cmd_startswith = 1,
2426 .schema = "?.l0"
2428 cmd_parser = &detach_cmd_desc;
2430 break;
2431 case 's':
2433 static const GdbCmdParseEntry step_cmd_desc = {
2434 .handler = handle_step,
2435 .cmd = "s",
2436 .cmd_startswith = 1,
2437 .schema = "L0"
2439 cmd_parser = &step_cmd_desc;
2441 break;
2442 case 'F':
2444 static const GdbCmdParseEntry file_io_cmd_desc = {
2445 .handler = handle_file_io,
2446 .cmd = "F",
2447 .cmd_startswith = 1,
2448 .schema = "L,L,o0"
2450 cmd_parser = &file_io_cmd_desc;
2452 break;
2453 case 'g':
2455 static const GdbCmdParseEntry read_all_regs_cmd_desc = {
2456 .handler = handle_read_all_regs,
2457 .cmd = "g",
2458 .cmd_startswith = 1
2460 cmd_parser = &read_all_regs_cmd_desc;
2462 break;
2463 case 'G':
2465 static const GdbCmdParseEntry write_all_regs_cmd_desc = {
2466 .handler = handle_write_all_regs,
2467 .cmd = "G",
2468 .cmd_startswith = 1,
2469 .schema = "s0"
2471 cmd_parser = &write_all_regs_cmd_desc;
2473 break;
2474 case 'm':
2476 static const GdbCmdParseEntry read_mem_cmd_desc = {
2477 .handler = handle_read_mem,
2478 .cmd = "m",
2479 .cmd_startswith = 1,
2480 .schema = "L,L0"
2482 cmd_parser = &read_mem_cmd_desc;
2484 break;
2485 case 'M':
2487 static const GdbCmdParseEntry write_mem_cmd_desc = {
2488 .handler = handle_write_mem,
2489 .cmd = "M",
2490 .cmd_startswith = 1,
2491 .schema = "L,L:s0"
2493 cmd_parser = &write_mem_cmd_desc;
2495 break;
2496 case 'p':
2498 static const GdbCmdParseEntry get_reg_cmd_desc = {
2499 .handler = handle_get_reg,
2500 .cmd = "p",
2501 .cmd_startswith = 1,
2502 .schema = "L0"
2504 cmd_parser = &get_reg_cmd_desc;
2506 break;
2507 case 'P':
2509 static const GdbCmdParseEntry set_reg_cmd_desc = {
2510 .handler = handle_set_reg,
2511 .cmd = "P",
2512 .cmd_startswith = 1,
2513 .schema = "L?s0"
2515 cmd_parser = &set_reg_cmd_desc;
2517 break;
2518 case 'Z':
2520 static const GdbCmdParseEntry insert_bp_cmd_desc = {
2521 .handler = handle_insert_bp,
2522 .cmd = "Z",
2523 .cmd_startswith = 1,
2524 .schema = "l?L?L0"
2526 cmd_parser = &insert_bp_cmd_desc;
2528 break;
2529 case 'z':
2531 static const GdbCmdParseEntry remove_bp_cmd_desc = {
2532 .handler = handle_remove_bp,
2533 .cmd = "z",
2534 .cmd_startswith = 1,
2535 .schema = "l?L?L0"
2537 cmd_parser = &remove_bp_cmd_desc;
2539 break;
2540 case 'H':
2542 static const GdbCmdParseEntry set_thread_cmd_desc = {
2543 .handler = handle_set_thread,
2544 .cmd = "H",
2545 .cmd_startswith = 1,
2546 .schema = "o.t0"
2548 cmd_parser = &set_thread_cmd_desc;
2550 break;
2551 case 'T':
2553 static const GdbCmdParseEntry thread_alive_cmd_desc = {
2554 .handler = handle_thread_alive,
2555 .cmd = "T",
2556 .cmd_startswith = 1,
2557 .schema = "t0"
2559 cmd_parser = &thread_alive_cmd_desc;
2561 break;
2562 case 'q':
2564 static const GdbCmdParseEntry gen_query_cmd_desc = {
2565 .handler = handle_gen_query,
2566 .cmd = "q",
2567 .cmd_startswith = 1,
2568 .schema = "s0"
2570 cmd_parser = &gen_query_cmd_desc;
2572 break;
2573 case 'Q':
2575 static const GdbCmdParseEntry gen_set_cmd_desc = {
2576 .handler = handle_gen_set,
2577 .cmd = "Q",
2578 .cmd_startswith = 1,
2579 .schema = "s0"
2581 cmd_parser = &gen_set_cmd_desc;
2583 break;
2584 default:
2585 /* put empty packet */
2586 put_packet(s, "");
2587 break;
2590 run_cmd_parser(s, line_buf, cmd_parser);
2592 return RS_IDLE;
2595 void gdb_set_stop_cpu(CPUState *cpu)
2597 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
2599 if (!p->attached) {
2601 * Having a stop CPU corresponding to a process that is not attached
2602 * confuses GDB. So we ignore the request.
2604 return;
2607 gdbserver_state->c_cpu = cpu;
2608 gdbserver_state->g_cpu = cpu;
2611 #ifndef CONFIG_USER_ONLY
2612 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2614 GDBState *s = gdbserver_state;
2615 CPUState *cpu = s->c_cpu;
2616 char buf[256];
2617 char thread_id[16];
2618 const char *type;
2619 int ret;
2621 if (running || s->state == RS_INACTIVE) {
2622 return;
2624 /* Is there a GDB syscall waiting to be sent? */
2625 if (s->current_syscall_cb) {
2626 put_packet(s, s->syscall_buf);
2627 return;
2630 if (cpu == NULL) {
2631 /* No process attached */
2632 return;
2635 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
2637 switch (state) {
2638 case RUN_STATE_DEBUG:
2639 if (cpu->watchpoint_hit) {
2640 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
2641 case BP_MEM_READ:
2642 type = "r";
2643 break;
2644 case BP_MEM_ACCESS:
2645 type = "a";
2646 break;
2647 default:
2648 type = "";
2649 break;
2651 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
2652 (target_ulong)cpu->watchpoint_hit->vaddr);
2653 snprintf(buf, sizeof(buf),
2654 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
2655 GDB_SIGNAL_TRAP, thread_id, type,
2656 (target_ulong)cpu->watchpoint_hit->vaddr);
2657 cpu->watchpoint_hit = NULL;
2658 goto send_packet;
2659 } else {
2660 trace_gdbstub_hit_break();
2662 tb_flush(cpu);
2663 ret = GDB_SIGNAL_TRAP;
2664 break;
2665 case RUN_STATE_PAUSED:
2666 trace_gdbstub_hit_paused();
2667 ret = GDB_SIGNAL_INT;
2668 break;
2669 case RUN_STATE_SHUTDOWN:
2670 trace_gdbstub_hit_shutdown();
2671 ret = GDB_SIGNAL_QUIT;
2672 break;
2673 case RUN_STATE_IO_ERROR:
2674 trace_gdbstub_hit_io_error();
2675 ret = GDB_SIGNAL_IO;
2676 break;
2677 case RUN_STATE_WATCHDOG:
2678 trace_gdbstub_hit_watchdog();
2679 ret = GDB_SIGNAL_ALRM;
2680 break;
2681 case RUN_STATE_INTERNAL_ERROR:
2682 trace_gdbstub_hit_internal_error();
2683 ret = GDB_SIGNAL_ABRT;
2684 break;
2685 case RUN_STATE_SAVE_VM:
2686 case RUN_STATE_RESTORE_VM:
2687 return;
2688 case RUN_STATE_FINISH_MIGRATE:
2689 ret = GDB_SIGNAL_XCPU;
2690 break;
2691 default:
2692 trace_gdbstub_hit_unknown(state);
2693 ret = GDB_SIGNAL_UNKNOWN;
2694 break;
2696 gdb_set_stop_cpu(cpu);
2697 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
2699 send_packet:
2700 put_packet(s, buf);
2702 /* disable single step if it was enabled */
2703 cpu_single_step(cpu, 0);
2705 #endif
2707 /* Send a gdb syscall request.
2708 This accepts limited printf-style format specifiers, specifically:
2709 %x - target_ulong argument printed in hex.
2710 %lx - 64-bit argument printed in hex.
2711 %s - string pointer (target_ulong) and length (int) pair. */
2712 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
2714 char *p;
2715 char *p_end;
2716 target_ulong addr;
2717 uint64_t i64;
2718 GDBState *s;
2720 s = gdbserver_state;
2721 if (!s)
2722 return;
2723 s->current_syscall_cb = cb;
2724 #ifndef CONFIG_USER_ONLY
2725 vm_stop(RUN_STATE_DEBUG);
2726 #endif
2727 p = s->syscall_buf;
2728 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2729 *(p++) = 'F';
2730 while (*fmt) {
2731 if (*fmt == '%') {
2732 fmt++;
2733 switch (*fmt++) {
2734 case 'x':
2735 addr = va_arg(va, target_ulong);
2736 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2737 break;
2738 case 'l':
2739 if (*(fmt++) != 'x')
2740 goto bad_format;
2741 i64 = va_arg(va, uint64_t);
2742 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2743 break;
2744 case 's':
2745 addr = va_arg(va, target_ulong);
2746 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2747 addr, va_arg(va, int));
2748 break;
2749 default:
2750 bad_format:
2751 error_report("gdbstub: Bad syscall format string '%s'",
2752 fmt - 1);
2753 break;
2755 } else {
2756 *(p++) = *(fmt++);
2759 *p = 0;
2760 #ifdef CONFIG_USER_ONLY
2761 put_packet(s, s->syscall_buf);
2762 /* Return control to gdb for it to process the syscall request.
2763 * Since the protocol requires that gdb hands control back to us
2764 * using a "here are the results" F packet, we don't need to check
2765 * gdb_handlesig's return value (which is the signal to deliver if
2766 * execution was resumed via a continue packet).
2768 gdb_handlesig(s->c_cpu, 0);
2769 #else
2770 /* In this case wait to send the syscall packet until notification that
2771 the CPU has stopped. This must be done because if the packet is sent
2772 now the reply from the syscall request could be received while the CPU
2773 is still in the running state, which can cause packets to be dropped
2774 and state transition 'T' packets to be sent while the syscall is still
2775 being processed. */
2776 qemu_cpu_kick(s->c_cpu);
2777 #endif
2780 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2782 va_list va;
2784 va_start(va, fmt);
2785 gdb_do_syscallv(cb, fmt, va);
2786 va_end(va);
2789 static void gdb_read_byte(GDBState *s, uint8_t ch)
2791 uint8_t reply;
2793 #ifndef CONFIG_USER_ONLY
2794 if (s->last_packet_len) {
2795 /* Waiting for a response to the last packet. If we see the start
2796 of a new command then abandon the previous response. */
2797 if (ch == '-') {
2798 trace_gdbstub_err_got_nack();
2799 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2800 } else if (ch == '+') {
2801 trace_gdbstub_io_got_ack();
2802 } else {
2803 trace_gdbstub_io_got_unexpected(ch);
2806 if (ch == '+' || ch == '$')
2807 s->last_packet_len = 0;
2808 if (ch != '$')
2809 return;
2811 if (runstate_is_running()) {
2812 /* when the CPU is running, we cannot do anything except stop
2813 it when receiving a char */
2814 vm_stop(RUN_STATE_PAUSED);
2815 } else
2816 #endif
2818 switch(s->state) {
2819 case RS_IDLE:
2820 if (ch == '$') {
2821 /* start of command packet */
2822 s->line_buf_index = 0;
2823 s->line_sum = 0;
2824 s->state = RS_GETLINE;
2825 } else {
2826 trace_gdbstub_err_garbage(ch);
2828 break;
2829 case RS_GETLINE:
2830 if (ch == '}') {
2831 /* start escape sequence */
2832 s->state = RS_GETLINE_ESC;
2833 s->line_sum += ch;
2834 } else if (ch == '*') {
2835 /* start run length encoding sequence */
2836 s->state = RS_GETLINE_RLE;
2837 s->line_sum += ch;
2838 } else if (ch == '#') {
2839 /* end of command, start of checksum*/
2840 s->state = RS_CHKSUM1;
2841 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2842 trace_gdbstub_err_overrun();
2843 s->state = RS_IDLE;
2844 } else {
2845 /* unescaped command character */
2846 s->line_buf[s->line_buf_index++] = ch;
2847 s->line_sum += ch;
2849 break;
2850 case RS_GETLINE_ESC:
2851 if (ch == '#') {
2852 /* unexpected end of command in escape sequence */
2853 s->state = RS_CHKSUM1;
2854 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2855 /* command buffer overrun */
2856 trace_gdbstub_err_overrun();
2857 s->state = RS_IDLE;
2858 } else {
2859 /* parse escaped character and leave escape state */
2860 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2861 s->line_sum += ch;
2862 s->state = RS_GETLINE;
2864 break;
2865 case RS_GETLINE_RLE:
2867 * Run-length encoding is explained in "Debugging with GDB /
2868 * Appendix E GDB Remote Serial Protocol / Overview".
2870 if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) {
2871 /* invalid RLE count encoding */
2872 trace_gdbstub_err_invalid_repeat(ch);
2873 s->state = RS_GETLINE;
2874 } else {
2875 /* decode repeat length */
2876 int repeat = ch - ' ' + 3;
2877 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2878 /* that many repeats would overrun the command buffer */
2879 trace_gdbstub_err_overrun();
2880 s->state = RS_IDLE;
2881 } else if (s->line_buf_index < 1) {
2882 /* got a repeat but we have nothing to repeat */
2883 trace_gdbstub_err_invalid_rle();
2884 s->state = RS_GETLINE;
2885 } else {
2886 /* repeat the last character */
2887 memset(s->line_buf + s->line_buf_index,
2888 s->line_buf[s->line_buf_index - 1], repeat);
2889 s->line_buf_index += repeat;
2890 s->line_sum += ch;
2891 s->state = RS_GETLINE;
2894 break;
2895 case RS_CHKSUM1:
2896 /* get high hex digit of checksum */
2897 if (!isxdigit(ch)) {
2898 trace_gdbstub_err_checksum_invalid(ch);
2899 s->state = RS_GETLINE;
2900 break;
2902 s->line_buf[s->line_buf_index] = '\0';
2903 s->line_csum = fromhex(ch) << 4;
2904 s->state = RS_CHKSUM2;
2905 break;
2906 case RS_CHKSUM2:
2907 /* get low hex digit of checksum */
2908 if (!isxdigit(ch)) {
2909 trace_gdbstub_err_checksum_invalid(ch);
2910 s->state = RS_GETLINE;
2911 break;
2913 s->line_csum |= fromhex(ch);
2915 if (s->line_csum != (s->line_sum & 0xff)) {
2916 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2917 /* send NAK reply */
2918 reply = '-';
2919 put_buffer(s, &reply, 1);
2920 s->state = RS_IDLE;
2921 } else {
2922 /* send ACK reply */
2923 reply = '+';
2924 put_buffer(s, &reply, 1);
2925 s->state = gdb_handle_packet(s, s->line_buf);
2927 break;
2928 default:
2929 abort();
2934 /* Tell the remote gdb that the process has exited. */
2935 void gdb_exit(CPUArchState *env, int code)
2937 GDBState *s;
2938 char buf[4];
2940 s = gdbserver_state;
2941 if (!s) {
2942 return;
2944 #ifdef CONFIG_USER_ONLY
2945 if (gdbserver_fd < 0 || s->fd < 0) {
2946 return;
2948 #endif
2950 trace_gdbstub_op_exiting((uint8_t)code);
2952 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2953 put_packet(s, buf);
2955 #ifndef CONFIG_USER_ONLY
2956 qemu_chr_fe_deinit(&s->chr, true);
2957 #endif
2961 * Create the process that will contain all the "orphan" CPUs (that are not
2962 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2963 * be attachable and thus will be invisible to the user.
2965 static void create_default_process(GDBState *s)
2967 GDBProcess *process;
2968 int max_pid = 0;
2970 if (s->process_num) {
2971 max_pid = s->processes[s->process_num - 1].pid;
2974 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2975 process = &s->processes[s->process_num - 1];
2977 /* We need an available PID slot for this process */
2978 assert(max_pid < UINT32_MAX);
2980 process->pid = max_pid + 1;
2981 process->attached = false;
2982 process->target_xml[0] = '\0';
2985 #ifdef CONFIG_USER_ONLY
2987 gdb_handlesig(CPUState *cpu, int sig)
2989 GDBState *s;
2990 char buf[256];
2991 int n;
2993 s = gdbserver_state;
2994 if (gdbserver_fd < 0 || s->fd < 0) {
2995 return sig;
2998 /* disable single step if it was enabled */
2999 cpu_single_step(cpu, 0);
3000 tb_flush(cpu);
3002 if (sig != 0) {
3003 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
3004 put_packet(s, buf);
3006 /* put_packet() might have detected that the peer terminated the
3007 connection. */
3008 if (s->fd < 0) {
3009 return sig;
3012 sig = 0;
3013 s->state = RS_IDLE;
3014 s->running_state = 0;
3015 while (s->running_state == 0) {
3016 n = read(s->fd, buf, 256);
3017 if (n > 0) {
3018 int i;
3020 for (i = 0; i < n; i++) {
3021 gdb_read_byte(s, buf[i]);
3023 } else {
3024 /* XXX: Connection closed. Should probably wait for another
3025 connection before continuing. */
3026 if (n == 0) {
3027 close(s->fd);
3029 s->fd = -1;
3030 return sig;
3033 sig = s->signal;
3034 s->signal = 0;
3035 return sig;
3038 /* Tell the remote gdb that the process has exited due to SIG. */
3039 void gdb_signalled(CPUArchState *env, int sig)
3041 GDBState *s;
3042 char buf[4];
3044 s = gdbserver_state;
3045 if (gdbserver_fd < 0 || s->fd < 0) {
3046 return;
3049 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
3050 put_packet(s, buf);
3053 static bool gdb_accept(void)
3055 GDBState *s;
3056 struct sockaddr_in sockaddr;
3057 socklen_t len;
3058 int fd;
3060 for(;;) {
3061 len = sizeof(sockaddr);
3062 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
3063 if (fd < 0 && errno != EINTR) {
3064 perror("accept");
3065 return false;
3066 } else if (fd >= 0) {
3067 qemu_set_cloexec(fd);
3068 break;
3072 /* set short latency */
3073 if (socket_set_nodelay(fd)) {
3074 perror("setsockopt");
3075 close(fd);
3076 return false;
3079 s = g_malloc0(sizeof(GDBState));
3080 create_default_process(s);
3081 s->processes[0].attached = true;
3082 s->c_cpu = gdb_first_attached_cpu(s);
3083 s->g_cpu = s->c_cpu;
3084 s->fd = fd;
3085 gdb_has_xml = false;
3087 gdbserver_state = s;
3088 return true;
3091 static int gdbserver_open(int port)
3093 struct sockaddr_in sockaddr;
3094 int fd, ret;
3096 fd = socket(PF_INET, SOCK_STREAM, 0);
3097 if (fd < 0) {
3098 perror("socket");
3099 return -1;
3101 qemu_set_cloexec(fd);
3103 socket_set_fast_reuse(fd);
3105 sockaddr.sin_family = AF_INET;
3106 sockaddr.sin_port = htons(port);
3107 sockaddr.sin_addr.s_addr = 0;
3108 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
3109 if (ret < 0) {
3110 perror("bind");
3111 close(fd);
3112 return -1;
3114 ret = listen(fd, 1);
3115 if (ret < 0) {
3116 perror("listen");
3117 close(fd);
3118 return -1;
3120 return fd;
3123 int gdbserver_start(int port)
3125 gdbserver_fd = gdbserver_open(port);
3126 if (gdbserver_fd < 0)
3127 return -1;
3128 /* accept connections */
3129 if (!gdb_accept()) {
3130 close(gdbserver_fd);
3131 gdbserver_fd = -1;
3132 return -1;
3134 return 0;
3137 /* Disable gdb stub for child processes. */
3138 void gdbserver_fork(CPUState *cpu)
3140 GDBState *s = gdbserver_state;
3142 if (gdbserver_fd < 0 || s->fd < 0) {
3143 return;
3145 close(s->fd);
3146 s->fd = -1;
3147 cpu_breakpoint_remove_all(cpu, BP_GDB);
3148 cpu_watchpoint_remove_all(cpu, BP_GDB);
3150 #else
3151 static int gdb_chr_can_receive(void *opaque)
3153 /* We can handle an arbitrarily large amount of data.
3154 Pick the maximum packet size, which is as good as anything. */
3155 return MAX_PACKET_LENGTH;
3158 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
3160 int i;
3162 for (i = 0; i < size; i++) {
3163 gdb_read_byte(gdbserver_state, buf[i]);
3167 static void gdb_chr_event(void *opaque, int event)
3169 int i;
3170 GDBState *s = (GDBState *) opaque;
3172 switch (event) {
3173 case CHR_EVENT_OPENED:
3174 /* Start with first process attached, others detached */
3175 for (i = 0; i < s->process_num; i++) {
3176 s->processes[i].attached = !i;
3179 s->c_cpu = gdb_first_attached_cpu(s);
3180 s->g_cpu = s->c_cpu;
3182 vm_stop(RUN_STATE_PAUSED);
3183 gdb_has_xml = false;
3184 break;
3185 default:
3186 break;
3190 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
3192 char buf[MAX_PACKET_LENGTH];
3194 buf[0] = 'O';
3195 if (len > (MAX_PACKET_LENGTH/2) - 1)
3196 len = (MAX_PACKET_LENGTH/2) - 1;
3197 memtohex(buf + 1, (uint8_t *)msg, len);
3198 put_packet(s, buf);
3201 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
3203 const char *p = (const char *)buf;
3204 int max_sz;
3206 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
3207 for (;;) {
3208 if (len <= max_sz) {
3209 gdb_monitor_output(gdbserver_state, p, len);
3210 break;
3212 gdb_monitor_output(gdbserver_state, p, max_sz);
3213 p += max_sz;
3214 len -= max_sz;
3216 return len;
3219 #ifndef _WIN32
3220 static void gdb_sigterm_handler(int signal)
3222 if (runstate_is_running()) {
3223 vm_stop(RUN_STATE_PAUSED);
3226 #endif
3228 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
3229 bool *be_opened, Error **errp)
3231 *be_opened = false;
3234 static void char_gdb_class_init(ObjectClass *oc, void *data)
3236 ChardevClass *cc = CHARDEV_CLASS(oc);
3238 cc->internal = true;
3239 cc->open = gdb_monitor_open;
3240 cc->chr_write = gdb_monitor_write;
3243 #define TYPE_CHARDEV_GDB "chardev-gdb"
3245 static const TypeInfo char_gdb_type_info = {
3246 .name = TYPE_CHARDEV_GDB,
3247 .parent = TYPE_CHARDEV,
3248 .class_init = char_gdb_class_init,
3251 static int find_cpu_clusters(Object *child, void *opaque)
3253 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
3254 GDBState *s = (GDBState *) opaque;
3255 CPUClusterState *cluster = CPU_CLUSTER(child);
3256 GDBProcess *process;
3258 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
3260 process = &s->processes[s->process_num - 1];
3263 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
3264 * runtime, we enforce here that the machine does not use a cluster ID
3265 * that would lead to PID 0.
3267 assert(cluster->cluster_id != UINT32_MAX);
3268 process->pid = cluster->cluster_id + 1;
3269 process->attached = false;
3270 process->target_xml[0] = '\0';
3272 return 0;
3275 return object_child_foreach(child, find_cpu_clusters, opaque);
3278 static int pid_order(const void *a, const void *b)
3280 GDBProcess *pa = (GDBProcess *) a;
3281 GDBProcess *pb = (GDBProcess *) b;
3283 if (pa->pid < pb->pid) {
3284 return -1;
3285 } else if (pa->pid > pb->pid) {
3286 return 1;
3287 } else {
3288 return 0;
3292 static void create_processes(GDBState *s)
3294 object_child_foreach(object_get_root(), find_cpu_clusters, s);
3296 if (s->processes) {
3297 /* Sort by PID */
3298 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
3301 create_default_process(s);
3304 static void cleanup_processes(GDBState *s)
3306 g_free(s->processes);
3307 s->process_num = 0;
3308 s->processes = NULL;
3311 int gdbserver_start(const char *device)
3313 trace_gdbstub_op_start(device);
3315 GDBState *s;
3316 char gdbstub_device_name[128];
3317 Chardev *chr = NULL;
3318 Chardev *mon_chr;
3320 if (!first_cpu) {
3321 error_report("gdbstub: meaningless to attach gdb to a "
3322 "machine without any CPU.");
3323 return -1;
3326 if (!device)
3327 return -1;
3328 if (strcmp(device, "none") != 0) {
3329 if (strstart(device, "tcp:", NULL)) {
3330 /* enforce required TCP attributes */
3331 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3332 "%s,nowait,nodelay,server", device);
3333 device = gdbstub_device_name;
3335 #ifndef _WIN32
3336 else if (strcmp(device, "stdio") == 0) {
3337 struct sigaction act;
3339 memset(&act, 0, sizeof(act));
3340 act.sa_handler = gdb_sigterm_handler;
3341 sigaction(SIGINT, &act, NULL);
3343 #endif
3345 * FIXME: it's a bit weird to allow using a mux chardev here
3346 * and implicitly setup a monitor. We may want to break this.
3348 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
3349 if (!chr)
3350 return -1;
3353 s = gdbserver_state;
3354 if (!s) {
3355 s = g_malloc0(sizeof(GDBState));
3356 gdbserver_state = s;
3358 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3360 /* Initialize a monitor terminal for gdb */
3361 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
3362 NULL, NULL, &error_abort);
3363 monitor_init_hmp(mon_chr, false);
3364 } else {
3365 qemu_chr_fe_deinit(&s->chr, true);
3366 mon_chr = s->mon_chr;
3367 cleanup_processes(s);
3368 memset(s, 0, sizeof(GDBState));
3369 s->mon_chr = mon_chr;
3372 create_processes(s);
3374 if (chr) {
3375 qemu_chr_fe_init(&s->chr, chr, &error_abort);
3376 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
3377 gdb_chr_event, NULL, s, NULL, true);
3379 s->state = chr ? RS_IDLE : RS_INACTIVE;
3380 s->mon_chr = mon_chr;
3381 s->current_syscall_cb = NULL;
3383 return 0;
3386 void gdbserver_cleanup(void)
3388 if (gdbserver_state) {
3389 put_packet(gdbserver_state, "W00");
3393 static void register_types(void)
3395 type_register_static(&char_gdb_type_info);
3398 type_init(register_types);
3399 #endif