2 * ARM VFP floating-point operations
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
26 #include "fpu/softfloat.h"
29 /* VFP support. We follow the convention used for VFP instructions:
30 Single precision routines have a "s" suffix, double precision a
35 /* Convert host exception flags to vfp form. */
36 static inline int vfp_exceptbits_from_host(int host_bits
)
40 if (host_bits
& float_flag_invalid
) {
43 if (host_bits
& float_flag_divbyzero
) {
46 if (host_bits
& float_flag_overflow
) {
49 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
)) {
52 if (host_bits
& float_flag_inexact
) {
55 if (host_bits
& float_flag_input_denormal
) {
61 /* Convert vfp exception flags to target form. */
62 static inline int vfp_exceptbits_to_host(int target_bits
)
66 if (target_bits
& 1) {
67 host_bits
|= float_flag_invalid
;
69 if (target_bits
& 2) {
70 host_bits
|= float_flag_divbyzero
;
72 if (target_bits
& 4) {
73 host_bits
|= float_flag_overflow
;
75 if (target_bits
& 8) {
76 host_bits
|= float_flag_underflow
;
78 if (target_bits
& 0x10) {
79 host_bits
|= float_flag_inexact
;
81 if (target_bits
& 0x80) {
82 host_bits
|= float_flag_input_denormal
;
87 static uint32_t vfp_get_fpscr_from_host(CPUARMState
*env
)
91 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
92 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
93 /* FZ16 does not generate an input denormal exception. */
94 i
|= (get_float_exception_flags(&env
->vfp
.fp_status_f16
)
95 & ~float_flag_input_denormal
);
96 i
|= (get_float_exception_flags(&env
->vfp
.standard_fp_status_f16
)
97 & ~float_flag_input_denormal
);
98 return vfp_exceptbits_from_host(i
);
101 static void vfp_set_fpscr_to_host(CPUARMState
*env
, uint32_t val
)
104 uint32_t changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
107 if (changed
& (3 << 22)) {
110 case FPROUNDING_TIEEVEN
:
111 i
= float_round_nearest_even
;
113 case FPROUNDING_POSINF
:
116 case FPROUNDING_NEGINF
:
117 i
= float_round_down
;
119 case FPROUNDING_ZERO
:
120 i
= float_round_to_zero
;
123 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
124 set_float_rounding_mode(i
, &env
->vfp
.fp_status_f16
);
126 if (changed
& FPCR_FZ16
) {
127 bool ftz_enabled
= val
& FPCR_FZ16
;
128 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
129 set_flush_to_zero(ftz_enabled
, &env
->vfp
.standard_fp_status_f16
);
130 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
131 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.standard_fp_status_f16
);
133 if (changed
& FPCR_FZ
) {
134 bool ftz_enabled
= val
& FPCR_FZ
;
135 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
136 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
138 if (changed
& FPCR_DN
) {
139 bool dnan_enabled
= val
& FPCR_DN
;
140 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status
);
141 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status_f16
);
145 * The exception flags are ORed together when we read fpscr so we
146 * only need to preserve the current state in one of our
147 * float_status values.
149 i
= vfp_exceptbits_to_host(val
);
150 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
151 set_float_exception_flags(0, &env
->vfp
.fp_status_f16
);
152 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
153 set_float_exception_flags(0, &env
->vfp
.standard_fp_status_f16
);
158 static uint32_t vfp_get_fpscr_from_host(CPUARMState
*env
)
163 static void vfp_set_fpscr_to_host(CPUARMState
*env
, uint32_t val
)
169 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
173 fpscr
= env
->vfp
.xregs
[ARM_VFP_FPSCR
]
174 | (env
->vfp
.vec_len
<< 16)
175 | (env
->vfp
.vec_stride
<< 20);
178 * M-profile LTPSIZE overlaps A-profile Stride; whichever of the
179 * two is not applicable to this CPU will always be zero.
181 fpscr
|= env
->v7m
.ltpsize
<< 16;
183 fpscr
|= vfp_get_fpscr_from_host(env
);
185 i
= env
->vfp
.qc
[0] | env
->vfp
.qc
[1] | env
->vfp
.qc
[2] | env
->vfp
.qc
[3];
186 fpscr
|= i
? FPCR_QC
: 0;
191 uint32_t vfp_get_fpscr(CPUARMState
*env
)
193 return HELPER(vfp_get_fpscr
)(env
);
196 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
198 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
199 if (!cpu_isar_feature(any_fp16
, env_archcpu(env
))) {
203 vfp_set_fpscr_to_host(env
, val
);
205 if (!arm_feature(env
, ARM_FEATURE_M
)) {
207 * Short-vector length and stride; on M-profile these bits
208 * are used for different purposes.
209 * We can't make this conditional be "if MVFR0.FPShVec != 0",
210 * because in v7A no-short-vector-support cores still had to
211 * allow Stride/Len to be written with the only effect that
212 * some insns are required to UNDEF if the guest sets them.
214 * TODO: if M-profile MVE implemented, set LTPSIZE.
216 env
->vfp
.vec_len
= extract32(val
, 16, 3);
217 env
->vfp
.vec_stride
= extract32(val
, 20, 2);
220 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
222 * The bit we set within fpscr_q is arbitrary; the register as a
223 * whole being zero/non-zero is what counts.
224 * TODO: M-profile MVE also has a QC bit.
226 env
->vfp
.qc
[0] = val
& FPCR_QC
;
233 * We don't implement trapped exception handling, so the
234 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
236 * The exception flags IOC|DZC|OFC|UFC|IXC|IDC are stored in
237 * fp_status; QC, Len and Stride are stored separately earlier.
238 * Clear out all of those and the RES0 bits: only NZCV, AHP, DN,
239 * FZ, RMode and FZ16 are kept in vfp.xregs[FPSCR].
241 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = val
& 0xf7c80000;
244 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
246 HELPER(vfp_set_fpscr
)(env
, val
);
251 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
253 #define VFP_BINOP(name) \
254 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
256 float_status *fpst = fpstp; \
257 return float16_ ## name(a, b, fpst); \
259 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
261 float_status *fpst = fpstp; \
262 return float32_ ## name(a, b, fpst); \
264 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
266 float_status *fpst = fpstp; \
267 return float64_ ## name(a, b, fpst); \
279 dh_ctype_f16
VFP_HELPER(neg
, h
)(dh_ctype_f16 a
)
281 return float16_chs(a
);
284 float32
VFP_HELPER(neg
, s
)(float32 a
)
286 return float32_chs(a
);
289 float64
VFP_HELPER(neg
, d
)(float64 a
)
291 return float64_chs(a
);
294 dh_ctype_f16
VFP_HELPER(abs
, h
)(dh_ctype_f16 a
)
296 return float16_abs(a
);
299 float32
VFP_HELPER(abs
, s
)(float32 a
)
301 return float32_abs(a
);
304 float64
VFP_HELPER(abs
, d
)(float64 a
)
306 return float64_abs(a
);
309 dh_ctype_f16
VFP_HELPER(sqrt
, h
)(dh_ctype_f16 a
, CPUARMState
*env
)
311 return float16_sqrt(a
, &env
->vfp
.fp_status_f16
);
314 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
316 return float32_sqrt(a
, &env
->vfp
.fp_status
);
319 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
321 return float64_sqrt(a
, &env
->vfp
.fp_status
);
324 static void softfloat_to_vfp_compare(CPUARMState
*env
, FloatRelation cmp
)
328 case float_relation_equal
:
331 case float_relation_less
:
334 case float_relation_greater
:
337 case float_relation_unordered
:
341 g_assert_not_reached();
343 env
->vfp
.xregs
[ARM_VFP_FPSCR
] =
344 deposit32(env
->vfp
.xregs
[ARM_VFP_FPSCR
], 28, 4, flags
);
347 /* XXX: check quiet/signaling case */
348 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
349 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
351 softfloat_to_vfp_compare(env, \
352 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
354 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
356 softfloat_to_vfp_compare(env, \
357 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
359 DO_VFP_cmp(h
, float16
, dh_ctype_f16
, fp_status_f16
)
360 DO_VFP_cmp(s
, float32
, float32
, fp_status
)
361 DO_VFP_cmp(d
, float64
, float64
, fp_status
)
364 /* Integer to float and float to integer conversions */
366 #define CONV_ITOF(name, ftype, fsz, sign) \
367 ftype HELPER(name)(uint32_t x, void *fpstp) \
369 float_status *fpst = fpstp; \
370 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
373 #define CONV_FTOI(name, ftype, fsz, sign, round) \
374 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
376 float_status *fpst = fpstp; \
377 if (float##fsz##_is_any_nan(x)) { \
378 float_raise(float_flag_invalid, fpst); \
381 return float##fsz##_to_##sign##int32##round(x, fpst); \
384 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
385 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
386 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
387 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
389 FLOAT_CONVS(si
, h
, uint32_t, 16, )
390 FLOAT_CONVS(si
, s
, float32
, 32, )
391 FLOAT_CONVS(si
, d
, float64
, 64, )
392 FLOAT_CONVS(ui
, h
, uint32_t, 16, u
)
393 FLOAT_CONVS(ui
, s
, float32
, 32, u
)
394 FLOAT_CONVS(ui
, d
, float64
, 64, u
)
400 /* floating point conversion */
401 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
403 return float32_to_float64(x
, &env
->vfp
.fp_status
);
406 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
408 return float64_to_float32(x
, &env
->vfp
.fp_status
);
412 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
413 * must always round-to-nearest; the AArch64 ones honour the FPSCR
414 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
415 * round-to-nearest so either helper will work.) AArch32 float-to-fix
416 * must round-to-zero.
418 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
419 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
421 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
423 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
424 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
429 float_status *fpst = fpstp; \
430 FloatRoundMode oldmode = fpst->float_rounding_mode; \
431 fpst->float_rounding_mode = float_round_nearest_even; \
432 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
433 fpst->float_rounding_mode = oldmode; \
437 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
438 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
441 if (unlikely(float##fsz##_is_any_nan(x))) { \
442 float_raise(float_flag_invalid, fpst); \
445 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
448 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
449 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
450 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
451 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
452 float_round_to_zero, _round_to_zero) \
453 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
454 get_float_rounding_mode(fpst), )
456 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
457 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
458 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
459 get_float_rounding_mode(fpst), )
461 VFP_CONV_FIX(sh
, d
, 64, float64
, 64, int16
)
462 VFP_CONV_FIX(sl
, d
, 64, float64
, 64, int32
)
463 VFP_CONV_FIX_A64(sq
, d
, 64, float64
, 64, int64
)
464 VFP_CONV_FIX(uh
, d
, 64, float64
, 64, uint16
)
465 VFP_CONV_FIX(ul
, d
, 64, float64
, 64, uint32
)
466 VFP_CONV_FIX_A64(uq
, d
, 64, float64
, 64, uint64
)
467 VFP_CONV_FIX(sh
, s
, 32, float32
, 32, int16
)
468 VFP_CONV_FIX(sl
, s
, 32, float32
, 32, int32
)
469 VFP_CONV_FIX_A64(sq
, s
, 32, float32
, 64, int64
)
470 VFP_CONV_FIX(uh
, s
, 32, float32
, 32, uint16
)
471 VFP_CONV_FIX(ul
, s
, 32, float32
, 32, uint32
)
472 VFP_CONV_FIX_A64(uq
, s
, 32, float32
, 64, uint64
)
473 VFP_CONV_FIX(sh
, h
, 16, dh_ctype_f16
, 32, int16
)
474 VFP_CONV_FIX(sl
, h
, 16, dh_ctype_f16
, 32, int32
)
475 VFP_CONV_FIX_A64(sq
, h
, 16, dh_ctype_f16
, 64, int64
)
476 VFP_CONV_FIX(uh
, h
, 16, dh_ctype_f16
, 32, uint16
)
477 VFP_CONV_FIX(ul
, h
, 16, dh_ctype_f16
, 32, uint32
)
478 VFP_CONV_FIX_A64(uq
, h
, 16, dh_ctype_f16
, 64, uint64
)
481 #undef VFP_CONV_FIX_FLOAT
482 #undef VFP_CONV_FLOAT_FIX_ROUND
483 #undef VFP_CONV_FIX_A64
485 /* Set the current fp rounding mode and return the old one.
486 * The argument is a softfloat float_round_ value.
488 uint32_t HELPER(set_rmode
)(uint32_t rmode
, void *fpstp
)
490 float_status
*fp_status
= fpstp
;
492 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
493 set_float_rounding_mode(rmode
, fp_status
);
498 /* Half precision conversions. */
499 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
501 /* Squash FZ16 to 0 for the duration of conversion. In this case,
502 * it would affect flushing input denormals.
504 float_status
*fpst
= fpstp
;
505 bool save
= get_flush_inputs_to_zero(fpst
);
506 set_flush_inputs_to_zero(false, fpst
);
507 float32 r
= float16_to_float32(a
, !ahp_mode
, fpst
);
508 set_flush_inputs_to_zero(save
, fpst
);
512 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, void *fpstp
, uint32_t ahp_mode
)
514 /* Squash FZ16 to 0 for the duration of conversion. In this case,
515 * it would affect flushing output denormals.
517 float_status
*fpst
= fpstp
;
518 bool save
= get_flush_to_zero(fpst
);
519 set_flush_to_zero(false, fpst
);
520 float16 r
= float32_to_float16(a
, !ahp_mode
, fpst
);
521 set_flush_to_zero(save
, fpst
);
525 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
527 /* Squash FZ16 to 0 for the duration of conversion. In this case,
528 * it would affect flushing input denormals.
530 float_status
*fpst
= fpstp
;
531 bool save
= get_flush_inputs_to_zero(fpst
);
532 set_flush_inputs_to_zero(false, fpst
);
533 float64 r
= float16_to_float64(a
, !ahp_mode
, fpst
);
534 set_flush_inputs_to_zero(save
, fpst
);
538 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, void *fpstp
, uint32_t ahp_mode
)
540 /* Squash FZ16 to 0 for the duration of conversion. In this case,
541 * it would affect flushing output denormals.
543 float_status
*fpst
= fpstp
;
544 bool save
= get_flush_to_zero(fpst
);
545 set_flush_to_zero(false, fpst
);
546 float16 r
= float64_to_float16(a
, !ahp_mode
, fpst
);
547 set_flush_to_zero(save
, fpst
);
553 /* Constants 256 and 512 are used in some helpers; we avoid relying on
554 * int->float conversions at run-time. */
555 #define float64_256 make_float64(0x4070000000000000LL)
556 #define float64_512 make_float64(0x4080000000000000LL)
557 #define float16_maxnorm make_float16(0x7bff)
558 #define float32_maxnorm make_float32(0x7f7fffff)
559 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
561 /* Reciprocal functions
563 * The algorithm that must be used to calculate the estimate
564 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
567 /* See RecipEstimate()
569 * input is a 9 bit fixed point number
570 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
571 * result range 256 .. 511 for a number from 1.0 to 511/256.
574 static int recip_estimate(int input
)
577 assert(256 <= input
&& input
< 512);
581 assert(256 <= r
&& r
< 512);
586 * Common wrapper to call recip_estimate
588 * The parameters are exponent and 64 bit fraction (without implicit
589 * bit) where the binary point is nominally at bit 52. Returns a
590 * float64 which can then be rounded to the appropriate size by the
594 static uint64_t call_recip_estimate(int *exp
, int exp_off
, uint64_t frac
)
596 uint32_t scaled
, estimate
;
597 uint64_t result_frac
;
600 /* Handle sub-normals */
602 if (extract64(frac
, 51, 1) == 0) {
610 /* scaled = UInt('1':fraction<51:44>) */
611 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
612 estimate
= recip_estimate(scaled
);
614 result_exp
= exp_off
- *exp
;
615 result_frac
= deposit64(0, 44, 8, estimate
);
616 if (result_exp
== 0) {
617 result_frac
= deposit64(result_frac
>> 1, 51, 1, 1);
618 } else if (result_exp
== -1) {
619 result_frac
= deposit64(result_frac
>> 2, 50, 2, 1);
628 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
630 switch (fpst
->float_rounding_mode
) {
631 case float_round_nearest_even
: /* Round to Nearest */
633 case float_round_up
: /* Round to +Inf */
635 case float_round_down
: /* Round to -Inf */
637 case float_round_to_zero
: /* Round to Zero */
640 g_assert_not_reached();
644 uint32_t HELPER(recpe_f16
)(uint32_t input
, void *fpstp
)
646 float_status
*fpst
= fpstp
;
647 float16 f16
= float16_squash_input_denormal(input
, fpst
);
648 uint32_t f16_val
= float16_val(f16
);
649 uint32_t f16_sign
= float16_is_neg(f16
);
650 int f16_exp
= extract32(f16_val
, 10, 5);
651 uint32_t f16_frac
= extract32(f16_val
, 0, 10);
654 if (float16_is_any_nan(f16
)) {
656 if (float16_is_signaling_nan(f16
, fpst
)) {
657 float_raise(float_flag_invalid
, fpst
);
658 nan
= float16_silence_nan(f16
, fpst
);
660 if (fpst
->default_nan_mode
) {
661 nan
= float16_default_nan(fpst
);
664 } else if (float16_is_infinity(f16
)) {
665 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
666 } else if (float16_is_zero(f16
)) {
667 float_raise(float_flag_divbyzero
, fpst
);
668 return float16_set_sign(float16_infinity
, float16_is_neg(f16
));
669 } else if (float16_abs(f16
) < (1 << 8)) {
670 /* Abs(value) < 2.0^-16 */
671 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
672 if (round_to_inf(fpst
, f16_sign
)) {
673 return float16_set_sign(float16_infinity
, f16_sign
);
675 return float16_set_sign(float16_maxnorm
, f16_sign
);
677 } else if (f16_exp
>= 29 && fpst
->flush_to_zero
) {
678 float_raise(float_flag_underflow
, fpst
);
679 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
682 f64_frac
= call_recip_estimate(&f16_exp
, 29,
683 ((uint64_t) f16_frac
) << (52 - 10));
685 /* result = sign : result_exp<4:0> : fraction<51:42> */
686 f16_val
= deposit32(0, 15, 1, f16_sign
);
687 f16_val
= deposit32(f16_val
, 10, 5, f16_exp
);
688 f16_val
= deposit32(f16_val
, 0, 10, extract64(f64_frac
, 52 - 10, 10));
689 return make_float16(f16_val
);
692 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
694 float_status
*fpst
= fpstp
;
695 float32 f32
= float32_squash_input_denormal(input
, fpst
);
696 uint32_t f32_val
= float32_val(f32
);
697 bool f32_sign
= float32_is_neg(f32
);
698 int f32_exp
= extract32(f32_val
, 23, 8);
699 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
702 if (float32_is_any_nan(f32
)) {
704 if (float32_is_signaling_nan(f32
, fpst
)) {
705 float_raise(float_flag_invalid
, fpst
);
706 nan
= float32_silence_nan(f32
, fpst
);
708 if (fpst
->default_nan_mode
) {
709 nan
= float32_default_nan(fpst
);
712 } else if (float32_is_infinity(f32
)) {
713 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
714 } else if (float32_is_zero(f32
)) {
715 float_raise(float_flag_divbyzero
, fpst
);
716 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
717 } else if (float32_abs(f32
) < (1ULL << 21)) {
718 /* Abs(value) < 2.0^-128 */
719 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
720 if (round_to_inf(fpst
, f32_sign
)) {
721 return float32_set_sign(float32_infinity
, f32_sign
);
723 return float32_set_sign(float32_maxnorm
, f32_sign
);
725 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
726 float_raise(float_flag_underflow
, fpst
);
727 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
730 f64_frac
= call_recip_estimate(&f32_exp
, 253,
731 ((uint64_t) f32_frac
) << (52 - 23));
733 /* result = sign : result_exp<7:0> : fraction<51:29> */
734 f32_val
= deposit32(0, 31, 1, f32_sign
);
735 f32_val
= deposit32(f32_val
, 23, 8, f32_exp
);
736 f32_val
= deposit32(f32_val
, 0, 23, extract64(f64_frac
, 52 - 23, 23));
737 return make_float32(f32_val
);
740 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
742 float_status
*fpst
= fpstp
;
743 float64 f64
= float64_squash_input_denormal(input
, fpst
);
744 uint64_t f64_val
= float64_val(f64
);
745 bool f64_sign
= float64_is_neg(f64
);
746 int f64_exp
= extract64(f64_val
, 52, 11);
747 uint64_t f64_frac
= extract64(f64_val
, 0, 52);
749 /* Deal with any special cases */
750 if (float64_is_any_nan(f64
)) {
752 if (float64_is_signaling_nan(f64
, fpst
)) {
753 float_raise(float_flag_invalid
, fpst
);
754 nan
= float64_silence_nan(f64
, fpst
);
756 if (fpst
->default_nan_mode
) {
757 nan
= float64_default_nan(fpst
);
760 } else if (float64_is_infinity(f64
)) {
761 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
762 } else if (float64_is_zero(f64
)) {
763 float_raise(float_flag_divbyzero
, fpst
);
764 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
765 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
766 /* Abs(value) < 2.0^-1024 */
767 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
768 if (round_to_inf(fpst
, f64_sign
)) {
769 return float64_set_sign(float64_infinity
, f64_sign
);
771 return float64_set_sign(float64_maxnorm
, f64_sign
);
773 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
774 float_raise(float_flag_underflow
, fpst
);
775 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
778 f64_frac
= call_recip_estimate(&f64_exp
, 2045, f64_frac
);
780 /* result = sign : result_exp<10:0> : fraction<51:0>; */
781 f64_val
= deposit64(0, 63, 1, f64_sign
);
782 f64_val
= deposit64(f64_val
, 52, 11, f64_exp
);
783 f64_val
= deposit64(f64_val
, 0, 52, f64_frac
);
784 return make_float64(f64_val
);
787 /* The algorithm that must be used to calculate the estimate
788 * is specified by the ARM ARM.
791 static int do_recip_sqrt_estimate(int a
)
795 assert(128 <= a
&& a
< 512);
803 while (a
* (b
+ 1) * (b
+ 1) < (1 << 28)) {
806 estimate
= (b
+ 1) / 2;
807 assert(256 <= estimate
&& estimate
< 512);
813 static uint64_t recip_sqrt_estimate(int *exp
, int exp_off
, uint64_t frac
)
819 while (extract64(frac
, 51, 1) == 0) {
823 frac
= extract64(frac
, 0, 51) << 1;
827 /* scaled = UInt('01':fraction<51:45>) */
828 scaled
= deposit32(1 << 7, 0, 7, extract64(frac
, 45, 7));
830 /* scaled = UInt('1':fraction<51:44>) */
831 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
833 estimate
= do_recip_sqrt_estimate(scaled
);
835 *exp
= (exp_off
- *exp
) / 2;
836 return extract64(estimate
, 0, 8) << 44;
839 uint32_t HELPER(rsqrte_f16
)(uint32_t input
, void *fpstp
)
841 float_status
*s
= fpstp
;
842 float16 f16
= float16_squash_input_denormal(input
, s
);
843 uint16_t val
= float16_val(f16
);
844 bool f16_sign
= float16_is_neg(f16
);
845 int f16_exp
= extract32(val
, 10, 5);
846 uint16_t f16_frac
= extract32(val
, 0, 10);
849 if (float16_is_any_nan(f16
)) {
851 if (float16_is_signaling_nan(f16
, s
)) {
852 float_raise(float_flag_invalid
, s
);
853 nan
= float16_silence_nan(f16
, s
);
855 if (s
->default_nan_mode
) {
856 nan
= float16_default_nan(s
);
859 } else if (float16_is_zero(f16
)) {
860 float_raise(float_flag_divbyzero
, s
);
861 return float16_set_sign(float16_infinity
, f16_sign
);
862 } else if (f16_sign
) {
863 float_raise(float_flag_invalid
, s
);
864 return float16_default_nan(s
);
865 } else if (float16_is_infinity(f16
)) {
869 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
870 * preserving the parity of the exponent. */
872 f64_frac
= ((uint64_t) f16_frac
) << (52 - 10);
874 f64_frac
= recip_sqrt_estimate(&f16_exp
, 44, f64_frac
);
876 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
877 val
= deposit32(0, 15, 1, f16_sign
);
878 val
= deposit32(val
, 10, 5, f16_exp
);
879 val
= deposit32(val
, 2, 8, extract64(f64_frac
, 52 - 8, 8));
880 return make_float16(val
);
883 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
885 float_status
*s
= fpstp
;
886 float32 f32
= float32_squash_input_denormal(input
, s
);
887 uint32_t val
= float32_val(f32
);
888 uint32_t f32_sign
= float32_is_neg(f32
);
889 int f32_exp
= extract32(val
, 23, 8);
890 uint32_t f32_frac
= extract32(val
, 0, 23);
893 if (float32_is_any_nan(f32
)) {
895 if (float32_is_signaling_nan(f32
, s
)) {
896 float_raise(float_flag_invalid
, s
);
897 nan
= float32_silence_nan(f32
, s
);
899 if (s
->default_nan_mode
) {
900 nan
= float32_default_nan(s
);
903 } else if (float32_is_zero(f32
)) {
904 float_raise(float_flag_divbyzero
, s
);
905 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
906 } else if (float32_is_neg(f32
)) {
907 float_raise(float_flag_invalid
, s
);
908 return float32_default_nan(s
);
909 } else if (float32_is_infinity(f32
)) {
913 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
914 * preserving the parity of the exponent. */
916 f64_frac
= ((uint64_t) f32_frac
) << 29;
918 f64_frac
= recip_sqrt_estimate(&f32_exp
, 380, f64_frac
);
920 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
921 val
= deposit32(0, 31, 1, f32_sign
);
922 val
= deposit32(val
, 23, 8, f32_exp
);
923 val
= deposit32(val
, 15, 8, extract64(f64_frac
, 52 - 8, 8));
924 return make_float32(val
);
927 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
929 float_status
*s
= fpstp
;
930 float64 f64
= float64_squash_input_denormal(input
, s
);
931 uint64_t val
= float64_val(f64
);
932 bool f64_sign
= float64_is_neg(f64
);
933 int f64_exp
= extract64(val
, 52, 11);
934 uint64_t f64_frac
= extract64(val
, 0, 52);
936 if (float64_is_any_nan(f64
)) {
938 if (float64_is_signaling_nan(f64
, s
)) {
939 float_raise(float_flag_invalid
, s
);
940 nan
= float64_silence_nan(f64
, s
);
942 if (s
->default_nan_mode
) {
943 nan
= float64_default_nan(s
);
946 } else if (float64_is_zero(f64
)) {
947 float_raise(float_flag_divbyzero
, s
);
948 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
949 } else if (float64_is_neg(f64
)) {
950 float_raise(float_flag_invalid
, s
);
951 return float64_default_nan(s
);
952 } else if (float64_is_infinity(f64
)) {
956 f64_frac
= recip_sqrt_estimate(&f64_exp
, 3068, f64_frac
);
958 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
959 val
= deposit64(0, 61, 1, f64_sign
);
960 val
= deposit64(val
, 52, 11, f64_exp
);
961 val
= deposit64(val
, 44, 8, extract64(f64_frac
, 52 - 8, 8));
962 return make_float64(val
);
965 uint32_t HELPER(recpe_u32
)(uint32_t a
)
969 if ((a
& 0x80000000) == 0) {
973 input
= extract32(a
, 23, 9);
974 estimate
= recip_estimate(input
);
976 return deposit32(0, (32 - 9), 9, estimate
);
979 uint32_t HELPER(rsqrte_u32
)(uint32_t a
)
983 if ((a
& 0xc0000000) == 0) {
987 estimate
= do_recip_sqrt_estimate(extract32(a
, 23, 9));
989 return deposit32(0, 23, 9, estimate
);
992 /* VFPv4 fused multiply-accumulate */
993 dh_ctype_f16
VFP_HELPER(muladd
, h
)(dh_ctype_f16 a
, dh_ctype_f16 b
,
994 dh_ctype_f16 c
, void *fpstp
)
996 float_status
*fpst
= fpstp
;
997 return float16_muladd(a
, b
, c
, 0, fpst
);
1000 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
1002 float_status
*fpst
= fpstp
;
1003 return float32_muladd(a
, b
, c
, 0, fpst
);
1006 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
1008 float_status
*fpst
= fpstp
;
1009 return float64_muladd(a
, b
, c
, 0, fpst
);
1012 /* ARMv8 round to integral */
1013 dh_ctype_f16
HELPER(rinth_exact
)(dh_ctype_f16 x
, void *fp_status
)
1015 return float16_round_to_int(x
, fp_status
);
1018 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
1020 return float32_round_to_int(x
, fp_status
);
1023 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
1025 return float64_round_to_int(x
, fp_status
);
1028 dh_ctype_f16
HELPER(rinth
)(dh_ctype_f16 x
, void *fp_status
)
1030 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
1033 ret
= float16_round_to_int(x
, fp_status
);
1035 /* Suppress any inexact exceptions the conversion produced */
1036 if (!(old_flags
& float_flag_inexact
)) {
1037 new_flags
= get_float_exception_flags(fp_status
);
1038 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
1044 float32
HELPER(rints
)(float32 x
, void *fp_status
)
1046 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
1049 ret
= float32_round_to_int(x
, fp_status
);
1051 /* Suppress any inexact exceptions the conversion produced */
1052 if (!(old_flags
& float_flag_inexact
)) {
1053 new_flags
= get_float_exception_flags(fp_status
);
1054 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
1060 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
1062 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
1065 ret
= float64_round_to_int(x
, fp_status
);
1067 new_flags
= get_float_exception_flags(fp_status
);
1069 /* Suppress any inexact exceptions the conversion produced */
1070 if (!(old_flags
& float_flag_inexact
)) {
1071 new_flags
= get_float_exception_flags(fp_status
);
1072 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
1078 /* Convert ARM rounding mode to softfloat */
1079 int arm_rmode_to_sf(int rmode
)
1082 case FPROUNDING_TIEAWAY
:
1083 rmode
= float_round_ties_away
;
1085 case FPROUNDING_ODD
:
1086 /* FIXME: add support for TIEAWAY and ODD */
1087 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
1089 /* fall through for now */
1090 case FPROUNDING_TIEEVEN
:
1092 rmode
= float_round_nearest_even
;
1094 case FPROUNDING_POSINF
:
1095 rmode
= float_round_up
;
1097 case FPROUNDING_NEGINF
:
1098 rmode
= float_round_down
;
1100 case FPROUNDING_ZERO
:
1101 rmode
= float_round_to_zero
;
1108 * Implement float64 to int32_t conversion without saturation;
1109 * the result is supplied modulo 2^32.
1111 uint64_t HELPER(fjcvtzs
)(float64 value
, void *vstatus
)
1113 float_status
*status
= vstatus
;
1116 uint32_t inexact
= 1; /* !Z */
1118 sign
= extract64(value
, 63, 1);
1119 exp
= extract64(value
, 52, 11);
1120 frac
= extract64(value
, 0, 52);
1123 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1126 if (status
->flush_inputs_to_zero
) {
1127 float_raise(float_flag_input_denormal
, status
);
1129 float_raise(float_flag_inexact
, status
);
1134 } else if (exp
== 0x7ff) {
1135 /* This operation raises Invalid for both NaN and overflow (Inf). */
1136 float_raise(float_flag_invalid
, status
);
1139 int true_exp
= exp
- 1023;
1140 int shift
= true_exp
- 52;
1142 /* Restore implicit bit. */
1145 /* Shift the fraction into place. */
1147 /* The number is so large we must shift the fraction left. */
1149 /* The fraction is shifted out entirely. */
1154 } else if (shift
> -64) {
1155 /* Normal case -- shift right and notice if bits shift out. */
1156 inexact
= (frac
<< (64 + shift
)) != 0;
1159 /* The fraction is shifted out entirely. */
1163 /* Notice overflow or inexact exceptions. */
1164 if (true_exp
> 31 || frac
> (sign
? 0x80000000ull
: 0x7fffffff)) {
1165 /* Overflow, for which this operation raises invalid. */
1166 float_raise(float_flag_invalid
, status
);
1168 } else if (inexact
) {
1169 float_raise(float_flag_inexact
, status
);
1172 /* Honor the sign. */
1178 /* Pack the result and the env->ZF representation of Z together. */
1179 return deposit64(frac
, 32, 32, inexact
);
1182 uint32_t HELPER(vjcvt
)(float64 value
, CPUARMState
*env
)
1184 uint64_t pair
= HELPER(fjcvtzs
)(value
, &env
->vfp
.fp_status
);
1185 uint32_t result
= pair
;
1186 uint32_t z
= (pair
>> 32) == 0;
1188 /* Store Z, clear NCV, in FPSCR.NZCV. */
1189 env
->vfp
.xregs
[ARM_VFP_FPSCR
]
1190 = (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & ~CPSR_NZCV
) | (z
* CPSR_Z
);
1195 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1196 static float32
frint_s(float32 f
, float_status
*fpst
, int intsize
)
1198 int old_flags
= get_float_exception_flags(fpst
);
1199 uint32_t exp
= extract32(f
, 23, 8);
1201 if (unlikely(exp
== 0xff)) {
1206 /* Round and re-extract the exponent. */
1207 f
= float32_round_to_int(f
, fpst
);
1208 exp
= extract32(f
, 23, 8);
1210 /* Validate the range of the result. */
1211 if (exp
< 126 + intsize
) {
1212 /* abs(F) <= INT{N}_MAX */
1215 if (exp
== 126 + intsize
) {
1216 uint32_t sign
= extract32(f
, 31, 1);
1217 uint32_t frac
= extract32(f
, 0, 23);
1218 if (sign
&& frac
== 0) {
1219 /* F == INT{N}_MIN */
1226 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1227 * inexact exception float32_round_to_int may have raised.
1229 set_float_exception_flags(old_flags
| float_flag_invalid
, fpst
);
1230 return (0x100u
+ 126u + intsize
) << 23;
1233 float32
HELPER(frint32_s
)(float32 f
, void *fpst
)
1235 return frint_s(f
, fpst
, 32);
1238 float32
HELPER(frint64_s
)(float32 f
, void *fpst
)
1240 return frint_s(f
, fpst
, 64);
1243 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1244 static float64
frint_d(float64 f
, float_status
*fpst
, int intsize
)
1246 int old_flags
= get_float_exception_flags(fpst
);
1247 uint32_t exp
= extract64(f
, 52, 11);
1249 if (unlikely(exp
== 0x7ff)) {
1254 /* Round and re-extract the exponent. */
1255 f
= float64_round_to_int(f
, fpst
);
1256 exp
= extract64(f
, 52, 11);
1258 /* Validate the range of the result. */
1259 if (exp
< 1022 + intsize
) {
1260 /* abs(F) <= INT{N}_MAX */
1263 if (exp
== 1022 + intsize
) {
1264 uint64_t sign
= extract64(f
, 63, 1);
1265 uint64_t frac
= extract64(f
, 0, 52);
1266 if (sign
&& frac
== 0) {
1267 /* F == INT{N}_MIN */
1274 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1275 * inexact exception float64_round_to_int may have raised.
1277 set_float_exception_flags(old_flags
| float_flag_invalid
, fpst
);
1278 return (uint64_t)(0x800 + 1022 + intsize
) << 52;
1281 float64
HELPER(frint32_d
)(float64 f
, void *fpst
)
1283 return frint_d(f
, fpst
, 32);
1286 float64
HELPER(frint64_d
)(float64 f
, void *fpst
)
1288 return frint_d(f
, fpst
, 64);
1291 void HELPER(check_hcr_el2_trap
)(CPUARMState
*env
, uint32_t rt
, uint32_t reg
)
1299 if (!(arm_hcr_el2_eff(env
) & HCR_TID3
)) {
1304 if (!(arm_hcr_el2_eff(env
) & HCR_TID0
)) {
1309 g_assert_not_reached();
1312 syndrome
= ((EC_FPIDTRAP
<< ARM_EL_EC_SHIFT
)
1314 | (1 << 24) | (0xe << 20) | (7 << 14)
1315 | (reg
<< 10) | (rt
<< 5) | 1);
1317 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);