qemu-img: Gracefully shutdown when map can't finish
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blob16dfae14b80418c8d38c2ce84852acf7f410e019
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/block/block.h"
42 #include "hw/block/flash.h"
43 #include "sysemu/block-backend.h"
44 #include "qapi/error.h"
45 #include "qemu/timer.h"
46 #include "qemu/bitops.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/log.h"
49 #include "hw/sysbus.h"
50 #include "sysemu/sysemu.h"
51 #include "trace.h"
53 /* #define PFLASH_DEBUG */
54 #ifdef PFLASH_DEBUG
55 #define DPRINTF(fmt, ...) \
56 do { \
57 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
58 } while (0)
59 #else
60 #define DPRINTF(fmt, ...) do { } while (0)
61 #endif
63 #define PFLASH_BE 0
64 #define PFLASH_SECURE 1
66 struct PFlashCFI01 {
67 /*< private >*/
68 SysBusDevice parent_obj;
69 /*< public >*/
71 BlockBackend *blk;
72 uint32_t nb_blocs;
73 uint64_t sector_len;
74 uint8_t bank_width;
75 uint8_t device_width; /* If 0, device width not specified. */
76 uint8_t max_device_width; /* max device width in bytes */
77 uint32_t features;
78 uint8_t wcycle; /* if 0, the flash is read normally */
79 int ro;
80 uint8_t cmd;
81 uint8_t status;
82 uint16_t ident0;
83 uint16_t ident1;
84 uint16_t ident2;
85 uint16_t ident3;
86 uint8_t cfi_table[0x52];
87 uint64_t counter;
88 unsigned int writeblock_size;
89 QEMUTimer *timer;
90 MemoryRegion mem;
91 char *name;
92 void *storage;
93 VMChangeStateEntry *vmstate;
94 bool old_multiple_chip_handling;
97 static int pflash_post_load(void *opaque, int version_id);
99 static const VMStateDescription vmstate_pflash = {
100 .name = "pflash_cfi01",
101 .version_id = 1,
102 .minimum_version_id = 1,
103 .post_load = pflash_post_load,
104 .fields = (VMStateField[]) {
105 VMSTATE_UINT8(wcycle, PFlashCFI01),
106 VMSTATE_UINT8(cmd, PFlashCFI01),
107 VMSTATE_UINT8(status, PFlashCFI01),
108 VMSTATE_UINT64(counter, PFlashCFI01),
109 VMSTATE_END_OF_LIST()
113 static void pflash_timer (void *opaque)
115 PFlashCFI01 *pfl = opaque;
117 trace_pflash_timer_expired(pfl->cmd);
118 /* Reset flash */
119 pfl->status ^= 0x80;
120 memory_region_rom_device_set_romd(&pfl->mem, true);
121 pfl->wcycle = 0;
122 pfl->cmd = 0;
125 /* Perform a CFI query based on the bank width of the flash.
126 * If this code is called we know we have a device_width set for
127 * this flash.
129 static uint32_t pflash_cfi_query(PFlashCFI01 *pfl, hwaddr offset)
131 int i;
132 uint32_t resp = 0;
133 hwaddr boff;
135 /* Adjust incoming offset to match expected device-width
136 * addressing. CFI query addresses are always specified in terms of
137 * the maximum supported width of the device. This means that x8
138 * devices and x8/x16 devices in x8 mode behave differently. For
139 * devices that are not used at their max width, we will be
140 * provided with addresses that use higher address bits than
141 * expected (based on the max width), so we will shift them lower
142 * so that they will match the addresses used when
143 * device_width==max_device_width.
145 boff = offset >> (ctz32(pfl->bank_width) +
146 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
148 if (boff >= sizeof(pfl->cfi_table)) {
149 return 0;
151 /* Now we will construct the CFI response generated by a single
152 * device, then replicate that for all devices that make up the
153 * bus. For wide parts used in x8 mode, CFI query responses
154 * are different than native byte-wide parts.
156 resp = pfl->cfi_table[boff];
157 if (pfl->device_width != pfl->max_device_width) {
158 /* The only case currently supported is x8 mode for a
159 * wider part.
161 if (pfl->device_width != 1 || pfl->bank_width > 4) {
162 DPRINTF("%s: Unsupported device configuration: "
163 "device_width=%d, max_device_width=%d\n",
164 __func__, pfl->device_width,
165 pfl->max_device_width);
166 return 0;
168 /* CFI query data is repeated, rather than zero padded for
169 * wide devices used in x8 mode.
171 for (i = 1; i < pfl->max_device_width; i++) {
172 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
175 /* Replicate responses for each device in bank. */
176 if (pfl->device_width < pfl->bank_width) {
177 for (i = pfl->device_width;
178 i < pfl->bank_width; i += pfl->device_width) {
179 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
183 return resp;
188 /* Perform a device id query based on the bank width of the flash. */
189 static uint32_t pflash_devid_query(PFlashCFI01 *pfl, hwaddr offset)
191 int i;
192 uint32_t resp;
193 hwaddr boff;
195 /* Adjust incoming offset to match expected device-width
196 * addressing. Device ID read addresses are always specified in
197 * terms of the maximum supported width of the device. This means
198 * that x8 devices and x8/x16 devices in x8 mode behave
199 * differently. For devices that are not used at their max width,
200 * we will be provided with addresses that use higher address bits
201 * than expected (based on the max width), so we will shift them
202 * lower so that they will match the addresses used when
203 * device_width==max_device_width.
205 boff = offset >> (ctz32(pfl->bank_width) +
206 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
208 /* Mask off upper bits which may be used in to query block
209 * or sector lock status at other addresses.
210 * Offsets 2/3 are block lock status, is not emulated.
212 switch (boff & 0xFF) {
213 case 0:
214 resp = pfl->ident0;
215 trace_pflash_manufacturer_id(resp);
216 break;
217 case 1:
218 resp = pfl->ident1;
219 trace_pflash_device_id(resp);
220 break;
221 default:
222 trace_pflash_device_info(offset);
223 return 0;
224 break;
226 /* Replicate responses for each device in bank. */
227 if (pfl->device_width < pfl->bank_width) {
228 for (i = pfl->device_width;
229 i < pfl->bank_width; i += pfl->device_width) {
230 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
234 return resp;
237 static uint32_t pflash_data_read(PFlashCFI01 *pfl, hwaddr offset,
238 int width, int be)
240 uint8_t *p;
241 uint32_t ret;
243 p = pfl->storage;
244 switch (width) {
245 case 1:
246 ret = p[offset];
247 trace_pflash_data_read8(offset, ret);
248 break;
249 case 2:
250 if (be) {
251 ret = p[offset] << 8;
252 ret |= p[offset + 1];
253 } else {
254 ret = p[offset];
255 ret |= p[offset + 1] << 8;
257 trace_pflash_data_read16(offset, ret);
258 break;
259 case 4:
260 if (be) {
261 ret = p[offset] << 24;
262 ret |= p[offset + 1] << 16;
263 ret |= p[offset + 2] << 8;
264 ret |= p[offset + 3];
265 } else {
266 ret = p[offset];
267 ret |= p[offset + 1] << 8;
268 ret |= p[offset + 2] << 16;
269 ret |= p[offset + 3] << 24;
271 trace_pflash_data_read32(offset, ret);
272 break;
273 default:
274 DPRINTF("BUG in %s\n", __func__);
275 abort();
277 return ret;
280 static uint32_t pflash_read(PFlashCFI01 *pfl, hwaddr offset,
281 int width, int be)
283 hwaddr boff;
284 uint32_t ret;
286 ret = -1;
287 trace_pflash_read(offset, pfl->cmd, width, pfl->wcycle);
288 switch (pfl->cmd) {
289 default:
290 /* This should never happen : reset state & treat it as a read */
291 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
292 pfl->wcycle = 0;
293 pfl->cmd = 0;
294 /* fall through to read code */
295 case 0x00:
296 /* Flash area read */
297 ret = pflash_data_read(pfl, offset, width, be);
298 break;
299 case 0x10: /* Single byte program */
300 case 0x20: /* Block erase */
301 case 0x28: /* Block erase */
302 case 0x40: /* single byte program */
303 case 0x50: /* Clear status register */
304 case 0x60: /* Block /un)lock */
305 case 0x70: /* Status Register */
306 case 0xe8: /* Write block */
307 /* Status register read. Return status from each device in
308 * bank.
310 ret = pfl->status;
311 if (pfl->device_width && width > pfl->device_width) {
312 int shift = pfl->device_width * 8;
313 while (shift + pfl->device_width * 8 <= width * 8) {
314 ret |= pfl->status << shift;
315 shift += pfl->device_width * 8;
317 } else if (!pfl->device_width && width > 2) {
318 /* Handle 32 bit flash cases where device width is not
319 * set. (Existing behavior before device width added.)
321 ret |= pfl->status << 16;
323 DPRINTF("%s: status %x\n", __func__, ret);
324 break;
325 case 0x90:
326 if (!pfl->device_width) {
327 /* Preserve old behavior if device width not specified */
328 boff = offset & 0xFF;
329 if (pfl->bank_width == 2) {
330 boff = boff >> 1;
331 } else if (pfl->bank_width == 4) {
332 boff = boff >> 2;
335 switch (boff) {
336 case 0:
337 ret = pfl->ident0 << 8 | pfl->ident1;
338 trace_pflash_manufacturer_id(ret);
339 break;
340 case 1:
341 ret = pfl->ident2 << 8 | pfl->ident3;
342 trace_pflash_device_id(ret);
343 break;
344 default:
345 trace_pflash_device_info(boff);
346 ret = 0;
347 break;
349 } else {
350 /* If we have a read larger than the bank_width, combine multiple
351 * manufacturer/device ID queries into a single response.
353 int i;
354 for (i = 0; i < width; i += pfl->bank_width) {
355 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
356 pflash_devid_query(pfl,
357 offset + i * pfl->bank_width));
360 break;
361 case 0x98: /* Query mode */
362 if (!pfl->device_width) {
363 /* Preserve old behavior if device width not specified */
364 boff = offset & 0xFF;
365 if (pfl->bank_width == 2) {
366 boff = boff >> 1;
367 } else if (pfl->bank_width == 4) {
368 boff = boff >> 2;
371 if (boff < sizeof(pfl->cfi_table)) {
372 ret = pfl->cfi_table[boff];
373 } else {
374 ret = 0;
376 } else {
377 /* If we have a read larger than the bank_width, combine multiple
378 * CFI queries into a single response.
380 int i;
381 for (i = 0; i < width; i += pfl->bank_width) {
382 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
383 pflash_cfi_query(pfl,
384 offset + i * pfl->bank_width));
388 break;
390 return ret;
393 /* update flash content on disk */
394 static void pflash_update(PFlashCFI01 *pfl, int offset,
395 int size)
397 int offset_end;
398 if (pfl->blk) {
399 offset_end = offset + size;
400 /* widen to sector boundaries */
401 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
402 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
403 blk_pwrite(pfl->blk, offset, pfl->storage + offset,
404 offset_end - offset, 0);
408 static inline void pflash_data_write(PFlashCFI01 *pfl, hwaddr offset,
409 uint32_t value, int width, int be)
411 uint8_t *p = pfl->storage;
413 trace_pflash_data_write(offset, value, width, pfl->counter);
414 switch (width) {
415 case 1:
416 p[offset] = value;
417 break;
418 case 2:
419 if (be) {
420 p[offset] = value >> 8;
421 p[offset + 1] = value;
422 } else {
423 p[offset] = value;
424 p[offset + 1] = value >> 8;
426 break;
427 case 4:
428 if (be) {
429 p[offset] = value >> 24;
430 p[offset + 1] = value >> 16;
431 p[offset + 2] = value >> 8;
432 p[offset + 3] = value;
433 } else {
434 p[offset] = value;
435 p[offset + 1] = value >> 8;
436 p[offset + 2] = value >> 16;
437 p[offset + 3] = value >> 24;
439 break;
444 static void pflash_write(PFlashCFI01 *pfl, hwaddr offset,
445 uint32_t value, int width, int be)
447 uint8_t *p;
448 uint8_t cmd;
450 cmd = value;
452 trace_pflash_write(offset, value, width, pfl->wcycle);
453 if (!pfl->wcycle) {
454 /* Set the device in I/O access mode */
455 memory_region_rom_device_set_romd(&pfl->mem, false);
458 switch (pfl->wcycle) {
459 case 0:
460 /* read mode */
461 switch (cmd) {
462 case 0x00: /* ??? */
463 goto reset_flash;
464 case 0x10: /* Single Byte Program */
465 case 0x40: /* Single Byte Program */
466 DPRINTF("%s: Single Byte Program\n", __func__);
467 break;
468 case 0x20: /* Block erase */
469 p = pfl->storage;
470 offset &= ~(pfl->sector_len - 1);
472 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
473 __func__, offset, (unsigned)pfl->sector_len);
475 if (!pfl->ro) {
476 memset(p + offset, 0xff, pfl->sector_len);
477 pflash_update(pfl, offset, pfl->sector_len);
478 } else {
479 pfl->status |= 0x20; /* Block erase error */
481 pfl->status |= 0x80; /* Ready! */
482 break;
483 case 0x50: /* Clear status bits */
484 DPRINTF("%s: Clear status bits\n", __func__);
485 pfl->status = 0x0;
486 goto reset_flash;
487 case 0x60: /* Block (un)lock */
488 DPRINTF("%s: Block unlock\n", __func__);
489 break;
490 case 0x70: /* Status Register */
491 DPRINTF("%s: Read status register\n", __func__);
492 pfl->cmd = cmd;
493 return;
494 case 0x90: /* Read Device ID */
495 DPRINTF("%s: Read Device information\n", __func__);
496 pfl->cmd = cmd;
497 return;
498 case 0x98: /* CFI query */
499 DPRINTF("%s: CFI query\n", __func__);
500 break;
501 case 0xe8: /* Write to buffer */
502 DPRINTF("%s: Write to buffer\n", __func__);
503 /* FIXME should save @offset, @width for case 1+ */
504 qemu_log_mask(LOG_UNIMP,
505 "%s: Write to buffer emulation is flawed\n",
506 __func__);
507 pfl->status |= 0x80; /* Ready! */
508 break;
509 case 0xf0: /* Probe for AMD flash */
510 DPRINTF("%s: Probe for AMD flash\n", __func__);
511 goto reset_flash;
512 case 0xff: /* Read array mode */
513 DPRINTF("%s: Read array mode\n", __func__);
514 goto reset_flash;
515 default:
516 goto error_flash;
518 pfl->wcycle++;
519 pfl->cmd = cmd;
520 break;
521 case 1:
522 switch (pfl->cmd) {
523 case 0x10: /* Single Byte Program */
524 case 0x40: /* Single Byte Program */
525 DPRINTF("%s: Single Byte Program\n", __func__);
526 if (!pfl->ro) {
527 pflash_data_write(pfl, offset, value, width, be);
528 pflash_update(pfl, offset, width);
529 } else {
530 pfl->status |= 0x10; /* Programming error */
532 pfl->status |= 0x80; /* Ready! */
533 pfl->wcycle = 0;
534 break;
535 case 0x20: /* Block erase */
536 case 0x28:
537 if (cmd == 0xd0) { /* confirm */
538 pfl->wcycle = 0;
539 pfl->status |= 0x80;
540 } else if (cmd == 0xff) { /* read array mode */
541 goto reset_flash;
542 } else
543 goto error_flash;
545 break;
546 case 0xe8:
547 /* Mask writeblock size based on device width, or bank width if
548 * device width not specified.
550 /* FIXME check @offset, @width */
551 if (pfl->device_width) {
552 value = extract32(value, 0, pfl->device_width * 8);
553 } else {
554 value = extract32(value, 0, pfl->bank_width * 8);
556 DPRINTF("%s: block write of %x bytes\n", __func__, value);
557 pfl->counter = value;
558 pfl->wcycle++;
559 break;
560 case 0x60:
561 if (cmd == 0xd0) {
562 pfl->wcycle = 0;
563 pfl->status |= 0x80;
564 } else if (cmd == 0x01) {
565 pfl->wcycle = 0;
566 pfl->status |= 0x80;
567 } else if (cmd == 0xff) {
568 goto reset_flash;
569 } else {
570 DPRINTF("%s: Unknown (un)locking command\n", __func__);
571 goto reset_flash;
573 break;
574 case 0x98:
575 if (cmd == 0xff) {
576 goto reset_flash;
577 } else {
578 DPRINTF("%s: leaving query mode\n", __func__);
580 break;
581 default:
582 goto error_flash;
584 break;
585 case 2:
586 switch (pfl->cmd) {
587 case 0xe8: /* Block write */
588 /* FIXME check @offset, @width */
589 if (!pfl->ro) {
591 * FIXME writing straight to memory is *wrong*. We
592 * should write to a buffer, and flush it to memory
593 * only on confirm command (see below).
595 pflash_data_write(pfl, offset, value, width, be);
596 } else {
597 pfl->status |= 0x10; /* Programming error */
600 pfl->status |= 0x80;
602 if (!pfl->counter) {
603 hwaddr mask = pfl->writeblock_size - 1;
604 mask = ~mask;
606 DPRINTF("%s: block write finished\n", __func__);
607 pfl->wcycle++;
608 if (!pfl->ro) {
609 /* Flush the entire write buffer onto backing storage. */
610 /* FIXME premature! */
611 pflash_update(pfl, offset & mask, pfl->writeblock_size);
612 } else {
613 pfl->status |= 0x10; /* Programming error */
617 pfl->counter--;
618 break;
619 default:
620 goto error_flash;
622 break;
623 case 3: /* Confirm mode */
624 switch (pfl->cmd) {
625 case 0xe8: /* Block write */
626 if (cmd == 0xd0) {
627 /* FIXME this is where we should write out the buffer */
628 pfl->wcycle = 0;
629 pfl->status |= 0x80;
630 } else {
631 qemu_log_mask(LOG_UNIMP,
632 "%s: Aborting write to buffer not implemented,"
633 " the data is already written to storage!\n"
634 "Flash device reset into READ mode.\n",
635 __func__);
636 goto reset_flash;
638 break;
639 default:
640 goto error_flash;
642 break;
643 default:
644 /* Should never happen */
645 DPRINTF("%s: invalid write state\n", __func__);
646 goto reset_flash;
648 return;
650 error_flash:
651 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
652 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
653 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
655 reset_flash:
656 trace_pflash_reset();
657 memory_region_rom_device_set_romd(&pfl->mem, true);
658 pfl->wcycle = 0;
659 pfl->cmd = 0;
663 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
664 unsigned len, MemTxAttrs attrs)
666 PFlashCFI01 *pfl = opaque;
667 bool be = !!(pfl->features & (1 << PFLASH_BE));
669 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
670 *value = pflash_data_read(opaque, addr, len, be);
671 } else {
672 *value = pflash_read(opaque, addr, len, be);
674 return MEMTX_OK;
677 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
678 unsigned len, MemTxAttrs attrs)
680 PFlashCFI01 *pfl = opaque;
681 bool be = !!(pfl->features & (1 << PFLASH_BE));
683 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
684 return MEMTX_ERROR;
685 } else {
686 pflash_write(opaque, addr, value, len, be);
687 return MEMTX_OK;
691 static const MemoryRegionOps pflash_cfi01_ops = {
692 .read_with_attrs = pflash_mem_read_with_attrs,
693 .write_with_attrs = pflash_mem_write_with_attrs,
694 .endianness = DEVICE_NATIVE_ENDIAN,
697 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
699 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
700 uint64_t total_len;
701 int ret;
702 uint64_t blocks_per_device, sector_len_per_device, device_len;
703 int num_devices;
704 Error *local_err = NULL;
706 if (pfl->sector_len == 0) {
707 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
708 return;
710 if (pfl->nb_blocs == 0) {
711 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
712 return;
714 if (pfl->name == NULL) {
715 error_setg(errp, "attribute \"name\" not specified.");
716 return;
719 total_len = pfl->sector_len * pfl->nb_blocs;
721 /* These are only used to expose the parameters of each device
722 * in the cfi_table[].
724 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
725 if (pfl->old_multiple_chip_handling) {
726 blocks_per_device = pfl->nb_blocs / num_devices;
727 sector_len_per_device = pfl->sector_len;
728 } else {
729 blocks_per_device = pfl->nb_blocs;
730 sector_len_per_device = pfl->sector_len / num_devices;
732 device_len = sector_len_per_device * blocks_per_device;
734 memory_region_init_rom_device(
735 &pfl->mem, OBJECT(dev),
736 &pflash_cfi01_ops,
737 pfl,
738 pfl->name, total_len, &local_err);
739 if (local_err) {
740 error_propagate(errp, local_err);
741 return;
744 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
745 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
747 if (pfl->blk) {
748 uint64_t perm;
749 pfl->ro = blk_is_read_only(pfl->blk);
750 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
751 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
752 if (ret < 0) {
753 return;
755 } else {
756 pfl->ro = 0;
759 if (pfl->blk) {
760 if (!blk_check_size_and_read_all(pfl->blk, pfl->storage, total_len,
761 errp)) {
762 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
763 return;
767 /* Default to devices being used at their maximum device width. This was
768 * assumed before the device_width support was added.
770 if (!pfl->max_device_width) {
771 pfl->max_device_width = pfl->device_width;
774 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
775 pfl->wcycle = 0;
776 pfl->cmd = 0;
777 pfl->status = 0;
778 /* Hardcoded CFI table */
779 /* Standard "QRY" string */
780 pfl->cfi_table[0x10] = 'Q';
781 pfl->cfi_table[0x11] = 'R';
782 pfl->cfi_table[0x12] = 'Y';
783 /* Command set (Intel) */
784 pfl->cfi_table[0x13] = 0x01;
785 pfl->cfi_table[0x14] = 0x00;
786 /* Primary extended table address (none) */
787 pfl->cfi_table[0x15] = 0x31;
788 pfl->cfi_table[0x16] = 0x00;
789 /* Alternate command set (none) */
790 pfl->cfi_table[0x17] = 0x00;
791 pfl->cfi_table[0x18] = 0x00;
792 /* Alternate extended table (none) */
793 pfl->cfi_table[0x19] = 0x00;
794 pfl->cfi_table[0x1A] = 0x00;
795 /* Vcc min */
796 pfl->cfi_table[0x1B] = 0x45;
797 /* Vcc max */
798 pfl->cfi_table[0x1C] = 0x55;
799 /* Vpp min (no Vpp pin) */
800 pfl->cfi_table[0x1D] = 0x00;
801 /* Vpp max (no Vpp pin) */
802 pfl->cfi_table[0x1E] = 0x00;
803 /* Reserved */
804 pfl->cfi_table[0x1F] = 0x07;
805 /* Timeout for min size buffer write */
806 pfl->cfi_table[0x20] = 0x07;
807 /* Typical timeout for block erase */
808 pfl->cfi_table[0x21] = 0x0a;
809 /* Typical timeout for full chip erase (4096 ms) */
810 pfl->cfi_table[0x22] = 0x00;
811 /* Reserved */
812 pfl->cfi_table[0x23] = 0x04;
813 /* Max timeout for buffer write */
814 pfl->cfi_table[0x24] = 0x04;
815 /* Max timeout for block erase */
816 pfl->cfi_table[0x25] = 0x04;
817 /* Max timeout for chip erase */
818 pfl->cfi_table[0x26] = 0x00;
819 /* Device size */
820 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
821 /* Flash device interface (8 & 16 bits) */
822 pfl->cfi_table[0x28] = 0x02;
823 pfl->cfi_table[0x29] = 0x00;
824 /* Max number of bytes in multi-bytes write */
825 if (pfl->bank_width == 1) {
826 pfl->cfi_table[0x2A] = 0x08;
827 } else {
828 pfl->cfi_table[0x2A] = 0x0B;
830 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
831 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
832 pfl->writeblock_size *= num_devices;
835 pfl->cfi_table[0x2B] = 0x00;
836 /* Number of erase block regions (uniform) */
837 pfl->cfi_table[0x2C] = 0x01;
838 /* Erase block region 1 */
839 pfl->cfi_table[0x2D] = blocks_per_device - 1;
840 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
841 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
842 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
844 /* Extended */
845 pfl->cfi_table[0x31] = 'P';
846 pfl->cfi_table[0x32] = 'R';
847 pfl->cfi_table[0x33] = 'I';
849 pfl->cfi_table[0x34] = '1';
850 pfl->cfi_table[0x35] = '0';
852 pfl->cfi_table[0x36] = 0x00;
853 pfl->cfi_table[0x37] = 0x00;
854 pfl->cfi_table[0x38] = 0x00;
855 pfl->cfi_table[0x39] = 0x00;
857 pfl->cfi_table[0x3a] = 0x00;
859 pfl->cfi_table[0x3b] = 0x00;
860 pfl->cfi_table[0x3c] = 0x00;
862 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
865 static Property pflash_cfi01_properties[] = {
866 DEFINE_PROP_DRIVE("drive", PFlashCFI01, blk),
867 /* num-blocks is the number of blocks actually visible to the guest,
868 * ie the total size of the device divided by the sector length.
869 * If we're emulating flash devices wired in parallel the actual
870 * number of blocks per indvidual device will differ.
872 DEFINE_PROP_UINT32("num-blocks", PFlashCFI01, nb_blocs, 0),
873 DEFINE_PROP_UINT64("sector-length", PFlashCFI01, sector_len, 0),
874 /* width here is the overall width of this QEMU device in bytes.
875 * The QEMU device may be emulating a number of flash devices
876 * wired up in parallel; the width of each individual flash
877 * device should be specified via device-width. If the individual
878 * devices have a maximum width which is greater than the width
879 * they are being used for, this maximum width should be set via
880 * max-device-width (which otherwise defaults to device-width).
881 * So for instance a 32-bit wide QEMU flash device made from four
882 * 16-bit flash devices used in 8-bit wide mode would be configured
883 * with width = 4, device-width = 1, max-device-width = 2.
885 * If device-width is not specified we default to backwards
886 * compatible behaviour which is a bad emulation of two
887 * 16 bit devices making up a 32 bit wide QEMU device. This
888 * is deprecated for new uses of this device.
890 DEFINE_PROP_UINT8("width", PFlashCFI01, bank_width, 0),
891 DEFINE_PROP_UINT8("device-width", PFlashCFI01, device_width, 0),
892 DEFINE_PROP_UINT8("max-device-width", PFlashCFI01, max_device_width, 0),
893 DEFINE_PROP_BIT("big-endian", PFlashCFI01, features, PFLASH_BE, 0),
894 DEFINE_PROP_BIT("secure", PFlashCFI01, features, PFLASH_SECURE, 0),
895 DEFINE_PROP_UINT16("id0", PFlashCFI01, ident0, 0),
896 DEFINE_PROP_UINT16("id1", PFlashCFI01, ident1, 0),
897 DEFINE_PROP_UINT16("id2", PFlashCFI01, ident2, 0),
898 DEFINE_PROP_UINT16("id3", PFlashCFI01, ident3, 0),
899 DEFINE_PROP_STRING("name", PFlashCFI01, name),
900 DEFINE_PROP_BOOL("old-multiple-chip-handling", PFlashCFI01,
901 old_multiple_chip_handling, false),
902 DEFINE_PROP_END_OF_LIST(),
905 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
907 DeviceClass *dc = DEVICE_CLASS(klass);
909 dc->realize = pflash_cfi01_realize;
910 dc->props = pflash_cfi01_properties;
911 dc->vmsd = &vmstate_pflash;
912 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
916 static const TypeInfo pflash_cfi01_info = {
917 .name = TYPE_PFLASH_CFI01,
918 .parent = TYPE_SYS_BUS_DEVICE,
919 .instance_size = sizeof(PFlashCFI01),
920 .class_init = pflash_cfi01_class_init,
923 static void pflash_cfi01_register_types(void)
925 type_register_static(&pflash_cfi01_info);
928 type_init(pflash_cfi01_register_types)
930 PFlashCFI01 *pflash_cfi01_register(hwaddr base,
931 const char *name,
932 hwaddr size,
933 BlockBackend *blk,
934 uint32_t sector_len,
935 int bank_width,
936 uint16_t id0, uint16_t id1,
937 uint16_t id2, uint16_t id3,
938 int be)
940 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
942 if (blk) {
943 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
945 assert(size % sector_len == 0);
946 qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
947 qdev_prop_set_uint64(dev, "sector-length", sector_len);
948 qdev_prop_set_uint8(dev, "width", bank_width);
949 qdev_prop_set_bit(dev, "big-endian", !!be);
950 qdev_prop_set_uint16(dev, "id0", id0);
951 qdev_prop_set_uint16(dev, "id1", id1);
952 qdev_prop_set_uint16(dev, "id2", id2);
953 qdev_prop_set_uint16(dev, "id3", id3);
954 qdev_prop_set_string(dev, "name", name);
955 qdev_init_nofail(dev);
957 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
958 return PFLASH_CFI01(dev);
961 BlockBackend *pflash_cfi01_get_blk(PFlashCFI01 *fl)
963 return fl->blk;
966 MemoryRegion *pflash_cfi01_get_memory(PFlashCFI01 *fl)
968 return &fl->mem;
971 static void postload_update_cb(void *opaque, int running, RunState state)
973 PFlashCFI01 *pfl = opaque;
975 /* This is called after bdrv_invalidate_cache_all. */
976 qemu_del_vm_change_state_handler(pfl->vmstate);
977 pfl->vmstate = NULL;
979 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
980 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
983 static int pflash_post_load(void *opaque, int version_id)
985 PFlashCFI01 *pfl = opaque;
987 if (!pfl->ro) {
988 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
989 pfl);
991 return 0;