iotests: Test unaligned raw images with O_DIRECT
[qemu/ar7.git] / util / hbitmap.c
blob7905212a8b9705d32a05babaf049a675378eb621
1 /*
2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
16 #include "crypto/hash.h"
18 /* HBitmaps provides an array of bits. The bits are stored as usual in an
19 * array of unsigned longs, but HBitmap is also optimized to provide fast
20 * iteration over set bits; going from one bit to the next is O(logB n)
21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22 * that the number of levels is in fact fixed.
24 * In order to do this, it stacks multiple bitmaps with progressively coarser
25 * granularity; in all levels except the last, bit N is set iff the N-th
26 * unsigned long is nonzero in the immediately next level. When iteration
27 * completes on the last level it can examine the 2nd-last level to quickly
28 * skip entire words, and even do so recursively to skip blocks of 64 words or
29 * powers thereof (32 on 32-bit machines).
31 * Given an index in the bitmap, it can be split in group of bits like
32 * this (for the 64-bit case):
34 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
35 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
38 * So it is easy to move up simply by shifting the index right by
39 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
40 * similarly, and add the word index within the group. Iteration uses
41 * ffs (find first set bit) to find the next word to examine; this
42 * operation can be done in constant time in most current architectures.
44 * Setting or clearing a range of m bits on all levels, the work to perform
45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
47 * When iterating on a bitmap, each bit (on any level) is only visited
48 * once. Hence, The total cost of visiting a bitmap with m bits in it is
49 * the number of bits that are set in all bitmaps. Unless the bitmap is
50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51 * cost of advancing from one bit to the next is usually constant (worst case
52 * O(logB n) as in the non-amortized complexity).
55 struct HBitmap {
56 /* Size of the bitmap, as requested in hbitmap_alloc. */
57 uint64_t orig_size;
59 /* Number of total bits in the bottom level. */
60 uint64_t size;
62 /* Number of set bits in the bottom level. */
63 uint64_t count;
65 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
66 * will actually represent a group of 2^G elements. Each operation on a
67 * range of bits first rounds the bits to determine which group they land
68 * in, and then affect the entire page; iteration will only visit the first
69 * bit of each group. Here is an example of operations in a size-16,
70 * granularity-1 HBitmap:
72 * initial state 00000000
73 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
74 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
75 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
76 * reset(start=5, count=5) 00000000
78 * From an implementation point of view, when setting or resetting bits,
79 * the bitmap will scale bit numbers right by this amount of bits. When
80 * iterating, the bitmap will scale bit numbers left by this amount of
81 * bits.
83 int granularity;
85 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
86 HBitmap *meta;
88 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
89 * coarsest). Each bit in level N represents a word in level N+1 that
90 * has a set bit, except the last level where each bit represents the
91 * actual bitmap.
93 * Note that all bitmaps have the same number of levels. Even a 1-bit
94 * bitmap will still allocate HBITMAP_LEVELS arrays.
96 unsigned long *levels[HBITMAP_LEVELS];
98 /* The length of each levels[] array. */
99 uint64_t sizes[HBITMAP_LEVELS];
102 /* Advance hbi to the next nonzero word and return it. hbi->pos
103 * is updated. Returns zero if we reach the end of the bitmap.
105 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
107 size_t pos = hbi->pos;
108 const HBitmap *hb = hbi->hb;
109 unsigned i = HBITMAP_LEVELS - 1;
111 unsigned long cur;
112 do {
113 i--;
114 pos >>= BITS_PER_LEVEL;
115 cur = hbi->cur[i] & hb->levels[i][pos];
116 } while (cur == 0);
118 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
119 * bits in the level 0 bitmap; thus we can repurpose the most significant
120 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
121 * that the above loop ends even without an explicit check on i.
124 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
125 return 0;
127 for (; i < HBITMAP_LEVELS - 1; i++) {
128 /* Shift back pos to the left, matching the right shifts above.
129 * The index of this word's least significant set bit provides
130 * the low-order bits.
132 assert(cur);
133 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
134 hbi->cur[i] = cur & (cur - 1);
136 /* Set up next level for iteration. */
137 cur = hb->levels[i + 1][pos];
140 hbi->pos = pos;
141 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
143 assert(cur);
144 return cur;
147 int64_t hbitmap_iter_next(HBitmapIter *hbi)
149 unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
150 hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
151 int64_t item;
153 if (cur == 0) {
154 cur = hbitmap_iter_skip_words(hbi);
155 if (cur == 0) {
156 return -1;
160 /* The next call will resume work from the next bit. */
161 hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
162 item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
164 return item << hbi->granularity;
167 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
169 unsigned i, bit;
170 uint64_t pos;
172 hbi->hb = hb;
173 pos = first >> hb->granularity;
174 assert(pos < hb->size);
175 hbi->pos = pos >> BITS_PER_LEVEL;
176 hbi->granularity = hb->granularity;
178 for (i = HBITMAP_LEVELS; i-- > 0; ) {
179 bit = pos & (BITS_PER_LONG - 1);
180 pos >>= BITS_PER_LEVEL;
182 /* Drop bits representing items before first. */
183 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
185 /* We have already added level i+1, so the lowest set bit has
186 * been processed. Clear it.
188 if (i != HBITMAP_LEVELS - 1) {
189 hbi->cur[i] &= ~(1UL << bit);
194 int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count)
196 size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
197 unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
198 unsigned long cur = last_lev[pos];
199 unsigned start_bit_offset;
200 uint64_t end_bit, sz;
201 int64_t res;
203 if (start >= hb->orig_size || count == 0) {
204 return -1;
207 end_bit = count > hb->orig_size - start ?
208 hb->size :
209 ((start + count - 1) >> hb->granularity) + 1;
210 sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
212 /* There may be some zero bits in @cur before @start. We are not interested
213 * in them, let's set them.
215 start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
216 cur |= (1UL << start_bit_offset) - 1;
217 assert((start >> hb->granularity) < hb->size);
219 if (cur == (unsigned long)-1) {
220 do {
221 pos++;
222 } while (pos < sz && last_lev[pos] == (unsigned long)-1);
224 if (pos >= sz) {
225 return -1;
228 cur = last_lev[pos];
231 res = (pos << BITS_PER_LEVEL) + ctol(cur);
232 if (res >= end_bit) {
233 return -1;
236 res = res << hb->granularity;
237 if (res < start) {
238 assert(((start - res) >> hb->granularity) == 0);
239 return start;
242 return res;
245 bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start,
246 uint64_t *count)
248 HBitmapIter hbi;
249 int64_t firt_dirty_off, area_end;
250 uint32_t granularity = 1UL << hb->granularity;
251 uint64_t end;
253 if (*start >= hb->orig_size || *count == 0) {
254 return false;
257 end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count;
259 hbitmap_iter_init(&hbi, hb, *start);
260 firt_dirty_off = hbitmap_iter_next(&hbi);
262 if (firt_dirty_off < 0 || firt_dirty_off >= end) {
263 return false;
266 if (firt_dirty_off + granularity >= end) {
267 area_end = end;
268 } else {
269 area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity,
270 end - firt_dirty_off - granularity);
271 if (area_end < 0) {
272 area_end = end;
276 if (firt_dirty_off > *start) {
277 *start = firt_dirty_off;
279 *count = area_end - *start;
281 return true;
284 bool hbitmap_empty(const HBitmap *hb)
286 return hb->count == 0;
289 int hbitmap_granularity(const HBitmap *hb)
291 return hb->granularity;
294 uint64_t hbitmap_count(const HBitmap *hb)
296 return hb->count << hb->granularity;
299 /* Count the number of set bits between start and end, not accounting for
300 * the granularity. Also an example of how to use hbitmap_iter_next_word.
302 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
304 HBitmapIter hbi;
305 uint64_t count = 0;
306 uint64_t end = last + 1;
307 unsigned long cur;
308 size_t pos;
310 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
311 for (;;) {
312 pos = hbitmap_iter_next_word(&hbi, &cur);
313 if (pos >= (end >> BITS_PER_LEVEL)) {
314 break;
316 count += ctpopl(cur);
319 if (pos == (end >> BITS_PER_LEVEL)) {
320 /* Drop bits representing the END-th and subsequent items. */
321 int bit = end & (BITS_PER_LONG - 1);
322 cur &= (1UL << bit) - 1;
323 count += ctpopl(cur);
326 return count;
329 /* Setting starts at the last layer and propagates up if an element
330 * changes.
332 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
334 unsigned long mask;
335 unsigned long old;
337 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
338 assert(start <= last);
340 mask = 2UL << (last & (BITS_PER_LONG - 1));
341 mask -= 1UL << (start & (BITS_PER_LONG - 1));
342 old = *elem;
343 *elem |= mask;
344 return old != *elem;
347 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
348 * Returns true if at least one bit is changed. */
349 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
350 uint64_t last)
352 size_t pos = start >> BITS_PER_LEVEL;
353 size_t lastpos = last >> BITS_PER_LEVEL;
354 bool changed = false;
355 size_t i;
357 i = pos;
358 if (i < lastpos) {
359 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
360 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
361 for (;;) {
362 start = next;
363 next += BITS_PER_LONG;
364 if (++i == lastpos) {
365 break;
367 changed |= (hb->levels[level][i] == 0);
368 hb->levels[level][i] = ~0UL;
371 changed |= hb_set_elem(&hb->levels[level][i], start, last);
373 /* If there was any change in this layer, we may have to update
374 * the one above.
376 if (level > 0 && changed) {
377 hb_set_between(hb, level - 1, pos, lastpos);
379 return changed;
382 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
384 /* Compute range in the last layer. */
385 uint64_t first, n;
386 uint64_t last = start + count - 1;
388 trace_hbitmap_set(hb, start, count,
389 start >> hb->granularity, last >> hb->granularity);
391 first = start >> hb->granularity;
392 last >>= hb->granularity;
393 assert(last < hb->size);
394 n = last - first + 1;
396 hb->count += n - hb_count_between(hb, first, last);
397 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
398 hb->meta) {
399 hbitmap_set(hb->meta, start, count);
403 /* Resetting works the other way round: propagate up if the new
404 * value is zero.
406 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
408 unsigned long mask;
409 bool blanked;
411 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
412 assert(start <= last);
414 mask = 2UL << (last & (BITS_PER_LONG - 1));
415 mask -= 1UL << (start & (BITS_PER_LONG - 1));
416 blanked = *elem != 0 && ((*elem & ~mask) == 0);
417 *elem &= ~mask;
418 return blanked;
421 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
422 * Returns true if at least one bit is changed. */
423 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
424 uint64_t last)
426 size_t pos = start >> BITS_PER_LEVEL;
427 size_t lastpos = last >> BITS_PER_LEVEL;
428 bool changed = false;
429 size_t i;
431 i = pos;
432 if (i < lastpos) {
433 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
435 /* Here we need a more complex test than when setting bits. Even if
436 * something was changed, we must not blank bits in the upper level
437 * unless the lower-level word became entirely zero. So, remove pos
438 * from the upper-level range if bits remain set.
440 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
441 changed = true;
442 } else {
443 pos++;
446 for (;;) {
447 start = next;
448 next += BITS_PER_LONG;
449 if (++i == lastpos) {
450 break;
452 changed |= (hb->levels[level][i] != 0);
453 hb->levels[level][i] = 0UL;
457 /* Same as above, this time for lastpos. */
458 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
459 changed = true;
460 } else {
461 lastpos--;
464 if (level > 0 && changed) {
465 hb_reset_between(hb, level - 1, pos, lastpos);
468 return changed;
472 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
474 /* Compute range in the last layer. */
475 uint64_t first;
476 uint64_t last = start + count - 1;
478 trace_hbitmap_reset(hb, start, count,
479 start >> hb->granularity, last >> hb->granularity);
481 first = start >> hb->granularity;
482 last >>= hb->granularity;
483 assert(last < hb->size);
485 hb->count -= hb_count_between(hb, first, last);
486 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
487 hb->meta) {
488 hbitmap_set(hb->meta, start, count);
492 void hbitmap_reset_all(HBitmap *hb)
494 unsigned int i;
496 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
497 for (i = HBITMAP_LEVELS; --i >= 1; ) {
498 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
501 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
502 hb->count = 0;
505 bool hbitmap_is_serializable(const HBitmap *hb)
507 /* Every serialized chunk must be aligned to 64 bits so that endianness
508 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
509 * We have hbitmap_serialization_align() which converts this
510 * alignment requirement from bitmap bits to items covered (e.g. sectors).
511 * That value is:
512 * 64 << hb->granularity
513 * Since this value must not exceed UINT64_MAX, hb->granularity must be
514 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
516 * In order for hbitmap_serialization_align() to always return a
517 * meaningful value, bitmaps that are to be serialized must have a
518 * granularity of less than 58. */
520 return hb->granularity < 58;
523 bool hbitmap_get(const HBitmap *hb, uint64_t item)
525 /* Compute position and bit in the last layer. */
526 uint64_t pos = item >> hb->granularity;
527 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
528 assert(pos < hb->size);
530 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
533 uint64_t hbitmap_serialization_align(const HBitmap *hb)
535 assert(hbitmap_is_serializable(hb));
537 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
538 * hosts. */
539 return UINT64_C(64) << hb->granularity;
542 /* Start should be aligned to serialization granularity, chunk size should be
543 * aligned to serialization granularity too, except for last chunk.
545 static void serialization_chunk(const HBitmap *hb,
546 uint64_t start, uint64_t count,
547 unsigned long **first_el, uint64_t *el_count)
549 uint64_t last = start + count - 1;
550 uint64_t gran = hbitmap_serialization_align(hb);
552 assert((start & (gran - 1)) == 0);
553 assert((last >> hb->granularity) < hb->size);
554 if ((last >> hb->granularity) != hb->size - 1) {
555 assert((count & (gran - 1)) == 0);
558 start = (start >> hb->granularity) >> BITS_PER_LEVEL;
559 last = (last >> hb->granularity) >> BITS_PER_LEVEL;
561 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
562 *el_count = last - start + 1;
565 uint64_t hbitmap_serialization_size(const HBitmap *hb,
566 uint64_t start, uint64_t count)
568 uint64_t el_count;
569 unsigned long *cur;
571 if (!count) {
572 return 0;
574 serialization_chunk(hb, start, count, &cur, &el_count);
576 return el_count * sizeof(unsigned long);
579 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
580 uint64_t start, uint64_t count)
582 uint64_t el_count;
583 unsigned long *cur, *end;
585 if (!count) {
586 return;
588 serialization_chunk(hb, start, count, &cur, &el_count);
589 end = cur + el_count;
591 while (cur != end) {
592 unsigned long el =
593 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
595 memcpy(buf, &el, sizeof(el));
596 buf += sizeof(el);
597 cur++;
601 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
602 uint64_t start, uint64_t count,
603 bool finish)
605 uint64_t el_count;
606 unsigned long *cur, *end;
608 if (!count) {
609 return;
611 serialization_chunk(hb, start, count, &cur, &el_count);
612 end = cur + el_count;
614 while (cur != end) {
615 memcpy(cur, buf, sizeof(*cur));
617 if (BITS_PER_LONG == 32) {
618 le32_to_cpus((uint32_t *)cur);
619 } else {
620 le64_to_cpus((uint64_t *)cur);
623 buf += sizeof(unsigned long);
624 cur++;
626 if (finish) {
627 hbitmap_deserialize_finish(hb);
631 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
632 bool finish)
634 uint64_t el_count;
635 unsigned long *first;
637 if (!count) {
638 return;
640 serialization_chunk(hb, start, count, &first, &el_count);
642 memset(first, 0, el_count * sizeof(unsigned long));
643 if (finish) {
644 hbitmap_deserialize_finish(hb);
648 void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
649 bool finish)
651 uint64_t el_count;
652 unsigned long *first;
654 if (!count) {
655 return;
657 serialization_chunk(hb, start, count, &first, &el_count);
659 memset(first, 0xff, el_count * sizeof(unsigned long));
660 if (finish) {
661 hbitmap_deserialize_finish(hb);
665 void hbitmap_deserialize_finish(HBitmap *bitmap)
667 int64_t i, size, prev_size;
668 int lev;
670 /* restore levels starting from penultimate to zero level, assuming
671 * that the last level is ok */
672 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
673 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
674 prev_size = size;
675 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
676 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
678 for (i = 0; i < prev_size; ++i) {
679 if (bitmap->levels[lev + 1][i]) {
680 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
681 1UL << (i & (BITS_PER_LONG - 1));
686 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
687 bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
690 void hbitmap_free(HBitmap *hb)
692 unsigned i;
693 assert(!hb->meta);
694 for (i = HBITMAP_LEVELS; i-- > 0; ) {
695 g_free(hb->levels[i]);
697 g_free(hb);
700 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
702 HBitmap *hb = g_new0(struct HBitmap, 1);
703 unsigned i;
705 hb->orig_size = size;
707 assert(granularity >= 0 && granularity < 64);
708 size = (size + (1ULL << granularity) - 1) >> granularity;
709 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
711 hb->size = size;
712 hb->granularity = granularity;
713 for (i = HBITMAP_LEVELS; i-- > 0; ) {
714 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
715 hb->sizes[i] = size;
716 hb->levels[i] = g_new0(unsigned long, size);
719 /* We necessarily have free bits in level 0 due to the definition
720 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
721 * hbitmap_iter_skip_words.
723 assert(size == 1);
724 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
725 return hb;
728 void hbitmap_truncate(HBitmap *hb, uint64_t size)
730 bool shrink;
731 unsigned i;
732 uint64_t num_elements = size;
733 uint64_t old;
735 /* Size comes in as logical elements, adjust for granularity. */
736 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
737 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
738 shrink = size < hb->size;
740 /* bit sizes are identical; nothing to do. */
741 if (size == hb->size) {
742 return;
745 /* If we're losing bits, let's clear those bits before we invalidate all of
746 * our invariants. This helps keep the bitcount consistent, and will prevent
747 * us from carrying around garbage bits beyond the end of the map.
749 if (shrink) {
750 /* Don't clear partial granularity groups;
751 * start at the first full one. */
752 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
753 uint64_t fix_count = (hb->size << hb->granularity) - start;
755 assert(fix_count);
756 hbitmap_reset(hb, start, fix_count);
759 hb->size = size;
760 for (i = HBITMAP_LEVELS; i-- > 0; ) {
761 size = MAX(BITS_TO_LONGS(size), 1);
762 if (hb->sizes[i] == size) {
763 break;
765 old = hb->sizes[i];
766 hb->sizes[i] = size;
767 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
768 if (!shrink) {
769 memset(&hb->levels[i][old], 0x00,
770 (size - old) * sizeof(*hb->levels[i]));
773 if (hb->meta) {
774 hbitmap_truncate(hb->meta, hb->size << hb->granularity);
778 bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
780 return (a->size == b->size) && (a->granularity == b->granularity);
784 * Given HBitmaps A and B, let A := A (BITOR) B.
785 * Bitmap B will not be modified.
787 * @return true if the merge was successful,
788 * false if it was not attempted.
790 bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
792 int i;
793 uint64_t j;
795 if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
796 return false;
798 assert(hbitmap_can_merge(b, result));
800 if (hbitmap_count(b) == 0) {
801 return true;
804 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
805 * It may be possible to improve running times for sparsely populated maps
806 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
808 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
809 for (j = 0; j < a->sizes[i]; j++) {
810 result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
814 /* Recompute the dirty count */
815 result->count = hb_count_between(result, 0, result->size - 1);
817 return true;
820 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
822 assert(!(chunk_size & (chunk_size - 1)));
823 assert(!hb->meta);
824 hb->meta = hbitmap_alloc(hb->size << hb->granularity,
825 hb->granularity + ctz32(chunk_size));
826 return hb->meta;
829 void hbitmap_free_meta(HBitmap *hb)
831 assert(hb->meta);
832 hbitmap_free(hb->meta);
833 hb->meta = NULL;
836 char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
838 size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
839 char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
840 char *hash = NULL;
841 qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
843 return hash;