virtio: split virtio scsi bits from virtio-pci
[qemu/ar7.git] / exec.c
blob895449f926134358dd7296238c51517dbb172ea6
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
102 /* 0 = Do not count executed instructions.
103 1 = Precise instruction counting.
104 2 = Adaptive rate instruction counting. */
105 int use_icount;
107 uintptr_t qemu_host_page_size;
108 intptr_t qemu_host_page_mask;
110 bool set_preferred_target_page_bits(int bits)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
123 target_page_bits = bits;
125 #endif
126 return true;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
137 target_page_bits_decided = true;
138 #endif
141 typedef struct PhysPageEntry PhysPageEntry;
143 struct PhysPageEntry {
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 uint32_t skip : 6;
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147 uint32_t ptr : 26;
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
155 #define P_L2_BITS 9
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node[P_L2_SIZE];
162 typedef struct PhysPageMap {
163 struct rcu_head rcu;
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171 } PhysPageMap;
173 struct AddressSpaceDispatch {
174 MemoryRegionSection *mru_section;
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
178 PhysPageEntry phys_map;
179 PhysPageMap map;
182 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183 typedef struct subpage_t {
184 MemoryRegion iomem;
185 FlatView *fv;
186 hwaddr base;
187 uint16_t sub_section[];
188 } subpage_t;
190 #define PHYS_SECTION_UNASSIGNED 0
191 #define PHYS_SECTION_NOTDIRTY 1
192 #define PHYS_SECTION_ROM 2
193 #define PHYS_SECTION_WATCH 3
195 static void io_mem_init(void);
196 static void memory_map_init(void);
197 static void tcg_commit(MemoryListener *listener);
199 static MemoryRegion io_mem_watch;
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
215 struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
221 #endif
223 #if !defined(CONFIG_USER_ONLY)
225 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
227 static unsigned alloc_hint = 16;
228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
232 alloc_hint = map->nodes_nb_alloc;
236 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
238 unsigned i;
239 uint32_t ret;
240 PhysPageEntry e;
241 PhysPageEntry *p;
243 ret = map->nodes_nb++;
244 p = map->nodes[ret];
245 assert(ret != PHYS_MAP_NODE_NIL);
246 assert(ret != map->nodes_nb_alloc);
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
250 for (i = 0; i < P_L2_SIZE; ++i) {
251 memcpy(&p[i], &e, sizeof(e));
253 return ret;
256 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
258 int level)
260 PhysPageEntry *p;
261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
264 lp->ptr = phys_map_node_alloc(map, level == 0);
266 p = map->nodes[lp->ptr];
267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
269 while (*nb && lp < &p[P_L2_SIZE]) {
270 if ((*index & (step - 1)) == 0 && *nb >= step) {
271 lp->skip = 0;
272 lp->ptr = leaf;
273 *index += step;
274 *nb -= step;
275 } else {
276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
278 ++lp;
282 static void phys_page_set(AddressSpaceDispatch *d,
283 hwaddr index, hwaddr nb,
284 uint16_t leaf)
286 /* Wildly overreserve - it doesn't matter much. */
287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
292 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
295 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
315 phys_page_compact(&p[i], nodes);
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
324 assert(valid_ptr < P_L2_SIZE);
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
345 void address_space_dispatch_compact(AddressSpaceDispatch *d)
347 if (d->phys_map.skip) {
348 phys_page_compact(&d->phys_map, d->map.nodes);
352 static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
358 return int128_gethi(section->size) ||
359 range_covers_byte(section->offset_within_address_space,
360 int128_getlo(section->size), addr);
363 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
368 hwaddr index = addr >> TARGET_PAGE_BITS;
369 int i;
371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
373 return &sections[PHYS_SECTION_UNASSIGNED];
375 p = nodes[lp.ptr];
376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
379 if (section_covers_addr(&sections[lp.ptr], addr)) {
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
386 /* Called from RCU critical section */
387 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
388 hwaddr addr,
389 bool resolve_subpage)
391 MemoryRegionSection *section = atomic_read(&d->mru_section);
392 subpage_t *subpage;
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
396 section = phys_page_find(d, addr);
397 atomic_set(&d->mru_section, section);
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
403 return section;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *
408 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
409 hwaddr *plen, bool resolve_subpage)
411 MemoryRegionSection *section;
412 MemoryRegion *mr;
413 Int128 diff;
415 section = address_space_lookup_region(d, addr, resolve_subpage);
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
422 mr = section->mr;
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
435 if (memory_region_is_ram(mr)) {
436 diff = int128_sub(section->size, int128_make64(addr));
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 return section;
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
459 * @attrs: transaction attributes
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
464 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
509 return *section;
511 unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 * flatview_do_translate - translate an address in FlatView
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
530 * @target_as: the address space targeted by the IOMMU
531 * @attrs: memory transaction attributes
533 * This function is called from RCU critical section
535 static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
540 bool is_write,
541 bool is_mmio,
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
545 MemoryRegionSection *section;
546 IOMMUMemoryRegion *iommu_mr;
547 hwaddr plen = (hwaddr)(-1);
549 if (!plen_out) {
550 plen_out = &plen;
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
562 target_as, attrs);
564 if (page_mask_out) {
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
569 return *section;
572 /* Called from RCU critical section */
573 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
574 bool is_write, MemTxAttrs attrs)
576 MemoryRegionSection section;
577 hwaddr xlat, page_mask;
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
596 return (IOMMUTLBEntry) {
597 .target_as = as,
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
605 iotlb_fail:
606 return (IOMMUTLBEntry) {0};
609 /* Called from RCU critical section */
610 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
614 MemoryRegion *mr;
615 MemoryRegionSection section;
616 AddressSpace *as = NULL;
618 /* This can be MMIO, so setup MMIO bit. */
619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
620 is_write, true, &as, attrs);
621 mr = section.mr;
623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
625 *plen = MIN(page, *plen);
628 return mr;
631 typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637 } TCGIOMMUNotifier;
639 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643 if (!notifier->active) {
644 return;
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
655 static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
676 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
678 notifier->mr = mr;
679 notifier->iommu_idx = iommu_idx;
680 notifier->cpu = cpu;
681 /* Rather than trying to register interest in the specific part
682 * of the iommu's address space that we've accessed and then
683 * expand it later as subsequent accesses touch more of it, we
684 * just register interest in the whole thing, on the assumption
685 * that iommu reconfiguration will be rare.
687 iommu_notifier_init(&notifier->n,
688 tcg_iommu_unmap_notify,
689 IOMMU_NOTIFIER_UNMAP,
691 HWADDR_MAX,
692 iommu_idx);
693 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
696 if (!notifier->active) {
697 notifier->active = true;
701 static void tcg_iommu_free_notifier_list(CPUState *cpu)
703 /* Destroy the CPU's notifier list */
704 int i;
705 TCGIOMMUNotifier *notifier;
707 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
708 notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
709 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
711 g_array_free(cpu->iommu_notifiers, true);
714 /* Called from RCU critical section */
715 MemoryRegionSection *
716 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
717 hwaddr *xlat, hwaddr *plen,
718 MemTxAttrs attrs, int *prot)
720 MemoryRegionSection *section;
721 IOMMUMemoryRegion *iommu_mr;
722 IOMMUMemoryRegionClass *imrc;
723 IOMMUTLBEntry iotlb;
724 int iommu_idx;
725 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
727 for (;;) {
728 section = address_space_translate_internal(d, addr, &addr, plen, false);
730 iommu_mr = memory_region_get_iommu(section->mr);
731 if (!iommu_mr) {
732 break;
735 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
737 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
738 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
739 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
740 * doesn't short-cut its translation table walk.
742 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
743 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
744 | (addr & iotlb.addr_mask));
745 /* Update the caller's prot bits to remove permissions the IOMMU
746 * is giving us a failure response for. If we get down to no
747 * permissions left at all we can give up now.
749 if (!(iotlb.perm & IOMMU_RO)) {
750 *prot &= ~(PAGE_READ | PAGE_EXEC);
752 if (!(iotlb.perm & IOMMU_WO)) {
753 *prot &= ~PAGE_WRITE;
756 if (!*prot) {
757 goto translate_fail;
760 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
763 assert(!memory_region_is_iommu(section->mr));
764 *xlat = addr;
765 return section;
767 translate_fail:
768 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
770 #endif
772 #if !defined(CONFIG_USER_ONLY)
774 static int cpu_common_post_load(void *opaque, int version_id)
776 CPUState *cpu = opaque;
778 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
779 version_id is increased. */
780 cpu->interrupt_request &= ~0x01;
781 tlb_flush(cpu);
783 /* loadvm has just updated the content of RAM, bypassing the
784 * usual mechanisms that ensure we flush TBs for writes to
785 * memory we've translated code from. So we must flush all TBs,
786 * which will now be stale.
788 tb_flush(cpu);
790 return 0;
793 static int cpu_common_pre_load(void *opaque)
795 CPUState *cpu = opaque;
797 cpu->exception_index = -1;
799 return 0;
802 static bool cpu_common_exception_index_needed(void *opaque)
804 CPUState *cpu = opaque;
806 return tcg_enabled() && cpu->exception_index != -1;
809 static const VMStateDescription vmstate_cpu_common_exception_index = {
810 .name = "cpu_common/exception_index",
811 .version_id = 1,
812 .minimum_version_id = 1,
813 .needed = cpu_common_exception_index_needed,
814 .fields = (VMStateField[]) {
815 VMSTATE_INT32(exception_index, CPUState),
816 VMSTATE_END_OF_LIST()
820 static bool cpu_common_crash_occurred_needed(void *opaque)
822 CPUState *cpu = opaque;
824 return cpu->crash_occurred;
827 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
828 .name = "cpu_common/crash_occurred",
829 .version_id = 1,
830 .minimum_version_id = 1,
831 .needed = cpu_common_crash_occurred_needed,
832 .fields = (VMStateField[]) {
833 VMSTATE_BOOL(crash_occurred, CPUState),
834 VMSTATE_END_OF_LIST()
838 const VMStateDescription vmstate_cpu_common = {
839 .name = "cpu_common",
840 .version_id = 1,
841 .minimum_version_id = 1,
842 .pre_load = cpu_common_pre_load,
843 .post_load = cpu_common_post_load,
844 .fields = (VMStateField[]) {
845 VMSTATE_UINT32(halted, CPUState),
846 VMSTATE_UINT32(interrupt_request, CPUState),
847 VMSTATE_END_OF_LIST()
849 .subsections = (const VMStateDescription*[]) {
850 &vmstate_cpu_common_exception_index,
851 &vmstate_cpu_common_crash_occurred,
852 NULL
856 #endif
858 CPUState *qemu_get_cpu(int index)
860 CPUState *cpu;
862 CPU_FOREACH(cpu) {
863 if (cpu->cpu_index == index) {
864 return cpu;
868 return NULL;
871 #if !defined(CONFIG_USER_ONLY)
872 void cpu_address_space_init(CPUState *cpu, int asidx,
873 const char *prefix, MemoryRegion *mr)
875 CPUAddressSpace *newas;
876 AddressSpace *as = g_new0(AddressSpace, 1);
877 char *as_name;
879 assert(mr);
880 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
881 address_space_init(as, mr, as_name);
882 g_free(as_name);
884 /* Target code should have set num_ases before calling us */
885 assert(asidx < cpu->num_ases);
887 if (asidx == 0) {
888 /* address space 0 gets the convenience alias */
889 cpu->as = as;
892 /* KVM cannot currently support multiple address spaces. */
893 assert(asidx == 0 || !kvm_enabled());
895 if (!cpu->cpu_ases) {
896 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
899 newas = &cpu->cpu_ases[asidx];
900 newas->cpu = cpu;
901 newas->as = as;
902 if (tcg_enabled()) {
903 newas->tcg_as_listener.commit = tcg_commit;
904 memory_listener_register(&newas->tcg_as_listener, as);
908 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
910 /* Return the AddressSpace corresponding to the specified index */
911 return cpu->cpu_ases[asidx].as;
913 #endif
915 void cpu_exec_unrealizefn(CPUState *cpu)
917 CPUClass *cc = CPU_GET_CLASS(cpu);
919 cpu_list_remove(cpu);
921 if (cc->vmsd != NULL) {
922 vmstate_unregister(NULL, cc->vmsd, cpu);
924 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
925 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
927 #ifndef CONFIG_USER_ONLY
928 tcg_iommu_free_notifier_list(cpu);
929 #endif
932 Property cpu_common_props[] = {
933 #ifndef CONFIG_USER_ONLY
934 /* Create a memory property for softmmu CPU object,
935 * so users can wire up its memory. (This can't go in qom/cpu.c
936 * because that file is compiled only once for both user-mode
937 * and system builds.) The default if no link is set up is to use
938 * the system address space.
940 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
941 MemoryRegion *),
942 #endif
943 DEFINE_PROP_END_OF_LIST(),
946 void cpu_exec_initfn(CPUState *cpu)
948 cpu->as = NULL;
949 cpu->num_ases = 0;
951 #ifndef CONFIG_USER_ONLY
952 cpu->thread_id = qemu_get_thread_id();
953 cpu->memory = system_memory;
954 object_ref(OBJECT(cpu->memory));
955 #endif
958 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
960 CPUClass *cc = CPU_GET_CLASS(cpu);
961 static bool tcg_target_initialized;
963 cpu_list_add(cpu);
965 if (tcg_enabled() && !tcg_target_initialized) {
966 tcg_target_initialized = true;
967 cc->tcg_initialize();
969 tlb_init(cpu);
971 #ifndef CONFIG_USER_ONLY
972 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
973 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
975 if (cc->vmsd != NULL) {
976 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
979 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
980 #endif
983 const char *parse_cpu_model(const char *cpu_model)
985 ObjectClass *oc;
986 CPUClass *cc;
987 gchar **model_pieces;
988 const char *cpu_type;
990 model_pieces = g_strsplit(cpu_model, ",", 2);
992 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
993 if (oc == NULL) {
994 error_report("unable to find CPU model '%s'", model_pieces[0]);
995 g_strfreev(model_pieces);
996 exit(EXIT_FAILURE);
999 cpu_type = object_class_get_name(oc);
1000 cc = CPU_CLASS(oc);
1001 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1002 g_strfreev(model_pieces);
1003 return cpu_type;
1006 #if defined(CONFIG_USER_ONLY)
1007 void tb_invalidate_phys_addr(target_ulong addr)
1009 mmap_lock();
1010 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1011 mmap_unlock();
1014 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1016 tb_invalidate_phys_addr(pc);
1018 #else
1019 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1021 ram_addr_t ram_addr;
1022 MemoryRegion *mr;
1023 hwaddr l = 1;
1025 if (!tcg_enabled()) {
1026 return;
1029 rcu_read_lock();
1030 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1031 if (!(memory_region_is_ram(mr)
1032 || memory_region_is_romd(mr))) {
1033 rcu_read_unlock();
1034 return;
1036 ram_addr = memory_region_get_ram_addr(mr) + addr;
1037 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1038 rcu_read_unlock();
1041 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1043 MemTxAttrs attrs;
1044 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1045 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1046 if (phys != -1) {
1047 /* Locks grabbed by tb_invalidate_phys_addr */
1048 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1049 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1052 #endif
1054 #if defined(CONFIG_USER_ONLY)
1055 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1060 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1061 int flags)
1063 return -ENOSYS;
1066 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1070 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1071 int flags, CPUWatchpoint **watchpoint)
1073 return -ENOSYS;
1075 #else
1076 /* Add a watchpoint. */
1077 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1078 int flags, CPUWatchpoint **watchpoint)
1080 CPUWatchpoint *wp;
1082 /* forbid ranges which are empty or run off the end of the address space */
1083 if (len == 0 || (addr + len - 1) < addr) {
1084 error_report("tried to set invalid watchpoint at %"
1085 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1086 return -EINVAL;
1088 wp = g_malloc(sizeof(*wp));
1090 wp->vaddr = addr;
1091 wp->len = len;
1092 wp->flags = flags;
1094 /* keep all GDB-injected watchpoints in front */
1095 if (flags & BP_GDB) {
1096 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1097 } else {
1098 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1101 tlb_flush_page(cpu, addr);
1103 if (watchpoint)
1104 *watchpoint = wp;
1105 return 0;
1108 /* Remove a specific watchpoint. */
1109 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1110 int flags)
1112 CPUWatchpoint *wp;
1114 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1115 if (addr == wp->vaddr && len == wp->len
1116 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1117 cpu_watchpoint_remove_by_ref(cpu, wp);
1118 return 0;
1121 return -ENOENT;
1124 /* Remove a specific watchpoint by reference. */
1125 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1127 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1129 tlb_flush_page(cpu, watchpoint->vaddr);
1131 g_free(watchpoint);
1134 /* Remove all matching watchpoints. */
1135 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1137 CPUWatchpoint *wp, *next;
1139 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1140 if (wp->flags & mask) {
1141 cpu_watchpoint_remove_by_ref(cpu, wp);
1146 /* Return true if this watchpoint address matches the specified
1147 * access (ie the address range covered by the watchpoint overlaps
1148 * partially or completely with the address range covered by the
1149 * access).
1151 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1152 vaddr addr,
1153 vaddr len)
1155 /* We know the lengths are non-zero, but a little caution is
1156 * required to avoid errors in the case where the range ends
1157 * exactly at the top of the address space and so addr + len
1158 * wraps round to zero.
1160 vaddr wpend = wp->vaddr + wp->len - 1;
1161 vaddr addrend = addr + len - 1;
1163 return !(addr > wpend || wp->vaddr > addrend);
1166 #endif
1168 /* Add a breakpoint. */
1169 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1170 CPUBreakpoint **breakpoint)
1172 CPUBreakpoint *bp;
1174 bp = g_malloc(sizeof(*bp));
1176 bp->pc = pc;
1177 bp->flags = flags;
1179 /* keep all GDB-injected breakpoints in front */
1180 if (flags & BP_GDB) {
1181 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1182 } else {
1183 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1186 breakpoint_invalidate(cpu, pc);
1188 if (breakpoint) {
1189 *breakpoint = bp;
1191 return 0;
1194 /* Remove a specific breakpoint. */
1195 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1197 CPUBreakpoint *bp;
1199 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1200 if (bp->pc == pc && bp->flags == flags) {
1201 cpu_breakpoint_remove_by_ref(cpu, bp);
1202 return 0;
1205 return -ENOENT;
1208 /* Remove a specific breakpoint by reference. */
1209 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1211 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1213 breakpoint_invalidate(cpu, breakpoint->pc);
1215 g_free(breakpoint);
1218 /* Remove all matching breakpoints. */
1219 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1221 CPUBreakpoint *bp, *next;
1223 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1224 if (bp->flags & mask) {
1225 cpu_breakpoint_remove_by_ref(cpu, bp);
1230 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1231 CPU loop after each instruction */
1232 void cpu_single_step(CPUState *cpu, int enabled)
1234 if (cpu->singlestep_enabled != enabled) {
1235 cpu->singlestep_enabled = enabled;
1236 if (kvm_enabled()) {
1237 kvm_update_guest_debug(cpu, 0);
1238 } else {
1239 /* must flush all the translated code to avoid inconsistencies */
1240 /* XXX: only flush what is necessary */
1241 tb_flush(cpu);
1246 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1248 va_list ap;
1249 va_list ap2;
1251 va_start(ap, fmt);
1252 va_copy(ap2, ap);
1253 fprintf(stderr, "qemu: fatal: ");
1254 vfprintf(stderr, fmt, ap);
1255 fprintf(stderr, "\n");
1256 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1257 if (qemu_log_separate()) {
1258 qemu_log_lock();
1259 qemu_log("qemu: fatal: ");
1260 qemu_log_vprintf(fmt, ap2);
1261 qemu_log("\n");
1262 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1263 qemu_log_flush();
1264 qemu_log_unlock();
1265 qemu_log_close();
1267 va_end(ap2);
1268 va_end(ap);
1269 replay_finish();
1270 #if defined(CONFIG_USER_ONLY)
1272 struct sigaction act;
1273 sigfillset(&act.sa_mask);
1274 act.sa_handler = SIG_DFL;
1275 act.sa_flags = 0;
1276 sigaction(SIGABRT, &act, NULL);
1278 #endif
1279 abort();
1282 #if !defined(CONFIG_USER_ONLY)
1283 /* Called from RCU critical section */
1284 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1286 RAMBlock *block;
1288 block = atomic_rcu_read(&ram_list.mru_block);
1289 if (block && addr - block->offset < block->max_length) {
1290 return block;
1292 RAMBLOCK_FOREACH(block) {
1293 if (addr - block->offset < block->max_length) {
1294 goto found;
1298 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1299 abort();
1301 found:
1302 /* It is safe to write mru_block outside the iothread lock. This
1303 * is what happens:
1305 * mru_block = xxx
1306 * rcu_read_unlock()
1307 * xxx removed from list
1308 * rcu_read_lock()
1309 * read mru_block
1310 * mru_block = NULL;
1311 * call_rcu(reclaim_ramblock, xxx);
1312 * rcu_read_unlock()
1314 * atomic_rcu_set is not needed here. The block was already published
1315 * when it was placed into the list. Here we're just making an extra
1316 * copy of the pointer.
1318 ram_list.mru_block = block;
1319 return block;
1322 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1324 CPUState *cpu;
1325 ram_addr_t start1;
1326 RAMBlock *block;
1327 ram_addr_t end;
1329 assert(tcg_enabled());
1330 end = TARGET_PAGE_ALIGN(start + length);
1331 start &= TARGET_PAGE_MASK;
1333 rcu_read_lock();
1334 block = qemu_get_ram_block(start);
1335 assert(block == qemu_get_ram_block(end - 1));
1336 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1337 CPU_FOREACH(cpu) {
1338 tlb_reset_dirty(cpu, start1, length);
1340 rcu_read_unlock();
1343 /* Note: start and end must be within the same ram block. */
1344 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1345 ram_addr_t length,
1346 unsigned client)
1348 DirtyMemoryBlocks *blocks;
1349 unsigned long end, page;
1350 bool dirty = false;
1352 if (length == 0) {
1353 return false;
1356 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1357 page = start >> TARGET_PAGE_BITS;
1359 rcu_read_lock();
1361 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1363 while (page < end) {
1364 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1365 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1366 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1368 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1369 offset, num);
1370 page += num;
1373 rcu_read_unlock();
1375 if (dirty && tcg_enabled()) {
1376 tlb_reset_dirty_range_all(start, length);
1379 return dirty;
1382 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1383 (ram_addr_t start, ram_addr_t length, unsigned client)
1385 DirtyMemoryBlocks *blocks;
1386 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1387 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1388 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1389 DirtyBitmapSnapshot *snap;
1390 unsigned long page, end, dest;
1392 snap = g_malloc0(sizeof(*snap) +
1393 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1394 snap->start = first;
1395 snap->end = last;
1397 page = first >> TARGET_PAGE_BITS;
1398 end = last >> TARGET_PAGE_BITS;
1399 dest = 0;
1401 rcu_read_lock();
1403 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1405 while (page < end) {
1406 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1407 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1408 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1410 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1411 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1412 offset >>= BITS_PER_LEVEL;
1414 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1415 blocks->blocks[idx] + offset,
1416 num);
1417 page += num;
1418 dest += num >> BITS_PER_LEVEL;
1421 rcu_read_unlock();
1423 if (tcg_enabled()) {
1424 tlb_reset_dirty_range_all(start, length);
1427 return snap;
1430 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1431 ram_addr_t start,
1432 ram_addr_t length)
1434 unsigned long page, end;
1436 assert(start >= snap->start);
1437 assert(start + length <= snap->end);
1439 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1440 page = (start - snap->start) >> TARGET_PAGE_BITS;
1442 while (page < end) {
1443 if (test_bit(page, snap->dirty)) {
1444 return true;
1446 page++;
1448 return false;
1451 /* Called from RCU critical section */
1452 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1453 MemoryRegionSection *section,
1454 target_ulong vaddr,
1455 hwaddr paddr, hwaddr xlat,
1456 int prot,
1457 target_ulong *address)
1459 hwaddr iotlb;
1460 CPUWatchpoint *wp;
1462 if (memory_region_is_ram(section->mr)) {
1463 /* Normal RAM. */
1464 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1465 if (!section->readonly) {
1466 iotlb |= PHYS_SECTION_NOTDIRTY;
1467 } else {
1468 iotlb |= PHYS_SECTION_ROM;
1470 } else {
1471 AddressSpaceDispatch *d;
1473 d = flatview_to_dispatch(section->fv);
1474 iotlb = section - d->map.sections;
1475 iotlb += xlat;
1478 /* Make accesses to pages with watchpoints go via the
1479 watchpoint trap routines. */
1480 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1481 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1482 /* Avoid trapping reads of pages with a write breakpoint. */
1483 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1484 iotlb = PHYS_SECTION_WATCH + paddr;
1485 *address |= TLB_MMIO;
1486 break;
1491 return iotlb;
1493 #endif /* defined(CONFIG_USER_ONLY) */
1495 #if !defined(CONFIG_USER_ONLY)
1497 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1498 uint16_t section);
1499 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1501 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1502 qemu_anon_ram_alloc;
1505 * Set a custom physical guest memory alloator.
1506 * Accelerators with unusual needs may need this. Hopefully, we can
1507 * get rid of it eventually.
1509 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1511 phys_mem_alloc = alloc;
1514 static uint16_t phys_section_add(PhysPageMap *map,
1515 MemoryRegionSection *section)
1517 /* The physical section number is ORed with a page-aligned
1518 * pointer to produce the iotlb entries. Thus it should
1519 * never overflow into the page-aligned value.
1521 assert(map->sections_nb < TARGET_PAGE_SIZE);
1523 if (map->sections_nb == map->sections_nb_alloc) {
1524 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1525 map->sections = g_renew(MemoryRegionSection, map->sections,
1526 map->sections_nb_alloc);
1528 map->sections[map->sections_nb] = *section;
1529 memory_region_ref(section->mr);
1530 return map->sections_nb++;
1533 static void phys_section_destroy(MemoryRegion *mr)
1535 bool have_sub_page = mr->subpage;
1537 memory_region_unref(mr);
1539 if (have_sub_page) {
1540 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1541 object_unref(OBJECT(&subpage->iomem));
1542 g_free(subpage);
1546 static void phys_sections_free(PhysPageMap *map)
1548 while (map->sections_nb > 0) {
1549 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1550 phys_section_destroy(section->mr);
1552 g_free(map->sections);
1553 g_free(map->nodes);
1556 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1558 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1559 subpage_t *subpage;
1560 hwaddr base = section->offset_within_address_space
1561 & TARGET_PAGE_MASK;
1562 MemoryRegionSection *existing = phys_page_find(d, base);
1563 MemoryRegionSection subsection = {
1564 .offset_within_address_space = base,
1565 .size = int128_make64(TARGET_PAGE_SIZE),
1567 hwaddr start, end;
1569 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1571 if (!(existing->mr->subpage)) {
1572 subpage = subpage_init(fv, base);
1573 subsection.fv = fv;
1574 subsection.mr = &subpage->iomem;
1575 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1576 phys_section_add(&d->map, &subsection));
1577 } else {
1578 subpage = container_of(existing->mr, subpage_t, iomem);
1580 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1581 end = start + int128_get64(section->size) - 1;
1582 subpage_register(subpage, start, end,
1583 phys_section_add(&d->map, section));
1587 static void register_multipage(FlatView *fv,
1588 MemoryRegionSection *section)
1590 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1591 hwaddr start_addr = section->offset_within_address_space;
1592 uint16_t section_index = phys_section_add(&d->map, section);
1593 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1594 TARGET_PAGE_BITS));
1596 assert(num_pages);
1597 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1600 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1602 MemoryRegionSection now = *section, remain = *section;
1603 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1605 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1606 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1607 - now.offset_within_address_space;
1609 now.size = int128_min(int128_make64(left), now.size);
1610 register_subpage(fv, &now);
1611 } else {
1612 now.size = int128_zero();
1614 while (int128_ne(remain.size, now.size)) {
1615 remain.size = int128_sub(remain.size, now.size);
1616 remain.offset_within_address_space += int128_get64(now.size);
1617 remain.offset_within_region += int128_get64(now.size);
1618 now = remain;
1619 if (int128_lt(remain.size, page_size)) {
1620 register_subpage(fv, &now);
1621 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1622 now.size = page_size;
1623 register_subpage(fv, &now);
1624 } else {
1625 now.size = int128_and(now.size, int128_neg(page_size));
1626 register_multipage(fv, &now);
1631 void qemu_flush_coalesced_mmio_buffer(void)
1633 if (kvm_enabled())
1634 kvm_flush_coalesced_mmio_buffer();
1637 void qemu_mutex_lock_ramlist(void)
1639 qemu_mutex_lock(&ram_list.mutex);
1642 void qemu_mutex_unlock_ramlist(void)
1644 qemu_mutex_unlock(&ram_list.mutex);
1647 void ram_block_dump(Monitor *mon)
1649 RAMBlock *block;
1650 char *psize;
1652 rcu_read_lock();
1653 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1654 "Block Name", "PSize", "Offset", "Used", "Total");
1655 RAMBLOCK_FOREACH(block) {
1656 psize = size_to_str(block->page_size);
1657 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1658 " 0x%016" PRIx64 "\n", block->idstr, psize,
1659 (uint64_t)block->offset,
1660 (uint64_t)block->used_length,
1661 (uint64_t)block->max_length);
1662 g_free(psize);
1664 rcu_read_unlock();
1667 #ifdef __linux__
1669 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1670 * may or may not name the same files / on the same filesystem now as
1671 * when we actually open and map them. Iterate over the file
1672 * descriptors instead, and use qemu_fd_getpagesize().
1674 static int find_max_supported_pagesize(Object *obj, void *opaque)
1676 long *hpsize_min = opaque;
1678 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1679 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1681 if (hpsize < *hpsize_min) {
1682 *hpsize_min = hpsize;
1686 return 0;
1689 long qemu_getrampagesize(void)
1691 long hpsize = LONG_MAX;
1692 long mainrampagesize;
1693 Object *memdev_root;
1695 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1697 /* it's possible we have memory-backend objects with
1698 * hugepage-backed RAM. these may get mapped into system
1699 * address space via -numa parameters or memory hotplug
1700 * hooks. we want to take these into account, but we
1701 * also want to make sure these supported hugepage
1702 * sizes are applicable across the entire range of memory
1703 * we may boot from, so we take the min across all
1704 * backends, and assume normal pages in cases where a
1705 * backend isn't backed by hugepages.
1707 memdev_root = object_resolve_path("/objects", NULL);
1708 if (memdev_root) {
1709 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1711 if (hpsize == LONG_MAX) {
1712 /* No additional memory regions found ==> Report main RAM page size */
1713 return mainrampagesize;
1716 /* If NUMA is disabled or the NUMA nodes are not backed with a
1717 * memory-backend, then there is at least one node using "normal" RAM,
1718 * so if its page size is smaller we have got to report that size instead.
1720 if (hpsize > mainrampagesize &&
1721 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1722 static bool warned;
1723 if (!warned) {
1724 error_report("Huge page support disabled (n/a for main memory).");
1725 warned = true;
1727 return mainrampagesize;
1730 return hpsize;
1732 #else
1733 long qemu_getrampagesize(void)
1735 return getpagesize();
1737 #endif
1739 #ifdef CONFIG_POSIX
1740 static int64_t get_file_size(int fd)
1742 int64_t size = lseek(fd, 0, SEEK_END);
1743 if (size < 0) {
1744 return -errno;
1746 return size;
1749 static int file_ram_open(const char *path,
1750 const char *region_name,
1751 bool *created,
1752 Error **errp)
1754 char *filename;
1755 char *sanitized_name;
1756 char *c;
1757 int fd = -1;
1759 *created = false;
1760 for (;;) {
1761 fd = open(path, O_RDWR);
1762 if (fd >= 0) {
1763 /* @path names an existing file, use it */
1764 break;
1766 if (errno == ENOENT) {
1767 /* @path names a file that doesn't exist, create it */
1768 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1769 if (fd >= 0) {
1770 *created = true;
1771 break;
1773 } else if (errno == EISDIR) {
1774 /* @path names a directory, create a file there */
1775 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1776 sanitized_name = g_strdup(region_name);
1777 for (c = sanitized_name; *c != '\0'; c++) {
1778 if (*c == '/') {
1779 *c = '_';
1783 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1784 sanitized_name);
1785 g_free(sanitized_name);
1787 fd = mkstemp(filename);
1788 if (fd >= 0) {
1789 unlink(filename);
1790 g_free(filename);
1791 break;
1793 g_free(filename);
1795 if (errno != EEXIST && errno != EINTR) {
1796 error_setg_errno(errp, errno,
1797 "can't open backing store %s for guest RAM",
1798 path);
1799 return -1;
1802 * Try again on EINTR and EEXIST. The latter happens when
1803 * something else creates the file between our two open().
1807 return fd;
1810 static void *file_ram_alloc(RAMBlock *block,
1811 ram_addr_t memory,
1812 int fd,
1813 bool truncate,
1814 Error **errp)
1816 void *area;
1818 block->page_size = qemu_fd_getpagesize(fd);
1819 if (block->mr->align % block->page_size) {
1820 error_setg(errp, "alignment 0x%" PRIx64
1821 " must be multiples of page size 0x%zx",
1822 block->mr->align, block->page_size);
1823 return NULL;
1824 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1825 error_setg(errp, "alignment 0x%" PRIx64
1826 " must be a power of two", block->mr->align);
1827 return NULL;
1829 block->mr->align = MAX(block->page_size, block->mr->align);
1830 #if defined(__s390x__)
1831 if (kvm_enabled()) {
1832 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1834 #endif
1836 if (memory < block->page_size) {
1837 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1838 "or larger than page size 0x%zx",
1839 memory, block->page_size);
1840 return NULL;
1843 memory = ROUND_UP(memory, block->page_size);
1846 * ftruncate is not supported by hugetlbfs in older
1847 * hosts, so don't bother bailing out on errors.
1848 * If anything goes wrong with it under other filesystems,
1849 * mmap will fail.
1851 * Do not truncate the non-empty backend file to avoid corrupting
1852 * the existing data in the file. Disabling shrinking is not
1853 * enough. For example, the current vNVDIMM implementation stores
1854 * the guest NVDIMM labels at the end of the backend file. If the
1855 * backend file is later extended, QEMU will not be able to find
1856 * those labels. Therefore, extending the non-empty backend file
1857 * is disabled as well.
1859 if (truncate && ftruncate(fd, memory)) {
1860 perror("ftruncate");
1863 area = qemu_ram_mmap(fd, memory, block->mr->align,
1864 block->flags & RAM_SHARED);
1865 if (area == MAP_FAILED) {
1866 error_setg_errno(errp, errno,
1867 "unable to map backing store for guest RAM");
1868 return NULL;
1871 if (mem_prealloc) {
1872 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1873 if (errp && *errp) {
1874 qemu_ram_munmap(area, memory);
1875 return NULL;
1879 block->fd = fd;
1880 return area;
1882 #endif
1884 /* Allocate space within the ram_addr_t space that governs the
1885 * dirty bitmaps.
1886 * Called with the ramlist lock held.
1888 static ram_addr_t find_ram_offset(ram_addr_t size)
1890 RAMBlock *block, *next_block;
1891 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1893 assert(size != 0); /* it would hand out same offset multiple times */
1895 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1896 return 0;
1899 RAMBLOCK_FOREACH(block) {
1900 ram_addr_t candidate, next = RAM_ADDR_MAX;
1902 /* Align blocks to start on a 'long' in the bitmap
1903 * which makes the bitmap sync'ing take the fast path.
1905 candidate = block->offset + block->max_length;
1906 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1908 /* Search for the closest following block
1909 * and find the gap.
1911 RAMBLOCK_FOREACH(next_block) {
1912 if (next_block->offset >= candidate) {
1913 next = MIN(next, next_block->offset);
1917 /* If it fits remember our place and remember the size
1918 * of gap, but keep going so that we might find a smaller
1919 * gap to fill so avoiding fragmentation.
1921 if (next - candidate >= size && next - candidate < mingap) {
1922 offset = candidate;
1923 mingap = next - candidate;
1926 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1929 if (offset == RAM_ADDR_MAX) {
1930 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1931 (uint64_t)size);
1932 abort();
1935 trace_find_ram_offset(size, offset);
1937 return offset;
1940 static unsigned long last_ram_page(void)
1942 RAMBlock *block;
1943 ram_addr_t last = 0;
1945 rcu_read_lock();
1946 RAMBLOCK_FOREACH(block) {
1947 last = MAX(last, block->offset + block->max_length);
1949 rcu_read_unlock();
1950 return last >> TARGET_PAGE_BITS;
1953 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1955 int ret;
1957 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1958 if (!machine_dump_guest_core(current_machine)) {
1959 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1960 if (ret) {
1961 perror("qemu_madvise");
1962 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1963 "but dump_guest_core=off specified\n");
1968 const char *qemu_ram_get_idstr(RAMBlock *rb)
1970 return rb->idstr;
1973 bool qemu_ram_is_shared(RAMBlock *rb)
1975 return rb->flags & RAM_SHARED;
1978 /* Note: Only set at the start of postcopy */
1979 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1981 return rb->flags & RAM_UF_ZEROPAGE;
1984 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1986 rb->flags |= RAM_UF_ZEROPAGE;
1989 bool qemu_ram_is_migratable(RAMBlock *rb)
1991 return rb->flags & RAM_MIGRATABLE;
1994 void qemu_ram_set_migratable(RAMBlock *rb)
1996 rb->flags |= RAM_MIGRATABLE;
1999 void qemu_ram_unset_migratable(RAMBlock *rb)
2001 rb->flags &= ~RAM_MIGRATABLE;
2004 /* Called with iothread lock held. */
2005 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2007 RAMBlock *block;
2009 assert(new_block);
2010 assert(!new_block->idstr[0]);
2012 if (dev) {
2013 char *id = qdev_get_dev_path(dev);
2014 if (id) {
2015 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2016 g_free(id);
2019 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2021 rcu_read_lock();
2022 RAMBLOCK_FOREACH(block) {
2023 if (block != new_block &&
2024 !strcmp(block->idstr, new_block->idstr)) {
2025 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2026 new_block->idstr);
2027 abort();
2030 rcu_read_unlock();
2033 /* Called with iothread lock held. */
2034 void qemu_ram_unset_idstr(RAMBlock *block)
2036 /* FIXME: arch_init.c assumes that this is not called throughout
2037 * migration. Ignore the problem since hot-unplug during migration
2038 * does not work anyway.
2040 if (block) {
2041 memset(block->idstr, 0, sizeof(block->idstr));
2045 size_t qemu_ram_pagesize(RAMBlock *rb)
2047 return rb->page_size;
2050 /* Returns the largest size of page in use */
2051 size_t qemu_ram_pagesize_largest(void)
2053 RAMBlock *block;
2054 size_t largest = 0;
2056 RAMBLOCK_FOREACH(block) {
2057 largest = MAX(largest, qemu_ram_pagesize(block));
2060 return largest;
2063 static int memory_try_enable_merging(void *addr, size_t len)
2065 if (!machine_mem_merge(current_machine)) {
2066 /* disabled by the user */
2067 return 0;
2070 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2073 /* Only legal before guest might have detected the memory size: e.g. on
2074 * incoming migration, or right after reset.
2076 * As memory core doesn't know how is memory accessed, it is up to
2077 * resize callback to update device state and/or add assertions to detect
2078 * misuse, if necessary.
2080 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2082 assert(block);
2084 newsize = HOST_PAGE_ALIGN(newsize);
2086 if (block->used_length == newsize) {
2087 return 0;
2090 if (!(block->flags & RAM_RESIZEABLE)) {
2091 error_setg_errno(errp, EINVAL,
2092 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2093 " in != 0x" RAM_ADDR_FMT, block->idstr,
2094 newsize, block->used_length);
2095 return -EINVAL;
2098 if (block->max_length < newsize) {
2099 error_setg_errno(errp, EINVAL,
2100 "Length too large: %s: 0x" RAM_ADDR_FMT
2101 " > 0x" RAM_ADDR_FMT, block->idstr,
2102 newsize, block->max_length);
2103 return -EINVAL;
2106 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2107 block->used_length = newsize;
2108 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2109 DIRTY_CLIENTS_ALL);
2110 memory_region_set_size(block->mr, newsize);
2111 if (block->resized) {
2112 block->resized(block->idstr, newsize, block->host);
2114 return 0;
2117 /* Called with ram_list.mutex held */
2118 static void dirty_memory_extend(ram_addr_t old_ram_size,
2119 ram_addr_t new_ram_size)
2121 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2122 DIRTY_MEMORY_BLOCK_SIZE);
2123 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2124 DIRTY_MEMORY_BLOCK_SIZE);
2125 int i;
2127 /* Only need to extend if block count increased */
2128 if (new_num_blocks <= old_num_blocks) {
2129 return;
2132 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2133 DirtyMemoryBlocks *old_blocks;
2134 DirtyMemoryBlocks *new_blocks;
2135 int j;
2137 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2138 new_blocks = g_malloc(sizeof(*new_blocks) +
2139 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2141 if (old_num_blocks) {
2142 memcpy(new_blocks->blocks, old_blocks->blocks,
2143 old_num_blocks * sizeof(old_blocks->blocks[0]));
2146 for (j = old_num_blocks; j < new_num_blocks; j++) {
2147 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2150 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2152 if (old_blocks) {
2153 g_free_rcu(old_blocks, rcu);
2158 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2160 RAMBlock *block;
2161 RAMBlock *last_block = NULL;
2162 ram_addr_t old_ram_size, new_ram_size;
2163 Error *err = NULL;
2165 old_ram_size = last_ram_page();
2167 qemu_mutex_lock_ramlist();
2168 new_block->offset = find_ram_offset(new_block->max_length);
2170 if (!new_block->host) {
2171 if (xen_enabled()) {
2172 xen_ram_alloc(new_block->offset, new_block->max_length,
2173 new_block->mr, &err);
2174 if (err) {
2175 error_propagate(errp, err);
2176 qemu_mutex_unlock_ramlist();
2177 return;
2179 } else {
2180 new_block->host = phys_mem_alloc(new_block->max_length,
2181 &new_block->mr->align, shared);
2182 if (!new_block->host) {
2183 error_setg_errno(errp, errno,
2184 "cannot set up guest memory '%s'",
2185 memory_region_name(new_block->mr));
2186 qemu_mutex_unlock_ramlist();
2187 return;
2189 memory_try_enable_merging(new_block->host, new_block->max_length);
2193 new_ram_size = MAX(old_ram_size,
2194 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2195 if (new_ram_size > old_ram_size) {
2196 dirty_memory_extend(old_ram_size, new_ram_size);
2198 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2199 * QLIST (which has an RCU-friendly variant) does not have insertion at
2200 * tail, so save the last element in last_block.
2202 RAMBLOCK_FOREACH(block) {
2203 last_block = block;
2204 if (block->max_length < new_block->max_length) {
2205 break;
2208 if (block) {
2209 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2210 } else if (last_block) {
2211 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2212 } else { /* list is empty */
2213 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2215 ram_list.mru_block = NULL;
2217 /* Write list before version */
2218 smp_wmb();
2219 ram_list.version++;
2220 qemu_mutex_unlock_ramlist();
2222 cpu_physical_memory_set_dirty_range(new_block->offset,
2223 new_block->used_length,
2224 DIRTY_CLIENTS_ALL);
2226 if (new_block->host) {
2227 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2228 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2229 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2230 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2231 ram_block_notify_add(new_block->host, new_block->max_length);
2235 #ifdef CONFIG_POSIX
2236 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2237 uint32_t ram_flags, int fd,
2238 Error **errp)
2240 RAMBlock *new_block;
2241 Error *local_err = NULL;
2242 int64_t file_size;
2244 /* Just support these ram flags by now. */
2245 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2247 if (xen_enabled()) {
2248 error_setg(errp, "-mem-path not supported with Xen");
2249 return NULL;
2252 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2253 error_setg(errp,
2254 "host lacks kvm mmu notifiers, -mem-path unsupported");
2255 return NULL;
2258 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2260 * file_ram_alloc() needs to allocate just like
2261 * phys_mem_alloc, but we haven't bothered to provide
2262 * a hook there.
2264 error_setg(errp,
2265 "-mem-path not supported with this accelerator");
2266 return NULL;
2269 size = HOST_PAGE_ALIGN(size);
2270 file_size = get_file_size(fd);
2271 if (file_size > 0 && file_size < size) {
2272 error_setg(errp, "backing store %s size 0x%" PRIx64
2273 " does not match 'size' option 0x" RAM_ADDR_FMT,
2274 mem_path, file_size, size);
2275 return NULL;
2278 new_block = g_malloc0(sizeof(*new_block));
2279 new_block->mr = mr;
2280 new_block->used_length = size;
2281 new_block->max_length = size;
2282 new_block->flags = ram_flags;
2283 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2284 if (!new_block->host) {
2285 g_free(new_block);
2286 return NULL;
2289 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2290 if (local_err) {
2291 g_free(new_block);
2292 error_propagate(errp, local_err);
2293 return NULL;
2295 return new_block;
2300 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2301 uint32_t ram_flags, const char *mem_path,
2302 Error **errp)
2304 int fd;
2305 bool created;
2306 RAMBlock *block;
2308 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2309 if (fd < 0) {
2310 return NULL;
2313 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2314 if (!block) {
2315 if (created) {
2316 unlink(mem_path);
2318 close(fd);
2319 return NULL;
2322 return block;
2324 #endif
2326 static
2327 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2328 void (*resized)(const char*,
2329 uint64_t length,
2330 void *host),
2331 void *host, bool resizeable, bool share,
2332 MemoryRegion *mr, Error **errp)
2334 RAMBlock *new_block;
2335 Error *local_err = NULL;
2337 size = HOST_PAGE_ALIGN(size);
2338 max_size = HOST_PAGE_ALIGN(max_size);
2339 new_block = g_malloc0(sizeof(*new_block));
2340 new_block->mr = mr;
2341 new_block->resized = resized;
2342 new_block->used_length = size;
2343 new_block->max_length = max_size;
2344 assert(max_size >= size);
2345 new_block->fd = -1;
2346 new_block->page_size = getpagesize();
2347 new_block->host = host;
2348 if (host) {
2349 new_block->flags |= RAM_PREALLOC;
2351 if (resizeable) {
2352 new_block->flags |= RAM_RESIZEABLE;
2354 ram_block_add(new_block, &local_err, share);
2355 if (local_err) {
2356 g_free(new_block);
2357 error_propagate(errp, local_err);
2358 return NULL;
2360 return new_block;
2363 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2364 MemoryRegion *mr, Error **errp)
2366 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2367 false, mr, errp);
2370 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2371 MemoryRegion *mr, Error **errp)
2373 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2374 share, mr, errp);
2377 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2378 void (*resized)(const char*,
2379 uint64_t length,
2380 void *host),
2381 MemoryRegion *mr, Error **errp)
2383 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2384 false, mr, errp);
2387 static void reclaim_ramblock(RAMBlock *block)
2389 if (block->flags & RAM_PREALLOC) {
2391 } else if (xen_enabled()) {
2392 xen_invalidate_map_cache_entry(block->host);
2393 #ifndef _WIN32
2394 } else if (block->fd >= 0) {
2395 qemu_ram_munmap(block->host, block->max_length);
2396 close(block->fd);
2397 #endif
2398 } else {
2399 qemu_anon_ram_free(block->host, block->max_length);
2401 g_free(block);
2404 void qemu_ram_free(RAMBlock *block)
2406 if (!block) {
2407 return;
2410 if (block->host) {
2411 ram_block_notify_remove(block->host, block->max_length);
2414 qemu_mutex_lock_ramlist();
2415 QLIST_REMOVE_RCU(block, next);
2416 ram_list.mru_block = NULL;
2417 /* Write list before version */
2418 smp_wmb();
2419 ram_list.version++;
2420 call_rcu(block, reclaim_ramblock, rcu);
2421 qemu_mutex_unlock_ramlist();
2424 #ifndef _WIN32
2425 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2427 RAMBlock *block;
2428 ram_addr_t offset;
2429 int flags;
2430 void *area, *vaddr;
2432 RAMBLOCK_FOREACH(block) {
2433 offset = addr - block->offset;
2434 if (offset < block->max_length) {
2435 vaddr = ramblock_ptr(block, offset);
2436 if (block->flags & RAM_PREALLOC) {
2438 } else if (xen_enabled()) {
2439 abort();
2440 } else {
2441 flags = MAP_FIXED;
2442 if (block->fd >= 0) {
2443 flags |= (block->flags & RAM_SHARED ?
2444 MAP_SHARED : MAP_PRIVATE);
2445 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2446 flags, block->fd, offset);
2447 } else {
2449 * Remap needs to match alloc. Accelerators that
2450 * set phys_mem_alloc never remap. If they did,
2451 * we'd need a remap hook here.
2453 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2455 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2456 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2457 flags, -1, 0);
2459 if (area != vaddr) {
2460 error_report("Could not remap addr: "
2461 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2462 length, addr);
2463 exit(1);
2465 memory_try_enable_merging(vaddr, length);
2466 qemu_ram_setup_dump(vaddr, length);
2471 #endif /* !_WIN32 */
2473 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2474 * This should not be used for general purpose DMA. Use address_space_map
2475 * or address_space_rw instead. For local memory (e.g. video ram) that the
2476 * device owns, use memory_region_get_ram_ptr.
2478 * Called within RCU critical section.
2480 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2482 RAMBlock *block = ram_block;
2484 if (block == NULL) {
2485 block = qemu_get_ram_block(addr);
2486 addr -= block->offset;
2489 if (xen_enabled() && block->host == NULL) {
2490 /* We need to check if the requested address is in the RAM
2491 * because we don't want to map the entire memory in QEMU.
2492 * In that case just map until the end of the page.
2494 if (block->offset == 0) {
2495 return xen_map_cache(addr, 0, 0, false);
2498 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2500 return ramblock_ptr(block, addr);
2503 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2504 * but takes a size argument.
2506 * Called within RCU critical section.
2508 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2509 hwaddr *size, bool lock)
2511 RAMBlock *block = ram_block;
2512 if (*size == 0) {
2513 return NULL;
2516 if (block == NULL) {
2517 block = qemu_get_ram_block(addr);
2518 addr -= block->offset;
2520 *size = MIN(*size, block->max_length - addr);
2522 if (xen_enabled() && block->host == NULL) {
2523 /* We need to check if the requested address is in the RAM
2524 * because we don't want to map the entire memory in QEMU.
2525 * In that case just map the requested area.
2527 if (block->offset == 0) {
2528 return xen_map_cache(addr, *size, lock, lock);
2531 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2534 return ramblock_ptr(block, addr);
2537 /* Return the offset of a hostpointer within a ramblock */
2538 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2540 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2541 assert((uintptr_t)host >= (uintptr_t)rb->host);
2542 assert(res < rb->max_length);
2544 return res;
2548 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2549 * in that RAMBlock.
2551 * ptr: Host pointer to look up
2552 * round_offset: If true round the result offset down to a page boundary
2553 * *ram_addr: set to result ram_addr
2554 * *offset: set to result offset within the RAMBlock
2556 * Returns: RAMBlock (or NULL if not found)
2558 * By the time this function returns, the returned pointer is not protected
2559 * by RCU anymore. If the caller is not within an RCU critical section and
2560 * does not hold the iothread lock, it must have other means of protecting the
2561 * pointer, such as a reference to the region that includes the incoming
2562 * ram_addr_t.
2564 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2565 ram_addr_t *offset)
2567 RAMBlock *block;
2568 uint8_t *host = ptr;
2570 if (xen_enabled()) {
2571 ram_addr_t ram_addr;
2572 rcu_read_lock();
2573 ram_addr = xen_ram_addr_from_mapcache(ptr);
2574 block = qemu_get_ram_block(ram_addr);
2575 if (block) {
2576 *offset = ram_addr - block->offset;
2578 rcu_read_unlock();
2579 return block;
2582 rcu_read_lock();
2583 block = atomic_rcu_read(&ram_list.mru_block);
2584 if (block && block->host && host - block->host < block->max_length) {
2585 goto found;
2588 RAMBLOCK_FOREACH(block) {
2589 /* This case append when the block is not mapped. */
2590 if (block->host == NULL) {
2591 continue;
2593 if (host - block->host < block->max_length) {
2594 goto found;
2598 rcu_read_unlock();
2599 return NULL;
2601 found:
2602 *offset = (host - block->host);
2603 if (round_offset) {
2604 *offset &= TARGET_PAGE_MASK;
2606 rcu_read_unlock();
2607 return block;
2611 * Finds the named RAMBlock
2613 * name: The name of RAMBlock to find
2615 * Returns: RAMBlock (or NULL if not found)
2617 RAMBlock *qemu_ram_block_by_name(const char *name)
2619 RAMBlock *block;
2621 RAMBLOCK_FOREACH(block) {
2622 if (!strcmp(name, block->idstr)) {
2623 return block;
2627 return NULL;
2630 /* Some of the softmmu routines need to translate from a host pointer
2631 (typically a TLB entry) back to a ram offset. */
2632 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2634 RAMBlock *block;
2635 ram_addr_t offset;
2637 block = qemu_ram_block_from_host(ptr, false, &offset);
2638 if (!block) {
2639 return RAM_ADDR_INVALID;
2642 return block->offset + offset;
2645 /* Called within RCU critical section. */
2646 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2647 CPUState *cpu,
2648 vaddr mem_vaddr,
2649 ram_addr_t ram_addr,
2650 unsigned size)
2652 ndi->cpu = cpu;
2653 ndi->ram_addr = ram_addr;
2654 ndi->mem_vaddr = mem_vaddr;
2655 ndi->size = size;
2656 ndi->pages = NULL;
2658 assert(tcg_enabled());
2659 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2660 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2661 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2665 /* Called within RCU critical section. */
2666 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2668 if (ndi->pages) {
2669 assert(tcg_enabled());
2670 page_collection_unlock(ndi->pages);
2671 ndi->pages = NULL;
2674 /* Set both VGA and migration bits for simplicity and to remove
2675 * the notdirty callback faster.
2677 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2678 DIRTY_CLIENTS_NOCODE);
2679 /* we remove the notdirty callback only if the code has been
2680 flushed */
2681 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2682 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2686 /* Called within RCU critical section. */
2687 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2688 uint64_t val, unsigned size)
2690 NotDirtyInfo ndi;
2692 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2693 ram_addr, size);
2695 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2696 memory_notdirty_write_complete(&ndi);
2699 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2700 unsigned size, bool is_write,
2701 MemTxAttrs attrs)
2703 return is_write;
2706 static const MemoryRegionOps notdirty_mem_ops = {
2707 .write = notdirty_mem_write,
2708 .valid.accepts = notdirty_mem_accepts,
2709 .endianness = DEVICE_NATIVE_ENDIAN,
2710 .valid = {
2711 .min_access_size = 1,
2712 .max_access_size = 8,
2713 .unaligned = false,
2715 .impl = {
2716 .min_access_size = 1,
2717 .max_access_size = 8,
2718 .unaligned = false,
2722 /* Generate a debug exception if a watchpoint has been hit. */
2723 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2725 CPUState *cpu = current_cpu;
2726 CPUClass *cc = CPU_GET_CLASS(cpu);
2727 target_ulong vaddr;
2728 CPUWatchpoint *wp;
2730 assert(tcg_enabled());
2731 if (cpu->watchpoint_hit) {
2732 /* We re-entered the check after replacing the TB. Now raise
2733 * the debug interrupt so that is will trigger after the
2734 * current instruction. */
2735 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2736 return;
2738 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2739 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2740 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2741 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2742 && (wp->flags & flags)) {
2743 if (flags == BP_MEM_READ) {
2744 wp->flags |= BP_WATCHPOINT_HIT_READ;
2745 } else {
2746 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2748 wp->hitaddr = vaddr;
2749 wp->hitattrs = attrs;
2750 if (!cpu->watchpoint_hit) {
2751 if (wp->flags & BP_CPU &&
2752 !cc->debug_check_watchpoint(cpu, wp)) {
2753 wp->flags &= ~BP_WATCHPOINT_HIT;
2754 continue;
2756 cpu->watchpoint_hit = wp;
2758 mmap_lock();
2759 tb_check_watchpoint(cpu);
2760 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2761 cpu->exception_index = EXCP_DEBUG;
2762 mmap_unlock();
2763 cpu_loop_exit(cpu);
2764 } else {
2765 /* Force execution of one insn next time. */
2766 cpu->cflags_next_tb = 1 | curr_cflags();
2767 mmap_unlock();
2768 cpu_loop_exit_noexc(cpu);
2771 } else {
2772 wp->flags &= ~BP_WATCHPOINT_HIT;
2777 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2778 so these check for a hit then pass through to the normal out-of-line
2779 phys routines. */
2780 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2781 unsigned size, MemTxAttrs attrs)
2783 MemTxResult res;
2784 uint64_t data;
2785 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2786 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2788 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2789 switch (size) {
2790 case 1:
2791 data = address_space_ldub(as, addr, attrs, &res);
2792 break;
2793 case 2:
2794 data = address_space_lduw(as, addr, attrs, &res);
2795 break;
2796 case 4:
2797 data = address_space_ldl(as, addr, attrs, &res);
2798 break;
2799 case 8:
2800 data = address_space_ldq(as, addr, attrs, &res);
2801 break;
2802 default: abort();
2804 *pdata = data;
2805 return res;
2808 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2809 uint64_t val, unsigned size,
2810 MemTxAttrs attrs)
2812 MemTxResult res;
2813 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2814 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2816 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2817 switch (size) {
2818 case 1:
2819 address_space_stb(as, addr, val, attrs, &res);
2820 break;
2821 case 2:
2822 address_space_stw(as, addr, val, attrs, &res);
2823 break;
2824 case 4:
2825 address_space_stl(as, addr, val, attrs, &res);
2826 break;
2827 case 8:
2828 address_space_stq(as, addr, val, attrs, &res);
2829 break;
2830 default: abort();
2832 return res;
2835 static const MemoryRegionOps watch_mem_ops = {
2836 .read_with_attrs = watch_mem_read,
2837 .write_with_attrs = watch_mem_write,
2838 .endianness = DEVICE_NATIVE_ENDIAN,
2839 .valid = {
2840 .min_access_size = 1,
2841 .max_access_size = 8,
2842 .unaligned = false,
2844 .impl = {
2845 .min_access_size = 1,
2846 .max_access_size = 8,
2847 .unaligned = false,
2851 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2852 MemTxAttrs attrs, uint8_t *buf, int len);
2853 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2854 const uint8_t *buf, int len);
2855 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2856 bool is_write, MemTxAttrs attrs);
2858 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2859 unsigned len, MemTxAttrs attrs)
2861 subpage_t *subpage = opaque;
2862 uint8_t buf[8];
2863 MemTxResult res;
2865 #if defined(DEBUG_SUBPAGE)
2866 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2867 subpage, len, addr);
2868 #endif
2869 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2870 if (res) {
2871 return res;
2873 *data = ldn_p(buf, len);
2874 return MEMTX_OK;
2877 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2878 uint64_t value, unsigned len, MemTxAttrs attrs)
2880 subpage_t *subpage = opaque;
2881 uint8_t buf[8];
2883 #if defined(DEBUG_SUBPAGE)
2884 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2885 " value %"PRIx64"\n",
2886 __func__, subpage, len, addr, value);
2887 #endif
2888 stn_p(buf, len, value);
2889 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2892 static bool subpage_accepts(void *opaque, hwaddr addr,
2893 unsigned len, bool is_write,
2894 MemTxAttrs attrs)
2896 subpage_t *subpage = opaque;
2897 #if defined(DEBUG_SUBPAGE)
2898 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2899 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2900 #endif
2902 return flatview_access_valid(subpage->fv, addr + subpage->base,
2903 len, is_write, attrs);
2906 static const MemoryRegionOps subpage_ops = {
2907 .read_with_attrs = subpage_read,
2908 .write_with_attrs = subpage_write,
2909 .impl.min_access_size = 1,
2910 .impl.max_access_size = 8,
2911 .valid.min_access_size = 1,
2912 .valid.max_access_size = 8,
2913 .valid.accepts = subpage_accepts,
2914 .endianness = DEVICE_NATIVE_ENDIAN,
2917 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2918 uint16_t section)
2920 int idx, eidx;
2922 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2923 return -1;
2924 idx = SUBPAGE_IDX(start);
2925 eidx = SUBPAGE_IDX(end);
2926 #if defined(DEBUG_SUBPAGE)
2927 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2928 __func__, mmio, start, end, idx, eidx, section);
2929 #endif
2930 for (; idx <= eidx; idx++) {
2931 mmio->sub_section[idx] = section;
2934 return 0;
2937 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2939 subpage_t *mmio;
2941 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2942 mmio->fv = fv;
2943 mmio->base = base;
2944 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2945 NULL, TARGET_PAGE_SIZE);
2946 mmio->iomem.subpage = true;
2947 #if defined(DEBUG_SUBPAGE)
2948 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2949 mmio, base, TARGET_PAGE_SIZE);
2950 #endif
2951 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2953 return mmio;
2956 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2958 assert(fv);
2959 MemoryRegionSection section = {
2960 .fv = fv,
2961 .mr = mr,
2962 .offset_within_address_space = 0,
2963 .offset_within_region = 0,
2964 .size = int128_2_64(),
2967 return phys_section_add(map, &section);
2970 static void readonly_mem_write(void *opaque, hwaddr addr,
2971 uint64_t val, unsigned size)
2973 /* Ignore any write to ROM. */
2976 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2977 unsigned size, bool is_write,
2978 MemTxAttrs attrs)
2980 return is_write;
2983 /* This will only be used for writes, because reads are special cased
2984 * to directly access the underlying host ram.
2986 static const MemoryRegionOps readonly_mem_ops = {
2987 .write = readonly_mem_write,
2988 .valid.accepts = readonly_mem_accepts,
2989 .endianness = DEVICE_NATIVE_ENDIAN,
2990 .valid = {
2991 .min_access_size = 1,
2992 .max_access_size = 8,
2993 .unaligned = false,
2995 .impl = {
2996 .min_access_size = 1,
2997 .max_access_size = 8,
2998 .unaligned = false,
3002 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3003 hwaddr index, MemTxAttrs attrs)
3005 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3006 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3007 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3008 MemoryRegionSection *sections = d->map.sections;
3010 return &sections[index & ~TARGET_PAGE_MASK];
3013 static void io_mem_init(void)
3015 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3016 NULL, NULL, UINT64_MAX);
3017 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3018 NULL, UINT64_MAX);
3020 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3021 * which can be called without the iothread mutex.
3023 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3024 NULL, UINT64_MAX);
3025 memory_region_clear_global_locking(&io_mem_notdirty);
3027 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3028 NULL, UINT64_MAX);
3031 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3033 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3034 uint16_t n;
3036 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3037 assert(n == PHYS_SECTION_UNASSIGNED);
3038 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3039 assert(n == PHYS_SECTION_NOTDIRTY);
3040 n = dummy_section(&d->map, fv, &io_mem_rom);
3041 assert(n == PHYS_SECTION_ROM);
3042 n = dummy_section(&d->map, fv, &io_mem_watch);
3043 assert(n == PHYS_SECTION_WATCH);
3045 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3047 return d;
3050 void address_space_dispatch_free(AddressSpaceDispatch *d)
3052 phys_sections_free(&d->map);
3053 g_free(d);
3056 static void tcg_commit(MemoryListener *listener)
3058 CPUAddressSpace *cpuas;
3059 AddressSpaceDispatch *d;
3061 assert(tcg_enabled());
3062 /* since each CPU stores ram addresses in its TLB cache, we must
3063 reset the modified entries */
3064 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3065 cpu_reloading_memory_map();
3066 /* The CPU and TLB are protected by the iothread lock.
3067 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3068 * may have split the RCU critical section.
3070 d = address_space_to_dispatch(cpuas->as);
3071 atomic_rcu_set(&cpuas->memory_dispatch, d);
3072 tlb_flush(cpuas->cpu);
3075 static void memory_map_init(void)
3077 system_memory = g_malloc(sizeof(*system_memory));
3079 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3080 address_space_init(&address_space_memory, system_memory, "memory");
3082 system_io = g_malloc(sizeof(*system_io));
3083 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3084 65536);
3085 address_space_init(&address_space_io, system_io, "I/O");
3088 MemoryRegion *get_system_memory(void)
3090 return system_memory;
3093 MemoryRegion *get_system_io(void)
3095 return system_io;
3098 #endif /* !defined(CONFIG_USER_ONLY) */
3100 /* physical memory access (slow version, mainly for debug) */
3101 #if defined(CONFIG_USER_ONLY)
3102 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3103 uint8_t *buf, int len, int is_write)
3105 int l, flags;
3106 target_ulong page;
3107 void * p;
3109 while (len > 0) {
3110 page = addr & TARGET_PAGE_MASK;
3111 l = (page + TARGET_PAGE_SIZE) - addr;
3112 if (l > len)
3113 l = len;
3114 flags = page_get_flags(page);
3115 if (!(flags & PAGE_VALID))
3116 return -1;
3117 if (is_write) {
3118 if (!(flags & PAGE_WRITE))
3119 return -1;
3120 /* XXX: this code should not depend on lock_user */
3121 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3122 return -1;
3123 memcpy(p, buf, l);
3124 unlock_user(p, addr, l);
3125 } else {
3126 if (!(flags & PAGE_READ))
3127 return -1;
3128 /* XXX: this code should not depend on lock_user */
3129 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3130 return -1;
3131 memcpy(buf, p, l);
3132 unlock_user(p, addr, 0);
3134 len -= l;
3135 buf += l;
3136 addr += l;
3138 return 0;
3141 #else
3143 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3144 hwaddr length)
3146 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3147 addr += memory_region_get_ram_addr(mr);
3149 /* No early return if dirty_log_mask is or becomes 0, because
3150 * cpu_physical_memory_set_dirty_range will still call
3151 * xen_modified_memory.
3153 if (dirty_log_mask) {
3154 dirty_log_mask =
3155 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3157 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3158 assert(tcg_enabled());
3159 tb_invalidate_phys_range(addr, addr + length);
3160 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3162 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3165 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3167 unsigned access_size_max = mr->ops->valid.max_access_size;
3169 /* Regions are assumed to support 1-4 byte accesses unless
3170 otherwise specified. */
3171 if (access_size_max == 0) {
3172 access_size_max = 4;
3175 /* Bound the maximum access by the alignment of the address. */
3176 if (!mr->ops->impl.unaligned) {
3177 unsigned align_size_max = addr & -addr;
3178 if (align_size_max != 0 && align_size_max < access_size_max) {
3179 access_size_max = align_size_max;
3183 /* Don't attempt accesses larger than the maximum. */
3184 if (l > access_size_max) {
3185 l = access_size_max;
3187 l = pow2floor(l);
3189 return l;
3192 static bool prepare_mmio_access(MemoryRegion *mr)
3194 bool unlocked = !qemu_mutex_iothread_locked();
3195 bool release_lock = false;
3197 if (unlocked && mr->global_locking) {
3198 qemu_mutex_lock_iothread();
3199 unlocked = false;
3200 release_lock = true;
3202 if (mr->flush_coalesced_mmio) {
3203 if (unlocked) {
3204 qemu_mutex_lock_iothread();
3206 qemu_flush_coalesced_mmio_buffer();
3207 if (unlocked) {
3208 qemu_mutex_unlock_iothread();
3212 return release_lock;
3215 /* Called within RCU critical section. */
3216 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3217 MemTxAttrs attrs,
3218 const uint8_t *buf,
3219 int len, hwaddr addr1,
3220 hwaddr l, MemoryRegion *mr)
3222 uint8_t *ptr;
3223 uint64_t val;
3224 MemTxResult result = MEMTX_OK;
3225 bool release_lock = false;
3227 for (;;) {
3228 if (!memory_access_is_direct(mr, true)) {
3229 release_lock |= prepare_mmio_access(mr);
3230 l = memory_access_size(mr, l, addr1);
3231 /* XXX: could force current_cpu to NULL to avoid
3232 potential bugs */
3233 val = ldn_p(buf, l);
3234 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3235 } else {
3236 /* RAM case */
3237 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3238 memcpy(ptr, buf, l);
3239 invalidate_and_set_dirty(mr, addr1, l);
3242 if (release_lock) {
3243 qemu_mutex_unlock_iothread();
3244 release_lock = false;
3247 len -= l;
3248 buf += l;
3249 addr += l;
3251 if (!len) {
3252 break;
3255 l = len;
3256 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3259 return result;
3262 /* Called from RCU critical section. */
3263 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3264 const uint8_t *buf, int len)
3266 hwaddr l;
3267 hwaddr addr1;
3268 MemoryRegion *mr;
3269 MemTxResult result = MEMTX_OK;
3271 l = len;
3272 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3273 result = flatview_write_continue(fv, addr, attrs, buf, len,
3274 addr1, l, mr);
3276 return result;
3279 /* Called within RCU critical section. */
3280 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3281 MemTxAttrs attrs, uint8_t *buf,
3282 int len, hwaddr addr1, hwaddr l,
3283 MemoryRegion *mr)
3285 uint8_t *ptr;
3286 uint64_t val;
3287 MemTxResult result = MEMTX_OK;
3288 bool release_lock = false;
3290 for (;;) {
3291 if (!memory_access_is_direct(mr, false)) {
3292 /* I/O case */
3293 release_lock |= prepare_mmio_access(mr);
3294 l = memory_access_size(mr, l, addr1);
3295 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3296 stn_p(buf, l, val);
3297 } else {
3298 /* RAM case */
3299 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3300 memcpy(buf, ptr, l);
3303 if (release_lock) {
3304 qemu_mutex_unlock_iothread();
3305 release_lock = false;
3308 len -= l;
3309 buf += l;
3310 addr += l;
3312 if (!len) {
3313 break;
3316 l = len;
3317 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3320 return result;
3323 /* Called from RCU critical section. */
3324 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3325 MemTxAttrs attrs, uint8_t *buf, int len)
3327 hwaddr l;
3328 hwaddr addr1;
3329 MemoryRegion *mr;
3331 l = len;
3332 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3333 return flatview_read_continue(fv, addr, attrs, buf, len,
3334 addr1, l, mr);
3337 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3338 MemTxAttrs attrs, uint8_t *buf, int len)
3340 MemTxResult result = MEMTX_OK;
3341 FlatView *fv;
3343 if (len > 0) {
3344 rcu_read_lock();
3345 fv = address_space_to_flatview(as);
3346 result = flatview_read(fv, addr, attrs, buf, len);
3347 rcu_read_unlock();
3350 return result;
3353 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3354 MemTxAttrs attrs,
3355 const uint8_t *buf, int len)
3357 MemTxResult result = MEMTX_OK;
3358 FlatView *fv;
3360 if (len > 0) {
3361 rcu_read_lock();
3362 fv = address_space_to_flatview(as);
3363 result = flatview_write(fv, addr, attrs, buf, len);
3364 rcu_read_unlock();
3367 return result;
3370 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3371 uint8_t *buf, int len, bool is_write)
3373 if (is_write) {
3374 return address_space_write(as, addr, attrs, buf, len);
3375 } else {
3376 return address_space_read_full(as, addr, attrs, buf, len);
3380 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3381 int len, int is_write)
3383 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3384 buf, len, is_write);
3387 enum write_rom_type {
3388 WRITE_DATA,
3389 FLUSH_CACHE,
3392 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3393 hwaddr addr,
3394 MemTxAttrs attrs,
3395 const uint8_t *buf,
3396 int len,
3397 enum write_rom_type type)
3399 hwaddr l;
3400 uint8_t *ptr;
3401 hwaddr addr1;
3402 MemoryRegion *mr;
3404 rcu_read_lock();
3405 while (len > 0) {
3406 l = len;
3407 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3409 if (!(memory_region_is_ram(mr) ||
3410 memory_region_is_romd(mr))) {
3411 l = memory_access_size(mr, l, addr1);
3412 } else {
3413 /* ROM/RAM case */
3414 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3415 switch (type) {
3416 case WRITE_DATA:
3417 memcpy(ptr, buf, l);
3418 invalidate_and_set_dirty(mr, addr1, l);
3419 break;
3420 case FLUSH_CACHE:
3421 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3422 break;
3425 len -= l;
3426 buf += l;
3427 addr += l;
3429 rcu_read_unlock();
3430 return MEMTX_OK;
3433 /* used for ROM loading : can write in RAM and ROM */
3434 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3435 MemTxAttrs attrs,
3436 const uint8_t *buf, int len)
3438 return address_space_write_rom_internal(as, addr, attrs,
3439 buf, len, WRITE_DATA);
3442 void cpu_flush_icache_range(hwaddr start, int len)
3445 * This function should do the same thing as an icache flush that was
3446 * triggered from within the guest. For TCG we are always cache coherent,
3447 * so there is no need to flush anything. For KVM / Xen we need to flush
3448 * the host's instruction cache at least.
3450 if (tcg_enabled()) {
3451 return;
3454 address_space_write_rom_internal(&address_space_memory,
3455 start, MEMTXATTRS_UNSPECIFIED,
3456 NULL, len, FLUSH_CACHE);
3459 typedef struct {
3460 MemoryRegion *mr;
3461 void *buffer;
3462 hwaddr addr;
3463 hwaddr len;
3464 bool in_use;
3465 } BounceBuffer;
3467 static BounceBuffer bounce;
3469 typedef struct MapClient {
3470 QEMUBH *bh;
3471 QLIST_ENTRY(MapClient) link;
3472 } MapClient;
3474 QemuMutex map_client_list_lock;
3475 static QLIST_HEAD(, MapClient) map_client_list
3476 = QLIST_HEAD_INITIALIZER(map_client_list);
3478 static void cpu_unregister_map_client_do(MapClient *client)
3480 QLIST_REMOVE(client, link);
3481 g_free(client);
3484 static void cpu_notify_map_clients_locked(void)
3486 MapClient *client;
3488 while (!QLIST_EMPTY(&map_client_list)) {
3489 client = QLIST_FIRST(&map_client_list);
3490 qemu_bh_schedule(client->bh);
3491 cpu_unregister_map_client_do(client);
3495 void cpu_register_map_client(QEMUBH *bh)
3497 MapClient *client = g_malloc(sizeof(*client));
3499 qemu_mutex_lock(&map_client_list_lock);
3500 client->bh = bh;
3501 QLIST_INSERT_HEAD(&map_client_list, client, link);
3502 if (!atomic_read(&bounce.in_use)) {
3503 cpu_notify_map_clients_locked();
3505 qemu_mutex_unlock(&map_client_list_lock);
3508 void cpu_exec_init_all(void)
3510 qemu_mutex_init(&ram_list.mutex);
3511 /* The data structures we set up here depend on knowing the page size,
3512 * so no more changes can be made after this point.
3513 * In an ideal world, nothing we did before we had finished the
3514 * machine setup would care about the target page size, and we could
3515 * do this much later, rather than requiring board models to state
3516 * up front what their requirements are.
3518 finalize_target_page_bits();
3519 io_mem_init();
3520 memory_map_init();
3521 qemu_mutex_init(&map_client_list_lock);
3524 void cpu_unregister_map_client(QEMUBH *bh)
3526 MapClient *client;
3528 qemu_mutex_lock(&map_client_list_lock);
3529 QLIST_FOREACH(client, &map_client_list, link) {
3530 if (client->bh == bh) {
3531 cpu_unregister_map_client_do(client);
3532 break;
3535 qemu_mutex_unlock(&map_client_list_lock);
3538 static void cpu_notify_map_clients(void)
3540 qemu_mutex_lock(&map_client_list_lock);
3541 cpu_notify_map_clients_locked();
3542 qemu_mutex_unlock(&map_client_list_lock);
3545 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3546 bool is_write, MemTxAttrs attrs)
3548 MemoryRegion *mr;
3549 hwaddr l, xlat;
3551 while (len > 0) {
3552 l = len;
3553 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3554 if (!memory_access_is_direct(mr, is_write)) {
3555 l = memory_access_size(mr, l, addr);
3556 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3557 return false;
3561 len -= l;
3562 addr += l;
3564 return true;
3567 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3568 int len, bool is_write,
3569 MemTxAttrs attrs)
3571 FlatView *fv;
3572 bool result;
3574 rcu_read_lock();
3575 fv = address_space_to_flatview(as);
3576 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3577 rcu_read_unlock();
3578 return result;
3581 static hwaddr
3582 flatview_extend_translation(FlatView *fv, hwaddr addr,
3583 hwaddr target_len,
3584 MemoryRegion *mr, hwaddr base, hwaddr len,
3585 bool is_write, MemTxAttrs attrs)
3587 hwaddr done = 0;
3588 hwaddr xlat;
3589 MemoryRegion *this_mr;
3591 for (;;) {
3592 target_len -= len;
3593 addr += len;
3594 done += len;
3595 if (target_len == 0) {
3596 return done;
3599 len = target_len;
3600 this_mr = flatview_translate(fv, addr, &xlat,
3601 &len, is_write, attrs);
3602 if (this_mr != mr || xlat != base + done) {
3603 return done;
3608 /* Map a physical memory region into a host virtual address.
3609 * May map a subset of the requested range, given by and returned in *plen.
3610 * May return NULL if resources needed to perform the mapping are exhausted.
3611 * Use only for reads OR writes - not for read-modify-write operations.
3612 * Use cpu_register_map_client() to know when retrying the map operation is
3613 * likely to succeed.
3615 void *address_space_map(AddressSpace *as,
3616 hwaddr addr,
3617 hwaddr *plen,
3618 bool is_write,
3619 MemTxAttrs attrs)
3621 hwaddr len = *plen;
3622 hwaddr l, xlat;
3623 MemoryRegion *mr;
3624 void *ptr;
3625 FlatView *fv;
3627 if (len == 0) {
3628 return NULL;
3631 l = len;
3632 rcu_read_lock();
3633 fv = address_space_to_flatview(as);
3634 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3636 if (!memory_access_is_direct(mr, is_write)) {
3637 if (atomic_xchg(&bounce.in_use, true)) {
3638 rcu_read_unlock();
3639 return NULL;
3641 /* Avoid unbounded allocations */
3642 l = MIN(l, TARGET_PAGE_SIZE);
3643 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3644 bounce.addr = addr;
3645 bounce.len = l;
3647 memory_region_ref(mr);
3648 bounce.mr = mr;
3649 if (!is_write) {
3650 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3651 bounce.buffer, l);
3654 rcu_read_unlock();
3655 *plen = l;
3656 return bounce.buffer;
3660 memory_region_ref(mr);
3661 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3662 l, is_write, attrs);
3663 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3664 rcu_read_unlock();
3666 return ptr;
3669 /* Unmaps a memory region previously mapped by address_space_map().
3670 * Will also mark the memory as dirty if is_write == 1. access_len gives
3671 * the amount of memory that was actually read or written by the caller.
3673 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3674 int is_write, hwaddr access_len)
3676 if (buffer != bounce.buffer) {
3677 MemoryRegion *mr;
3678 ram_addr_t addr1;
3680 mr = memory_region_from_host(buffer, &addr1);
3681 assert(mr != NULL);
3682 if (is_write) {
3683 invalidate_and_set_dirty(mr, addr1, access_len);
3685 if (xen_enabled()) {
3686 xen_invalidate_map_cache_entry(buffer);
3688 memory_region_unref(mr);
3689 return;
3691 if (is_write) {
3692 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3693 bounce.buffer, access_len);
3695 qemu_vfree(bounce.buffer);
3696 bounce.buffer = NULL;
3697 memory_region_unref(bounce.mr);
3698 atomic_mb_set(&bounce.in_use, false);
3699 cpu_notify_map_clients();
3702 void *cpu_physical_memory_map(hwaddr addr,
3703 hwaddr *plen,
3704 int is_write)
3706 return address_space_map(&address_space_memory, addr, plen, is_write,
3707 MEMTXATTRS_UNSPECIFIED);
3710 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3711 int is_write, hwaddr access_len)
3713 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3716 #define ARG1_DECL AddressSpace *as
3717 #define ARG1 as
3718 #define SUFFIX
3719 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3720 #define RCU_READ_LOCK(...) rcu_read_lock()
3721 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3722 #include "memory_ldst.inc.c"
3724 int64_t address_space_cache_init(MemoryRegionCache *cache,
3725 AddressSpace *as,
3726 hwaddr addr,
3727 hwaddr len,
3728 bool is_write)
3730 AddressSpaceDispatch *d;
3731 hwaddr l;
3732 MemoryRegion *mr;
3734 assert(len > 0);
3736 l = len;
3737 cache->fv = address_space_get_flatview(as);
3738 d = flatview_to_dispatch(cache->fv);
3739 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3741 mr = cache->mrs.mr;
3742 memory_region_ref(mr);
3743 if (memory_access_is_direct(mr, is_write)) {
3744 /* We don't care about the memory attributes here as we're only
3745 * doing this if we found actual RAM, which behaves the same
3746 * regardless of attributes; so UNSPECIFIED is fine.
3748 l = flatview_extend_translation(cache->fv, addr, len, mr,
3749 cache->xlat, l, is_write,
3750 MEMTXATTRS_UNSPECIFIED);
3751 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3752 } else {
3753 cache->ptr = NULL;
3756 cache->len = l;
3757 cache->is_write = is_write;
3758 return l;
3761 void address_space_cache_invalidate(MemoryRegionCache *cache,
3762 hwaddr addr,
3763 hwaddr access_len)
3765 assert(cache->is_write);
3766 if (likely(cache->ptr)) {
3767 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3771 void address_space_cache_destroy(MemoryRegionCache *cache)
3773 if (!cache->mrs.mr) {
3774 return;
3777 if (xen_enabled()) {
3778 xen_invalidate_map_cache_entry(cache->ptr);
3780 memory_region_unref(cache->mrs.mr);
3781 flatview_unref(cache->fv);
3782 cache->mrs.mr = NULL;
3783 cache->fv = NULL;
3786 /* Called from RCU critical section. This function has the same
3787 * semantics as address_space_translate, but it only works on a
3788 * predefined range of a MemoryRegion that was mapped with
3789 * address_space_cache_init.
3791 static inline MemoryRegion *address_space_translate_cached(
3792 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3793 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3795 MemoryRegionSection section;
3796 MemoryRegion *mr;
3797 IOMMUMemoryRegion *iommu_mr;
3798 AddressSpace *target_as;
3800 assert(!cache->ptr);
3801 *xlat = addr + cache->xlat;
3803 mr = cache->mrs.mr;
3804 iommu_mr = memory_region_get_iommu(mr);
3805 if (!iommu_mr) {
3806 /* MMIO region. */
3807 return mr;
3810 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3811 NULL, is_write, true,
3812 &target_as, attrs);
3813 return section.mr;
3816 /* Called from RCU critical section. address_space_read_cached uses this
3817 * out of line function when the target is an MMIO or IOMMU region.
3819 void
3820 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3821 void *buf, int len)
3823 hwaddr addr1, l;
3824 MemoryRegion *mr;
3826 l = len;
3827 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3828 MEMTXATTRS_UNSPECIFIED);
3829 flatview_read_continue(cache->fv,
3830 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3831 addr1, l, mr);
3834 /* Called from RCU critical section. address_space_write_cached uses this
3835 * out of line function when the target is an MMIO or IOMMU region.
3837 void
3838 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3839 const void *buf, int len)
3841 hwaddr addr1, l;
3842 MemoryRegion *mr;
3844 l = len;
3845 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3846 MEMTXATTRS_UNSPECIFIED);
3847 flatview_write_continue(cache->fv,
3848 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3849 addr1, l, mr);
3852 #define ARG1_DECL MemoryRegionCache *cache
3853 #define ARG1 cache
3854 #define SUFFIX _cached_slow
3855 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3856 #define RCU_READ_LOCK() ((void)0)
3857 #define RCU_READ_UNLOCK() ((void)0)
3858 #include "memory_ldst.inc.c"
3860 /* virtual memory access for debug (includes writing to ROM) */
3861 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3862 uint8_t *buf, int len, int is_write)
3864 int l;
3865 hwaddr phys_addr;
3866 target_ulong page;
3868 cpu_synchronize_state(cpu);
3869 while (len > 0) {
3870 int asidx;
3871 MemTxAttrs attrs;
3873 page = addr & TARGET_PAGE_MASK;
3874 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3875 asidx = cpu_asidx_from_attrs(cpu, attrs);
3876 /* if no physical page mapped, return an error */
3877 if (phys_addr == -1)
3878 return -1;
3879 l = (page + TARGET_PAGE_SIZE) - addr;
3880 if (l > len)
3881 l = len;
3882 phys_addr += (addr & ~TARGET_PAGE_MASK);
3883 if (is_write) {
3884 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3885 MEMTXATTRS_UNSPECIFIED,
3886 buf, l);
3887 } else {
3888 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3889 MEMTXATTRS_UNSPECIFIED,
3890 buf, l, 0);
3892 len -= l;
3893 buf += l;
3894 addr += l;
3896 return 0;
3900 * Allows code that needs to deal with migration bitmaps etc to still be built
3901 * target independent.
3903 size_t qemu_target_page_size(void)
3905 return TARGET_PAGE_SIZE;
3908 int qemu_target_page_bits(void)
3910 return TARGET_PAGE_BITS;
3913 int qemu_target_page_bits_min(void)
3915 return TARGET_PAGE_BITS_MIN;
3917 #endif
3919 bool target_words_bigendian(void)
3921 #if defined(TARGET_WORDS_BIGENDIAN)
3922 return true;
3923 #else
3924 return false;
3925 #endif
3928 #ifndef CONFIG_USER_ONLY
3929 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3931 MemoryRegion*mr;
3932 hwaddr l = 1;
3933 bool res;
3935 rcu_read_lock();
3936 mr = address_space_translate(&address_space_memory,
3937 phys_addr, &phys_addr, &l, false,
3938 MEMTXATTRS_UNSPECIFIED);
3940 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3941 rcu_read_unlock();
3942 return res;
3945 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3947 RAMBlock *block;
3948 int ret = 0;
3950 rcu_read_lock();
3951 RAMBLOCK_FOREACH(block) {
3952 ret = func(block->idstr, block->host, block->offset,
3953 block->used_length, opaque);
3954 if (ret) {
3955 break;
3958 rcu_read_unlock();
3959 return ret;
3962 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3964 RAMBlock *block;
3965 int ret = 0;
3967 rcu_read_lock();
3968 RAMBLOCK_FOREACH(block) {
3969 if (!qemu_ram_is_migratable(block)) {
3970 continue;
3972 ret = func(block->idstr, block->host, block->offset,
3973 block->used_length, opaque);
3974 if (ret) {
3975 break;
3978 rcu_read_unlock();
3979 return ret;
3983 * Unmap pages of memory from start to start+length such that
3984 * they a) read as 0, b) Trigger whatever fault mechanism
3985 * the OS provides for postcopy.
3986 * The pages must be unmapped by the end of the function.
3987 * Returns: 0 on success, none-0 on failure
3990 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3992 int ret = -1;
3994 uint8_t *host_startaddr = rb->host + start;
3996 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3997 error_report("ram_block_discard_range: Unaligned start address: %p",
3998 host_startaddr);
3999 goto err;
4002 if ((start + length) <= rb->used_length) {
4003 bool need_madvise, need_fallocate;
4004 uint8_t *host_endaddr = host_startaddr + length;
4005 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4006 error_report("ram_block_discard_range: Unaligned end address: %p",
4007 host_endaddr);
4008 goto err;
4011 errno = ENOTSUP; /* If we are missing MADVISE etc */
4013 /* The logic here is messy;
4014 * madvise DONTNEED fails for hugepages
4015 * fallocate works on hugepages and shmem
4017 need_madvise = (rb->page_size == qemu_host_page_size);
4018 need_fallocate = rb->fd != -1;
4019 if (need_fallocate) {
4020 /* For a file, this causes the area of the file to be zero'd
4021 * if read, and for hugetlbfs also causes it to be unmapped
4022 * so a userfault will trigger.
4024 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4025 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4026 start, length);
4027 if (ret) {
4028 ret = -errno;
4029 error_report("ram_block_discard_range: Failed to fallocate "
4030 "%s:%" PRIx64 " +%zx (%d)",
4031 rb->idstr, start, length, ret);
4032 goto err;
4034 #else
4035 ret = -ENOSYS;
4036 error_report("ram_block_discard_range: fallocate not available/file"
4037 "%s:%" PRIx64 " +%zx (%d)",
4038 rb->idstr, start, length, ret);
4039 goto err;
4040 #endif
4042 if (need_madvise) {
4043 /* For normal RAM this causes it to be unmapped,
4044 * for shared memory it causes the local mapping to disappear
4045 * and to fall back on the file contents (which we just
4046 * fallocate'd away).
4048 #if defined(CONFIG_MADVISE)
4049 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4050 if (ret) {
4051 ret = -errno;
4052 error_report("ram_block_discard_range: Failed to discard range "
4053 "%s:%" PRIx64 " +%zx (%d)",
4054 rb->idstr, start, length, ret);
4055 goto err;
4057 #else
4058 ret = -ENOSYS;
4059 error_report("ram_block_discard_range: MADVISE not available"
4060 "%s:%" PRIx64 " +%zx (%d)",
4061 rb->idstr, start, length, ret);
4062 goto err;
4063 #endif
4065 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4066 need_madvise, need_fallocate, ret);
4067 } else {
4068 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4069 "/%zx/" RAM_ADDR_FMT")",
4070 rb->idstr, start, length, rb->used_length);
4073 err:
4074 return ret;
4077 bool ramblock_is_pmem(RAMBlock *rb)
4079 return rb->flags & RAM_PMEM;
4082 #endif
4084 void page_size_init(void)
4086 /* NOTE: we can always suppose that qemu_host_page_size >=
4087 TARGET_PAGE_SIZE */
4088 if (qemu_host_page_size == 0) {
4089 qemu_host_page_size = qemu_real_host_page_size;
4091 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4092 qemu_host_page_size = TARGET_PAGE_SIZE;
4094 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4097 #if !defined(CONFIG_USER_ONLY)
4099 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4100 int start, int end, int skip, int ptr)
4102 if (start == end - 1) {
4103 mon(f, "\t%3d ", start);
4104 } else {
4105 mon(f, "\t%3d..%-3d ", start, end - 1);
4107 mon(f, " skip=%d ", skip);
4108 if (ptr == PHYS_MAP_NODE_NIL) {
4109 mon(f, " ptr=NIL");
4110 } else if (!skip) {
4111 mon(f, " ptr=#%d", ptr);
4112 } else {
4113 mon(f, " ptr=[%d]", ptr);
4115 mon(f, "\n");
4118 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4119 int128_sub((size), int128_one())) : 0)
4121 void mtree_print_dispatch(fprintf_function mon, void *f,
4122 AddressSpaceDispatch *d, MemoryRegion *root)
4124 int i;
4126 mon(f, " Dispatch\n");
4127 mon(f, " Physical sections\n");
4129 for (i = 0; i < d->map.sections_nb; ++i) {
4130 MemoryRegionSection *s = d->map.sections + i;
4131 const char *names[] = { " [unassigned]", " [not dirty]",
4132 " [ROM]", " [watch]" };
4134 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4136 s->offset_within_address_space,
4137 s->offset_within_address_space + MR_SIZE(s->mr->size),
4138 s->mr->name ? s->mr->name : "(noname)",
4139 i < ARRAY_SIZE(names) ? names[i] : "",
4140 s->mr == root ? " [ROOT]" : "",
4141 s == d->mru_section ? " [MRU]" : "",
4142 s->mr->is_iommu ? " [iommu]" : "");
4144 if (s->mr->alias) {
4145 mon(f, " alias=%s", s->mr->alias->name ?
4146 s->mr->alias->name : "noname");
4148 mon(f, "\n");
4151 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4152 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4153 for (i = 0; i < d->map.nodes_nb; ++i) {
4154 int j, jprev;
4155 PhysPageEntry prev;
4156 Node *n = d->map.nodes + i;
4158 mon(f, " [%d]\n", i);
4160 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4161 PhysPageEntry *pe = *n + j;
4163 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4164 continue;
4167 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4169 jprev = j;
4170 prev = *pe;
4173 if (jprev != ARRAY_SIZE(*n)) {
4174 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4179 #endif