migration: postcopy_blocktime documentation
[qemu/ar7.git] / exec.c
blob4722e521d490147556d046daee89edb398bc2c08
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 #endif
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits;
106 bool target_page_bits_decided;
107 #endif
109 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
110 /* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
112 __thread CPUState *current_cpu;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
116 int use_icount;
118 uintptr_t qemu_host_page_size;
119 intptr_t qemu_host_page_mask;
121 bool set_preferred_target_page_bits(int bits)
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
128 #ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
134 target_page_bits = bits;
136 #endif
137 return true;
140 #if !defined(CONFIG_USER_ONLY)
142 static void finalize_target_page_bits(void)
144 #ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
148 target_page_bits_decided = true;
149 #endif
152 typedef struct PhysPageEntry PhysPageEntry;
154 struct PhysPageEntry {
155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
156 uint32_t skip : 6;
157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 uint32_t ptr : 26;
161 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
163 /* Size of the L2 (and L3, etc) page tables. */
164 #define ADDR_SPACE_BITS 64
166 #define P_L2_BITS 9
167 #define P_L2_SIZE (1 << P_L2_BITS)
169 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
171 typedef PhysPageEntry Node[P_L2_SIZE];
173 typedef struct PhysPageMap {
174 struct rcu_head rcu;
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182 } PhysPageMap;
184 struct AddressSpaceDispatch {
185 MemoryRegionSection *mru_section;
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
189 PhysPageEntry phys_map;
190 PhysPageMap map;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 MemoryRegion iomem;
196 FlatView *fv;
197 hwaddr base;
198 uint16_t sub_section[];
199 } subpage_t;
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener *listener);
210 static MemoryRegion io_mem_watch;
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
219 struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
226 struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
232 #endif
234 #if !defined(CONFIG_USER_ONLY)
236 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
238 static unsigned alloc_hint = 16;
239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
243 alloc_hint = map->nodes_nb_alloc;
247 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
249 unsigned i;
250 uint32_t ret;
251 PhysPageEntry e;
252 PhysPageEntry *p;
254 ret = map->nodes_nb++;
255 p = map->nodes[ret];
256 assert(ret != PHYS_MAP_NODE_NIL);
257 assert(ret != map->nodes_nb_alloc);
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
261 for (i = 0; i < P_L2_SIZE; ++i) {
262 memcpy(&p[i], &e, sizeof(e));
264 return ret;
267 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
269 int level)
271 PhysPageEntry *p;
272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
275 lp->ptr = phys_map_node_alloc(map, level == 0);
277 p = map->nodes[lp->ptr];
278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
280 while (*nb && lp < &p[P_L2_SIZE]) {
281 if ((*index & (step - 1)) == 0 && *nb >= step) {
282 lp->skip = 0;
283 lp->ptr = leaf;
284 *index += step;
285 *nb -= step;
286 } else {
287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
289 ++lp;
293 static void phys_page_set(AddressSpaceDispatch *d,
294 hwaddr index, hwaddr nb,
295 uint16_t leaf)
297 /* Wildly overreserve - it doesn't matter much. */
298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
303 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
306 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
326 phys_page_compact(&p[i], nodes);
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
335 assert(valid_ptr < P_L2_SIZE);
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
356 void address_space_dispatch_compact(AddressSpaceDispatch *d)
358 if (d->phys_map.skip) {
359 phys_page_compact(&d->phys_map, d->map.nodes);
363 static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
369 return int128_gethi(section->size) ||
370 range_covers_byte(section->offset_within_address_space,
371 int128_getlo(section->size), addr);
374 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
379 hwaddr index = addr >> TARGET_PAGE_BITS;
380 int i;
382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
384 return &sections[PHYS_SECTION_UNASSIGNED];
386 p = nodes[lp.ptr];
387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
390 if (section_covers_addr(&sections[lp.ptr], addr)) {
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
397 bool memory_region_is_unassigned(MemoryRegion *mr)
399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
400 && mr != &io_mem_watch;
403 /* Called from RCU critical section */
404 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
405 hwaddr addr,
406 bool resolve_subpage)
408 MemoryRegionSection *section = atomic_read(&d->mru_section);
409 subpage_t *subpage;
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
413 section = phys_page_find(d, addr);
414 atomic_set(&d->mru_section, section);
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
420 return section;
423 /* Called from RCU critical section */
424 static MemoryRegionSection *
425 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
426 hwaddr *plen, bool resolve_subpage)
428 MemoryRegionSection *section;
429 MemoryRegion *mr;
430 Int128 diff;
432 section = address_space_lookup_region(d, addr, resolve_subpage);
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
439 mr = section->mr;
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
452 if (memory_region_is_ram(mr)) {
453 diff = int128_sub(section->size, int128_make64(addr));
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
456 return section;
460 * flatview_do_translate - translate an address in FlatView
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
475 * This function is called from RCU critical section
477 static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
486 IOMMUTLBEntry iotlb;
487 MemoryRegionSection *section;
488 IOMMUMemoryRegion *iommu_mr;
489 IOMMUMemoryRegionClass *imrc;
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
493 if (plen_out) {
494 plen = *plen_out;
497 for (;;) {
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
500 &plen, is_mmio);
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
504 break;
506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
514 if (!(iotlb.perm & (1 << is_write))) {
515 goto translate_fail;
518 fv = address_space_to_flatview(iotlb.target_as);
519 *target_as = iotlb.target_as;
522 *xlat = addr;
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
533 if (plen_out) {
534 *plen_out = plen;
537 return *section;
539 translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
543 /* Called from RCU critical section */
544 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
547 MemoryRegionSection section;
548 hwaddr xlat, page_mask;
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
566 return (IOMMUTLBEntry) {
567 .target_as = as,
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
575 iotlb_fail:
576 return (IOMMUTLBEntry) {0};
579 /* Called from RCU critical section */
580 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
583 MemoryRegion *mr;
584 MemoryRegionSection section;
585 AddressSpace *as = NULL;
587 /* This can be MMIO, so setup MMIO bit. */
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
590 mr = section.mr;
592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
594 *plen = MIN(page, *plen);
597 return mr;
600 /* Called from RCU critical section */
601 MemoryRegionSection *
602 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
603 hwaddr *xlat, hwaddr *plen)
605 MemoryRegionSection *section;
606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
610 assert(!memory_region_is_iommu(section->mr));
611 return section;
613 #endif
615 #if !defined(CONFIG_USER_ONLY)
617 static int cpu_common_post_load(void *opaque, int version_id)
619 CPUState *cpu = opaque;
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
623 cpu->interrupt_request &= ~0x01;
624 tlb_flush(cpu);
626 return 0;
629 static int cpu_common_pre_load(void *opaque)
631 CPUState *cpu = opaque;
633 cpu->exception_index = -1;
635 return 0;
638 static bool cpu_common_exception_index_needed(void *opaque)
640 CPUState *cpu = opaque;
642 return tcg_enabled() && cpu->exception_index != -1;
645 static const VMStateDescription vmstate_cpu_common_exception_index = {
646 .name = "cpu_common/exception_index",
647 .version_id = 1,
648 .minimum_version_id = 1,
649 .needed = cpu_common_exception_index_needed,
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(exception_index, CPUState),
652 VMSTATE_END_OF_LIST()
656 static bool cpu_common_crash_occurred_needed(void *opaque)
658 CPUState *cpu = opaque;
660 return cpu->crash_occurred;
663 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
664 .name = "cpu_common/crash_occurred",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = cpu_common_crash_occurred_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_BOOL(crash_occurred, CPUState),
670 VMSTATE_END_OF_LIST()
674 const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .pre_load = cpu_common_pre_load,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField[]) {
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
683 VMSTATE_END_OF_LIST()
685 .subsections = (const VMStateDescription*[]) {
686 &vmstate_cpu_common_exception_index,
687 &vmstate_cpu_common_crash_occurred,
688 NULL
692 #endif
694 CPUState *qemu_get_cpu(int index)
696 CPUState *cpu;
698 CPU_FOREACH(cpu) {
699 if (cpu->cpu_index == index) {
700 return cpu;
704 return NULL;
707 #if !defined(CONFIG_USER_ONLY)
708 void cpu_address_space_init(CPUState *cpu, int asidx,
709 const char *prefix, MemoryRegion *mr)
711 CPUAddressSpace *newas;
712 AddressSpace *as = g_new0(AddressSpace, 1);
713 char *as_name;
715 assert(mr);
716 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
717 address_space_init(as, mr, as_name);
718 g_free(as_name);
720 /* Target code should have set num_ases before calling us */
721 assert(asidx < cpu->num_ases);
723 if (asidx == 0) {
724 /* address space 0 gets the convenience alias */
725 cpu->as = as;
728 /* KVM cannot currently support multiple address spaces. */
729 assert(asidx == 0 || !kvm_enabled());
731 if (!cpu->cpu_ases) {
732 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
735 newas = &cpu->cpu_ases[asidx];
736 newas->cpu = cpu;
737 newas->as = as;
738 if (tcg_enabled()) {
739 newas->tcg_as_listener.commit = tcg_commit;
740 memory_listener_register(&newas->tcg_as_listener, as);
744 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
746 /* Return the AddressSpace corresponding to the specified index */
747 return cpu->cpu_ases[asidx].as;
749 #endif
751 void cpu_exec_unrealizefn(CPUState *cpu)
753 CPUClass *cc = CPU_GET_CLASS(cpu);
755 cpu_list_remove(cpu);
757 if (cc->vmsd != NULL) {
758 vmstate_unregister(NULL, cc->vmsd, cpu);
760 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
761 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
765 Property cpu_common_props[] = {
766 #ifndef CONFIG_USER_ONLY
767 /* Create a memory property for softmmu CPU object,
768 * so users can wire up its memory. (This can't go in qom/cpu.c
769 * because that file is compiled only once for both user-mode
770 * and system builds.) The default if no link is set up is to use
771 * the system address space.
773 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
774 MemoryRegion *),
775 #endif
776 DEFINE_PROP_END_OF_LIST(),
779 void cpu_exec_initfn(CPUState *cpu)
781 cpu->as = NULL;
782 cpu->num_ases = 0;
784 #ifndef CONFIG_USER_ONLY
785 cpu->thread_id = qemu_get_thread_id();
786 cpu->memory = system_memory;
787 object_ref(OBJECT(cpu->memory));
788 #endif
791 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
793 CPUClass *cc = CPU_GET_CLASS(cpu);
794 static bool tcg_target_initialized;
796 cpu_list_add(cpu);
798 if (tcg_enabled() && !tcg_target_initialized) {
799 tcg_target_initialized = true;
800 cc->tcg_initialize();
803 #ifndef CONFIG_USER_ONLY
804 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
805 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
807 if (cc->vmsd != NULL) {
808 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
810 #endif
813 #if defined(CONFIG_USER_ONLY)
814 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
816 mmap_lock();
817 tb_lock();
818 tb_invalidate_phys_page_range(pc, pc + 1, 0);
819 tb_unlock();
820 mmap_unlock();
822 #else
823 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
825 MemTxAttrs attrs;
826 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
827 int asidx = cpu_asidx_from_attrs(cpu, attrs);
828 if (phys != -1) {
829 /* Locks grabbed by tb_invalidate_phys_addr */
830 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
831 phys | (pc & ~TARGET_PAGE_MASK));
834 #endif
836 #if defined(CONFIG_USER_ONLY)
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
842 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
843 int flags)
845 return -ENOSYS;
848 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
852 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
853 int flags, CPUWatchpoint **watchpoint)
855 return -ENOSYS;
857 #else
858 /* Add a watchpoint. */
859 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
860 int flags, CPUWatchpoint **watchpoint)
862 CPUWatchpoint *wp;
864 /* forbid ranges which are empty or run off the end of the address space */
865 if (len == 0 || (addr + len - 1) < addr) {
866 error_report("tried to set invalid watchpoint at %"
867 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
868 return -EINVAL;
870 wp = g_malloc(sizeof(*wp));
872 wp->vaddr = addr;
873 wp->len = len;
874 wp->flags = flags;
876 /* keep all GDB-injected watchpoints in front */
877 if (flags & BP_GDB) {
878 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
879 } else {
880 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
883 tlb_flush_page(cpu, addr);
885 if (watchpoint)
886 *watchpoint = wp;
887 return 0;
890 /* Remove a specific watchpoint. */
891 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
892 int flags)
894 CPUWatchpoint *wp;
896 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
897 if (addr == wp->vaddr && len == wp->len
898 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
899 cpu_watchpoint_remove_by_ref(cpu, wp);
900 return 0;
903 return -ENOENT;
906 /* Remove a specific watchpoint by reference. */
907 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
909 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
911 tlb_flush_page(cpu, watchpoint->vaddr);
913 g_free(watchpoint);
916 /* Remove all matching watchpoints. */
917 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
919 CPUWatchpoint *wp, *next;
921 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
922 if (wp->flags & mask) {
923 cpu_watchpoint_remove_by_ref(cpu, wp);
928 /* Return true if this watchpoint address matches the specified
929 * access (ie the address range covered by the watchpoint overlaps
930 * partially or completely with the address range covered by the
931 * access).
933 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
934 vaddr addr,
935 vaddr len)
937 /* We know the lengths are non-zero, but a little caution is
938 * required to avoid errors in the case where the range ends
939 * exactly at the top of the address space and so addr + len
940 * wraps round to zero.
942 vaddr wpend = wp->vaddr + wp->len - 1;
943 vaddr addrend = addr + len - 1;
945 return !(addr > wpend || wp->vaddr > addrend);
948 #endif
950 /* Add a breakpoint. */
951 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
952 CPUBreakpoint **breakpoint)
954 CPUBreakpoint *bp;
956 bp = g_malloc(sizeof(*bp));
958 bp->pc = pc;
959 bp->flags = flags;
961 /* keep all GDB-injected breakpoints in front */
962 if (flags & BP_GDB) {
963 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
964 } else {
965 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
968 breakpoint_invalidate(cpu, pc);
970 if (breakpoint) {
971 *breakpoint = bp;
973 return 0;
976 /* Remove a specific breakpoint. */
977 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
979 CPUBreakpoint *bp;
981 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
982 if (bp->pc == pc && bp->flags == flags) {
983 cpu_breakpoint_remove_by_ref(cpu, bp);
984 return 0;
987 return -ENOENT;
990 /* Remove a specific breakpoint by reference. */
991 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
993 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
995 breakpoint_invalidate(cpu, breakpoint->pc);
997 g_free(breakpoint);
1000 /* Remove all matching breakpoints. */
1001 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1003 CPUBreakpoint *bp, *next;
1005 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1006 if (bp->flags & mask) {
1007 cpu_breakpoint_remove_by_ref(cpu, bp);
1012 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1013 CPU loop after each instruction */
1014 void cpu_single_step(CPUState *cpu, int enabled)
1016 if (cpu->singlestep_enabled != enabled) {
1017 cpu->singlestep_enabled = enabled;
1018 if (kvm_enabled()) {
1019 kvm_update_guest_debug(cpu, 0);
1020 } else {
1021 /* must flush all the translated code to avoid inconsistencies */
1022 /* XXX: only flush what is necessary */
1023 tb_flush(cpu);
1028 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1030 va_list ap;
1031 va_list ap2;
1033 va_start(ap, fmt);
1034 va_copy(ap2, ap);
1035 fprintf(stderr, "qemu: fatal: ");
1036 vfprintf(stderr, fmt, ap);
1037 fprintf(stderr, "\n");
1038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1039 if (qemu_log_separate()) {
1040 qemu_log_lock();
1041 qemu_log("qemu: fatal: ");
1042 qemu_log_vprintf(fmt, ap2);
1043 qemu_log("\n");
1044 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1045 qemu_log_flush();
1046 qemu_log_unlock();
1047 qemu_log_close();
1049 va_end(ap2);
1050 va_end(ap);
1051 replay_finish();
1052 #if defined(CONFIG_USER_ONLY)
1054 struct sigaction act;
1055 sigfillset(&act.sa_mask);
1056 act.sa_handler = SIG_DFL;
1057 sigaction(SIGABRT, &act, NULL);
1059 #endif
1060 abort();
1063 #if !defined(CONFIG_USER_ONLY)
1064 /* Called from RCU critical section */
1065 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1067 RAMBlock *block;
1069 block = atomic_rcu_read(&ram_list.mru_block);
1070 if (block && addr - block->offset < block->max_length) {
1071 return block;
1073 RAMBLOCK_FOREACH(block) {
1074 if (addr - block->offset < block->max_length) {
1075 goto found;
1079 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1080 abort();
1082 found:
1083 /* It is safe to write mru_block outside the iothread lock. This
1084 * is what happens:
1086 * mru_block = xxx
1087 * rcu_read_unlock()
1088 * xxx removed from list
1089 * rcu_read_lock()
1090 * read mru_block
1091 * mru_block = NULL;
1092 * call_rcu(reclaim_ramblock, xxx);
1093 * rcu_read_unlock()
1095 * atomic_rcu_set is not needed here. The block was already published
1096 * when it was placed into the list. Here we're just making an extra
1097 * copy of the pointer.
1099 ram_list.mru_block = block;
1100 return block;
1103 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1105 CPUState *cpu;
1106 ram_addr_t start1;
1107 RAMBlock *block;
1108 ram_addr_t end;
1110 end = TARGET_PAGE_ALIGN(start + length);
1111 start &= TARGET_PAGE_MASK;
1113 rcu_read_lock();
1114 block = qemu_get_ram_block(start);
1115 assert(block == qemu_get_ram_block(end - 1));
1116 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1117 CPU_FOREACH(cpu) {
1118 tlb_reset_dirty(cpu, start1, length);
1120 rcu_read_unlock();
1123 /* Note: start and end must be within the same ram block. */
1124 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1125 ram_addr_t length,
1126 unsigned client)
1128 DirtyMemoryBlocks *blocks;
1129 unsigned long end, page;
1130 bool dirty = false;
1132 if (length == 0) {
1133 return false;
1136 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1137 page = start >> TARGET_PAGE_BITS;
1139 rcu_read_lock();
1141 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1143 while (page < end) {
1144 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1145 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1148 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1149 offset, num);
1150 page += num;
1153 rcu_read_unlock();
1155 if (dirty && tcg_enabled()) {
1156 tlb_reset_dirty_range_all(start, length);
1159 return dirty;
1162 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1163 (ram_addr_t start, ram_addr_t length, unsigned client)
1165 DirtyMemoryBlocks *blocks;
1166 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1167 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1168 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1169 DirtyBitmapSnapshot *snap;
1170 unsigned long page, end, dest;
1172 snap = g_malloc0(sizeof(*snap) +
1173 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1174 snap->start = first;
1175 snap->end = last;
1177 page = first >> TARGET_PAGE_BITS;
1178 end = last >> TARGET_PAGE_BITS;
1179 dest = 0;
1181 rcu_read_lock();
1183 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1185 while (page < end) {
1186 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1187 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1190 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1191 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1192 offset >>= BITS_PER_LEVEL;
1194 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1195 blocks->blocks[idx] + offset,
1196 num);
1197 page += num;
1198 dest += num >> BITS_PER_LEVEL;
1201 rcu_read_unlock();
1203 if (tcg_enabled()) {
1204 tlb_reset_dirty_range_all(start, length);
1207 return snap;
1210 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1211 ram_addr_t start,
1212 ram_addr_t length)
1214 unsigned long page, end;
1216 assert(start >= snap->start);
1217 assert(start + length <= snap->end);
1219 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1220 page = (start - snap->start) >> TARGET_PAGE_BITS;
1222 while (page < end) {
1223 if (test_bit(page, snap->dirty)) {
1224 return true;
1226 page++;
1228 return false;
1231 /* Called from RCU critical section */
1232 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1233 MemoryRegionSection *section,
1234 target_ulong vaddr,
1235 hwaddr paddr, hwaddr xlat,
1236 int prot,
1237 target_ulong *address)
1239 hwaddr iotlb;
1240 CPUWatchpoint *wp;
1242 if (memory_region_is_ram(section->mr)) {
1243 /* Normal RAM. */
1244 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1245 if (!section->readonly) {
1246 iotlb |= PHYS_SECTION_NOTDIRTY;
1247 } else {
1248 iotlb |= PHYS_SECTION_ROM;
1250 } else {
1251 AddressSpaceDispatch *d;
1253 d = flatview_to_dispatch(section->fv);
1254 iotlb = section - d->map.sections;
1255 iotlb += xlat;
1258 /* Make accesses to pages with watchpoints go via the
1259 watchpoint trap routines. */
1260 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1261 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1262 /* Avoid trapping reads of pages with a write breakpoint. */
1263 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1264 iotlb = PHYS_SECTION_WATCH + paddr;
1265 *address |= TLB_MMIO;
1266 break;
1271 return iotlb;
1273 #endif /* defined(CONFIG_USER_ONLY) */
1275 #if !defined(CONFIG_USER_ONLY)
1277 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1278 uint16_t section);
1279 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1281 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1282 qemu_anon_ram_alloc;
1285 * Set a custom physical guest memory alloator.
1286 * Accelerators with unusual needs may need this. Hopefully, we can
1287 * get rid of it eventually.
1289 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1291 phys_mem_alloc = alloc;
1294 static uint16_t phys_section_add(PhysPageMap *map,
1295 MemoryRegionSection *section)
1297 /* The physical section number is ORed with a page-aligned
1298 * pointer to produce the iotlb entries. Thus it should
1299 * never overflow into the page-aligned value.
1301 assert(map->sections_nb < TARGET_PAGE_SIZE);
1303 if (map->sections_nb == map->sections_nb_alloc) {
1304 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1305 map->sections = g_renew(MemoryRegionSection, map->sections,
1306 map->sections_nb_alloc);
1308 map->sections[map->sections_nb] = *section;
1309 memory_region_ref(section->mr);
1310 return map->sections_nb++;
1313 static void phys_section_destroy(MemoryRegion *mr)
1315 bool have_sub_page = mr->subpage;
1317 memory_region_unref(mr);
1319 if (have_sub_page) {
1320 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1321 object_unref(OBJECT(&subpage->iomem));
1322 g_free(subpage);
1326 static void phys_sections_free(PhysPageMap *map)
1328 while (map->sections_nb > 0) {
1329 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1330 phys_section_destroy(section->mr);
1332 g_free(map->sections);
1333 g_free(map->nodes);
1336 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1338 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1339 subpage_t *subpage;
1340 hwaddr base = section->offset_within_address_space
1341 & TARGET_PAGE_MASK;
1342 MemoryRegionSection *existing = phys_page_find(d, base);
1343 MemoryRegionSection subsection = {
1344 .offset_within_address_space = base,
1345 .size = int128_make64(TARGET_PAGE_SIZE),
1347 hwaddr start, end;
1349 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1351 if (!(existing->mr->subpage)) {
1352 subpage = subpage_init(fv, base);
1353 subsection.fv = fv;
1354 subsection.mr = &subpage->iomem;
1355 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1356 phys_section_add(&d->map, &subsection));
1357 } else {
1358 subpage = container_of(existing->mr, subpage_t, iomem);
1360 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1361 end = start + int128_get64(section->size) - 1;
1362 subpage_register(subpage, start, end,
1363 phys_section_add(&d->map, section));
1367 static void register_multipage(FlatView *fv,
1368 MemoryRegionSection *section)
1370 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1371 hwaddr start_addr = section->offset_within_address_space;
1372 uint16_t section_index = phys_section_add(&d->map, section);
1373 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1374 TARGET_PAGE_BITS));
1376 assert(num_pages);
1377 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1380 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1382 MemoryRegionSection now = *section, remain = *section;
1383 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1385 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1386 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1387 - now.offset_within_address_space;
1389 now.size = int128_min(int128_make64(left), now.size);
1390 register_subpage(fv, &now);
1391 } else {
1392 now.size = int128_zero();
1394 while (int128_ne(remain.size, now.size)) {
1395 remain.size = int128_sub(remain.size, now.size);
1396 remain.offset_within_address_space += int128_get64(now.size);
1397 remain.offset_within_region += int128_get64(now.size);
1398 now = remain;
1399 if (int128_lt(remain.size, page_size)) {
1400 register_subpage(fv, &now);
1401 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1402 now.size = page_size;
1403 register_subpage(fv, &now);
1404 } else {
1405 now.size = int128_and(now.size, int128_neg(page_size));
1406 register_multipage(fv, &now);
1411 void qemu_flush_coalesced_mmio_buffer(void)
1413 if (kvm_enabled())
1414 kvm_flush_coalesced_mmio_buffer();
1417 void qemu_mutex_lock_ramlist(void)
1419 qemu_mutex_lock(&ram_list.mutex);
1422 void qemu_mutex_unlock_ramlist(void)
1424 qemu_mutex_unlock(&ram_list.mutex);
1427 void ram_block_dump(Monitor *mon)
1429 RAMBlock *block;
1430 char *psize;
1432 rcu_read_lock();
1433 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1434 "Block Name", "PSize", "Offset", "Used", "Total");
1435 RAMBLOCK_FOREACH(block) {
1436 psize = size_to_str(block->page_size);
1437 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1438 " 0x%016" PRIx64 "\n", block->idstr, psize,
1439 (uint64_t)block->offset,
1440 (uint64_t)block->used_length,
1441 (uint64_t)block->max_length);
1442 g_free(psize);
1444 rcu_read_unlock();
1447 #ifdef __linux__
1449 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1450 * may or may not name the same files / on the same filesystem now as
1451 * when we actually open and map them. Iterate over the file
1452 * descriptors instead, and use qemu_fd_getpagesize().
1454 static int find_max_supported_pagesize(Object *obj, void *opaque)
1456 char *mem_path;
1457 long *hpsize_min = opaque;
1459 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1460 mem_path = object_property_get_str(obj, "mem-path", NULL);
1461 if (mem_path) {
1462 long hpsize = qemu_mempath_getpagesize(mem_path);
1463 if (hpsize < *hpsize_min) {
1464 *hpsize_min = hpsize;
1466 } else {
1467 *hpsize_min = getpagesize();
1471 return 0;
1474 long qemu_getrampagesize(void)
1476 long hpsize = LONG_MAX;
1477 long mainrampagesize;
1478 Object *memdev_root;
1480 if (mem_path) {
1481 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1482 } else {
1483 mainrampagesize = getpagesize();
1486 /* it's possible we have memory-backend objects with
1487 * hugepage-backed RAM. these may get mapped into system
1488 * address space via -numa parameters or memory hotplug
1489 * hooks. we want to take these into account, but we
1490 * also want to make sure these supported hugepage
1491 * sizes are applicable across the entire range of memory
1492 * we may boot from, so we take the min across all
1493 * backends, and assume normal pages in cases where a
1494 * backend isn't backed by hugepages.
1496 memdev_root = object_resolve_path("/objects", NULL);
1497 if (memdev_root) {
1498 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1500 if (hpsize == LONG_MAX) {
1501 /* No additional memory regions found ==> Report main RAM page size */
1502 return mainrampagesize;
1505 /* If NUMA is disabled or the NUMA nodes are not backed with a
1506 * memory-backend, then there is at least one node using "normal" RAM,
1507 * so if its page size is smaller we have got to report that size instead.
1509 if (hpsize > mainrampagesize &&
1510 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1511 static bool warned;
1512 if (!warned) {
1513 error_report("Huge page support disabled (n/a for main memory).");
1514 warned = true;
1516 return mainrampagesize;
1519 return hpsize;
1521 #else
1522 long qemu_getrampagesize(void)
1524 return getpagesize();
1526 #endif
1528 #ifdef __linux__
1529 static int64_t get_file_size(int fd)
1531 int64_t size = lseek(fd, 0, SEEK_END);
1532 if (size < 0) {
1533 return -errno;
1535 return size;
1538 static int file_ram_open(const char *path,
1539 const char *region_name,
1540 bool *created,
1541 Error **errp)
1543 char *filename;
1544 char *sanitized_name;
1545 char *c;
1546 int fd = -1;
1548 *created = false;
1549 for (;;) {
1550 fd = open(path, O_RDWR);
1551 if (fd >= 0) {
1552 /* @path names an existing file, use it */
1553 break;
1555 if (errno == ENOENT) {
1556 /* @path names a file that doesn't exist, create it */
1557 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1558 if (fd >= 0) {
1559 *created = true;
1560 break;
1562 } else if (errno == EISDIR) {
1563 /* @path names a directory, create a file there */
1564 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1565 sanitized_name = g_strdup(region_name);
1566 for (c = sanitized_name; *c != '\0'; c++) {
1567 if (*c == '/') {
1568 *c = '_';
1572 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1573 sanitized_name);
1574 g_free(sanitized_name);
1576 fd = mkstemp(filename);
1577 if (fd >= 0) {
1578 unlink(filename);
1579 g_free(filename);
1580 break;
1582 g_free(filename);
1584 if (errno != EEXIST && errno != EINTR) {
1585 error_setg_errno(errp, errno,
1586 "can't open backing store %s for guest RAM",
1587 path);
1588 return -1;
1591 * Try again on EINTR and EEXIST. The latter happens when
1592 * something else creates the file between our two open().
1596 return fd;
1599 static void *file_ram_alloc(RAMBlock *block,
1600 ram_addr_t memory,
1601 int fd,
1602 bool truncate,
1603 Error **errp)
1605 void *area;
1607 block->page_size = qemu_fd_getpagesize(fd);
1608 block->mr->align = block->page_size;
1609 #if defined(__s390x__)
1610 if (kvm_enabled()) {
1611 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1613 #endif
1615 if (memory < block->page_size) {
1616 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1617 "or larger than page size 0x%zx",
1618 memory, block->page_size);
1619 return NULL;
1622 memory = ROUND_UP(memory, block->page_size);
1625 * ftruncate is not supported by hugetlbfs in older
1626 * hosts, so don't bother bailing out on errors.
1627 * If anything goes wrong with it under other filesystems,
1628 * mmap will fail.
1630 * Do not truncate the non-empty backend file to avoid corrupting
1631 * the existing data in the file. Disabling shrinking is not
1632 * enough. For example, the current vNVDIMM implementation stores
1633 * the guest NVDIMM labels at the end of the backend file. If the
1634 * backend file is later extended, QEMU will not be able to find
1635 * those labels. Therefore, extending the non-empty backend file
1636 * is disabled as well.
1638 if (truncate && ftruncate(fd, memory)) {
1639 perror("ftruncate");
1642 area = qemu_ram_mmap(fd, memory, block->mr->align,
1643 block->flags & RAM_SHARED);
1644 if (area == MAP_FAILED) {
1645 error_setg_errno(errp, errno,
1646 "unable to map backing store for guest RAM");
1647 return NULL;
1650 if (mem_prealloc) {
1651 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1652 if (errp && *errp) {
1653 qemu_ram_munmap(area, memory);
1654 return NULL;
1658 block->fd = fd;
1659 return area;
1661 #endif
1663 /* Called with the ramlist lock held. */
1664 static ram_addr_t find_ram_offset(ram_addr_t size)
1666 RAMBlock *block, *next_block;
1667 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1669 assert(size != 0); /* it would hand out same offset multiple times */
1671 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1672 return 0;
1675 RAMBLOCK_FOREACH(block) {
1676 ram_addr_t end, next = RAM_ADDR_MAX;
1678 end = block->offset + block->max_length;
1680 RAMBLOCK_FOREACH(next_block) {
1681 if (next_block->offset >= end) {
1682 next = MIN(next, next_block->offset);
1685 if (next - end >= size && next - end < mingap) {
1686 offset = end;
1687 mingap = next - end;
1691 if (offset == RAM_ADDR_MAX) {
1692 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1693 (uint64_t)size);
1694 abort();
1697 return offset;
1700 unsigned long last_ram_page(void)
1702 RAMBlock *block;
1703 ram_addr_t last = 0;
1705 rcu_read_lock();
1706 RAMBLOCK_FOREACH(block) {
1707 last = MAX(last, block->offset + block->max_length);
1709 rcu_read_unlock();
1710 return last >> TARGET_PAGE_BITS;
1713 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1715 int ret;
1717 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1718 if (!machine_dump_guest_core(current_machine)) {
1719 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1720 if (ret) {
1721 perror("qemu_madvise");
1722 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1723 "but dump_guest_core=off specified\n");
1728 const char *qemu_ram_get_idstr(RAMBlock *rb)
1730 return rb->idstr;
1733 bool qemu_ram_is_shared(RAMBlock *rb)
1735 return rb->flags & RAM_SHARED;
1738 /* Called with iothread lock held. */
1739 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1741 RAMBlock *block;
1743 assert(new_block);
1744 assert(!new_block->idstr[0]);
1746 if (dev) {
1747 char *id = qdev_get_dev_path(dev);
1748 if (id) {
1749 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1750 g_free(id);
1753 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1755 rcu_read_lock();
1756 RAMBLOCK_FOREACH(block) {
1757 if (block != new_block &&
1758 !strcmp(block->idstr, new_block->idstr)) {
1759 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1760 new_block->idstr);
1761 abort();
1764 rcu_read_unlock();
1767 /* Called with iothread lock held. */
1768 void qemu_ram_unset_idstr(RAMBlock *block)
1770 /* FIXME: arch_init.c assumes that this is not called throughout
1771 * migration. Ignore the problem since hot-unplug during migration
1772 * does not work anyway.
1774 if (block) {
1775 memset(block->idstr, 0, sizeof(block->idstr));
1779 size_t qemu_ram_pagesize(RAMBlock *rb)
1781 return rb->page_size;
1784 /* Returns the largest size of page in use */
1785 size_t qemu_ram_pagesize_largest(void)
1787 RAMBlock *block;
1788 size_t largest = 0;
1790 RAMBLOCK_FOREACH(block) {
1791 largest = MAX(largest, qemu_ram_pagesize(block));
1794 return largest;
1797 static int memory_try_enable_merging(void *addr, size_t len)
1799 if (!machine_mem_merge(current_machine)) {
1800 /* disabled by the user */
1801 return 0;
1804 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1807 /* Only legal before guest might have detected the memory size: e.g. on
1808 * incoming migration, or right after reset.
1810 * As memory core doesn't know how is memory accessed, it is up to
1811 * resize callback to update device state and/or add assertions to detect
1812 * misuse, if necessary.
1814 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1816 assert(block);
1818 newsize = HOST_PAGE_ALIGN(newsize);
1820 if (block->used_length == newsize) {
1821 return 0;
1824 if (!(block->flags & RAM_RESIZEABLE)) {
1825 error_setg_errno(errp, EINVAL,
1826 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1827 " in != 0x" RAM_ADDR_FMT, block->idstr,
1828 newsize, block->used_length);
1829 return -EINVAL;
1832 if (block->max_length < newsize) {
1833 error_setg_errno(errp, EINVAL,
1834 "Length too large: %s: 0x" RAM_ADDR_FMT
1835 " > 0x" RAM_ADDR_FMT, block->idstr,
1836 newsize, block->max_length);
1837 return -EINVAL;
1840 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1841 block->used_length = newsize;
1842 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1843 DIRTY_CLIENTS_ALL);
1844 memory_region_set_size(block->mr, newsize);
1845 if (block->resized) {
1846 block->resized(block->idstr, newsize, block->host);
1848 return 0;
1851 /* Called with ram_list.mutex held */
1852 static void dirty_memory_extend(ram_addr_t old_ram_size,
1853 ram_addr_t new_ram_size)
1855 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1856 DIRTY_MEMORY_BLOCK_SIZE);
1857 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1858 DIRTY_MEMORY_BLOCK_SIZE);
1859 int i;
1861 /* Only need to extend if block count increased */
1862 if (new_num_blocks <= old_num_blocks) {
1863 return;
1866 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1867 DirtyMemoryBlocks *old_blocks;
1868 DirtyMemoryBlocks *new_blocks;
1869 int j;
1871 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1872 new_blocks = g_malloc(sizeof(*new_blocks) +
1873 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1875 if (old_num_blocks) {
1876 memcpy(new_blocks->blocks, old_blocks->blocks,
1877 old_num_blocks * sizeof(old_blocks->blocks[0]));
1880 for (j = old_num_blocks; j < new_num_blocks; j++) {
1881 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1884 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1886 if (old_blocks) {
1887 g_free_rcu(old_blocks, rcu);
1892 static void ram_block_add(RAMBlock *new_block, Error **errp)
1894 RAMBlock *block;
1895 RAMBlock *last_block = NULL;
1896 ram_addr_t old_ram_size, new_ram_size;
1897 Error *err = NULL;
1899 old_ram_size = last_ram_page();
1901 qemu_mutex_lock_ramlist();
1902 new_block->offset = find_ram_offset(new_block->max_length);
1904 if (!new_block->host) {
1905 if (xen_enabled()) {
1906 xen_ram_alloc(new_block->offset, new_block->max_length,
1907 new_block->mr, &err);
1908 if (err) {
1909 error_propagate(errp, err);
1910 qemu_mutex_unlock_ramlist();
1911 return;
1913 } else {
1914 new_block->host = phys_mem_alloc(new_block->max_length,
1915 &new_block->mr->align);
1916 if (!new_block->host) {
1917 error_setg_errno(errp, errno,
1918 "cannot set up guest memory '%s'",
1919 memory_region_name(new_block->mr));
1920 qemu_mutex_unlock_ramlist();
1921 return;
1923 memory_try_enable_merging(new_block->host, new_block->max_length);
1927 new_ram_size = MAX(old_ram_size,
1928 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1929 if (new_ram_size > old_ram_size) {
1930 dirty_memory_extend(old_ram_size, new_ram_size);
1932 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1933 * QLIST (which has an RCU-friendly variant) does not have insertion at
1934 * tail, so save the last element in last_block.
1936 RAMBLOCK_FOREACH(block) {
1937 last_block = block;
1938 if (block->max_length < new_block->max_length) {
1939 break;
1942 if (block) {
1943 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1944 } else if (last_block) {
1945 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1946 } else { /* list is empty */
1947 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1949 ram_list.mru_block = NULL;
1951 /* Write list before version */
1952 smp_wmb();
1953 ram_list.version++;
1954 qemu_mutex_unlock_ramlist();
1956 cpu_physical_memory_set_dirty_range(new_block->offset,
1957 new_block->used_length,
1958 DIRTY_CLIENTS_ALL);
1960 if (new_block->host) {
1961 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1962 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1963 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1964 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1965 ram_block_notify_add(new_block->host, new_block->max_length);
1969 #ifdef __linux__
1970 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1971 bool share, int fd,
1972 Error **errp)
1974 RAMBlock *new_block;
1975 Error *local_err = NULL;
1976 int64_t file_size;
1978 if (xen_enabled()) {
1979 error_setg(errp, "-mem-path not supported with Xen");
1980 return NULL;
1983 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1984 error_setg(errp,
1985 "host lacks kvm mmu notifiers, -mem-path unsupported");
1986 return NULL;
1989 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1991 * file_ram_alloc() needs to allocate just like
1992 * phys_mem_alloc, but we haven't bothered to provide
1993 * a hook there.
1995 error_setg(errp,
1996 "-mem-path not supported with this accelerator");
1997 return NULL;
2000 size = HOST_PAGE_ALIGN(size);
2001 file_size = get_file_size(fd);
2002 if (file_size > 0 && file_size < size) {
2003 error_setg(errp, "backing store %s size 0x%" PRIx64
2004 " does not match 'size' option 0x" RAM_ADDR_FMT,
2005 mem_path, file_size, size);
2006 return NULL;
2009 new_block = g_malloc0(sizeof(*new_block));
2010 new_block->mr = mr;
2011 new_block->used_length = size;
2012 new_block->max_length = size;
2013 new_block->flags = share ? RAM_SHARED : 0;
2014 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2015 if (!new_block->host) {
2016 g_free(new_block);
2017 return NULL;
2020 ram_block_add(new_block, &local_err);
2021 if (local_err) {
2022 g_free(new_block);
2023 error_propagate(errp, local_err);
2024 return NULL;
2026 return new_block;
2031 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2032 bool share, const char *mem_path,
2033 Error **errp)
2035 int fd;
2036 bool created;
2037 RAMBlock *block;
2039 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2040 if (fd < 0) {
2041 return NULL;
2044 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2045 if (!block) {
2046 if (created) {
2047 unlink(mem_path);
2049 close(fd);
2050 return NULL;
2053 return block;
2055 #endif
2057 static
2058 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2059 void (*resized)(const char*,
2060 uint64_t length,
2061 void *host),
2062 void *host, bool resizeable,
2063 MemoryRegion *mr, Error **errp)
2065 RAMBlock *new_block;
2066 Error *local_err = NULL;
2068 size = HOST_PAGE_ALIGN(size);
2069 max_size = HOST_PAGE_ALIGN(max_size);
2070 new_block = g_malloc0(sizeof(*new_block));
2071 new_block->mr = mr;
2072 new_block->resized = resized;
2073 new_block->used_length = size;
2074 new_block->max_length = max_size;
2075 assert(max_size >= size);
2076 new_block->fd = -1;
2077 new_block->page_size = getpagesize();
2078 new_block->host = host;
2079 if (host) {
2080 new_block->flags |= RAM_PREALLOC;
2082 if (resizeable) {
2083 new_block->flags |= RAM_RESIZEABLE;
2085 ram_block_add(new_block, &local_err);
2086 if (local_err) {
2087 g_free(new_block);
2088 error_propagate(errp, local_err);
2089 return NULL;
2091 return new_block;
2094 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2095 MemoryRegion *mr, Error **errp)
2097 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2100 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2102 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2105 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2106 void (*resized)(const char*,
2107 uint64_t length,
2108 void *host),
2109 MemoryRegion *mr, Error **errp)
2111 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2114 static void reclaim_ramblock(RAMBlock *block)
2116 if (block->flags & RAM_PREALLOC) {
2118 } else if (xen_enabled()) {
2119 xen_invalidate_map_cache_entry(block->host);
2120 #ifndef _WIN32
2121 } else if (block->fd >= 0) {
2122 qemu_ram_munmap(block->host, block->max_length);
2123 close(block->fd);
2124 #endif
2125 } else {
2126 qemu_anon_ram_free(block->host, block->max_length);
2128 g_free(block);
2131 void qemu_ram_free(RAMBlock *block)
2133 if (!block) {
2134 return;
2137 if (block->host) {
2138 ram_block_notify_remove(block->host, block->max_length);
2141 qemu_mutex_lock_ramlist();
2142 QLIST_REMOVE_RCU(block, next);
2143 ram_list.mru_block = NULL;
2144 /* Write list before version */
2145 smp_wmb();
2146 ram_list.version++;
2147 call_rcu(block, reclaim_ramblock, rcu);
2148 qemu_mutex_unlock_ramlist();
2151 #ifndef _WIN32
2152 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2154 RAMBlock *block;
2155 ram_addr_t offset;
2156 int flags;
2157 void *area, *vaddr;
2159 RAMBLOCK_FOREACH(block) {
2160 offset = addr - block->offset;
2161 if (offset < block->max_length) {
2162 vaddr = ramblock_ptr(block, offset);
2163 if (block->flags & RAM_PREALLOC) {
2165 } else if (xen_enabled()) {
2166 abort();
2167 } else {
2168 flags = MAP_FIXED;
2169 if (block->fd >= 0) {
2170 flags |= (block->flags & RAM_SHARED ?
2171 MAP_SHARED : MAP_PRIVATE);
2172 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2173 flags, block->fd, offset);
2174 } else {
2176 * Remap needs to match alloc. Accelerators that
2177 * set phys_mem_alloc never remap. If they did,
2178 * we'd need a remap hook here.
2180 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2182 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2183 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2184 flags, -1, 0);
2186 if (area != vaddr) {
2187 fprintf(stderr, "Could not remap addr: "
2188 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2189 length, addr);
2190 exit(1);
2192 memory_try_enable_merging(vaddr, length);
2193 qemu_ram_setup_dump(vaddr, length);
2198 #endif /* !_WIN32 */
2200 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2201 * This should not be used for general purpose DMA. Use address_space_map
2202 * or address_space_rw instead. For local memory (e.g. video ram) that the
2203 * device owns, use memory_region_get_ram_ptr.
2205 * Called within RCU critical section.
2207 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2209 RAMBlock *block = ram_block;
2211 if (block == NULL) {
2212 block = qemu_get_ram_block(addr);
2213 addr -= block->offset;
2216 if (xen_enabled() && block->host == NULL) {
2217 /* We need to check if the requested address is in the RAM
2218 * because we don't want to map the entire memory in QEMU.
2219 * In that case just map until the end of the page.
2221 if (block->offset == 0) {
2222 return xen_map_cache(addr, 0, 0, false);
2225 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2227 return ramblock_ptr(block, addr);
2230 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2231 * but takes a size argument.
2233 * Called within RCU critical section.
2235 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2236 hwaddr *size, bool lock)
2238 RAMBlock *block = ram_block;
2239 if (*size == 0) {
2240 return NULL;
2243 if (block == NULL) {
2244 block = qemu_get_ram_block(addr);
2245 addr -= block->offset;
2247 *size = MIN(*size, block->max_length - addr);
2249 if (xen_enabled() && block->host == NULL) {
2250 /* We need to check if the requested address is in the RAM
2251 * because we don't want to map the entire memory in QEMU.
2252 * In that case just map the requested area.
2254 if (block->offset == 0) {
2255 return xen_map_cache(addr, *size, lock, lock);
2258 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2261 return ramblock_ptr(block, addr);
2265 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2266 * in that RAMBlock.
2268 * ptr: Host pointer to look up
2269 * round_offset: If true round the result offset down to a page boundary
2270 * *ram_addr: set to result ram_addr
2271 * *offset: set to result offset within the RAMBlock
2273 * Returns: RAMBlock (or NULL if not found)
2275 * By the time this function returns, the returned pointer is not protected
2276 * by RCU anymore. If the caller is not within an RCU critical section and
2277 * does not hold the iothread lock, it must have other means of protecting the
2278 * pointer, such as a reference to the region that includes the incoming
2279 * ram_addr_t.
2281 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2282 ram_addr_t *offset)
2284 RAMBlock *block;
2285 uint8_t *host = ptr;
2287 if (xen_enabled()) {
2288 ram_addr_t ram_addr;
2289 rcu_read_lock();
2290 ram_addr = xen_ram_addr_from_mapcache(ptr);
2291 block = qemu_get_ram_block(ram_addr);
2292 if (block) {
2293 *offset = ram_addr - block->offset;
2295 rcu_read_unlock();
2296 return block;
2299 rcu_read_lock();
2300 block = atomic_rcu_read(&ram_list.mru_block);
2301 if (block && block->host && host - block->host < block->max_length) {
2302 goto found;
2305 RAMBLOCK_FOREACH(block) {
2306 /* This case append when the block is not mapped. */
2307 if (block->host == NULL) {
2308 continue;
2310 if (host - block->host < block->max_length) {
2311 goto found;
2315 rcu_read_unlock();
2316 return NULL;
2318 found:
2319 *offset = (host - block->host);
2320 if (round_offset) {
2321 *offset &= TARGET_PAGE_MASK;
2323 rcu_read_unlock();
2324 return block;
2328 * Finds the named RAMBlock
2330 * name: The name of RAMBlock to find
2332 * Returns: RAMBlock (or NULL if not found)
2334 RAMBlock *qemu_ram_block_by_name(const char *name)
2336 RAMBlock *block;
2338 RAMBLOCK_FOREACH(block) {
2339 if (!strcmp(name, block->idstr)) {
2340 return block;
2344 return NULL;
2347 /* Some of the softmmu routines need to translate from a host pointer
2348 (typically a TLB entry) back to a ram offset. */
2349 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2351 RAMBlock *block;
2352 ram_addr_t offset;
2354 block = qemu_ram_block_from_host(ptr, false, &offset);
2355 if (!block) {
2356 return RAM_ADDR_INVALID;
2359 return block->offset + offset;
2362 /* Called within RCU critical section. */
2363 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2364 CPUState *cpu,
2365 vaddr mem_vaddr,
2366 ram_addr_t ram_addr,
2367 unsigned size)
2369 ndi->cpu = cpu;
2370 ndi->ram_addr = ram_addr;
2371 ndi->mem_vaddr = mem_vaddr;
2372 ndi->size = size;
2373 ndi->locked = false;
2375 assert(tcg_enabled());
2376 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2377 ndi->locked = true;
2378 tb_lock();
2379 tb_invalidate_phys_page_fast(ram_addr, size);
2383 /* Called within RCU critical section. */
2384 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2386 if (ndi->locked) {
2387 tb_unlock();
2390 /* Set both VGA and migration bits for simplicity and to remove
2391 * the notdirty callback faster.
2393 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2394 DIRTY_CLIENTS_NOCODE);
2395 /* we remove the notdirty callback only if the code has been
2396 flushed */
2397 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2398 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2402 /* Called within RCU critical section. */
2403 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2404 uint64_t val, unsigned size)
2406 NotDirtyInfo ndi;
2408 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2409 ram_addr, size);
2411 switch (size) {
2412 case 1:
2413 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2414 break;
2415 case 2:
2416 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2417 break;
2418 case 4:
2419 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2420 break;
2421 case 8:
2422 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2423 break;
2424 default:
2425 abort();
2427 memory_notdirty_write_complete(&ndi);
2430 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2431 unsigned size, bool is_write)
2433 return is_write;
2436 static const MemoryRegionOps notdirty_mem_ops = {
2437 .write = notdirty_mem_write,
2438 .valid.accepts = notdirty_mem_accepts,
2439 .endianness = DEVICE_NATIVE_ENDIAN,
2440 .valid = {
2441 .min_access_size = 1,
2442 .max_access_size = 8,
2443 .unaligned = false,
2445 .impl = {
2446 .min_access_size = 1,
2447 .max_access_size = 8,
2448 .unaligned = false,
2452 /* Generate a debug exception if a watchpoint has been hit. */
2453 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2455 CPUState *cpu = current_cpu;
2456 CPUClass *cc = CPU_GET_CLASS(cpu);
2457 target_ulong vaddr;
2458 CPUWatchpoint *wp;
2460 assert(tcg_enabled());
2461 if (cpu->watchpoint_hit) {
2462 /* We re-entered the check after replacing the TB. Now raise
2463 * the debug interrupt so that is will trigger after the
2464 * current instruction. */
2465 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2466 return;
2468 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2469 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2470 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2471 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2472 && (wp->flags & flags)) {
2473 if (flags == BP_MEM_READ) {
2474 wp->flags |= BP_WATCHPOINT_HIT_READ;
2475 } else {
2476 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2478 wp->hitaddr = vaddr;
2479 wp->hitattrs = attrs;
2480 if (!cpu->watchpoint_hit) {
2481 if (wp->flags & BP_CPU &&
2482 !cc->debug_check_watchpoint(cpu, wp)) {
2483 wp->flags &= ~BP_WATCHPOINT_HIT;
2484 continue;
2486 cpu->watchpoint_hit = wp;
2488 /* Both tb_lock and iothread_mutex will be reset when
2489 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2490 * back into the cpu_exec main loop.
2492 tb_lock();
2493 tb_check_watchpoint(cpu);
2494 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2495 cpu->exception_index = EXCP_DEBUG;
2496 cpu_loop_exit(cpu);
2497 } else {
2498 /* Force execution of one insn next time. */
2499 cpu->cflags_next_tb = 1 | curr_cflags();
2500 cpu_loop_exit_noexc(cpu);
2503 } else {
2504 wp->flags &= ~BP_WATCHPOINT_HIT;
2509 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2510 so these check for a hit then pass through to the normal out-of-line
2511 phys routines. */
2512 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2513 unsigned size, MemTxAttrs attrs)
2515 MemTxResult res;
2516 uint64_t data;
2517 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2518 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2520 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2521 switch (size) {
2522 case 1:
2523 data = address_space_ldub(as, addr, attrs, &res);
2524 break;
2525 case 2:
2526 data = address_space_lduw(as, addr, attrs, &res);
2527 break;
2528 case 4:
2529 data = address_space_ldl(as, addr, attrs, &res);
2530 break;
2531 case 8:
2532 data = address_space_ldq(as, addr, attrs, &res);
2533 break;
2534 default: abort();
2536 *pdata = data;
2537 return res;
2540 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2541 uint64_t val, unsigned size,
2542 MemTxAttrs attrs)
2544 MemTxResult res;
2545 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2546 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2548 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2549 switch (size) {
2550 case 1:
2551 address_space_stb(as, addr, val, attrs, &res);
2552 break;
2553 case 2:
2554 address_space_stw(as, addr, val, attrs, &res);
2555 break;
2556 case 4:
2557 address_space_stl(as, addr, val, attrs, &res);
2558 break;
2559 case 8:
2560 address_space_stq(as, addr, val, attrs, &res);
2561 break;
2562 default: abort();
2564 return res;
2567 static const MemoryRegionOps watch_mem_ops = {
2568 .read_with_attrs = watch_mem_read,
2569 .write_with_attrs = watch_mem_write,
2570 .endianness = DEVICE_NATIVE_ENDIAN,
2571 .valid = {
2572 .min_access_size = 1,
2573 .max_access_size = 8,
2574 .unaligned = false,
2576 .impl = {
2577 .min_access_size = 1,
2578 .max_access_size = 8,
2579 .unaligned = false,
2583 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2584 const uint8_t *buf, int len);
2585 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2586 bool is_write);
2588 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2589 unsigned len, MemTxAttrs attrs)
2591 subpage_t *subpage = opaque;
2592 uint8_t buf[8];
2593 MemTxResult res;
2595 #if defined(DEBUG_SUBPAGE)
2596 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2597 subpage, len, addr);
2598 #endif
2599 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2600 if (res) {
2601 return res;
2603 switch (len) {
2604 case 1:
2605 *data = ldub_p(buf);
2606 return MEMTX_OK;
2607 case 2:
2608 *data = lduw_p(buf);
2609 return MEMTX_OK;
2610 case 4:
2611 *data = ldl_p(buf);
2612 return MEMTX_OK;
2613 case 8:
2614 *data = ldq_p(buf);
2615 return MEMTX_OK;
2616 default:
2617 abort();
2621 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2622 uint64_t value, unsigned len, MemTxAttrs attrs)
2624 subpage_t *subpage = opaque;
2625 uint8_t buf[8];
2627 #if defined(DEBUG_SUBPAGE)
2628 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2629 " value %"PRIx64"\n",
2630 __func__, subpage, len, addr, value);
2631 #endif
2632 switch (len) {
2633 case 1:
2634 stb_p(buf, value);
2635 break;
2636 case 2:
2637 stw_p(buf, value);
2638 break;
2639 case 4:
2640 stl_p(buf, value);
2641 break;
2642 case 8:
2643 stq_p(buf, value);
2644 break;
2645 default:
2646 abort();
2648 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2651 static bool subpage_accepts(void *opaque, hwaddr addr,
2652 unsigned len, bool is_write)
2654 subpage_t *subpage = opaque;
2655 #if defined(DEBUG_SUBPAGE)
2656 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2657 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2658 #endif
2660 return flatview_access_valid(subpage->fv, addr + subpage->base,
2661 len, is_write);
2664 static const MemoryRegionOps subpage_ops = {
2665 .read_with_attrs = subpage_read,
2666 .write_with_attrs = subpage_write,
2667 .impl.min_access_size = 1,
2668 .impl.max_access_size = 8,
2669 .valid.min_access_size = 1,
2670 .valid.max_access_size = 8,
2671 .valid.accepts = subpage_accepts,
2672 .endianness = DEVICE_NATIVE_ENDIAN,
2675 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2676 uint16_t section)
2678 int idx, eidx;
2680 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2681 return -1;
2682 idx = SUBPAGE_IDX(start);
2683 eidx = SUBPAGE_IDX(end);
2684 #if defined(DEBUG_SUBPAGE)
2685 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2686 __func__, mmio, start, end, idx, eidx, section);
2687 #endif
2688 for (; idx <= eidx; idx++) {
2689 mmio->sub_section[idx] = section;
2692 return 0;
2695 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2697 subpage_t *mmio;
2699 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2700 mmio->fv = fv;
2701 mmio->base = base;
2702 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2703 NULL, TARGET_PAGE_SIZE);
2704 mmio->iomem.subpage = true;
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2707 mmio, base, TARGET_PAGE_SIZE);
2708 #endif
2709 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2711 return mmio;
2714 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2716 assert(fv);
2717 MemoryRegionSection section = {
2718 .fv = fv,
2719 .mr = mr,
2720 .offset_within_address_space = 0,
2721 .offset_within_region = 0,
2722 .size = int128_2_64(),
2725 return phys_section_add(map, &section);
2728 static void readonly_mem_write(void *opaque, hwaddr addr,
2729 uint64_t val, unsigned size)
2731 /* Ignore any write to ROM. */
2734 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2735 unsigned size, bool is_write)
2737 return is_write;
2740 /* This will only be used for writes, because reads are special cased
2741 * to directly access the underlying host ram.
2743 static const MemoryRegionOps readonly_mem_ops = {
2744 .write = readonly_mem_write,
2745 .valid.accepts = readonly_mem_accepts,
2746 .endianness = DEVICE_NATIVE_ENDIAN,
2747 .valid = {
2748 .min_access_size = 1,
2749 .max_access_size = 8,
2750 .unaligned = false,
2752 .impl = {
2753 .min_access_size = 1,
2754 .max_access_size = 8,
2755 .unaligned = false,
2759 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2761 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2762 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2763 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2764 MemoryRegionSection *sections = d->map.sections;
2766 return sections[index & ~TARGET_PAGE_MASK].mr;
2769 static void io_mem_init(void)
2771 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2772 NULL, NULL, UINT64_MAX);
2773 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2774 NULL, UINT64_MAX);
2776 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2777 * which can be called without the iothread mutex.
2779 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2780 NULL, UINT64_MAX);
2781 memory_region_clear_global_locking(&io_mem_notdirty);
2783 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2784 NULL, UINT64_MAX);
2787 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2789 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2790 uint16_t n;
2792 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2793 assert(n == PHYS_SECTION_UNASSIGNED);
2794 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2795 assert(n == PHYS_SECTION_NOTDIRTY);
2796 n = dummy_section(&d->map, fv, &io_mem_rom);
2797 assert(n == PHYS_SECTION_ROM);
2798 n = dummy_section(&d->map, fv, &io_mem_watch);
2799 assert(n == PHYS_SECTION_WATCH);
2801 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2803 return d;
2806 void address_space_dispatch_free(AddressSpaceDispatch *d)
2808 phys_sections_free(&d->map);
2809 g_free(d);
2812 static void tcg_commit(MemoryListener *listener)
2814 CPUAddressSpace *cpuas;
2815 AddressSpaceDispatch *d;
2817 /* since each CPU stores ram addresses in its TLB cache, we must
2818 reset the modified entries */
2819 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2820 cpu_reloading_memory_map();
2821 /* The CPU and TLB are protected by the iothread lock.
2822 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2823 * may have split the RCU critical section.
2825 d = address_space_to_dispatch(cpuas->as);
2826 atomic_rcu_set(&cpuas->memory_dispatch, d);
2827 tlb_flush(cpuas->cpu);
2830 static void memory_map_init(void)
2832 system_memory = g_malloc(sizeof(*system_memory));
2834 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2835 address_space_init(&address_space_memory, system_memory, "memory");
2837 system_io = g_malloc(sizeof(*system_io));
2838 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2839 65536);
2840 address_space_init(&address_space_io, system_io, "I/O");
2843 MemoryRegion *get_system_memory(void)
2845 return system_memory;
2848 MemoryRegion *get_system_io(void)
2850 return system_io;
2853 #endif /* !defined(CONFIG_USER_ONLY) */
2855 /* physical memory access (slow version, mainly for debug) */
2856 #if defined(CONFIG_USER_ONLY)
2857 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2858 uint8_t *buf, int len, int is_write)
2860 int l, flags;
2861 target_ulong page;
2862 void * p;
2864 while (len > 0) {
2865 page = addr & TARGET_PAGE_MASK;
2866 l = (page + TARGET_PAGE_SIZE) - addr;
2867 if (l > len)
2868 l = len;
2869 flags = page_get_flags(page);
2870 if (!(flags & PAGE_VALID))
2871 return -1;
2872 if (is_write) {
2873 if (!(flags & PAGE_WRITE))
2874 return -1;
2875 /* XXX: this code should not depend on lock_user */
2876 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2877 return -1;
2878 memcpy(p, buf, l);
2879 unlock_user(p, addr, l);
2880 } else {
2881 if (!(flags & PAGE_READ))
2882 return -1;
2883 /* XXX: this code should not depend on lock_user */
2884 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2885 return -1;
2886 memcpy(buf, p, l);
2887 unlock_user(p, addr, 0);
2889 len -= l;
2890 buf += l;
2891 addr += l;
2893 return 0;
2896 #else
2898 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2899 hwaddr length)
2901 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2902 addr += memory_region_get_ram_addr(mr);
2904 /* No early return if dirty_log_mask is or becomes 0, because
2905 * cpu_physical_memory_set_dirty_range will still call
2906 * xen_modified_memory.
2908 if (dirty_log_mask) {
2909 dirty_log_mask =
2910 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2912 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2913 assert(tcg_enabled());
2914 tb_lock();
2915 tb_invalidate_phys_range(addr, addr + length);
2916 tb_unlock();
2917 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2919 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2922 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2924 unsigned access_size_max = mr->ops->valid.max_access_size;
2926 /* Regions are assumed to support 1-4 byte accesses unless
2927 otherwise specified. */
2928 if (access_size_max == 0) {
2929 access_size_max = 4;
2932 /* Bound the maximum access by the alignment of the address. */
2933 if (!mr->ops->impl.unaligned) {
2934 unsigned align_size_max = addr & -addr;
2935 if (align_size_max != 0 && align_size_max < access_size_max) {
2936 access_size_max = align_size_max;
2940 /* Don't attempt accesses larger than the maximum. */
2941 if (l > access_size_max) {
2942 l = access_size_max;
2944 l = pow2floor(l);
2946 return l;
2949 static bool prepare_mmio_access(MemoryRegion *mr)
2951 bool unlocked = !qemu_mutex_iothread_locked();
2952 bool release_lock = false;
2954 if (unlocked && mr->global_locking) {
2955 qemu_mutex_lock_iothread();
2956 unlocked = false;
2957 release_lock = true;
2959 if (mr->flush_coalesced_mmio) {
2960 if (unlocked) {
2961 qemu_mutex_lock_iothread();
2963 qemu_flush_coalesced_mmio_buffer();
2964 if (unlocked) {
2965 qemu_mutex_unlock_iothread();
2969 return release_lock;
2972 /* Called within RCU critical section. */
2973 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2974 MemTxAttrs attrs,
2975 const uint8_t *buf,
2976 int len, hwaddr addr1,
2977 hwaddr l, MemoryRegion *mr)
2979 uint8_t *ptr;
2980 uint64_t val;
2981 MemTxResult result = MEMTX_OK;
2982 bool release_lock = false;
2984 for (;;) {
2985 if (!memory_access_is_direct(mr, true)) {
2986 release_lock |= prepare_mmio_access(mr);
2987 l = memory_access_size(mr, l, addr1);
2988 /* XXX: could force current_cpu to NULL to avoid
2989 potential bugs */
2990 switch (l) {
2991 case 8:
2992 /* 64 bit write access */
2993 val = ldq_p(buf);
2994 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2995 attrs);
2996 break;
2997 case 4:
2998 /* 32 bit write access */
2999 val = (uint32_t)ldl_p(buf);
3000 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3001 attrs);
3002 break;
3003 case 2:
3004 /* 16 bit write access */
3005 val = lduw_p(buf);
3006 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3007 attrs);
3008 break;
3009 case 1:
3010 /* 8 bit write access */
3011 val = ldub_p(buf);
3012 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3013 attrs);
3014 break;
3015 default:
3016 abort();
3018 } else {
3019 /* RAM case */
3020 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3021 memcpy(ptr, buf, l);
3022 invalidate_and_set_dirty(mr, addr1, l);
3025 if (release_lock) {
3026 qemu_mutex_unlock_iothread();
3027 release_lock = false;
3030 len -= l;
3031 buf += l;
3032 addr += l;
3034 if (!len) {
3035 break;
3038 l = len;
3039 mr = flatview_translate(fv, addr, &addr1, &l, true);
3042 return result;
3045 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3046 const uint8_t *buf, int len)
3048 hwaddr l;
3049 hwaddr addr1;
3050 MemoryRegion *mr;
3051 MemTxResult result = MEMTX_OK;
3053 if (len > 0) {
3054 rcu_read_lock();
3055 l = len;
3056 mr = flatview_translate(fv, addr, &addr1, &l, true);
3057 result = flatview_write_continue(fv, addr, attrs, buf, len,
3058 addr1, l, mr);
3059 rcu_read_unlock();
3062 return result;
3065 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3066 MemTxAttrs attrs,
3067 const uint8_t *buf, int len)
3069 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3072 /* Called within RCU critical section. */
3073 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3074 MemTxAttrs attrs, uint8_t *buf,
3075 int len, hwaddr addr1, hwaddr l,
3076 MemoryRegion *mr)
3078 uint8_t *ptr;
3079 uint64_t val;
3080 MemTxResult result = MEMTX_OK;
3081 bool release_lock = false;
3083 for (;;) {
3084 if (!memory_access_is_direct(mr, false)) {
3085 /* I/O case */
3086 release_lock |= prepare_mmio_access(mr);
3087 l = memory_access_size(mr, l, addr1);
3088 switch (l) {
3089 case 8:
3090 /* 64 bit read access */
3091 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3092 attrs);
3093 stq_p(buf, val);
3094 break;
3095 case 4:
3096 /* 32 bit read access */
3097 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3098 attrs);
3099 stl_p(buf, val);
3100 break;
3101 case 2:
3102 /* 16 bit read access */
3103 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3104 attrs);
3105 stw_p(buf, val);
3106 break;
3107 case 1:
3108 /* 8 bit read access */
3109 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3110 attrs);
3111 stb_p(buf, val);
3112 break;
3113 default:
3114 abort();
3116 } else {
3117 /* RAM case */
3118 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3119 memcpy(buf, ptr, l);
3122 if (release_lock) {
3123 qemu_mutex_unlock_iothread();
3124 release_lock = false;
3127 len -= l;
3128 buf += l;
3129 addr += l;
3131 if (!len) {
3132 break;
3135 l = len;
3136 mr = flatview_translate(fv, addr, &addr1, &l, false);
3139 return result;
3142 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3143 MemTxAttrs attrs, uint8_t *buf, int len)
3145 hwaddr l;
3146 hwaddr addr1;
3147 MemoryRegion *mr;
3148 MemTxResult result = MEMTX_OK;
3150 if (len > 0) {
3151 rcu_read_lock();
3152 l = len;
3153 mr = flatview_translate(fv, addr, &addr1, &l, false);
3154 result = flatview_read_continue(fv, addr, attrs, buf, len,
3155 addr1, l, mr);
3156 rcu_read_unlock();
3159 return result;
3162 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3163 uint8_t *buf, int len, bool is_write)
3165 if (is_write) {
3166 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3167 } else {
3168 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3172 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3173 MemTxAttrs attrs, uint8_t *buf,
3174 int len, bool is_write)
3176 return flatview_rw(address_space_to_flatview(as),
3177 addr, attrs, buf, len, is_write);
3180 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3181 int len, int is_write)
3183 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3184 buf, len, is_write);
3187 enum write_rom_type {
3188 WRITE_DATA,
3189 FLUSH_CACHE,
3192 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3193 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3195 hwaddr l;
3196 uint8_t *ptr;
3197 hwaddr addr1;
3198 MemoryRegion *mr;
3200 rcu_read_lock();
3201 while (len > 0) {
3202 l = len;
3203 mr = address_space_translate(as, addr, &addr1, &l, true);
3205 if (!(memory_region_is_ram(mr) ||
3206 memory_region_is_romd(mr))) {
3207 l = memory_access_size(mr, l, addr1);
3208 } else {
3209 /* ROM/RAM case */
3210 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3211 switch (type) {
3212 case WRITE_DATA:
3213 memcpy(ptr, buf, l);
3214 invalidate_and_set_dirty(mr, addr1, l);
3215 break;
3216 case FLUSH_CACHE:
3217 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3218 break;
3221 len -= l;
3222 buf += l;
3223 addr += l;
3225 rcu_read_unlock();
3228 /* used for ROM loading : can write in RAM and ROM */
3229 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3230 const uint8_t *buf, int len)
3232 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3235 void cpu_flush_icache_range(hwaddr start, int len)
3238 * This function should do the same thing as an icache flush that was
3239 * triggered from within the guest. For TCG we are always cache coherent,
3240 * so there is no need to flush anything. For KVM / Xen we need to flush
3241 * the host's instruction cache at least.
3243 if (tcg_enabled()) {
3244 return;
3247 cpu_physical_memory_write_rom_internal(&address_space_memory,
3248 start, NULL, len, FLUSH_CACHE);
3251 typedef struct {
3252 MemoryRegion *mr;
3253 void *buffer;
3254 hwaddr addr;
3255 hwaddr len;
3256 bool in_use;
3257 } BounceBuffer;
3259 static BounceBuffer bounce;
3261 typedef struct MapClient {
3262 QEMUBH *bh;
3263 QLIST_ENTRY(MapClient) link;
3264 } MapClient;
3266 QemuMutex map_client_list_lock;
3267 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3268 = QLIST_HEAD_INITIALIZER(map_client_list);
3270 static void cpu_unregister_map_client_do(MapClient *client)
3272 QLIST_REMOVE(client, link);
3273 g_free(client);
3276 static void cpu_notify_map_clients_locked(void)
3278 MapClient *client;
3280 while (!QLIST_EMPTY(&map_client_list)) {
3281 client = QLIST_FIRST(&map_client_list);
3282 qemu_bh_schedule(client->bh);
3283 cpu_unregister_map_client_do(client);
3287 void cpu_register_map_client(QEMUBH *bh)
3289 MapClient *client = g_malloc(sizeof(*client));
3291 qemu_mutex_lock(&map_client_list_lock);
3292 client->bh = bh;
3293 QLIST_INSERT_HEAD(&map_client_list, client, link);
3294 if (!atomic_read(&bounce.in_use)) {
3295 cpu_notify_map_clients_locked();
3297 qemu_mutex_unlock(&map_client_list_lock);
3300 void cpu_exec_init_all(void)
3302 qemu_mutex_init(&ram_list.mutex);
3303 /* The data structures we set up here depend on knowing the page size,
3304 * so no more changes can be made after this point.
3305 * In an ideal world, nothing we did before we had finished the
3306 * machine setup would care about the target page size, and we could
3307 * do this much later, rather than requiring board models to state
3308 * up front what their requirements are.
3310 finalize_target_page_bits();
3311 io_mem_init();
3312 memory_map_init();
3313 qemu_mutex_init(&map_client_list_lock);
3316 void cpu_unregister_map_client(QEMUBH *bh)
3318 MapClient *client;
3320 qemu_mutex_lock(&map_client_list_lock);
3321 QLIST_FOREACH(client, &map_client_list, link) {
3322 if (client->bh == bh) {
3323 cpu_unregister_map_client_do(client);
3324 break;
3327 qemu_mutex_unlock(&map_client_list_lock);
3330 static void cpu_notify_map_clients(void)
3332 qemu_mutex_lock(&map_client_list_lock);
3333 cpu_notify_map_clients_locked();
3334 qemu_mutex_unlock(&map_client_list_lock);
3337 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3338 bool is_write)
3340 MemoryRegion *mr;
3341 hwaddr l, xlat;
3343 rcu_read_lock();
3344 while (len > 0) {
3345 l = len;
3346 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3347 if (!memory_access_is_direct(mr, is_write)) {
3348 l = memory_access_size(mr, l, addr);
3349 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3350 rcu_read_unlock();
3351 return false;
3355 len -= l;
3356 addr += l;
3358 rcu_read_unlock();
3359 return true;
3362 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3363 int len, bool is_write)
3365 return flatview_access_valid(address_space_to_flatview(as),
3366 addr, len, is_write);
3369 static hwaddr
3370 flatview_extend_translation(FlatView *fv, hwaddr addr,
3371 hwaddr target_len,
3372 MemoryRegion *mr, hwaddr base, hwaddr len,
3373 bool is_write)
3375 hwaddr done = 0;
3376 hwaddr xlat;
3377 MemoryRegion *this_mr;
3379 for (;;) {
3380 target_len -= len;
3381 addr += len;
3382 done += len;
3383 if (target_len == 0) {
3384 return done;
3387 len = target_len;
3388 this_mr = flatview_translate(fv, addr, &xlat,
3389 &len, is_write);
3390 if (this_mr != mr || xlat != base + done) {
3391 return done;
3396 /* Map a physical memory region into a host virtual address.
3397 * May map a subset of the requested range, given by and returned in *plen.
3398 * May return NULL if resources needed to perform the mapping are exhausted.
3399 * Use only for reads OR writes - not for read-modify-write operations.
3400 * Use cpu_register_map_client() to know when retrying the map operation is
3401 * likely to succeed.
3403 void *address_space_map(AddressSpace *as,
3404 hwaddr addr,
3405 hwaddr *plen,
3406 bool is_write)
3408 hwaddr len = *plen;
3409 hwaddr l, xlat;
3410 MemoryRegion *mr;
3411 void *ptr;
3412 FlatView *fv = address_space_to_flatview(as);
3414 if (len == 0) {
3415 return NULL;
3418 l = len;
3419 rcu_read_lock();
3420 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3422 if (!memory_access_is_direct(mr, is_write)) {
3423 if (atomic_xchg(&bounce.in_use, true)) {
3424 rcu_read_unlock();
3425 return NULL;
3427 /* Avoid unbounded allocations */
3428 l = MIN(l, TARGET_PAGE_SIZE);
3429 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3430 bounce.addr = addr;
3431 bounce.len = l;
3433 memory_region_ref(mr);
3434 bounce.mr = mr;
3435 if (!is_write) {
3436 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3437 bounce.buffer, l);
3440 rcu_read_unlock();
3441 *plen = l;
3442 return bounce.buffer;
3446 memory_region_ref(mr);
3447 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3448 l, is_write);
3449 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3450 rcu_read_unlock();
3452 return ptr;
3455 /* Unmaps a memory region previously mapped by address_space_map().
3456 * Will also mark the memory as dirty if is_write == 1. access_len gives
3457 * the amount of memory that was actually read or written by the caller.
3459 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3460 int is_write, hwaddr access_len)
3462 if (buffer != bounce.buffer) {
3463 MemoryRegion *mr;
3464 ram_addr_t addr1;
3466 mr = memory_region_from_host(buffer, &addr1);
3467 assert(mr != NULL);
3468 if (is_write) {
3469 invalidate_and_set_dirty(mr, addr1, access_len);
3471 if (xen_enabled()) {
3472 xen_invalidate_map_cache_entry(buffer);
3474 memory_region_unref(mr);
3475 return;
3477 if (is_write) {
3478 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3479 bounce.buffer, access_len);
3481 qemu_vfree(bounce.buffer);
3482 bounce.buffer = NULL;
3483 memory_region_unref(bounce.mr);
3484 atomic_mb_set(&bounce.in_use, false);
3485 cpu_notify_map_clients();
3488 void *cpu_physical_memory_map(hwaddr addr,
3489 hwaddr *plen,
3490 int is_write)
3492 return address_space_map(&address_space_memory, addr, plen, is_write);
3495 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3496 int is_write, hwaddr access_len)
3498 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3501 #define ARG1_DECL AddressSpace *as
3502 #define ARG1 as
3503 #define SUFFIX
3504 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3505 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3506 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3507 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3508 #define RCU_READ_LOCK(...) rcu_read_lock()
3509 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3510 #include "memory_ldst.inc.c"
3512 int64_t address_space_cache_init(MemoryRegionCache *cache,
3513 AddressSpace *as,
3514 hwaddr addr,
3515 hwaddr len,
3516 bool is_write)
3518 cache->len = len;
3519 cache->as = as;
3520 cache->xlat = addr;
3521 return len;
3524 void address_space_cache_invalidate(MemoryRegionCache *cache,
3525 hwaddr addr,
3526 hwaddr access_len)
3530 void address_space_cache_destroy(MemoryRegionCache *cache)
3532 cache->as = NULL;
3535 #define ARG1_DECL MemoryRegionCache *cache
3536 #define ARG1 cache
3537 #define SUFFIX _cached
3538 #define TRANSLATE(addr, ...) \
3539 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3540 #define IS_DIRECT(mr, is_write) true
3541 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3542 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3543 #define RCU_READ_LOCK() rcu_read_lock()
3544 #define RCU_READ_UNLOCK() rcu_read_unlock()
3545 #include "memory_ldst.inc.c"
3547 /* virtual memory access for debug (includes writing to ROM) */
3548 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3549 uint8_t *buf, int len, int is_write)
3551 int l;
3552 hwaddr phys_addr;
3553 target_ulong page;
3555 cpu_synchronize_state(cpu);
3556 while (len > 0) {
3557 int asidx;
3558 MemTxAttrs attrs;
3560 page = addr & TARGET_PAGE_MASK;
3561 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3562 asidx = cpu_asidx_from_attrs(cpu, attrs);
3563 /* if no physical page mapped, return an error */
3564 if (phys_addr == -1)
3565 return -1;
3566 l = (page + TARGET_PAGE_SIZE) - addr;
3567 if (l > len)
3568 l = len;
3569 phys_addr += (addr & ~TARGET_PAGE_MASK);
3570 if (is_write) {
3571 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3572 phys_addr, buf, l);
3573 } else {
3574 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3575 MEMTXATTRS_UNSPECIFIED,
3576 buf, l, 0);
3578 len -= l;
3579 buf += l;
3580 addr += l;
3582 return 0;
3586 * Allows code that needs to deal with migration bitmaps etc to still be built
3587 * target independent.
3589 size_t qemu_target_page_size(void)
3591 return TARGET_PAGE_SIZE;
3594 int qemu_target_page_bits(void)
3596 return TARGET_PAGE_BITS;
3599 int qemu_target_page_bits_min(void)
3601 return TARGET_PAGE_BITS_MIN;
3603 #endif
3606 * A helper function for the _utterly broken_ virtio device model to find out if
3607 * it's running on a big endian machine. Don't do this at home kids!
3609 bool target_words_bigendian(void);
3610 bool target_words_bigendian(void)
3612 #if defined(TARGET_WORDS_BIGENDIAN)
3613 return true;
3614 #else
3615 return false;
3616 #endif
3619 #ifndef CONFIG_USER_ONLY
3620 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3622 MemoryRegion*mr;
3623 hwaddr l = 1;
3624 bool res;
3626 rcu_read_lock();
3627 mr = address_space_translate(&address_space_memory,
3628 phys_addr, &phys_addr, &l, false);
3630 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3631 rcu_read_unlock();
3632 return res;
3635 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3637 RAMBlock *block;
3638 int ret = 0;
3640 rcu_read_lock();
3641 RAMBLOCK_FOREACH(block) {
3642 ret = func(block->idstr, block->host, block->offset,
3643 block->used_length, opaque);
3644 if (ret) {
3645 break;
3648 rcu_read_unlock();
3649 return ret;
3653 * Unmap pages of memory from start to start+length such that
3654 * they a) read as 0, b) Trigger whatever fault mechanism
3655 * the OS provides for postcopy.
3656 * The pages must be unmapped by the end of the function.
3657 * Returns: 0 on success, none-0 on failure
3660 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3662 int ret = -1;
3664 uint8_t *host_startaddr = rb->host + start;
3666 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3667 error_report("ram_block_discard_range: Unaligned start address: %p",
3668 host_startaddr);
3669 goto err;
3672 if ((start + length) <= rb->used_length) {
3673 uint8_t *host_endaddr = host_startaddr + length;
3674 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3675 error_report("ram_block_discard_range: Unaligned end address: %p",
3676 host_endaddr);
3677 goto err;
3680 errno = ENOTSUP; /* If we are missing MADVISE etc */
3682 if (rb->page_size == qemu_host_page_size) {
3683 #if defined(CONFIG_MADVISE)
3684 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3685 * freeing the page.
3687 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3688 #endif
3689 } else {
3690 /* Huge page case - unfortunately it can't do DONTNEED, but
3691 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3692 * huge page file.
3694 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3695 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3696 start, length);
3697 #endif
3699 if (ret) {
3700 ret = -errno;
3701 error_report("ram_block_discard_range: Failed to discard range "
3702 "%s:%" PRIx64 " +%zx (%d)",
3703 rb->idstr, start, length, ret);
3705 } else {
3706 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3707 "/%zx/" RAM_ADDR_FMT")",
3708 rb->idstr, start, length, rb->used_length);
3711 err:
3712 return ret;
3715 #endif
3717 void page_size_init(void)
3719 /* NOTE: we can always suppose that qemu_host_page_size >=
3720 TARGET_PAGE_SIZE */
3721 if (qemu_host_page_size == 0) {
3722 qemu_host_page_size = qemu_real_host_page_size;
3724 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3725 qemu_host_page_size = TARGET_PAGE_SIZE;
3727 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3730 #if !defined(CONFIG_USER_ONLY)
3732 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3733 int start, int end, int skip, int ptr)
3735 if (start == end - 1) {
3736 mon(f, "\t%3d ", start);
3737 } else {
3738 mon(f, "\t%3d..%-3d ", start, end - 1);
3740 mon(f, " skip=%d ", skip);
3741 if (ptr == PHYS_MAP_NODE_NIL) {
3742 mon(f, " ptr=NIL");
3743 } else if (!skip) {
3744 mon(f, " ptr=#%d", ptr);
3745 } else {
3746 mon(f, " ptr=[%d]", ptr);
3748 mon(f, "\n");
3751 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3752 int128_sub((size), int128_one())) : 0)
3754 void mtree_print_dispatch(fprintf_function mon, void *f,
3755 AddressSpaceDispatch *d, MemoryRegion *root)
3757 int i;
3759 mon(f, " Dispatch\n");
3760 mon(f, " Physical sections\n");
3762 for (i = 0; i < d->map.sections_nb; ++i) {
3763 MemoryRegionSection *s = d->map.sections + i;
3764 const char *names[] = { " [unassigned]", " [not dirty]",
3765 " [ROM]", " [watch]" };
3767 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3769 s->offset_within_address_space,
3770 s->offset_within_address_space + MR_SIZE(s->mr->size),
3771 s->mr->name ? s->mr->name : "(noname)",
3772 i < ARRAY_SIZE(names) ? names[i] : "",
3773 s->mr == root ? " [ROOT]" : "",
3774 s == d->mru_section ? " [MRU]" : "",
3775 s->mr->is_iommu ? " [iommu]" : "");
3777 if (s->mr->alias) {
3778 mon(f, " alias=%s", s->mr->alias->name ?
3779 s->mr->alias->name : "noname");
3781 mon(f, "\n");
3784 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3785 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3786 for (i = 0; i < d->map.nodes_nb; ++i) {
3787 int j, jprev;
3788 PhysPageEntry prev;
3789 Node *n = d->map.nodes + i;
3791 mon(f, " [%d]\n", i);
3793 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3794 PhysPageEntry *pe = *n + j;
3796 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3797 continue;
3800 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3802 jprev = j;
3803 prev = *pe;
3806 if (jprev != ARRAY_SIZE(*n)) {
3807 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3812 #endif