migration: multifd_send_thread always post p->sem_sync when error happen
[qemu/ar7.git] / target / xtensa / mmu_helper.c
blobf15bff306f3437844b1a9963a222e1df6514c633
1 /*
2 * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/exec-all.h"
36 #include "exec/cpu_ldst.h"
38 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
39 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
40 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
41 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
42 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
43 #define XTENSA_MPU_ATTR_MASK 0x001fff00
45 #define XTENSA_MPU_PROBE_B 0x40000000
46 #define XTENSA_MPU_PROBE_V 0x80000000
48 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
49 #define XTENSA_MPU_SYSTEM_TYPE_NC 0x0002
50 #define XTENSA_MPU_SYSTEM_TYPE_C 0x0003
51 #define XTENSA_MPU_SYSTEM_TYPE_MASK 0x0003
53 #define XTENSA_MPU_TYPE_SYS_C 0x0010
54 #define XTENSA_MPU_TYPE_SYS_W 0x0020
55 #define XTENSA_MPU_TYPE_SYS_R 0x0040
56 #define XTENSA_MPU_TYPE_CPU_C 0x0100
57 #define XTENSA_MPU_TYPE_CPU_W 0x0200
58 #define XTENSA_MPU_TYPE_CPU_R 0x0400
59 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
60 #define XTENSA_MPU_TYPE_B 0x1000
61 #define XTENSA_MPU_TYPE_INT 0x2000
63 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
66 * Attempt the memory load; we don't care about the result but
67 * only the side-effects (ie any MMU or other exception)
69 cpu_ldub_code_ra(env, vaddr, GETPC());
72 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
74 v = (v & 0xffffff00) | 0x1;
75 if (v != env->sregs[RASID]) {
76 env->sregs[RASID] = v;
77 tlb_flush(env_cpu(env));
81 static uint32_t get_page_size(const CPUXtensaState *env,
82 bool dtlb, uint32_t way)
84 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
86 switch (way) {
87 case 4:
88 return (tlbcfg >> 16) & 0x3;
90 case 5:
91 return (tlbcfg >> 20) & 0x1;
93 case 6:
94 return (tlbcfg >> 24) & 0x1;
96 default:
97 return 0;
102 * Get bit mask for the virtual address bits translated by the TLB way
104 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
105 bool dtlb, uint32_t way)
107 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
108 bool varway56 = dtlb ?
109 env->config->dtlb.varway56 :
110 env->config->itlb.varway56;
112 switch (way) {
113 case 4:
114 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
116 case 5:
117 if (varway56) {
118 return 0xf8000000 << get_page_size(env, dtlb, way);
119 } else {
120 return 0xf8000000;
123 case 6:
124 if (varway56) {
125 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
126 } else {
127 return 0xf0000000;
130 default:
131 return 0xfffff000;
133 } else {
134 return REGION_PAGE_MASK;
139 * Get bit mask for the 'VPN without index' field.
140 * See ISA, 4.6.5.6, data format for RxTLB0
142 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
144 if (way < 4) {
145 bool is32 = (dtlb ?
146 env->config->dtlb.nrefillentries :
147 env->config->itlb.nrefillentries) == 32;
148 return is32 ? 0xffff8000 : 0xffffc000;
149 } else if (way == 4) {
150 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
151 } else if (way <= 6) {
152 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
153 bool varway56 = dtlb ?
154 env->config->dtlb.varway56 :
155 env->config->itlb.varway56;
157 if (varway56) {
158 return mask << (way == 5 ? 2 : 3);
159 } else {
160 return mask << 1;
162 } else {
163 return 0xfffff000;
168 * Split virtual address into VPN (with index) and entry index
169 * for the given TLB way
171 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
172 bool dtlb, uint32_t *vpn,
173 uint32_t wi, uint32_t *ei)
175 bool varway56 = dtlb ?
176 env->config->dtlb.varway56 :
177 env->config->itlb.varway56;
179 if (!dtlb) {
180 wi &= 7;
183 if (wi < 4) {
184 bool is32 = (dtlb ?
185 env->config->dtlb.nrefillentries :
186 env->config->itlb.nrefillentries) == 32;
187 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
188 } else {
189 switch (wi) {
190 case 4:
192 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
193 *ei = (v >> eibase) & 0x3;
195 break;
197 case 5:
198 if (varway56) {
199 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
200 *ei = (v >> eibase) & 0x3;
201 } else {
202 *ei = (v >> 27) & 0x1;
204 break;
206 case 6:
207 if (varway56) {
208 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
209 *ei = (v >> eibase) & 0x7;
210 } else {
211 *ei = (v >> 28) & 0x1;
213 break;
215 default:
216 *ei = 0;
217 break;
220 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
224 * Split TLB address into TLB way, entry index and VPN (with index).
225 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
227 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
228 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
230 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
231 *wi = v & (dtlb ? 0xf : 0x7);
232 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
233 } else {
234 *vpn = v & REGION_PAGE_MASK;
235 *wi = 0;
236 *ei = (v >> 29) & 0x7;
240 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
241 unsigned wi, unsigned ei)
243 return dtlb ?
244 env->dtlb[wi] + ei :
245 env->itlb[wi] + ei;
248 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
249 uint32_t v, bool dtlb, uint32_t *pwi)
251 uint32_t vpn;
252 uint32_t wi;
253 uint32_t ei;
255 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
256 if (pwi) {
257 *pwi = wi;
259 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
262 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
263 xtensa_tlb_entry *entry, bool dtlb,
264 unsigned wi, unsigned ei, uint32_t vpn,
265 uint32_t pte)
267 entry->vaddr = vpn;
268 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
269 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
270 entry->attr = pte & 0xf;
273 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
274 unsigned wi, unsigned ei,
275 uint32_t vpn, uint32_t pte)
277 CPUState *cs = env_cpu(env);
278 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
280 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
281 if (entry->variable) {
282 if (entry->asid) {
283 tlb_flush_page(cs, entry->vaddr);
285 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
286 tlb_flush_page(cs, entry->vaddr);
287 } else {
288 qemu_log_mask(LOG_GUEST_ERROR,
289 "%s %d, %d, %d trying to set immutable entry\n",
290 __func__, dtlb, wi, ei);
292 } else {
293 tlb_flush_page(cs, entry->vaddr);
294 if (xtensa_option_enabled(env->config,
295 XTENSA_OPTION_REGION_TRANSLATION)) {
296 entry->paddr = pte & REGION_PAGE_MASK;
298 entry->attr = pte & 0xf;
302 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
304 XtensaCPU *cpu = XTENSA_CPU(cs);
305 uint32_t paddr;
306 uint32_t page_size;
307 unsigned access;
309 if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
310 &paddr, &page_size, &access) == 0) {
311 return paddr;
313 if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
314 &paddr, &page_size, &access) == 0) {
315 return paddr;
317 return ~0;
320 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
321 const xtensa_tlb *tlb,
322 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
324 unsigned wi, ei;
326 for (wi = 0; wi < tlb->nways; ++wi) {
327 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
328 entry[wi][ei].asid = 0;
329 entry[wi][ei].variable = true;
334 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
335 const xtensa_tlb *tlb,
336 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
338 if (!tlb->varway56) {
339 static const xtensa_tlb_entry way5[] = {
341 .vaddr = 0xd0000000,
342 .paddr = 0,
343 .asid = 1,
344 .attr = 7,
345 .variable = false,
346 }, {
347 .vaddr = 0xd8000000,
348 .paddr = 0,
349 .asid = 1,
350 .attr = 3,
351 .variable = false,
354 static const xtensa_tlb_entry way6[] = {
356 .vaddr = 0xe0000000,
357 .paddr = 0xf0000000,
358 .asid = 1,
359 .attr = 7,
360 .variable = false,
361 }, {
362 .vaddr = 0xf0000000,
363 .paddr = 0xf0000000,
364 .asid = 1,
365 .attr = 3,
366 .variable = false,
369 memcpy(entry[5], way5, sizeof(way5));
370 memcpy(entry[6], way6, sizeof(way6));
371 } else {
372 uint32_t ei;
373 for (ei = 0; ei < 8; ++ei) {
374 entry[6][ei].vaddr = ei << 29;
375 entry[6][ei].paddr = ei << 29;
376 entry[6][ei].asid = 1;
377 entry[6][ei].attr = 3;
382 static void reset_tlb_region_way0(CPUXtensaState *env,
383 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
385 unsigned ei;
387 for (ei = 0; ei < 8; ++ei) {
388 entry[0][ei].vaddr = ei << 29;
389 entry[0][ei].paddr = ei << 29;
390 entry[0][ei].asid = 1;
391 entry[0][ei].attr = 2;
392 entry[0][ei].variable = true;
396 void reset_mmu(CPUXtensaState *env)
398 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
399 env->sregs[RASID] = 0x04030201;
400 env->sregs[ITLBCFG] = 0;
401 env->sregs[DTLBCFG] = 0;
402 env->autorefill_idx = 0;
403 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
404 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
405 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
406 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
407 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
408 unsigned i;
410 env->sregs[MPUENB] = 0;
411 env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
412 env->sregs[CACHEADRDIS] = 0;
413 assert(env->config->n_mpu_bg_segments > 0 &&
414 env->config->mpu_bg[0].vaddr == 0);
415 for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
416 assert(env->config->mpu_bg[i].vaddr >=
417 env->config->mpu_bg[i - 1].vaddr);
419 } else {
420 env->sregs[CACHEATTR] = 0x22222222;
421 reset_tlb_region_way0(env, env->itlb);
422 reset_tlb_region_way0(env, env->dtlb);
426 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
428 unsigned i;
429 for (i = 0; i < 4; ++i) {
430 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
431 return i;
434 return 0xff;
438 * Lookup xtensa TLB for the given virtual address.
439 * See ISA, 4.6.2.2
441 * \param pwi: [out] way index
442 * \param pei: [out] entry index
443 * \param pring: [out] access ring
444 * \return 0 if ok, exception cause code otherwise
446 static int xtensa_tlb_lookup(const CPUXtensaState *env,
447 uint32_t addr, bool dtlb,
448 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
450 const xtensa_tlb *tlb = dtlb ?
451 &env->config->dtlb : &env->config->itlb;
452 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
453 env->dtlb : env->itlb;
455 int nhits = 0;
456 unsigned wi;
458 for (wi = 0; wi < tlb->nways; ++wi) {
459 uint32_t vpn;
460 uint32_t ei;
461 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
462 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
463 unsigned ring = get_ring(env, entry[wi][ei].asid);
464 if (ring < 4) {
465 if (++nhits > 1) {
466 return dtlb ?
467 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
468 INST_TLB_MULTI_HIT_CAUSE;
470 *pwi = wi;
471 *pei = ei;
472 *pring = ring;
476 return nhits ? 0 :
477 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
480 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
482 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
483 uint32_t wi;
484 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
485 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
486 } else {
487 return v & REGION_PAGE_MASK;
491 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
493 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
494 return entry->paddr | entry->attr;
497 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
499 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
500 uint32_t wi;
501 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
502 if (entry->variable && entry->asid) {
503 tlb_flush_page(env_cpu(env), entry->vaddr);
504 entry->asid = 0;
509 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
511 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
512 uint32_t wi;
513 uint32_t ei;
514 uint8_t ring;
515 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
517 switch (res) {
518 case 0:
519 if (ring >= xtensa_get_ring(env)) {
520 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
522 break;
524 case INST_TLB_MULTI_HIT_CAUSE:
525 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
526 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
527 break;
529 return 0;
530 } else {
531 return (v & REGION_PAGE_MASK) | 0x1;
535 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
537 uint32_t vpn;
538 uint32_t wi;
539 uint32_t ei;
540 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
541 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
545 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
546 * See ISA, 4.6.5.10
548 static unsigned mmu_attr_to_access(uint32_t attr)
550 unsigned access = 0;
552 if (attr < 12) {
553 access |= PAGE_READ;
554 if (attr & 0x1) {
555 access |= PAGE_EXEC;
557 if (attr & 0x2) {
558 access |= PAGE_WRITE;
561 switch (attr & 0xc) {
562 case 0:
563 access |= PAGE_CACHE_BYPASS;
564 break;
566 case 4:
567 access |= PAGE_CACHE_WB;
568 break;
570 case 8:
571 access |= PAGE_CACHE_WT;
572 break;
574 } else if (attr == 13) {
575 access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
577 return access;
581 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
582 * See ISA, 4.6.3.3
584 static unsigned region_attr_to_access(uint32_t attr)
586 static const unsigned access[16] = {
587 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
588 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
589 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
590 [3] = PAGE_EXEC | PAGE_CACHE_WB,
591 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
592 [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
593 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
596 return access[attr & 0xf];
600 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
601 * See ISA, A.2.14 The Cache Attribute Register
603 static unsigned cacheattr_attr_to_access(uint32_t attr)
605 static const unsigned access[16] = {
606 [0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
607 [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
608 [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
609 [3] = PAGE_EXEC | PAGE_CACHE_WB,
610 [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
611 [14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
614 return access[attr & 0xf];
617 struct attr_pattern {
618 uint32_t mask;
619 uint32_t value;
622 static int attr_pattern_match(uint32_t attr,
623 const struct attr_pattern *pattern,
624 size_t n)
626 size_t i;
628 for (i = 0; i < n; ++i) {
629 if ((attr & pattern[i].mask) == pattern[i].value) {
630 return 1;
633 return 0;
636 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
638 static const struct attr_pattern cpu_c[] = {
639 { .mask = 0x18f, .value = 0x089 },
640 { .mask = 0x188, .value = 0x080 },
641 { .mask = 0x180, .value = 0x180 },
644 unsigned type = 0;
646 if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
647 type |= XTENSA_MPU_TYPE_CPU_CACHE;
648 if (attr & 0x10) {
649 type |= XTENSA_MPU_TYPE_CPU_C;
651 if (attr & 0x20) {
652 type |= XTENSA_MPU_TYPE_CPU_W;
654 if (attr & 0x40) {
655 type |= XTENSA_MPU_TYPE_CPU_R;
658 return type;
661 static unsigned mpu_attr_to_type(uint32_t attr)
663 static const struct attr_pattern device_type[] = {
664 { .mask = 0x1f6, .value = 0x000 },
665 { .mask = 0x1f6, .value = 0x006 },
667 static const struct attr_pattern sys_nc_type[] = {
668 { .mask = 0x1fe, .value = 0x018 },
669 { .mask = 0x1fe, .value = 0x01e },
670 { .mask = 0x18f, .value = 0x089 },
672 static const struct attr_pattern sys_c_type[] = {
673 { .mask = 0x1f8, .value = 0x010 },
674 { .mask = 0x188, .value = 0x080 },
675 { .mask = 0x1f0, .value = 0x030 },
676 { .mask = 0x180, .value = 0x180 },
678 static const struct attr_pattern b[] = {
679 { .mask = 0x1f7, .value = 0x001 },
680 { .mask = 0x1f7, .value = 0x007 },
681 { .mask = 0x1ff, .value = 0x019 },
682 { .mask = 0x1ff, .value = 0x01f },
685 unsigned type = 0;
687 attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
688 if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
689 type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
690 if (attr & 0x80) {
691 type |= XTENSA_MPU_TYPE_INT;
694 if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
695 type |= XTENSA_MPU_SYSTEM_TYPE_NC;
697 if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
698 type |= XTENSA_MPU_SYSTEM_TYPE_C;
699 if (attr & 0x1) {
700 type |= XTENSA_MPU_TYPE_SYS_C;
702 if (attr & 0x2) {
703 type |= XTENSA_MPU_TYPE_SYS_W;
705 if (attr & 0x4) {
706 type |= XTENSA_MPU_TYPE_SYS_R;
709 if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
710 type |= XTENSA_MPU_TYPE_B;
712 type |= mpu_attr_to_cpu_cache(attr);
714 return type;
717 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
719 static const unsigned access[2][16] = {
720 [0] = {
721 [4] = PAGE_READ,
722 [5] = PAGE_READ | PAGE_EXEC,
723 [6] = PAGE_READ | PAGE_WRITE,
724 [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
725 [8] = PAGE_WRITE,
726 [9] = PAGE_READ | PAGE_WRITE,
727 [10] = PAGE_READ | PAGE_WRITE,
728 [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
729 [12] = PAGE_READ,
730 [13] = PAGE_READ | PAGE_EXEC,
731 [14] = PAGE_READ | PAGE_WRITE,
732 [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
734 [1] = {
735 [8] = PAGE_WRITE,
736 [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
737 [10] = PAGE_READ,
738 [11] = PAGE_READ | PAGE_EXEC,
739 [12] = PAGE_READ,
740 [13] = PAGE_READ | PAGE_EXEC,
741 [14] = PAGE_READ | PAGE_WRITE,
742 [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
745 unsigned rv;
746 unsigned type;
748 type = mpu_attr_to_cpu_cache(attr);
749 rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
750 XTENSA_MPU_ACC_RIGHTS_SHIFT];
752 if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
753 rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
754 } else {
755 rv |= PAGE_CACHE_BYPASS;
757 return rv;
760 static bool is_access_granted(unsigned access, int is_write)
762 switch (is_write) {
763 case 0:
764 return access & PAGE_READ;
766 case 1:
767 return access & PAGE_WRITE;
769 case 2:
770 return access & PAGE_EXEC;
772 default:
773 return 0;
777 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
779 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
780 uint32_t vaddr, int is_write, int mmu_idx,
781 uint32_t *paddr, uint32_t *page_size,
782 unsigned *access, bool may_lookup_pt)
784 bool dtlb = is_write != 2;
785 uint32_t wi;
786 uint32_t ei;
787 uint8_t ring;
788 uint32_t vpn;
789 uint32_t pte;
790 const xtensa_tlb_entry *entry = NULL;
791 xtensa_tlb_entry tmp_entry;
792 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
794 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
795 may_lookup_pt && get_pte(env, vaddr, &pte)) {
796 ring = (pte >> 4) & 0x3;
797 wi = 0;
798 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
800 if (update_tlb) {
801 wi = ++env->autorefill_idx & 0x3;
802 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
803 env->sregs[EXCVADDR] = vaddr;
804 qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
805 __func__, vaddr, vpn, pte);
806 } else {
807 xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
808 entry = &tmp_entry;
810 ret = 0;
812 if (ret != 0) {
813 return ret;
816 if (entry == NULL) {
817 entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
820 if (ring < mmu_idx) {
821 return dtlb ?
822 LOAD_STORE_PRIVILEGE_CAUSE :
823 INST_FETCH_PRIVILEGE_CAUSE;
826 *access = mmu_attr_to_access(entry->attr) &
827 ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
828 if (!is_access_granted(*access, is_write)) {
829 return dtlb ?
830 (is_write ?
831 STORE_PROHIBITED_CAUSE :
832 LOAD_PROHIBITED_CAUSE) :
833 INST_FETCH_PROHIBITED_CAUSE;
836 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
837 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
839 return 0;
842 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
844 CPUState *cs = env_cpu(env);
845 uint32_t paddr;
846 uint32_t page_size;
847 unsigned access;
848 uint32_t pt_vaddr =
849 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
850 int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
851 &paddr, &page_size, &access, false);
853 if (ret == 0) {
854 qemu_log_mask(CPU_LOG_MMU,
855 "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
856 __func__, vaddr, pt_vaddr, paddr);
857 } else {
858 qemu_log_mask(CPU_LOG_MMU,
859 "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
860 __func__, vaddr, pt_vaddr, ret);
863 if (ret == 0) {
864 MemTxResult result;
866 *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
867 &result);
868 if (result != MEMTX_OK) {
869 qemu_log_mask(CPU_LOG_MMU,
870 "%s: couldn't load PTE: transaction failed (%u)\n",
871 __func__, (unsigned)result);
872 ret = 1;
875 return ret == 0;
878 static int get_physical_addr_region(CPUXtensaState *env,
879 uint32_t vaddr, int is_write, int mmu_idx,
880 uint32_t *paddr, uint32_t *page_size,
881 unsigned *access)
883 bool dtlb = is_write != 2;
884 uint32_t wi = 0;
885 uint32_t ei = (vaddr >> 29) & 0x7;
886 const xtensa_tlb_entry *entry =
887 xtensa_tlb_get_entry(env, dtlb, wi, ei);
889 *access = region_attr_to_access(entry->attr);
890 if (!is_access_granted(*access, is_write)) {
891 return dtlb ?
892 (is_write ?
893 STORE_PROHIBITED_CAUSE :
894 LOAD_PROHIBITED_CAUSE) :
895 INST_FETCH_PROHIBITED_CAUSE;
898 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
899 *page_size = ~REGION_PAGE_MASK + 1;
901 return 0;
904 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
905 uint32_t vaddr, unsigned *segment)
907 unsigned nhits = 0;
908 unsigned i;
910 for (i = 0; i < n; ++i) {
911 if (vaddr >= entry[i].vaddr &&
912 (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
913 if (nhits++) {
914 break;
916 *segment = i;
919 return nhits;
922 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
924 v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
926 if (v != env->sregs[MPUENB]) {
927 env->sregs[MPUENB] = v;
928 tlb_flush(env_cpu(env));
932 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
934 unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
936 if (segment < env->config->n_mpu_fg_segments) {
937 env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
938 env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
939 env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
940 tlb_flush(env_cpu(env));
944 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
946 unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
948 if (segment < env->config->n_mpu_fg_segments) {
949 return env->mpu_fg[segment].vaddr |
950 extract32(env->sregs[MPUENB], segment, 1);
951 } else {
952 return 0;
956 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
958 unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
960 if (segment < env->config->n_mpu_fg_segments) {
961 return env->mpu_fg[segment].attr;
962 } else {
963 return 0;
967 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
969 unsigned nhits;
970 unsigned segment = XTENSA_MPU_PROBE_B;
971 unsigned bg_segment;
973 nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
974 v, &segment);
975 if (nhits > 1) {
976 HELPER(exception_cause_vaddr)(env, env->pc,
977 LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
978 } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
979 return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
980 } else {
981 xtensa_mpu_lookup(env->config->mpu_bg,
982 env->config->n_mpu_bg_segments,
983 v, &bg_segment);
984 return env->config->mpu_bg[bg_segment].attr | segment;
988 static int get_physical_addr_mpu(CPUXtensaState *env,
989 uint32_t vaddr, int is_write, int mmu_idx,
990 uint32_t *paddr, uint32_t *page_size,
991 unsigned *access)
993 unsigned nhits;
994 unsigned segment;
995 uint32_t attr;
997 nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
998 vaddr, &segment);
999 if (nhits > 1) {
1000 return is_write < 2 ?
1001 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1002 INST_TLB_MULTI_HIT_CAUSE;
1003 } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1004 attr = env->mpu_fg[segment].attr;
1005 } else {
1006 xtensa_mpu_lookup(env->config->mpu_bg,
1007 env->config->n_mpu_bg_segments,
1008 vaddr, &segment);
1009 attr = env->config->mpu_bg[segment].attr;
1012 *access = mpu_attr_to_access(attr, mmu_idx);
1013 if (!is_access_granted(*access, is_write)) {
1014 return is_write < 2 ?
1015 (is_write ?
1016 STORE_PROHIBITED_CAUSE :
1017 LOAD_PROHIBITED_CAUSE) :
1018 INST_FETCH_PROHIBITED_CAUSE;
1020 *paddr = vaddr;
1021 *page_size = env->config->mpu_align;
1022 return 0;
1026 * Convert virtual address to physical addr.
1027 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1029 * \return 0 if ok, exception cause code otherwise
1031 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1032 uint32_t vaddr, int is_write, int mmu_idx,
1033 uint32_t *paddr, uint32_t *page_size,
1034 unsigned *access)
1036 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1037 return get_physical_addr_mmu(env, update_tlb,
1038 vaddr, is_write, mmu_idx, paddr,
1039 page_size, access, true);
1040 } else if (xtensa_option_bits_enabled(env->config,
1041 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1042 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1043 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1044 paddr, page_size, access);
1045 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1046 return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1047 paddr, page_size, access);
1048 } else {
1049 *paddr = vaddr;
1050 *page_size = TARGET_PAGE_SIZE;
1051 *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1052 ((vaddr & 0xe0000000) >> 27));
1053 return 0;
1057 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1059 unsigned wi, ei;
1060 const xtensa_tlb *conf =
1061 dtlb ? &env->config->dtlb : &env->config->itlb;
1062 unsigned (*attr_to_access)(uint32_t) =
1063 xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1064 mmu_attr_to_access : region_attr_to_access;
1066 for (wi = 0; wi < conf->nways; ++wi) {
1067 uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1068 const char *sz_text;
1069 bool print_header = true;
1071 if (sz >= 0x100000) {
1072 sz /= MiB;
1073 sz_text = "MB";
1074 } else {
1075 sz /= KiB;
1076 sz_text = "KB";
1079 for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1080 const xtensa_tlb_entry *entry =
1081 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1083 if (entry->asid) {
1084 static const char * const cache_text[8] = {
1085 [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1086 [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1087 [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1088 [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1090 unsigned access = attr_to_access(entry->attr);
1091 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1092 PAGE_CACHE_SHIFT;
1094 if (print_header) {
1095 print_header = false;
1096 qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1097 qemu_printf("\tVaddr Paddr ASID Attr RWX Cache\n"
1098 "\t---------- ---------- ---- ---- --- -------\n");
1100 qemu_printf("\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
1101 entry->vaddr,
1102 entry->paddr,
1103 entry->asid,
1104 entry->attr,
1105 (access & PAGE_READ) ? 'R' : '-',
1106 (access & PAGE_WRITE) ? 'W' : '-',
1107 (access & PAGE_EXEC) ? 'X' : '-',
1108 cache_text[cache_idx] ?
1109 cache_text[cache_idx] : "Invalid");
1115 static void dump_mpu(CPUXtensaState *env,
1116 const xtensa_mpu_entry *entry, unsigned n)
1118 unsigned i;
1120 qemu_printf("\t%s Vaddr Attr Ring0 Ring1 System Type CPU cache\n"
1121 "\t%s ---------- ---------- ----- ----- ------------- ---------\n",
1122 env ? "En" : " ",
1123 env ? "--" : " ");
1125 for (i = 0; i < n; ++i) {
1126 uint32_t attr = entry[i].attr;
1127 unsigned access0 = mpu_attr_to_access(attr, 0);
1128 unsigned access1 = mpu_attr_to_access(attr, 1);
1129 unsigned type = mpu_attr_to_type(attr);
1130 char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1132 qemu_printf("\t %c 0x%08x 0x%08x %c%c%c %c%c%c ",
1133 env ?
1134 ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1135 entry[i].vaddr, attr,
1136 (access0 & PAGE_READ) ? 'R' : '-',
1137 (access0 & PAGE_WRITE) ? 'W' : '-',
1138 (access0 & PAGE_EXEC) ? 'X' : '-',
1139 (access1 & PAGE_READ) ? 'R' : '-',
1140 (access1 & PAGE_WRITE) ? 'W' : '-',
1141 (access1 & PAGE_EXEC) ? 'X' : '-');
1143 switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1144 case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1145 qemu_printf("Device %cB %3s\n",
1146 (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1147 (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1148 break;
1149 case XTENSA_MPU_SYSTEM_TYPE_NC:
1150 qemu_printf("Sys NC %cB %c%c%c\n",
1151 (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1152 (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1153 (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1154 (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1155 break;
1156 case XTENSA_MPU_SYSTEM_TYPE_C:
1157 qemu_printf("Sys C %c%c%c %c%c%c\n",
1158 (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1159 (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1160 (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1161 (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1162 (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1163 (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1164 break;
1165 default:
1166 qemu_printf("Unknown\n");
1167 break;
1172 void dump_mmu(CPUXtensaState *env)
1174 if (xtensa_option_bits_enabled(env->config,
1175 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1176 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1177 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1179 qemu_printf("ITLB:\n");
1180 dump_tlb(env, false);
1181 qemu_printf("\nDTLB:\n");
1182 dump_tlb(env, true);
1183 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1184 qemu_printf("Foreground map:\n");
1185 dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1186 qemu_printf("\nBackground map:\n");
1187 dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1188 } else {
1189 qemu_printf("No TLB for this CPU core\n");