tests/acceptance: add record/replay test for arm
[qemu/ar7.git] / hw / net / imx_fec.c
blobeefedc252de326dc2fc482522ead5d56fbb5aedf
1 /*
2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/irq.h"
26 #include "hw/net/imx_fec.h"
27 #include "hw/qdev-properties.h"
28 #include "migration/vmstate.h"
29 #include "sysemu/dma.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "net/checksum.h"
33 #include "net/eth.h"
34 #include "trace.h"
36 /* For crc32 */
37 #include <zlib.h>
39 #define IMX_MAX_DESC 1024
41 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
43 static char tmp[20];
44 sprintf(tmp, "index %d", index);
45 return tmp;
48 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
50 switch (index) {
51 case ENET_FRBR:
52 return "FRBR";
53 case ENET_FRSR:
54 return "FRSR";
55 case ENET_MIIGSK_CFGR:
56 return "MIIGSK_CFGR";
57 case ENET_MIIGSK_ENR:
58 return "MIIGSK_ENR";
59 default:
60 return imx_default_reg_name(s, index);
64 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
66 switch (index) {
67 case ENET_RSFL:
68 return "RSFL";
69 case ENET_RSEM:
70 return "RSEM";
71 case ENET_RAEM:
72 return "RAEM";
73 case ENET_RAFL:
74 return "RAFL";
75 case ENET_TSEM:
76 return "TSEM";
77 case ENET_TAEM:
78 return "TAEM";
79 case ENET_TAFL:
80 return "TAFL";
81 case ENET_TIPG:
82 return "TIPG";
83 case ENET_FTRL:
84 return "FTRL";
85 case ENET_TACC:
86 return "TACC";
87 case ENET_RACC:
88 return "RACC";
89 case ENET_ATCR:
90 return "ATCR";
91 case ENET_ATVR:
92 return "ATVR";
93 case ENET_ATOFF:
94 return "ATOFF";
95 case ENET_ATPER:
96 return "ATPER";
97 case ENET_ATCOR:
98 return "ATCOR";
99 case ENET_ATINC:
100 return "ATINC";
101 case ENET_ATSTMP:
102 return "ATSTMP";
103 case ENET_TGSR:
104 return "TGSR";
105 case ENET_TCSR0:
106 return "TCSR0";
107 case ENET_TCCR0:
108 return "TCCR0";
109 case ENET_TCSR1:
110 return "TCSR1";
111 case ENET_TCCR1:
112 return "TCCR1";
113 case ENET_TCSR2:
114 return "TCSR2";
115 case ENET_TCCR2:
116 return "TCCR2";
117 case ENET_TCSR3:
118 return "TCSR3";
119 case ENET_TCCR3:
120 return "TCCR3";
121 default:
122 return imx_default_reg_name(s, index);
126 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
128 switch (index) {
129 case ENET_EIR:
130 return "EIR";
131 case ENET_EIMR:
132 return "EIMR";
133 case ENET_RDAR:
134 return "RDAR";
135 case ENET_TDAR:
136 return "TDAR";
137 case ENET_ECR:
138 return "ECR";
139 case ENET_MMFR:
140 return "MMFR";
141 case ENET_MSCR:
142 return "MSCR";
143 case ENET_MIBC:
144 return "MIBC";
145 case ENET_RCR:
146 return "RCR";
147 case ENET_TCR:
148 return "TCR";
149 case ENET_PALR:
150 return "PALR";
151 case ENET_PAUR:
152 return "PAUR";
153 case ENET_OPD:
154 return "OPD";
155 case ENET_IAUR:
156 return "IAUR";
157 case ENET_IALR:
158 return "IALR";
159 case ENET_GAUR:
160 return "GAUR";
161 case ENET_GALR:
162 return "GALR";
163 case ENET_TFWR:
164 return "TFWR";
165 case ENET_RDSR:
166 return "RDSR";
167 case ENET_TDSR:
168 return "TDSR";
169 case ENET_MRBR:
170 return "MRBR";
171 default:
172 if (s->is_fec) {
173 return imx_fec_reg_name(s, index);
174 } else {
175 return imx_enet_reg_name(s, index);
181 * Versions of this device with more than one TX descriptor save the
182 * 2nd and 3rd descriptors in a subsection, to maintain migration
183 * compatibility with previous versions of the device that only
184 * supported a single descriptor.
186 static bool imx_eth_is_multi_tx_ring(void *opaque)
188 IMXFECState *s = IMX_FEC(opaque);
190 return s->tx_ring_num > 1;
193 static const VMStateDescription vmstate_imx_eth_txdescs = {
194 .name = "imx.fec/txdescs",
195 .version_id = 1,
196 .minimum_version_id = 1,
197 .needed = imx_eth_is_multi_tx_ring,
198 .fields = (VMStateField[]) {
199 VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
200 VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
201 VMSTATE_END_OF_LIST()
205 static const VMStateDescription vmstate_imx_eth = {
206 .name = TYPE_IMX_FEC,
207 .version_id = 2,
208 .minimum_version_id = 2,
209 .fields = (VMStateField[]) {
210 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
211 VMSTATE_UINT32(rx_descriptor, IMXFECState),
212 VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
213 VMSTATE_UINT32(phy_status, IMXFECState),
214 VMSTATE_UINT32(phy_control, IMXFECState),
215 VMSTATE_UINT32(phy_advertise, IMXFECState),
216 VMSTATE_UINT32(phy_int, IMXFECState),
217 VMSTATE_UINT32(phy_int_mask, IMXFECState),
218 VMSTATE_END_OF_LIST()
220 .subsections = (const VMStateDescription * []) {
221 &vmstate_imx_eth_txdescs,
222 NULL
226 #define PHY_INT_ENERGYON (1 << 7)
227 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
228 #define PHY_INT_FAULT (1 << 5)
229 #define PHY_INT_DOWN (1 << 4)
230 #define PHY_INT_AUTONEG_LP (1 << 3)
231 #define PHY_INT_PARFAULT (1 << 2)
232 #define PHY_INT_AUTONEG_PAGE (1 << 1)
234 static void imx_eth_update(IMXFECState *s);
237 * The MII phy could raise a GPIO to the processor which in turn
238 * could be handled as an interrpt by the OS.
239 * For now we don't handle any GPIO/interrupt line, so the OS will
240 * have to poll for the PHY status.
242 static void imx_phy_update_irq(IMXFECState *s)
244 imx_eth_update(s);
247 static void imx_phy_update_link(IMXFECState *s)
249 /* Autonegotiation status mirrors link status. */
250 if (qemu_get_queue(s->nic)->link_down) {
251 trace_imx_phy_update_link("down");
252 s->phy_status &= ~0x0024;
253 s->phy_int |= PHY_INT_DOWN;
254 } else {
255 trace_imx_phy_update_link("up");
256 s->phy_status |= 0x0024;
257 s->phy_int |= PHY_INT_ENERGYON;
258 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
260 imx_phy_update_irq(s);
263 static void imx_eth_set_link(NetClientState *nc)
265 imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
268 static void imx_phy_reset(IMXFECState *s)
270 trace_imx_phy_reset();
272 s->phy_status = 0x7809;
273 s->phy_control = 0x3000;
274 s->phy_advertise = 0x01e1;
275 s->phy_int_mask = 0;
276 s->phy_int = 0;
277 imx_phy_update_link(s);
280 static uint32_t imx_phy_read(IMXFECState *s, int reg)
282 uint32_t val;
284 if (reg > 31) {
285 /* we only advertise one phy */
286 return 0;
289 switch (reg) {
290 case 0: /* Basic Control */
291 val = s->phy_control;
292 break;
293 case 1: /* Basic Status */
294 val = s->phy_status;
295 break;
296 case 2: /* ID1 */
297 val = 0x0007;
298 break;
299 case 3: /* ID2 */
300 val = 0xc0d1;
301 break;
302 case 4: /* Auto-neg advertisement */
303 val = s->phy_advertise;
304 break;
305 case 5: /* Auto-neg Link Partner Ability */
306 val = 0x0f71;
307 break;
308 case 6: /* Auto-neg Expansion */
309 val = 1;
310 break;
311 case 29: /* Interrupt source. */
312 val = s->phy_int;
313 s->phy_int = 0;
314 imx_phy_update_irq(s);
315 break;
316 case 30: /* Interrupt mask */
317 val = s->phy_int_mask;
318 break;
319 case 17:
320 case 18:
321 case 27:
322 case 31:
323 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
324 TYPE_IMX_FEC, __func__, reg);
325 val = 0;
326 break;
327 default:
328 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
329 TYPE_IMX_FEC, __func__, reg);
330 val = 0;
331 break;
334 trace_imx_phy_read(val, reg);
336 return val;
339 static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
341 trace_imx_phy_write(val, reg);
343 if (reg > 31) {
344 /* we only advertise one phy */
345 return;
348 switch (reg) {
349 case 0: /* Basic Control */
350 if (val & 0x8000) {
351 imx_phy_reset(s);
352 } else {
353 s->phy_control = val & 0x7980;
354 /* Complete autonegotiation immediately. */
355 if (val & 0x1000) {
356 s->phy_status |= 0x0020;
359 break;
360 case 4: /* Auto-neg advertisement */
361 s->phy_advertise = (val & 0x2d7f) | 0x80;
362 break;
363 case 30: /* Interrupt mask */
364 s->phy_int_mask = val & 0xff;
365 imx_phy_update_irq(s);
366 break;
367 case 17:
368 case 18:
369 case 27:
370 case 31:
371 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
372 TYPE_IMX_FEC, __func__, reg);
373 break;
374 default:
375 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
376 TYPE_IMX_FEC, __func__, reg);
377 break;
381 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
383 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
385 trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
388 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
390 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
393 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
395 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
397 trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
398 bd->option, bd->status);
401 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
403 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
406 static void imx_eth_update(IMXFECState *s)
409 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
410 * interrupts swapped. This worked with older versions of Linux (4.14
411 * and older) since Linux associated both interrupt lines with Ethernet
412 * MAC interrupts. Specifically,
413 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
414 * timer interrupts. Those versions of Linux fail with versions of QEMU
415 * with swapped interrupt assignments.
416 * - In linux 4.14, both interrupt lines were registered with the Ethernet
417 * MAC interrupt handler. As a result, all versions of qemu happen to
418 * work, though that is accidental.
419 * - In Linux 4.9 and older, the timer interrupt was registered directly
420 * with the Ethernet MAC interrupt handler. The MAC interrupt was
421 * redirected to a GPIO interrupt to work around erratum ERR006687.
422 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
423 * interrupt never fired since IOMUX is currently not supported in qemu.
424 * Linux instead received MAC interrupts on the timer interrupt.
425 * As a result, qemu versions with the swapped interrupt assignment work,
426 * albeit accidentally, but qemu versions with the correct interrupt
427 * assignment fail.
429 * To ensure that all versions of Linux work, generate ENET_INT_MAC
430 * interrrupts on both interrupt lines. This should be changed if and when
431 * qemu supports IOMUX.
433 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
434 (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
435 qemu_set_irq(s->irq[1], 1);
436 } else {
437 qemu_set_irq(s->irq[1], 0);
440 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
441 qemu_set_irq(s->irq[0], 1);
442 } else {
443 qemu_set_irq(s->irq[0], 0);
447 static void imx_fec_do_tx(IMXFECState *s)
449 int frame_size = 0, descnt = 0;
450 uint8_t *ptr = s->frame;
451 uint32_t addr = s->tx_descriptor[0];
453 while (descnt++ < IMX_MAX_DESC) {
454 IMXFECBufDesc bd;
455 int len;
457 imx_fec_read_bd(&bd, addr);
458 if ((bd.flags & ENET_BD_R) == 0) {
460 /* Run out of descriptors to transmit. */
461 trace_imx_eth_tx_bd_busy();
463 break;
465 len = bd.length;
466 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
467 len = ENET_MAX_FRAME_SIZE - frame_size;
468 s->regs[ENET_EIR] |= ENET_INT_BABT;
470 dma_memory_read(&address_space_memory, bd.data, ptr, len);
471 ptr += len;
472 frame_size += len;
473 if (bd.flags & ENET_BD_L) {
474 /* Last buffer in frame. */
475 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
476 ptr = s->frame;
477 frame_size = 0;
478 s->regs[ENET_EIR] |= ENET_INT_TXF;
480 s->regs[ENET_EIR] |= ENET_INT_TXB;
481 bd.flags &= ~ENET_BD_R;
482 /* Write back the modified descriptor. */
483 imx_fec_write_bd(&bd, addr);
484 /* Advance to the next descriptor. */
485 if ((bd.flags & ENET_BD_W) != 0) {
486 addr = s->regs[ENET_TDSR];
487 } else {
488 addr += sizeof(bd);
492 s->tx_descriptor[0] = addr;
494 imx_eth_update(s);
497 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
499 int frame_size = 0, descnt = 0;
501 uint8_t *ptr = s->frame;
502 uint32_t addr, int_txb, int_txf, tdsr;
503 size_t ring;
505 switch (index) {
506 case ENET_TDAR:
507 ring = 0;
508 int_txb = ENET_INT_TXB;
509 int_txf = ENET_INT_TXF;
510 tdsr = ENET_TDSR;
511 break;
512 case ENET_TDAR1:
513 ring = 1;
514 int_txb = ENET_INT_TXB1;
515 int_txf = ENET_INT_TXF1;
516 tdsr = ENET_TDSR1;
517 break;
518 case ENET_TDAR2:
519 ring = 2;
520 int_txb = ENET_INT_TXB2;
521 int_txf = ENET_INT_TXF2;
522 tdsr = ENET_TDSR2;
523 break;
524 default:
525 qemu_log_mask(LOG_GUEST_ERROR,
526 "%s: bogus value for index %x\n",
527 __func__, index);
528 abort();
529 break;
532 addr = s->tx_descriptor[ring];
534 while (descnt++ < IMX_MAX_DESC) {
535 IMXENETBufDesc bd;
536 int len;
538 imx_enet_read_bd(&bd, addr);
539 if ((bd.flags & ENET_BD_R) == 0) {
540 /* Run out of descriptors to transmit. */
542 trace_imx_eth_tx_bd_busy();
544 break;
546 len = bd.length;
547 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
548 len = ENET_MAX_FRAME_SIZE - frame_size;
549 s->regs[ENET_EIR] |= ENET_INT_BABT;
551 dma_memory_read(&address_space_memory, bd.data, ptr, len);
552 ptr += len;
553 frame_size += len;
554 if (bd.flags & ENET_BD_L) {
555 if (bd.option & ENET_BD_PINS) {
556 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
557 if (IP_HEADER_VERSION(ip_hd) == 4) {
558 net_checksum_calculate(s->frame, frame_size);
561 if (bd.option & ENET_BD_IINS) {
562 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
563 /* We compute checksum only for IPv4 frames */
564 if (IP_HEADER_VERSION(ip_hd) == 4) {
565 uint16_t csum;
566 ip_hd->ip_sum = 0;
567 csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
568 ip_hd->ip_sum = cpu_to_be16(csum);
571 /* Last buffer in frame. */
573 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
574 ptr = s->frame;
576 frame_size = 0;
577 if (bd.option & ENET_BD_TX_INT) {
578 s->regs[ENET_EIR] |= int_txf;
580 /* Indicate that we've updated the last buffer descriptor. */
581 bd.last_buffer = ENET_BD_BDU;
583 if (bd.option & ENET_BD_TX_INT) {
584 s->regs[ENET_EIR] |= int_txb;
586 bd.flags &= ~ENET_BD_R;
587 /* Write back the modified descriptor. */
588 imx_enet_write_bd(&bd, addr);
589 /* Advance to the next descriptor. */
590 if ((bd.flags & ENET_BD_W) != 0) {
591 addr = s->regs[tdsr];
592 } else {
593 addr += sizeof(bd);
597 s->tx_descriptor[ring] = addr;
599 imx_eth_update(s);
602 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
604 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
605 imx_enet_do_tx(s, index);
606 } else {
607 imx_fec_do_tx(s);
611 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
613 IMXFECBufDesc bd;
615 imx_fec_read_bd(&bd, s->rx_descriptor);
617 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
619 if (!s->regs[ENET_RDAR]) {
620 trace_imx_eth_rx_bd_full();
621 } else if (flush) {
622 qemu_flush_queued_packets(qemu_get_queue(s->nic));
626 static void imx_eth_reset(DeviceState *d)
628 IMXFECState *s = IMX_FEC(d);
630 /* Reset the Device */
631 memset(s->regs, 0, sizeof(s->regs));
632 s->regs[ENET_ECR] = 0xf0000000;
633 s->regs[ENET_MIBC] = 0xc0000000;
634 s->regs[ENET_RCR] = 0x05ee0001;
635 s->regs[ENET_OPD] = 0x00010000;
637 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24)
638 | (s->conf.macaddr.a[1] << 16)
639 | (s->conf.macaddr.a[2] << 8)
640 | s->conf.macaddr.a[3];
641 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24)
642 | (s->conf.macaddr.a[5] << 16)
643 | 0x8808;
645 if (s->is_fec) {
646 s->regs[ENET_FRBR] = 0x00000600;
647 s->regs[ENET_FRSR] = 0x00000500;
648 s->regs[ENET_MIIGSK_ENR] = 0x00000006;
649 } else {
650 s->regs[ENET_RAEM] = 0x00000004;
651 s->regs[ENET_RAFL] = 0x00000004;
652 s->regs[ENET_TAEM] = 0x00000004;
653 s->regs[ENET_TAFL] = 0x00000008;
654 s->regs[ENET_TIPG] = 0x0000000c;
655 s->regs[ENET_FTRL] = 0x000007ff;
656 s->regs[ENET_ATPER] = 0x3b9aca00;
659 s->rx_descriptor = 0;
660 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
662 /* We also reset the PHY */
663 imx_phy_reset(s);
666 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
668 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
669 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
670 return 0;
673 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
675 switch (index) {
676 case ENET_FRBR:
677 case ENET_FRSR:
678 case ENET_MIIGSK_CFGR:
679 case ENET_MIIGSK_ENR:
680 return s->regs[index];
681 default:
682 return imx_default_read(s, index);
686 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
688 switch (index) {
689 case ENET_RSFL:
690 case ENET_RSEM:
691 case ENET_RAEM:
692 case ENET_RAFL:
693 case ENET_TSEM:
694 case ENET_TAEM:
695 case ENET_TAFL:
696 case ENET_TIPG:
697 case ENET_FTRL:
698 case ENET_TACC:
699 case ENET_RACC:
700 case ENET_ATCR:
701 case ENET_ATVR:
702 case ENET_ATOFF:
703 case ENET_ATPER:
704 case ENET_ATCOR:
705 case ENET_ATINC:
706 case ENET_ATSTMP:
707 case ENET_TGSR:
708 case ENET_TCSR0:
709 case ENET_TCCR0:
710 case ENET_TCSR1:
711 case ENET_TCCR1:
712 case ENET_TCSR2:
713 case ENET_TCCR2:
714 case ENET_TCSR3:
715 case ENET_TCCR3:
716 return s->regs[index];
717 default:
718 return imx_default_read(s, index);
722 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
724 uint32_t value = 0;
725 IMXFECState *s = IMX_FEC(opaque);
726 uint32_t index = offset >> 2;
728 switch (index) {
729 case ENET_EIR:
730 case ENET_EIMR:
731 case ENET_RDAR:
732 case ENET_TDAR:
733 case ENET_ECR:
734 case ENET_MMFR:
735 case ENET_MSCR:
736 case ENET_MIBC:
737 case ENET_RCR:
738 case ENET_TCR:
739 case ENET_PALR:
740 case ENET_PAUR:
741 case ENET_OPD:
742 case ENET_IAUR:
743 case ENET_IALR:
744 case ENET_GAUR:
745 case ENET_GALR:
746 case ENET_TFWR:
747 case ENET_RDSR:
748 case ENET_TDSR:
749 case ENET_MRBR:
750 value = s->regs[index];
751 break;
752 default:
753 if (s->is_fec) {
754 value = imx_fec_read(s, index);
755 } else {
756 value = imx_enet_read(s, index);
758 break;
761 trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
763 return value;
766 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
768 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
769 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
770 return;
773 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
775 switch (index) {
776 case ENET_FRBR:
777 /* FRBR is read only */
778 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
779 TYPE_IMX_FEC, __func__);
780 break;
781 case ENET_FRSR:
782 s->regs[index] = (value & 0x000003fc) | 0x00000400;
783 break;
784 case ENET_MIIGSK_CFGR:
785 s->regs[index] = value & 0x00000053;
786 break;
787 case ENET_MIIGSK_ENR:
788 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
789 break;
790 default:
791 imx_default_write(s, index, value);
792 break;
796 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
798 switch (index) {
799 case ENET_RSFL:
800 case ENET_RSEM:
801 case ENET_RAEM:
802 case ENET_RAFL:
803 case ENET_TSEM:
804 case ENET_TAEM:
805 case ENET_TAFL:
806 s->regs[index] = value & 0x000001ff;
807 break;
808 case ENET_TIPG:
809 s->regs[index] = value & 0x0000001f;
810 break;
811 case ENET_FTRL:
812 s->regs[index] = value & 0x00003fff;
813 break;
814 case ENET_TACC:
815 s->regs[index] = value & 0x00000019;
816 break;
817 case ENET_RACC:
818 s->regs[index] = value & 0x000000C7;
819 break;
820 case ENET_ATCR:
821 s->regs[index] = value & 0x00002a9d;
822 break;
823 case ENET_ATVR:
824 case ENET_ATOFF:
825 case ENET_ATPER:
826 s->regs[index] = value;
827 break;
828 case ENET_ATSTMP:
829 /* ATSTMP is read only */
830 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
831 TYPE_IMX_FEC, __func__);
832 break;
833 case ENET_ATCOR:
834 s->regs[index] = value & 0x7fffffff;
835 break;
836 case ENET_ATINC:
837 s->regs[index] = value & 0x00007f7f;
838 break;
839 case ENET_TGSR:
840 /* implement clear timer flag */
841 s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
842 break;
843 case ENET_TCSR0:
844 case ENET_TCSR1:
845 case ENET_TCSR2:
846 case ENET_TCSR3:
847 s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
848 s->regs[index] &= ~0x0000007d; /* writable fields */
849 s->regs[index] |= (value & 0x0000007d);
850 break;
851 case ENET_TCCR0:
852 case ENET_TCCR1:
853 case ENET_TCCR2:
854 case ENET_TCCR3:
855 s->regs[index] = value;
856 break;
857 default:
858 imx_default_write(s, index, value);
859 break;
863 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
864 unsigned size)
866 IMXFECState *s = IMX_FEC(opaque);
867 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
868 uint32_t index = offset >> 2;
870 trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
872 switch (index) {
873 case ENET_EIR:
874 s->regs[index] &= ~value;
875 break;
876 case ENET_EIMR:
877 s->regs[index] = value;
878 break;
879 case ENET_RDAR:
880 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
881 if (!s->regs[index]) {
882 imx_eth_enable_rx(s, true);
884 } else {
885 s->regs[index] = 0;
887 break;
888 case ENET_TDAR1:
889 case ENET_TDAR2:
890 if (unlikely(single_tx_ring)) {
891 qemu_log_mask(LOG_GUEST_ERROR,
892 "[%s]%s: trying to access TDAR2 or TDAR1\n",
893 TYPE_IMX_FEC, __func__);
894 return;
896 /* fall through */
897 case ENET_TDAR:
898 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
899 s->regs[index] = ENET_TDAR_TDAR;
900 imx_eth_do_tx(s, index);
902 s->regs[index] = 0;
903 break;
904 case ENET_ECR:
905 if (value & ENET_ECR_RESET) {
906 return imx_eth_reset(DEVICE(s));
908 s->regs[index] = value;
909 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
910 s->regs[ENET_RDAR] = 0;
911 s->rx_descriptor = s->regs[ENET_RDSR];
912 s->regs[ENET_TDAR] = 0;
913 s->regs[ENET_TDAR1] = 0;
914 s->regs[ENET_TDAR2] = 0;
915 s->tx_descriptor[0] = s->regs[ENET_TDSR];
916 s->tx_descriptor[1] = s->regs[ENET_TDSR1];
917 s->tx_descriptor[2] = s->regs[ENET_TDSR2];
919 break;
920 case ENET_MMFR:
921 s->regs[index] = value;
922 if (extract32(value, 29, 1)) {
923 /* This is a read operation */
924 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
925 imx_phy_read(s,
926 extract32(value,
927 18, 10)));
928 } else {
929 /* This a write operation */
930 imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
932 /* raise the interrupt as the PHY operation is done */
933 s->regs[ENET_EIR] |= ENET_INT_MII;
934 break;
935 case ENET_MSCR:
936 s->regs[index] = value & 0xfe;
937 break;
938 case ENET_MIBC:
939 /* TODO: Implement MIB. */
940 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
941 break;
942 case ENET_RCR:
943 s->regs[index] = value & 0x07ff003f;
944 /* TODO: Implement LOOP mode. */
945 break;
946 case ENET_TCR:
947 /* We transmit immediately, so raise GRA immediately. */
948 s->regs[index] = value;
949 if (value & 1) {
950 s->regs[ENET_EIR] |= ENET_INT_GRA;
952 break;
953 case ENET_PALR:
954 s->regs[index] = value;
955 s->conf.macaddr.a[0] = value >> 24;
956 s->conf.macaddr.a[1] = value >> 16;
957 s->conf.macaddr.a[2] = value >> 8;
958 s->conf.macaddr.a[3] = value;
959 break;
960 case ENET_PAUR:
961 s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
962 s->conf.macaddr.a[4] = value >> 24;
963 s->conf.macaddr.a[5] = value >> 16;
964 break;
965 case ENET_OPD:
966 s->regs[index] = (value & 0x0000ffff) | 0x00010000;
967 break;
968 case ENET_IAUR:
969 case ENET_IALR:
970 case ENET_GAUR:
971 case ENET_GALR:
972 /* TODO: implement MAC hash filtering. */
973 break;
974 case ENET_TFWR:
975 if (s->is_fec) {
976 s->regs[index] = value & 0x3;
977 } else {
978 s->regs[index] = value & 0x13f;
980 break;
981 case ENET_RDSR:
982 if (s->is_fec) {
983 s->regs[index] = value & ~3;
984 } else {
985 s->regs[index] = value & ~7;
987 s->rx_descriptor = s->regs[index];
988 break;
989 case ENET_TDSR:
990 if (s->is_fec) {
991 s->regs[index] = value & ~3;
992 } else {
993 s->regs[index] = value & ~7;
995 s->tx_descriptor[0] = s->regs[index];
996 break;
997 case ENET_TDSR1:
998 if (unlikely(single_tx_ring)) {
999 qemu_log_mask(LOG_GUEST_ERROR,
1000 "[%s]%s: trying to access TDSR1\n",
1001 TYPE_IMX_FEC, __func__);
1002 return;
1005 s->regs[index] = value & ~7;
1006 s->tx_descriptor[1] = s->regs[index];
1007 break;
1008 case ENET_TDSR2:
1009 if (unlikely(single_tx_ring)) {
1010 qemu_log_mask(LOG_GUEST_ERROR,
1011 "[%s]%s: trying to access TDSR2\n",
1012 TYPE_IMX_FEC, __func__);
1013 return;
1016 s->regs[index] = value & ~7;
1017 s->tx_descriptor[2] = s->regs[index];
1018 break;
1019 case ENET_MRBR:
1020 s->regs[index] = value & 0x00003ff0;
1021 break;
1022 default:
1023 if (s->is_fec) {
1024 imx_fec_write(s, index, value);
1025 } else {
1026 imx_enet_write(s, index, value);
1028 return;
1031 imx_eth_update(s);
1034 static bool imx_eth_can_receive(NetClientState *nc)
1036 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1038 return !!s->regs[ENET_RDAR];
1041 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1042 size_t len)
1044 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1045 IMXFECBufDesc bd;
1046 uint32_t flags = 0;
1047 uint32_t addr;
1048 uint32_t crc;
1049 uint32_t buf_addr;
1050 uint8_t *crc_ptr;
1051 unsigned int buf_len;
1052 size_t size = len;
1054 trace_imx_fec_receive(size);
1056 if (!s->regs[ENET_RDAR]) {
1057 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1058 TYPE_IMX_FEC, __func__);
1059 return 0;
1062 /* 4 bytes for the CRC. */
1063 size += 4;
1064 crc = cpu_to_be32(crc32(~0, buf, size));
1065 crc_ptr = (uint8_t *) &crc;
1067 /* Huge frames are truncated. */
1068 if (size > ENET_MAX_FRAME_SIZE) {
1069 size = ENET_MAX_FRAME_SIZE;
1070 flags |= ENET_BD_TR | ENET_BD_LG;
1073 /* Frames larger than the user limit just set error flags. */
1074 if (size > (s->regs[ENET_RCR] >> 16)) {
1075 flags |= ENET_BD_LG;
1078 addr = s->rx_descriptor;
1079 while (size > 0) {
1080 imx_fec_read_bd(&bd, addr);
1081 if ((bd.flags & ENET_BD_E) == 0) {
1082 /* No descriptors available. Bail out. */
1084 * FIXME: This is wrong. We should probably either
1085 * save the remainder for when more RX buffers are
1086 * available, or flag an error.
1088 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1089 TYPE_IMX_FEC, __func__);
1090 break;
1092 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1093 bd.length = buf_len;
1094 size -= buf_len;
1096 trace_imx_fec_receive_len(addr, bd.length);
1098 /* The last 4 bytes are the CRC. */
1099 if (size < 4) {
1100 buf_len += size - 4;
1102 buf_addr = bd.data;
1103 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1104 buf += buf_len;
1105 if (size < 4) {
1106 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1107 crc_ptr, 4 - size);
1108 crc_ptr += 4 - size;
1110 bd.flags &= ~ENET_BD_E;
1111 if (size == 0) {
1112 /* Last buffer in frame. */
1113 bd.flags |= flags | ENET_BD_L;
1115 trace_imx_fec_receive_last(bd.flags);
1117 s->regs[ENET_EIR] |= ENET_INT_RXF;
1118 } else {
1119 s->regs[ENET_EIR] |= ENET_INT_RXB;
1121 imx_fec_write_bd(&bd, addr);
1122 /* Advance to the next descriptor. */
1123 if ((bd.flags & ENET_BD_W) != 0) {
1124 addr = s->regs[ENET_RDSR];
1125 } else {
1126 addr += sizeof(bd);
1129 s->rx_descriptor = addr;
1130 imx_eth_enable_rx(s, false);
1131 imx_eth_update(s);
1132 return len;
1135 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1136 size_t len)
1138 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1139 IMXENETBufDesc bd;
1140 uint32_t flags = 0;
1141 uint32_t addr;
1142 uint32_t crc;
1143 uint32_t buf_addr;
1144 uint8_t *crc_ptr;
1145 unsigned int buf_len;
1146 size_t size = len;
1147 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1149 trace_imx_enet_receive(size);
1151 if (!s->regs[ENET_RDAR]) {
1152 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1153 TYPE_IMX_FEC, __func__);
1154 return 0;
1157 /* 4 bytes for the CRC. */
1158 size += 4;
1159 crc = cpu_to_be32(crc32(~0, buf, size));
1160 crc_ptr = (uint8_t *) &crc;
1162 if (shift16) {
1163 size += 2;
1166 /* Huge frames are truncated. */
1167 if (size > s->regs[ENET_FTRL]) {
1168 size = s->regs[ENET_FTRL];
1169 flags |= ENET_BD_TR | ENET_BD_LG;
1172 /* Frames larger than the user limit just set error flags. */
1173 if (size > (s->regs[ENET_RCR] >> 16)) {
1174 flags |= ENET_BD_LG;
1177 addr = s->rx_descriptor;
1178 while (size > 0) {
1179 imx_enet_read_bd(&bd, addr);
1180 if ((bd.flags & ENET_BD_E) == 0) {
1181 /* No descriptors available. Bail out. */
1183 * FIXME: This is wrong. We should probably either
1184 * save the remainder for when more RX buffers are
1185 * available, or flag an error.
1187 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1188 TYPE_IMX_FEC, __func__);
1189 break;
1191 buf_len = MIN(size, s->regs[ENET_MRBR]);
1192 bd.length = buf_len;
1193 size -= buf_len;
1195 trace_imx_enet_receive_len(addr, bd.length);
1197 /* The last 4 bytes are the CRC. */
1198 if (size < 4) {
1199 buf_len += size - 4;
1201 buf_addr = bd.data;
1203 if (shift16) {
1205 * If SHIFT16 bit of ENETx_RACC register is set we need to
1206 * align the payload to 4-byte boundary.
1208 const uint8_t zeros[2] = { 0 };
1210 dma_memory_write(&address_space_memory, buf_addr,
1211 zeros, sizeof(zeros));
1213 buf_addr += sizeof(zeros);
1214 buf_len -= sizeof(zeros);
1216 /* We only do this once per Ethernet frame */
1217 shift16 = false;
1220 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1221 buf += buf_len;
1222 if (size < 4) {
1223 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1224 crc_ptr, 4 - size);
1225 crc_ptr += 4 - size;
1227 bd.flags &= ~ENET_BD_E;
1228 if (size == 0) {
1229 /* Last buffer in frame. */
1230 bd.flags |= flags | ENET_BD_L;
1232 trace_imx_enet_receive_last(bd.flags);
1234 /* Indicate that we've updated the last buffer descriptor. */
1235 bd.last_buffer = ENET_BD_BDU;
1236 if (bd.option & ENET_BD_RX_INT) {
1237 s->regs[ENET_EIR] |= ENET_INT_RXF;
1239 } else {
1240 if (bd.option & ENET_BD_RX_INT) {
1241 s->regs[ENET_EIR] |= ENET_INT_RXB;
1244 imx_enet_write_bd(&bd, addr);
1245 /* Advance to the next descriptor. */
1246 if ((bd.flags & ENET_BD_W) != 0) {
1247 addr = s->regs[ENET_RDSR];
1248 } else {
1249 addr += sizeof(bd);
1252 s->rx_descriptor = addr;
1253 imx_eth_enable_rx(s, false);
1254 imx_eth_update(s);
1255 return len;
1258 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1259 size_t len)
1261 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1263 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1264 return imx_enet_receive(nc, buf, len);
1265 } else {
1266 return imx_fec_receive(nc, buf, len);
1270 static const MemoryRegionOps imx_eth_ops = {
1271 .read = imx_eth_read,
1272 .write = imx_eth_write,
1273 .valid.min_access_size = 4,
1274 .valid.max_access_size = 4,
1275 .endianness = DEVICE_NATIVE_ENDIAN,
1278 static void imx_eth_cleanup(NetClientState *nc)
1280 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1282 s->nic = NULL;
1285 static NetClientInfo imx_eth_net_info = {
1286 .type = NET_CLIENT_DRIVER_NIC,
1287 .size = sizeof(NICState),
1288 .can_receive = imx_eth_can_receive,
1289 .receive = imx_eth_receive,
1290 .cleanup = imx_eth_cleanup,
1291 .link_status_changed = imx_eth_set_link,
1295 static void imx_eth_realize(DeviceState *dev, Error **errp)
1297 IMXFECState *s = IMX_FEC(dev);
1298 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1300 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1301 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1302 sysbus_init_mmio(sbd, &s->iomem);
1303 sysbus_init_irq(sbd, &s->irq[0]);
1304 sysbus_init_irq(sbd, &s->irq[1]);
1306 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1308 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1309 object_get_typename(OBJECT(dev)),
1310 dev->id, s);
1312 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1315 static Property imx_eth_properties[] = {
1316 DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1317 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1318 DEFINE_PROP_END_OF_LIST(),
1321 static void imx_eth_class_init(ObjectClass *klass, void *data)
1323 DeviceClass *dc = DEVICE_CLASS(klass);
1325 dc->vmsd = &vmstate_imx_eth;
1326 dc->reset = imx_eth_reset;
1327 device_class_set_props(dc, imx_eth_properties);
1328 dc->realize = imx_eth_realize;
1329 dc->desc = "i.MX FEC/ENET Ethernet Controller";
1332 static void imx_fec_init(Object *obj)
1334 IMXFECState *s = IMX_FEC(obj);
1336 s->is_fec = true;
1339 static void imx_enet_init(Object *obj)
1341 IMXFECState *s = IMX_FEC(obj);
1343 s->is_fec = false;
1346 static const TypeInfo imx_fec_info = {
1347 .name = TYPE_IMX_FEC,
1348 .parent = TYPE_SYS_BUS_DEVICE,
1349 .instance_size = sizeof(IMXFECState),
1350 .instance_init = imx_fec_init,
1351 .class_init = imx_eth_class_init,
1354 static const TypeInfo imx_enet_info = {
1355 .name = TYPE_IMX_ENET,
1356 .parent = TYPE_IMX_FEC,
1357 .instance_init = imx_enet_init,
1360 static void imx_eth_register_types(void)
1362 type_register_static(&imx_fec_info);
1363 type_register_static(&imx_enet_info);
1366 type_init(imx_eth_register_types)