s390x: CPACF: Handle key wrap machine options
[qemu/ar7.git] / translate-all.c
blob9f47ce7f71453229f2b299c566b5562193996857
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62 #include "qemu/timer.h"
64 //#define DEBUG_TB_INVALIDATE
65 //#define DEBUG_FLUSH
66 /* make various TB consistency checks */
67 //#define DEBUG_TB_CHECK
69 #if !defined(CONFIG_USER_ONLY)
70 /* TB consistency checks only implemented for usermode emulation. */
71 #undef DEBUG_TB_CHECK
72 #endif
74 #define SMC_BITMAP_USE_THRESHOLD 10
76 typedef struct PageDesc {
77 /* list of TBs intersecting this ram page */
78 TranslationBlock *first_tb;
79 /* in order to optimize self modifying code, we count the number
80 of lookups we do to a given page to use a bitmap */
81 unsigned int code_write_count;
82 uint8_t *code_bitmap;
83 #if defined(CONFIG_USER_ONLY)
84 unsigned long flags;
85 #endif
86 } PageDesc;
88 /* In system mode we want L1_MAP to be based on ram offsets,
89 while in user mode we want it to be based on virtual addresses. */
90 #if !defined(CONFIG_USER_ONLY)
91 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
92 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
93 #else
94 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
95 #endif
96 #else
97 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
98 #endif
100 /* Size of the L2 (and L3, etc) page tables. */
101 #define V_L2_BITS 10
102 #define V_L2_SIZE (1 << V_L2_BITS)
104 /* The bits remaining after N lower levels of page tables. */
105 #define V_L1_BITS_REM \
106 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
108 #if V_L1_BITS_REM < 4
109 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
110 #else
111 #define V_L1_BITS V_L1_BITS_REM
112 #endif
114 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
116 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
118 uintptr_t qemu_real_host_page_size;
119 uintptr_t qemu_host_page_size;
120 uintptr_t qemu_host_page_mask;
122 /* This is a multi-level map on the virtual address space.
123 The bottom level has pointers to PageDesc. */
124 static void *l1_map[V_L1_SIZE];
126 /* code generation context */
127 TCGContext tcg_ctx;
129 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
130 tb_page_addr_t phys_page2);
131 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
133 void cpu_gen_init(void)
135 tcg_context_init(&tcg_ctx);
138 /* return non zero if the very first instruction is invalid so that
139 the virtual CPU can trigger an exception.
141 '*gen_code_size_ptr' contains the size of the generated code (host
142 code).
144 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
146 TCGContext *s = &tcg_ctx;
147 tcg_insn_unit *gen_code_buf;
148 int gen_code_size;
149 #ifdef CONFIG_PROFILER
150 int64_t ti;
151 #endif
153 #ifdef CONFIG_PROFILER
154 s->tb_count1++; /* includes aborted translations because of
155 exceptions */
156 ti = profile_getclock();
157 #endif
158 tcg_func_start(s);
160 gen_intermediate_code(env, tb);
162 trace_translate_block(tb, tb->pc, tb->tc_ptr);
164 /* generate machine code */
165 gen_code_buf = tb->tc_ptr;
166 tb->tb_next_offset[0] = 0xffff;
167 tb->tb_next_offset[1] = 0xffff;
168 s->tb_next_offset = tb->tb_next_offset;
169 #ifdef USE_DIRECT_JUMP
170 s->tb_jmp_offset = tb->tb_jmp_offset;
171 s->tb_next = NULL;
172 #else
173 s->tb_jmp_offset = NULL;
174 s->tb_next = tb->tb_next;
175 #endif
177 #ifdef CONFIG_PROFILER
178 s->tb_count++;
179 s->interm_time += profile_getclock() - ti;
180 s->code_time -= profile_getclock();
181 #endif
182 gen_code_size = tcg_gen_code(s, gen_code_buf);
183 *gen_code_size_ptr = gen_code_size;
184 #ifdef CONFIG_PROFILER
185 s->code_time += profile_getclock();
186 s->code_in_len += tb->size;
187 s->code_out_len += gen_code_size;
188 #endif
190 #ifdef DEBUG_DISAS
191 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
192 qemu_log("OUT: [size=%d]\n", gen_code_size);
193 log_disas(tb->tc_ptr, gen_code_size);
194 qemu_log("\n");
195 qemu_log_flush();
197 #endif
198 return 0;
201 /* The cpu state corresponding to 'searched_pc' is restored.
203 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
204 uintptr_t searched_pc)
206 CPUArchState *env = cpu->env_ptr;
207 TCGContext *s = &tcg_ctx;
208 int j;
209 uintptr_t tc_ptr;
210 #ifdef CONFIG_PROFILER
211 int64_t ti;
212 #endif
214 #ifdef CONFIG_PROFILER
215 ti = profile_getclock();
216 #endif
217 tcg_func_start(s);
219 gen_intermediate_code_pc(env, tb);
221 if (tb->cflags & CF_USE_ICOUNT) {
222 /* Reset the cycle counter to the start of the block. */
223 cpu->icount_decr.u16.low += tb->icount;
224 /* Clear the IO flag. */
225 cpu->can_do_io = 0;
228 /* find opc index corresponding to search_pc */
229 tc_ptr = (uintptr_t)tb->tc_ptr;
230 if (searched_pc < tc_ptr)
231 return -1;
233 s->tb_next_offset = tb->tb_next_offset;
234 #ifdef USE_DIRECT_JUMP
235 s->tb_jmp_offset = tb->tb_jmp_offset;
236 s->tb_next = NULL;
237 #else
238 s->tb_jmp_offset = NULL;
239 s->tb_next = tb->tb_next;
240 #endif
241 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
242 searched_pc - tc_ptr);
243 if (j < 0)
244 return -1;
245 /* now find start of instruction before */
246 while (s->gen_opc_instr_start[j] == 0) {
247 j--;
249 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
251 restore_state_to_opc(env, tb, j);
253 #ifdef CONFIG_PROFILER
254 s->restore_time += profile_getclock() - ti;
255 s->restore_count++;
256 #endif
257 return 0;
260 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
262 TranslationBlock *tb;
264 tb = tb_find_pc(retaddr);
265 if (tb) {
266 cpu_restore_state_from_tb(cpu, tb, retaddr);
267 if (tb->cflags & CF_NOCACHE) {
268 /* one-shot translation, invalidate it immediately */
269 cpu->current_tb = NULL;
270 tb_phys_invalidate(tb, -1);
271 tb_free(tb);
273 return true;
275 return false;
278 #ifdef _WIN32
279 static __attribute__((unused)) void map_exec(void *addr, long size)
281 DWORD old_protect;
282 VirtualProtect(addr, size,
283 PAGE_EXECUTE_READWRITE, &old_protect);
285 #else
286 static __attribute__((unused)) void map_exec(void *addr, long size)
288 unsigned long start, end, page_size;
290 page_size = getpagesize();
291 start = (unsigned long)addr;
292 start &= ~(page_size - 1);
294 end = (unsigned long)addr + size;
295 end += page_size - 1;
296 end &= ~(page_size - 1);
298 mprotect((void *)start, end - start,
299 PROT_READ | PROT_WRITE | PROT_EXEC);
301 #endif
303 void page_size_init(void)
305 /* NOTE: we can always suppose that qemu_host_page_size >=
306 TARGET_PAGE_SIZE */
307 qemu_real_host_page_size = getpagesize();
308 if (qemu_host_page_size == 0) {
309 qemu_host_page_size = qemu_real_host_page_size;
311 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
312 qemu_host_page_size = TARGET_PAGE_SIZE;
314 qemu_host_page_mask = ~(qemu_host_page_size - 1);
317 static void page_init(void)
319 page_size_init();
320 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 #ifdef HAVE_KINFO_GETVMMAP
323 struct kinfo_vmentry *freep;
324 int i, cnt;
326 freep = kinfo_getvmmap(getpid(), &cnt);
327 if (freep) {
328 mmap_lock();
329 for (i = 0; i < cnt; i++) {
330 unsigned long startaddr, endaddr;
332 startaddr = freep[i].kve_start;
333 endaddr = freep[i].kve_end;
334 if (h2g_valid(startaddr)) {
335 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337 if (h2g_valid(endaddr)) {
338 endaddr = h2g(endaddr);
339 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
340 } else {
341 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
342 endaddr = ~0ul;
343 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
344 #endif
348 free(freep);
349 mmap_unlock();
351 #else
352 FILE *f;
354 last_brk = (unsigned long)sbrk(0);
356 f = fopen("/compat/linux/proc/self/maps", "r");
357 if (f) {
358 mmap_lock();
360 do {
361 unsigned long startaddr, endaddr;
362 int n;
364 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366 if (n == 2 && h2g_valid(startaddr)) {
367 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369 if (h2g_valid(endaddr)) {
370 endaddr = h2g(endaddr);
371 } else {
372 endaddr = ~0ul;
374 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 } while (!feof(f));
378 fclose(f);
379 mmap_unlock();
381 #endif
383 #endif
386 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388 PageDesc *pd;
389 void **lp;
390 int i;
392 #if defined(CONFIG_USER_ONLY)
393 /* We can't use g_malloc because it may recurse into a locked mutex. */
394 # define ALLOC(P, SIZE) \
395 do { \
396 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
397 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
398 } while (0)
399 #else
400 # define ALLOC(P, SIZE) \
401 do { P = g_malloc0(SIZE); } while (0)
402 #endif
404 /* Level 1. Always allocated. */
405 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
407 /* Level 2..N-1. */
408 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
409 void **p = *lp;
411 if (p == NULL) {
412 if (!alloc) {
413 return NULL;
415 ALLOC(p, sizeof(void *) * V_L2_SIZE);
416 *lp = p;
419 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
422 pd = *lp;
423 if (pd == NULL) {
424 if (!alloc) {
425 return NULL;
427 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
428 *lp = pd;
431 #undef ALLOC
433 return pd + (index & (V_L2_SIZE - 1));
436 static inline PageDesc *page_find(tb_page_addr_t index)
438 return page_find_alloc(index, 0);
441 #if !defined(CONFIG_USER_ONLY)
442 #define mmap_lock() do { } while (0)
443 #define mmap_unlock() do { } while (0)
444 #endif
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
454 /* ??? Should configure for this, not list operating systems here. */
455 #if (defined(__linux__) \
456 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
457 || defined(__DragonFly__) || defined(__OpenBSD__) \
458 || defined(__NetBSD__))
459 # define USE_MMAP
460 #endif
462 /* Minimum size of the code gen buffer. This number is randomly chosen,
463 but not so small that we can't have a fair number of TB's live. */
464 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
466 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
467 indicated, this is constrained by the range of direct branches on the
468 host cpu, as used by the TCG implementation of goto_tb. */
469 #if defined(__x86_64__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__sparc__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
473 #elif defined(__aarch64__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
475 #elif defined(__arm__)
476 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477 #elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
480 #elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
484 #else
485 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486 #endif
488 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
490 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
494 static inline size_t size_code_gen_buffer(size_t tb_size)
496 /* Size the buffer. */
497 if (tb_size == 0) {
498 #ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500 #else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506 #endif
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
514 tcg_ctx.code_gen_buffer_size = tb_size;
515 return tb_size;
518 #ifdef __mips__
519 /* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521 static inline bool cross_256mb(void *addr, size_t size)
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
526 /* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529 static inline void *split_cross_256mb(void *buf1, size_t size1)
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
543 #endif
545 #ifdef USE_STATIC_CODE_GEN_BUFFER
546 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
549 static inline void *alloc_code_gen_buffer(void)
551 void *buf = static_code_gen_buffer;
552 #ifdef __mips__
553 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
554 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
556 #endif
557 map_exec(buf, tcg_ctx.code_gen_buffer_size);
558 return buf;
560 #elif defined(USE_MMAP)
561 static inline void *alloc_code_gen_buffer(void)
563 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
564 uintptr_t start = 0;
565 void *buf;
567 /* Constrain the position of the buffer based on the host cpu.
568 Note that these addresses are chosen in concert with the
569 addresses assigned in the relevant linker script file. */
570 # if defined(__PIE__) || defined(__PIC__)
571 /* Don't bother setting a preferred location if we're building
572 a position-independent executable. We're more likely to get
573 an address near the main executable if we let the kernel
574 choose the address. */
575 # elif defined(__x86_64__) && defined(MAP_32BIT)
576 /* Force the memory down into low memory with the executable.
577 Leave the choice of exact location with the kernel. */
578 flags |= MAP_32BIT;
579 /* Cannot expect to map more than 800MB in low memory. */
580 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
581 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
583 # elif defined(__sparc__)
584 start = 0x40000000ul;
585 # elif defined(__s390x__)
586 start = 0x90000000ul;
587 # elif defined(__mips__)
588 /* ??? We ought to more explicitly manage layout for softmmu too. */
589 # ifdef CONFIG_USER_ONLY
590 start = 0x68000000ul;
591 # elif _MIPS_SIM == _ABI64
592 start = 0x128000000ul;
593 # else
594 start = 0x08000000ul;
595 # endif
596 # endif
598 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
599 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
600 if (buf == MAP_FAILED) {
601 return NULL;
604 #ifdef __mips__
605 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
606 /* Try again, with the original still mapped, to avoid re-acquiring
607 that 256mb crossing. This time don't specify an address. */
608 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
609 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
610 flags, -1, 0);
611 if (buf2 != MAP_FAILED) {
612 if (!cross_256mb(buf2, size1)) {
613 /* Success! Use the new buffer. */
614 munmap(buf, size1);
615 return buf2;
617 /* Failure. Work with what we had. */
618 munmap(buf2, size1);
621 /* Split the original buffer. Free the smaller half. */
622 buf2 = split_cross_256mb(buf, size1);
623 size2 = tcg_ctx.code_gen_buffer_size;
624 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
625 return buf2;
627 #endif
629 return buf;
631 #else
632 static inline void *alloc_code_gen_buffer(void)
634 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
636 if (buf == NULL) {
637 return NULL;
640 #ifdef __mips__
641 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
642 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
643 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
644 /* Success! Use the new buffer. */
645 free(buf);
646 buf = buf2;
647 } else {
648 /* Failure. Work with what we had. Since this is malloc
649 and not mmap, we can't free the other half. */
650 free(buf2);
651 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
654 #endif
656 map_exec(buf, tcg_ctx.code_gen_buffer_size);
657 return buf;
659 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
661 static inline void code_gen_alloc(size_t tb_size)
663 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
664 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
665 if (tcg_ctx.code_gen_buffer == NULL) {
666 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
667 exit(1);
670 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
671 QEMU_MADV_HUGEPAGE);
673 /* Steal room for the prologue at the end of the buffer. This ensures
674 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
675 from TB's to the prologue are going to be in range. It also means
676 that we don't need to mark (additional) portions of the data segment
677 as executable. */
678 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
679 tcg_ctx.code_gen_buffer_size - 1024;
680 tcg_ctx.code_gen_buffer_size -= 1024;
682 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
683 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
684 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
685 CODE_GEN_AVG_BLOCK_SIZE;
686 tcg_ctx.tb_ctx.tbs =
687 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
690 /* Must be called before using the QEMU cpus. 'tb_size' is the size
691 (in bytes) allocated to the translation buffer. Zero means default
692 size. */
693 void tcg_exec_init(unsigned long tb_size)
695 cpu_gen_init();
696 code_gen_alloc(tb_size);
697 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
698 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
699 page_init();
700 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
701 /* There's no guest base to take into account, so go ahead and
702 initialize the prologue now. */
703 tcg_prologue_init(&tcg_ctx);
704 #endif
707 bool tcg_enabled(void)
709 return tcg_ctx.code_gen_buffer != NULL;
712 /* Allocate a new translation block. Flush the translation buffer if
713 too many translation blocks or too much generated code. */
714 static TranslationBlock *tb_alloc(target_ulong pc)
716 TranslationBlock *tb;
718 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
719 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
720 tcg_ctx.code_gen_buffer_max_size) {
721 return NULL;
723 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
724 tb->pc = pc;
725 tb->cflags = 0;
726 return tb;
729 void tb_free(TranslationBlock *tb)
731 /* In practice this is mostly used for single use temporary TB
732 Ignore the hard cases and just back up if this TB happens to
733 be the last one generated. */
734 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
735 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
736 tcg_ctx.code_gen_ptr = tb->tc_ptr;
737 tcg_ctx.tb_ctx.nb_tbs--;
741 static inline void invalidate_page_bitmap(PageDesc *p)
743 if (p->code_bitmap) {
744 g_free(p->code_bitmap);
745 p->code_bitmap = NULL;
747 p->code_write_count = 0;
750 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
751 static void page_flush_tb_1(int level, void **lp)
753 int i;
755 if (*lp == NULL) {
756 return;
758 if (level == 0) {
759 PageDesc *pd = *lp;
761 for (i = 0; i < V_L2_SIZE; ++i) {
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
765 } else {
766 void **pp = *lp;
768 for (i = 0; i < V_L2_SIZE; ++i) {
769 page_flush_tb_1(level - 1, pp + i);
774 static void page_flush_tb(void)
776 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
787 CPUState *cpu = ENV_GET_CPU(env1);
789 #if defined(DEBUG_FLUSH)
790 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
791 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
792 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
793 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
794 tcg_ctx.tb_ctx.nb_tbs : 0);
795 #endif
796 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
797 > tcg_ctx.code_gen_buffer_size) {
798 cpu_abort(cpu, "Internal error: code buffer overflow\n");
800 tcg_ctx.tb_ctx.nb_tbs = 0;
802 CPU_FOREACH(cpu) {
803 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
806 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
807 page_flush_tb();
809 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
810 /* XXX: flush processor icache at this point if cache flush is
811 expensive */
812 tcg_ctx.tb_ctx.tb_flush_count++;
815 #ifdef DEBUG_TB_CHECK
817 static void tb_invalidate_check(target_ulong address)
819 TranslationBlock *tb;
820 int i;
822 address &= TARGET_PAGE_MASK;
823 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
824 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
825 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
826 address >= tb->pc + tb->size)) {
827 printf("ERROR invalidate: address=" TARGET_FMT_lx
828 " PC=%08lx size=%04x\n",
829 address, (long)tb->pc, tb->size);
835 /* verify that all the pages have correct rights for code */
836 static void tb_page_check(void)
838 TranslationBlock *tb;
839 int i, flags1, flags2;
841 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
842 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
843 tb = tb->phys_hash_next) {
844 flags1 = page_get_flags(tb->pc);
845 flags2 = page_get_flags(tb->pc + tb->size - 1);
846 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
847 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
848 (long)tb->pc, tb->size, flags1, flags2);
854 #endif
856 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
858 TranslationBlock *tb1;
860 for (;;) {
861 tb1 = *ptb;
862 if (tb1 == tb) {
863 *ptb = tb1->phys_hash_next;
864 break;
866 ptb = &tb1->phys_hash_next;
870 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
872 TranslationBlock *tb1;
873 unsigned int n1;
875 for (;;) {
876 tb1 = *ptb;
877 n1 = (uintptr_t)tb1 & 3;
878 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
879 if (tb1 == tb) {
880 *ptb = tb1->page_next[n1];
881 break;
883 ptb = &tb1->page_next[n1];
887 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
889 TranslationBlock *tb1, **ptb;
890 unsigned int n1;
892 ptb = &tb->jmp_next[n];
893 tb1 = *ptb;
894 if (tb1) {
895 /* find tb(n) in circular list */
896 for (;;) {
897 tb1 = *ptb;
898 n1 = (uintptr_t)tb1 & 3;
899 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
900 if (n1 == n && tb1 == tb) {
901 break;
903 if (n1 == 2) {
904 ptb = &tb1->jmp_first;
905 } else {
906 ptb = &tb1->jmp_next[n1];
909 /* now we can suppress tb(n) from the list */
910 *ptb = tb->jmp_next[n];
912 tb->jmp_next[n] = NULL;
916 /* reset the jump entry 'n' of a TB so that it is not chained to
917 another TB */
918 static inline void tb_reset_jump(TranslationBlock *tb, int n)
920 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
923 /* invalidate one TB */
924 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
926 CPUState *cpu;
927 PageDesc *p;
928 unsigned int h, n1;
929 tb_page_addr_t phys_pc;
930 TranslationBlock *tb1, *tb2;
932 /* remove the TB from the hash list */
933 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
934 h = tb_phys_hash_func(phys_pc);
935 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
937 /* remove the TB from the page list */
938 if (tb->page_addr[0] != page_addr) {
939 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
943 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
944 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
945 tb_page_remove(&p->first_tb, tb);
946 invalidate_page_bitmap(p);
949 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
951 /* remove the TB from the hash list */
952 h = tb_jmp_cache_hash_func(tb->pc);
953 CPU_FOREACH(cpu) {
954 if (cpu->tb_jmp_cache[h] == tb) {
955 cpu->tb_jmp_cache[h] = NULL;
959 /* suppress this TB from the two jump lists */
960 tb_jmp_remove(tb, 0);
961 tb_jmp_remove(tb, 1);
963 /* suppress any remaining jumps to this TB */
964 tb1 = tb->jmp_first;
965 for (;;) {
966 n1 = (uintptr_t)tb1 & 3;
967 if (n1 == 2) {
968 break;
970 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
971 tb2 = tb1->jmp_next[n1];
972 tb_reset_jump(tb1, n1);
973 tb1->jmp_next[n1] = NULL;
974 tb1 = tb2;
976 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
978 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
981 static inline void set_bits(uint8_t *tab, int start, int len)
983 int end, mask, end1;
985 end = start + len;
986 tab += start >> 3;
987 mask = 0xff << (start & 7);
988 if ((start & ~7) == (end & ~7)) {
989 if (start < end) {
990 mask &= ~(0xff << (end & 7));
991 *tab |= mask;
993 } else {
994 *tab++ |= mask;
995 start = (start + 8) & ~7;
996 end1 = end & ~7;
997 while (start < end1) {
998 *tab++ = 0xff;
999 start += 8;
1001 if (start < end) {
1002 mask = ~(0xff << (end & 7));
1003 *tab |= mask;
1008 static void build_page_bitmap(PageDesc *p)
1010 int n, tb_start, tb_end;
1011 TranslationBlock *tb;
1013 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1015 tb = p->first_tb;
1016 while (tb != NULL) {
1017 n = (uintptr_t)tb & 3;
1018 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1019 /* NOTE: this is subtle as a TB may span two physical pages */
1020 if (n == 0) {
1021 /* NOTE: tb_end may be after the end of the page, but
1022 it is not a problem */
1023 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1024 tb_end = tb_start + tb->size;
1025 if (tb_end > TARGET_PAGE_SIZE) {
1026 tb_end = TARGET_PAGE_SIZE;
1028 } else {
1029 tb_start = 0;
1030 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1032 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1033 tb = tb->page_next[n];
1037 TranslationBlock *tb_gen_code(CPUState *cpu,
1038 target_ulong pc, target_ulong cs_base,
1039 int flags, int cflags)
1041 CPUArchState *env = cpu->env_ptr;
1042 TranslationBlock *tb;
1043 tb_page_addr_t phys_pc, phys_page2;
1044 target_ulong virt_page2;
1045 int code_gen_size;
1047 phys_pc = get_page_addr_code(env, pc);
1048 if (use_icount) {
1049 cflags |= CF_USE_ICOUNT;
1051 tb = tb_alloc(pc);
1052 if (!tb) {
1053 /* flush must be done */
1054 tb_flush(env);
1055 /* cannot fail at this point */
1056 tb = tb_alloc(pc);
1057 /* Don't forget to invalidate previous TB info. */
1058 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1060 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1061 tb->cs_base = cs_base;
1062 tb->flags = flags;
1063 tb->cflags = cflags;
1064 cpu_gen_code(env, tb, &code_gen_size);
1065 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1066 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1068 /* check next page if needed */
1069 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1070 phys_page2 = -1;
1071 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1072 phys_page2 = get_page_addr_code(env, virt_page2);
1074 tb_link_page(tb, phys_pc, phys_page2);
1075 return tb;
1079 * Invalidate all TBs which intersect with the target physical address range
1080 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1081 * 'is_cpu_write_access' should be true if called from a real cpu write
1082 * access: the virtual CPU will exit the current TB if code is modified inside
1083 * this TB.
1085 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1086 int is_cpu_write_access)
1088 while (start < end) {
1089 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1090 start &= TARGET_PAGE_MASK;
1091 start += TARGET_PAGE_SIZE;
1096 * Invalidate all TBs which intersect with the target physical address range
1097 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1098 * 'is_cpu_write_access' should be true if called from a real cpu write
1099 * access: the virtual CPU will exit the current TB if code is modified inside
1100 * this TB.
1102 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1103 int is_cpu_write_access)
1105 TranslationBlock *tb, *tb_next, *saved_tb;
1106 CPUState *cpu = current_cpu;
1107 #if defined(TARGET_HAS_PRECISE_SMC)
1108 CPUArchState *env = NULL;
1109 #endif
1110 tb_page_addr_t tb_start, tb_end;
1111 PageDesc *p;
1112 int n;
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 int current_tb_not_found = is_cpu_write_access;
1115 TranslationBlock *current_tb = NULL;
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
1120 #endif /* TARGET_HAS_PRECISE_SMC */
1122 p = page_find(start >> TARGET_PAGE_BITS);
1123 if (!p) {
1124 return;
1126 if (!p->code_bitmap &&
1127 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1128 is_cpu_write_access) {
1129 /* build code bitmap */
1130 build_page_bitmap(p);
1132 #if defined(TARGET_HAS_PRECISE_SMC)
1133 if (cpu != NULL) {
1134 env = cpu->env_ptr;
1136 #endif
1138 /* we remove all the TBs in the range [start, end[ */
1139 /* XXX: see if in some cases it could be faster to invalidate all
1140 the code */
1141 tb = p->first_tb;
1142 while (tb != NULL) {
1143 n = (uintptr_t)tb & 3;
1144 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1145 tb_next = tb->page_next[n];
1146 /* NOTE: this is subtle as a TB may span two physical pages */
1147 if (n == 0) {
1148 /* NOTE: tb_end may be after the end of the page, but
1149 it is not a problem */
1150 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1151 tb_end = tb_start + tb->size;
1152 } else {
1153 tb_start = tb->page_addr[1];
1154 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1156 if (!(tb_end <= start || tb_start >= end)) {
1157 #ifdef TARGET_HAS_PRECISE_SMC
1158 if (current_tb_not_found) {
1159 current_tb_not_found = 0;
1160 current_tb = NULL;
1161 if (cpu->mem_io_pc) {
1162 /* now we have a real cpu fault */
1163 current_tb = tb_find_pc(cpu->mem_io_pc);
1166 if (current_tb == tb &&
1167 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1168 /* If we are modifying the current TB, we must stop
1169 its execution. We could be more precise by checking
1170 that the modification is after the current PC, but it
1171 would require a specialized function to partially
1172 restore the CPU state */
1174 current_tb_modified = 1;
1175 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1176 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1177 &current_flags);
1179 #endif /* TARGET_HAS_PRECISE_SMC */
1180 /* we need to do that to handle the case where a signal
1181 occurs while doing tb_phys_invalidate() */
1182 saved_tb = NULL;
1183 if (cpu != NULL) {
1184 saved_tb = cpu->current_tb;
1185 cpu->current_tb = NULL;
1187 tb_phys_invalidate(tb, -1);
1188 if (cpu != NULL) {
1189 cpu->current_tb = saved_tb;
1190 if (cpu->interrupt_request && cpu->current_tb) {
1191 cpu_interrupt(cpu, cpu->interrupt_request);
1195 tb = tb_next;
1197 #if !defined(CONFIG_USER_ONLY)
1198 /* if no code remaining, no need to continue to use slow writes */
1199 if (!p->first_tb) {
1200 invalidate_page_bitmap(p);
1201 if (is_cpu_write_access) {
1202 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
1205 #endif
1206 #ifdef TARGET_HAS_PRECISE_SMC
1207 if (current_tb_modified) {
1208 /* we generate a block containing just the instruction
1209 modifying the memory. It will ensure that it cannot modify
1210 itself */
1211 cpu->current_tb = NULL;
1212 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1213 cpu_resume_from_signal(cpu, NULL);
1215 #endif
1218 /* len must be <= 8 and start must be a multiple of len */
1219 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1221 PageDesc *p;
1222 int offset, b;
1224 #if 0
1225 if (1) {
1226 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1227 cpu_single_env->mem_io_vaddr, len,
1228 cpu_single_env->eip,
1229 cpu_single_env->eip +
1230 (intptr_t)cpu_single_env->segs[R_CS].base);
1232 #endif
1233 p = page_find(start >> TARGET_PAGE_BITS);
1234 if (!p) {
1235 return;
1237 if (p->code_bitmap) {
1238 offset = start & ~TARGET_PAGE_MASK;
1239 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1240 if (b & ((1 << len) - 1)) {
1241 goto do_invalidate;
1243 } else {
1244 do_invalidate:
1245 tb_invalidate_phys_page_range(start, start + len, 1);
1249 #if !defined(CONFIG_SOFTMMU)
1250 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1251 uintptr_t pc, void *puc,
1252 bool locked)
1254 TranslationBlock *tb;
1255 PageDesc *p;
1256 int n;
1257 #ifdef TARGET_HAS_PRECISE_SMC
1258 TranslationBlock *current_tb = NULL;
1259 CPUState *cpu = current_cpu;
1260 CPUArchState *env = NULL;
1261 int current_tb_modified = 0;
1262 target_ulong current_pc = 0;
1263 target_ulong current_cs_base = 0;
1264 int current_flags = 0;
1265 #endif
1267 addr &= TARGET_PAGE_MASK;
1268 p = page_find(addr >> TARGET_PAGE_BITS);
1269 if (!p) {
1270 return;
1272 tb = p->first_tb;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (tb && pc != 0) {
1275 current_tb = tb_find_pc(pc);
1277 if (cpu != NULL) {
1278 env = cpu->env_ptr;
1280 #endif
1281 while (tb != NULL) {
1282 n = (uintptr_t)tb & 3;
1283 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1284 #ifdef TARGET_HAS_PRECISE_SMC
1285 if (current_tb == tb &&
1286 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1287 /* If we are modifying the current TB, we must stop
1288 its execution. We could be more precise by checking
1289 that the modification is after the current PC, but it
1290 would require a specialized function to partially
1291 restore the CPU state */
1293 current_tb_modified = 1;
1294 cpu_restore_state_from_tb(cpu, current_tb, pc);
1295 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1296 &current_flags);
1298 #endif /* TARGET_HAS_PRECISE_SMC */
1299 tb_phys_invalidate(tb, addr);
1300 tb = tb->page_next[n];
1302 p->first_tb = NULL;
1303 #ifdef TARGET_HAS_PRECISE_SMC
1304 if (current_tb_modified) {
1305 /* we generate a block containing just the instruction
1306 modifying the memory. It will ensure that it cannot modify
1307 itself */
1308 cpu->current_tb = NULL;
1309 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1310 if (locked) {
1311 mmap_unlock();
1313 cpu_resume_from_signal(cpu, puc);
1315 #endif
1317 #endif
1319 /* add the tb in the target page and protect it if necessary */
1320 static inline void tb_alloc_page(TranslationBlock *tb,
1321 unsigned int n, tb_page_addr_t page_addr)
1323 PageDesc *p;
1324 #ifndef CONFIG_USER_ONLY
1325 bool page_already_protected;
1326 #endif
1328 tb->page_addr[n] = page_addr;
1329 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1330 tb->page_next[n] = p->first_tb;
1331 #ifndef CONFIG_USER_ONLY
1332 page_already_protected = p->first_tb != NULL;
1333 #endif
1334 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1335 invalidate_page_bitmap(p);
1337 #if defined(TARGET_HAS_SMC) || 1
1339 #if defined(CONFIG_USER_ONLY)
1340 if (p->flags & PAGE_WRITE) {
1341 target_ulong addr;
1342 PageDesc *p2;
1343 int prot;
1345 /* force the host page as non writable (writes will have a
1346 page fault + mprotect overhead) */
1347 page_addr &= qemu_host_page_mask;
1348 prot = 0;
1349 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1350 addr += TARGET_PAGE_SIZE) {
1352 p2 = page_find(addr >> TARGET_PAGE_BITS);
1353 if (!p2) {
1354 continue;
1356 prot |= p2->flags;
1357 p2->flags &= ~PAGE_WRITE;
1359 mprotect(g2h(page_addr), qemu_host_page_size,
1360 (prot & PAGE_BITS) & ~PAGE_WRITE);
1361 #ifdef DEBUG_TB_INVALIDATE
1362 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1363 page_addr);
1364 #endif
1366 #else
1367 /* if some code is already present, then the pages are already
1368 protected. So we handle the case where only the first TB is
1369 allocated in a physical page */
1370 if (!page_already_protected) {
1371 tlb_protect_code(page_addr);
1373 #endif
1375 #endif /* TARGET_HAS_SMC */
1378 /* add a new TB and link it to the physical page tables. phys_page2 is
1379 (-1) to indicate that only one page contains the TB. */
1380 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1381 tb_page_addr_t phys_page2)
1383 unsigned int h;
1384 TranslationBlock **ptb;
1386 /* Grab the mmap lock to stop another thread invalidating this TB
1387 before we are done. */
1388 mmap_lock();
1389 /* add in the physical hash table */
1390 h = tb_phys_hash_func(phys_pc);
1391 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1392 tb->phys_hash_next = *ptb;
1393 *ptb = tb;
1395 /* add in the page list */
1396 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1397 if (phys_page2 != -1) {
1398 tb_alloc_page(tb, 1, phys_page2);
1399 } else {
1400 tb->page_addr[1] = -1;
1403 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1404 tb->jmp_next[0] = NULL;
1405 tb->jmp_next[1] = NULL;
1407 /* init original jump addresses */
1408 if (tb->tb_next_offset[0] != 0xffff) {
1409 tb_reset_jump(tb, 0);
1411 if (tb->tb_next_offset[1] != 0xffff) {
1412 tb_reset_jump(tb, 1);
1415 #ifdef DEBUG_TB_CHECK
1416 tb_page_check();
1417 #endif
1418 mmap_unlock();
1421 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1422 tb[1].tc_ptr. Return NULL if not found */
1423 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1425 int m_min, m_max, m;
1426 uintptr_t v;
1427 TranslationBlock *tb;
1429 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1430 return NULL;
1432 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1433 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1434 return NULL;
1436 /* binary search (cf Knuth) */
1437 m_min = 0;
1438 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1439 while (m_min <= m_max) {
1440 m = (m_min + m_max) >> 1;
1441 tb = &tcg_ctx.tb_ctx.tbs[m];
1442 v = (uintptr_t)tb->tc_ptr;
1443 if (v == tc_ptr) {
1444 return tb;
1445 } else if (tc_ptr < v) {
1446 m_max = m - 1;
1447 } else {
1448 m_min = m + 1;
1451 return &tcg_ctx.tb_ctx.tbs[m_max];
1454 #if !defined(CONFIG_USER_ONLY)
1455 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1457 ram_addr_t ram_addr;
1458 MemoryRegion *mr;
1459 hwaddr l = 1;
1461 mr = address_space_translate(as, addr, &addr, &l, false);
1462 if (!(memory_region_is_ram(mr)
1463 || memory_region_is_romd(mr))) {
1464 return;
1466 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1467 + addr;
1468 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1470 #endif /* !defined(CONFIG_USER_ONLY) */
1472 void tb_check_watchpoint(CPUState *cpu)
1474 TranslationBlock *tb;
1476 tb = tb_find_pc(cpu->mem_io_pc);
1477 if (!tb) {
1478 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1479 (void *)cpu->mem_io_pc);
1481 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1482 tb_phys_invalidate(tb, -1);
1485 #ifndef CONFIG_USER_ONLY
1486 /* mask must never be zero, except for A20 change call */
1487 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1489 int old_mask;
1491 old_mask = cpu->interrupt_request;
1492 cpu->interrupt_request |= mask;
1495 * If called from iothread context, wake the target cpu in
1496 * case its halted.
1498 if (!qemu_cpu_is_self(cpu)) {
1499 qemu_cpu_kick(cpu);
1500 return;
1503 if (use_icount) {
1504 cpu->icount_decr.u16.high = 0xffff;
1505 if (!cpu_can_do_io(cpu)
1506 && (mask & ~old_mask) != 0) {
1507 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1509 } else {
1510 cpu->tcg_exit_req = 1;
1514 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1516 /* in deterministic execution mode, instructions doing device I/Os
1517 must be at the end of the TB */
1518 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1520 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1521 CPUArchState *env = cpu->env_ptr;
1522 #endif
1523 TranslationBlock *tb;
1524 uint32_t n, cflags;
1525 target_ulong pc, cs_base;
1526 uint64_t flags;
1528 tb = tb_find_pc(retaddr);
1529 if (!tb) {
1530 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1531 (void *)retaddr);
1533 n = cpu->icount_decr.u16.low + tb->icount;
1534 cpu_restore_state_from_tb(cpu, tb, retaddr);
1535 /* Calculate how many instructions had been executed before the fault
1536 occurred. */
1537 n = n - cpu->icount_decr.u16.low;
1538 /* Generate a new TB ending on the I/O insn. */
1539 n++;
1540 /* On MIPS and SH, delay slot instructions can only be restarted if
1541 they were already the first instruction in the TB. If this is not
1542 the first instruction in a TB then re-execute the preceding
1543 branch. */
1544 #if defined(TARGET_MIPS)
1545 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1546 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1547 cpu->icount_decr.u16.low++;
1548 env->hflags &= ~MIPS_HFLAG_BMASK;
1550 #elif defined(TARGET_SH4)
1551 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1552 && n > 1) {
1553 env->pc -= 2;
1554 cpu->icount_decr.u16.low++;
1555 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1557 #endif
1558 /* This should never happen. */
1559 if (n > CF_COUNT_MASK) {
1560 cpu_abort(cpu, "TB too big during recompile");
1563 cflags = n | CF_LAST_IO;
1564 pc = tb->pc;
1565 cs_base = tb->cs_base;
1566 flags = tb->flags;
1567 tb_phys_invalidate(tb, -1);
1568 /* FIXME: In theory this could raise an exception. In practice
1569 we have already translated the block once so it's probably ok. */
1570 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1571 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1572 the first in the TB) then we end up generating a whole new TB and
1573 repeating the fault, which is horribly inefficient.
1574 Better would be to execute just this insn uncached, or generate a
1575 second new TB. */
1576 cpu_resume_from_signal(cpu, NULL);
1579 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1581 unsigned int i;
1583 /* Discard jump cache entries for any tb which might potentially
1584 overlap the flushed page. */
1585 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1586 memset(&cpu->tb_jmp_cache[i], 0,
1587 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1589 i = tb_jmp_cache_hash_page(addr);
1590 memset(&cpu->tb_jmp_cache[i], 0,
1591 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1594 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1596 int i, target_code_size, max_target_code_size;
1597 int direct_jmp_count, direct_jmp2_count, cross_page;
1598 TranslationBlock *tb;
1600 target_code_size = 0;
1601 max_target_code_size = 0;
1602 cross_page = 0;
1603 direct_jmp_count = 0;
1604 direct_jmp2_count = 0;
1605 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1606 tb = &tcg_ctx.tb_ctx.tbs[i];
1607 target_code_size += tb->size;
1608 if (tb->size > max_target_code_size) {
1609 max_target_code_size = tb->size;
1611 if (tb->page_addr[1] != -1) {
1612 cross_page++;
1614 if (tb->tb_next_offset[0] != 0xffff) {
1615 direct_jmp_count++;
1616 if (tb->tb_next_offset[1] != 0xffff) {
1617 direct_jmp2_count++;
1621 /* XXX: avoid using doubles ? */
1622 cpu_fprintf(f, "Translation buffer state:\n");
1623 cpu_fprintf(f, "gen code size %td/%zd\n",
1624 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1625 tcg_ctx.code_gen_buffer_max_size);
1626 cpu_fprintf(f, "TB count %d/%d\n",
1627 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1628 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1629 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1630 tcg_ctx.tb_ctx.nb_tbs : 0,
1631 max_target_code_size);
1632 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1633 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1634 tcg_ctx.code_gen_buffer) /
1635 tcg_ctx.tb_ctx.nb_tbs : 0,
1636 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1637 tcg_ctx.code_gen_buffer) /
1638 target_code_size : 0);
1639 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1640 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1641 tcg_ctx.tb_ctx.nb_tbs : 0);
1642 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1643 direct_jmp_count,
1644 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1645 tcg_ctx.tb_ctx.nb_tbs : 0,
1646 direct_jmp2_count,
1647 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1648 tcg_ctx.tb_ctx.nb_tbs : 0);
1649 cpu_fprintf(f, "\nStatistics:\n");
1650 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1651 cpu_fprintf(f, "TB invalidate count %d\n",
1652 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1653 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1654 tcg_dump_info(f, cpu_fprintf);
1657 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1659 tcg_dump_op_count(f, cpu_fprintf);
1662 #else /* CONFIG_USER_ONLY */
1664 void cpu_interrupt(CPUState *cpu, int mask)
1666 cpu->interrupt_request |= mask;
1667 cpu->tcg_exit_req = 1;
1671 * Walks guest process memory "regions" one by one
1672 * and calls callback function 'fn' for each region.
1674 struct walk_memory_regions_data {
1675 walk_memory_regions_fn fn;
1676 void *priv;
1677 target_ulong start;
1678 int prot;
1681 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1682 target_ulong end, int new_prot)
1684 if (data->start != -1u) {
1685 int rc = data->fn(data->priv, data->start, end, data->prot);
1686 if (rc != 0) {
1687 return rc;
1691 data->start = (new_prot ? end : -1u);
1692 data->prot = new_prot;
1694 return 0;
1697 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1698 target_ulong base, int level, void **lp)
1700 target_ulong pa;
1701 int i, rc;
1703 if (*lp == NULL) {
1704 return walk_memory_regions_end(data, base, 0);
1707 if (level == 0) {
1708 PageDesc *pd = *lp;
1710 for (i = 0; i < V_L2_SIZE; ++i) {
1711 int prot = pd[i].flags;
1713 pa = base | (i << TARGET_PAGE_BITS);
1714 if (prot != data->prot) {
1715 rc = walk_memory_regions_end(data, pa, prot);
1716 if (rc != 0) {
1717 return rc;
1721 } else {
1722 void **pp = *lp;
1724 for (i = 0; i < V_L2_SIZE; ++i) {
1725 pa = base | ((target_ulong)i <<
1726 (TARGET_PAGE_BITS + V_L2_BITS * level));
1727 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1728 if (rc != 0) {
1729 return rc;
1734 return 0;
1737 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1739 struct walk_memory_regions_data data;
1740 uintptr_t i;
1742 data.fn = fn;
1743 data.priv = priv;
1744 data.start = -1u;
1745 data.prot = 0;
1747 for (i = 0; i < V_L1_SIZE; i++) {
1748 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1749 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1750 if (rc != 0) {
1751 return rc;
1755 return walk_memory_regions_end(&data, 0, 0);
1758 static int dump_region(void *priv, target_ulong start,
1759 target_ulong end, unsigned long prot)
1761 FILE *f = (FILE *)priv;
1763 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1764 " "TARGET_FMT_lx" %c%c%c\n",
1765 start, end, end - start,
1766 ((prot & PAGE_READ) ? 'r' : '-'),
1767 ((prot & PAGE_WRITE) ? 'w' : '-'),
1768 ((prot & PAGE_EXEC) ? 'x' : '-'));
1770 return 0;
1773 /* dump memory mappings */
1774 void page_dump(FILE *f)
1776 const int length = sizeof(target_ulong) * 2;
1777 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1778 length, "start", length, "end", length, "size", "prot");
1779 walk_memory_regions(f, dump_region);
1782 int page_get_flags(target_ulong address)
1784 PageDesc *p;
1786 p = page_find(address >> TARGET_PAGE_BITS);
1787 if (!p) {
1788 return 0;
1790 return p->flags;
1793 /* Modify the flags of a page and invalidate the code if necessary.
1794 The flag PAGE_WRITE_ORG is positioned automatically depending
1795 on PAGE_WRITE. The mmap_lock should already be held. */
1796 void page_set_flags(target_ulong start, target_ulong end, int flags)
1798 target_ulong addr, len;
1800 /* This function should never be called with addresses outside the
1801 guest address space. If this assert fires, it probably indicates
1802 a missing call to h2g_valid. */
1803 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1804 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1805 #endif
1806 assert(start < end);
1808 start = start & TARGET_PAGE_MASK;
1809 end = TARGET_PAGE_ALIGN(end);
1811 if (flags & PAGE_WRITE) {
1812 flags |= PAGE_WRITE_ORG;
1815 for (addr = start, len = end - start;
1816 len != 0;
1817 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1818 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1820 /* If the write protection bit is set, then we invalidate
1821 the code inside. */
1822 if (!(p->flags & PAGE_WRITE) &&
1823 (flags & PAGE_WRITE) &&
1824 p->first_tb) {
1825 tb_invalidate_phys_page(addr, 0, NULL, false);
1827 p->flags = flags;
1831 int page_check_range(target_ulong start, target_ulong len, int flags)
1833 PageDesc *p;
1834 target_ulong end;
1835 target_ulong addr;
1837 /* This function should never be called with addresses outside the
1838 guest address space. If this assert fires, it probably indicates
1839 a missing call to h2g_valid. */
1840 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1841 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1842 #endif
1844 if (len == 0) {
1845 return 0;
1847 if (start + len - 1 < start) {
1848 /* We've wrapped around. */
1849 return -1;
1852 /* must do before we loose bits in the next step */
1853 end = TARGET_PAGE_ALIGN(start + len);
1854 start = start & TARGET_PAGE_MASK;
1856 for (addr = start, len = end - start;
1857 len != 0;
1858 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1859 p = page_find(addr >> TARGET_PAGE_BITS);
1860 if (!p) {
1861 return -1;
1863 if (!(p->flags & PAGE_VALID)) {
1864 return -1;
1867 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1868 return -1;
1870 if (flags & PAGE_WRITE) {
1871 if (!(p->flags & PAGE_WRITE_ORG)) {
1872 return -1;
1874 /* unprotect the page if it was put read-only because it
1875 contains translated code */
1876 if (!(p->flags & PAGE_WRITE)) {
1877 if (!page_unprotect(addr, 0, NULL)) {
1878 return -1;
1883 return 0;
1886 /* called from signal handler: invalidate the code and unprotect the
1887 page. Return TRUE if the fault was successfully handled. */
1888 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1890 unsigned int prot;
1891 PageDesc *p;
1892 target_ulong host_start, host_end, addr;
1894 /* Technically this isn't safe inside a signal handler. However we
1895 know this only ever happens in a synchronous SEGV handler, so in
1896 practice it seems to be ok. */
1897 mmap_lock();
1899 p = page_find(address >> TARGET_PAGE_BITS);
1900 if (!p) {
1901 mmap_unlock();
1902 return 0;
1905 /* if the page was really writable, then we change its
1906 protection back to writable */
1907 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1908 host_start = address & qemu_host_page_mask;
1909 host_end = host_start + qemu_host_page_size;
1911 prot = 0;
1912 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1913 p = page_find(addr >> TARGET_PAGE_BITS);
1914 p->flags |= PAGE_WRITE;
1915 prot |= p->flags;
1917 /* and since the content will be modified, we must invalidate
1918 the corresponding translated code. */
1919 tb_invalidate_phys_page(addr, pc, puc, true);
1920 #ifdef DEBUG_TB_CHECK
1921 tb_invalidate_check(addr);
1922 #endif
1924 mprotect((void *)g2h(host_start), qemu_host_page_size,
1925 prot & PAGE_BITS);
1927 mmap_unlock();
1928 return 1;
1930 mmap_unlock();
1931 return 0;
1933 #endif /* CONFIG_USER_ONLY */