hw/i386/pc: Store pointers to IDE buses in PCMachineState
[qemu/ar7.git] / block / nvme.c
blob0a0a0a6b36cd0c1b08f7098b03cc8d5a445ed190
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/module.h"
23 #include "qemu/cutils.h"
24 #include "qemu/option.h"
25 #include "qemu/memalign.h"
26 #include "qemu/vfio-helpers.h"
27 #include "block/block-io.h"
28 #include "block/block_int.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/replay.h"
31 #include "trace.h"
33 #include "block/nvme.h"
35 #define NVME_SQ_ENTRY_BYTES 64
36 #define NVME_CQ_ENTRY_BYTES 16
37 #define NVME_QUEUE_SIZE 128
38 #define NVME_DOORBELL_SIZE 4096
41 * We have to leave one slot empty as that is the full queue case where
42 * head == tail + 1.
44 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
46 typedef struct BDRVNVMeState BDRVNVMeState;
48 /* Same index is used for queues and IRQs */
49 #define INDEX_ADMIN 0
50 #define INDEX_IO(n) (1 + n)
52 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
53 enum {
54 MSIX_SHARED_IRQ_IDX = 0,
55 MSIX_IRQ_COUNT = 1
58 typedef struct {
59 int32_t head, tail;
60 uint8_t *queue;
61 uint64_t iova;
62 /* Hardware MMIO register */
63 volatile uint32_t *doorbell;
64 } NVMeQueue;
66 typedef struct {
67 BlockCompletionFunc *cb;
68 void *opaque;
69 int cid;
70 void *prp_list_page;
71 uint64_t prp_list_iova;
72 int free_req_next; /* q->reqs[] index of next free req */
73 } NVMeRequest;
75 typedef struct {
76 QemuMutex lock;
78 /* Read from I/O code path, initialized under BQL */
79 BDRVNVMeState *s;
80 int index;
82 /* Fields protected by BQL */
83 uint8_t *prp_list_pages;
85 /* Fields protected by @lock */
86 CoQueue free_req_queue;
87 NVMeQueue sq, cq;
88 int cq_phase;
89 int free_req_head;
90 NVMeRequest reqs[NVME_NUM_REQS];
91 int need_kick;
92 int inflight;
94 /* Thread-safe, no lock necessary */
95 QEMUBH *completion_bh;
96 } NVMeQueuePair;
98 struct BDRVNVMeState {
99 AioContext *aio_context;
100 QEMUVFIOState *vfio;
101 void *bar0_wo_map;
102 /* Memory mapped registers */
103 volatile struct {
104 uint32_t sq_tail;
105 uint32_t cq_head;
106 } *doorbells;
107 /* The submission/completion queue pairs.
108 * [0]: admin queue.
109 * [1..]: io queues.
111 NVMeQueuePair **queues;
112 unsigned queue_count;
113 size_t page_size;
114 /* How many uint32_t elements does each doorbell entry take. */
115 size_t doorbell_scale;
116 bool write_cache_supported;
117 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
119 uint64_t nsze; /* Namespace size reported by identify command */
120 int nsid; /* The namespace id to read/write data. */
121 int blkshift;
123 uint64_t max_transfer;
125 bool supports_write_zeroes;
126 bool supports_discard;
128 CoMutex dma_map_lock;
129 CoQueue dma_flush_queue;
131 /* Total size of mapped qiov, accessed under dma_map_lock */
132 int dma_map_count;
134 /* PCI address (required for nvme_refresh_filename()) */
135 char *device;
137 struct {
138 uint64_t completion_errors;
139 uint64_t aligned_accesses;
140 uint64_t unaligned_accesses;
141 } stats;
144 #define NVME_BLOCK_OPT_DEVICE "device"
145 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
147 static void nvme_process_completion_bh(void *opaque);
149 static QemuOptsList runtime_opts = {
150 .name = "nvme",
151 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
152 .desc = {
154 .name = NVME_BLOCK_OPT_DEVICE,
155 .type = QEMU_OPT_STRING,
156 .help = "NVMe PCI device address",
159 .name = NVME_BLOCK_OPT_NAMESPACE,
160 .type = QEMU_OPT_NUMBER,
161 .help = "NVMe namespace",
163 { /* end of list */ }
167 /* Returns true on success, false on failure. */
168 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
169 unsigned nentries, size_t entry_bytes, Error **errp)
171 size_t bytes;
172 int r;
174 bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
175 q->head = q->tail = 0;
176 q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
177 if (!q->queue) {
178 error_setg(errp, "Cannot allocate queue");
179 return false;
181 memset(q->queue, 0, bytes);
182 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
183 if (r) {
184 error_prepend(errp, "Cannot map queue: ");
186 return r == 0;
189 static void nvme_free_queue(NVMeQueue *q)
191 qemu_vfree(q->queue);
194 static void nvme_free_queue_pair(NVMeQueuePair *q)
196 trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
197 if (q->completion_bh) {
198 qemu_bh_delete(q->completion_bh);
200 nvme_free_queue(&q->sq);
201 nvme_free_queue(&q->cq);
202 qemu_vfree(q->prp_list_pages);
203 qemu_mutex_destroy(&q->lock);
204 g_free(q);
207 static void nvme_free_req_queue_cb(void *opaque)
209 NVMeQueuePair *q = opaque;
211 qemu_mutex_lock(&q->lock);
212 while (q->free_req_head != -1 &&
213 qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
214 /* Retry waiting requests */
216 qemu_mutex_unlock(&q->lock);
219 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
220 AioContext *aio_context,
221 unsigned idx, size_t size,
222 Error **errp)
224 int i, r;
225 NVMeQueuePair *q;
226 uint64_t prp_list_iova;
227 size_t bytes;
229 q = g_try_new0(NVMeQueuePair, 1);
230 if (!q) {
231 error_setg(errp, "Cannot allocate queue pair");
232 return NULL;
234 trace_nvme_create_queue_pair(idx, q, size, aio_context,
235 event_notifier_get_fd(s->irq_notifier));
236 bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
237 qemu_real_host_page_size());
238 q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
239 if (!q->prp_list_pages) {
240 error_setg(errp, "Cannot allocate PRP page list");
241 goto fail;
243 memset(q->prp_list_pages, 0, bytes);
244 qemu_mutex_init(&q->lock);
245 q->s = s;
246 q->index = idx;
247 qemu_co_queue_init(&q->free_req_queue);
248 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
249 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
250 false, &prp_list_iova, errp);
251 if (r) {
252 error_prepend(errp, "Cannot map buffer for DMA: ");
253 goto fail;
255 q->free_req_head = -1;
256 for (i = 0; i < NVME_NUM_REQS; i++) {
257 NVMeRequest *req = &q->reqs[i];
258 req->cid = i + 1;
259 req->free_req_next = q->free_req_head;
260 q->free_req_head = i;
261 req->prp_list_page = q->prp_list_pages + i * s->page_size;
262 req->prp_list_iova = prp_list_iova + i * s->page_size;
265 if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
266 goto fail;
268 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
270 if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
271 goto fail;
273 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
275 return q;
276 fail:
277 nvme_free_queue_pair(q);
278 return NULL;
281 /* With q->lock */
282 static void nvme_kick(NVMeQueuePair *q)
284 BDRVNVMeState *s = q->s;
286 if (!q->need_kick) {
287 return;
289 trace_nvme_kick(s, q->index);
290 assert(!(q->sq.tail & 0xFF00));
291 /* Fence the write to submission queue entry before notifying the device. */
292 smp_wmb();
293 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
294 q->inflight += q->need_kick;
295 q->need_kick = 0;
298 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
300 NVMeRequest *req;
302 req = &q->reqs[q->free_req_head];
303 q->free_req_head = req->free_req_next;
304 req->free_req_next = -1;
305 return req;
308 /* Return a free request element if any, otherwise return NULL. */
309 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
311 QEMU_LOCK_GUARD(&q->lock);
312 if (q->free_req_head == -1) {
313 return NULL;
315 return nvme_get_free_req_nofail_locked(q);
319 * Wait for a free request to become available if necessary, then
320 * return it.
322 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
324 QEMU_LOCK_GUARD(&q->lock);
326 while (q->free_req_head == -1) {
327 trace_nvme_free_req_queue_wait(q->s, q->index);
328 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
331 return nvme_get_free_req_nofail_locked(q);
334 /* With q->lock */
335 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
337 req->free_req_next = q->free_req_head;
338 q->free_req_head = req - q->reqs;
341 /* With q->lock */
342 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
344 if (!qemu_co_queue_empty(&q->free_req_queue)) {
345 replay_bh_schedule_oneshot_event(q->s->aio_context,
346 nvme_free_req_queue_cb, q);
350 /* Insert a request in the freelist and wake waiters */
351 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
353 qemu_mutex_lock(&q->lock);
354 nvme_put_free_req_locked(q, req);
355 nvme_wake_free_req_locked(q);
356 qemu_mutex_unlock(&q->lock);
359 static inline int nvme_translate_error(const NvmeCqe *c)
361 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
362 if (status) {
363 trace_nvme_error(le32_to_cpu(c->result),
364 le16_to_cpu(c->sq_head),
365 le16_to_cpu(c->sq_id),
366 le16_to_cpu(c->cid),
367 le16_to_cpu(status));
369 switch (status) {
370 case 0:
371 return 0;
372 case 1:
373 return -ENOSYS;
374 case 2:
375 return -EINVAL;
376 default:
377 return -EIO;
381 /* With q->lock */
382 static bool nvme_process_completion(NVMeQueuePair *q)
384 BDRVNVMeState *s = q->s;
385 bool progress = false;
386 NVMeRequest *preq;
387 NVMeRequest req;
388 NvmeCqe *c;
390 trace_nvme_process_completion(s, q->index, q->inflight);
393 * Support re-entrancy when a request cb() function invokes aio_poll().
394 * Pending completions must be visible to aio_poll() so that a cb()
395 * function can wait for the completion of another request.
397 * The aio_poll() loop will execute our BH and we'll resume completion
398 * processing there.
400 qemu_bh_schedule(q->completion_bh);
402 assert(q->inflight >= 0);
403 while (q->inflight) {
404 int ret;
405 int16_t cid;
407 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
408 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
409 break;
411 ret = nvme_translate_error(c);
412 if (ret) {
413 s->stats.completion_errors++;
415 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
416 if (!q->cq.head) {
417 q->cq_phase = !q->cq_phase;
419 cid = le16_to_cpu(c->cid);
420 if (cid == 0 || cid > NVME_NUM_REQS) {
421 warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32
422 ", should be within: 1..%u inclusively", cid,
423 NVME_NUM_REQS);
424 continue;
426 trace_nvme_complete_command(s, q->index, cid);
427 preq = &q->reqs[cid - 1];
428 req = *preq;
429 assert(req.cid == cid);
430 assert(req.cb);
431 nvme_put_free_req_locked(q, preq);
432 preq->cb = preq->opaque = NULL;
433 q->inflight--;
434 qemu_mutex_unlock(&q->lock);
435 req.cb(req.opaque, ret);
436 qemu_mutex_lock(&q->lock);
437 progress = true;
439 if (progress) {
440 /* Notify the device so it can post more completions. */
441 smp_mb_release();
442 *q->cq.doorbell = cpu_to_le32(q->cq.head);
443 nvme_wake_free_req_locked(q);
446 qemu_bh_cancel(q->completion_bh);
448 return progress;
451 static void nvme_process_completion_bh(void *opaque)
453 NVMeQueuePair *q = opaque;
456 * We're being invoked because a nvme_process_completion() cb() function
457 * called aio_poll(). The callback may be waiting for further completions
458 * so notify the device that it has space to fill in more completions now.
460 smp_mb_release();
461 *q->cq.doorbell = cpu_to_le32(q->cq.head);
462 nvme_wake_free_req_locked(q);
464 nvme_process_completion(q);
467 static void nvme_trace_command(const NvmeCmd *cmd)
469 int i;
471 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
472 return;
474 for (i = 0; i < 8; ++i) {
475 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
476 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
477 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
481 static void nvme_deferred_fn(void *opaque)
483 NVMeQueuePair *q = opaque;
485 QEMU_LOCK_GUARD(&q->lock);
486 nvme_kick(q);
487 nvme_process_completion(q);
490 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
491 NvmeCmd *cmd, BlockCompletionFunc cb,
492 void *opaque)
494 assert(!req->cb);
495 req->cb = cb;
496 req->opaque = opaque;
497 cmd->cid = cpu_to_le16(req->cid);
499 trace_nvme_submit_command(q->s, q->index, req->cid);
500 nvme_trace_command(cmd);
501 qemu_mutex_lock(&q->lock);
502 memcpy((uint8_t *)q->sq.queue +
503 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
504 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
505 q->need_kick++;
506 qemu_mutex_unlock(&q->lock);
508 defer_call(nvme_deferred_fn, q);
511 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
513 int *pret = opaque;
514 *pret = ret;
515 aio_wait_kick();
518 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
520 BDRVNVMeState *s = bs->opaque;
521 NVMeQueuePair *q = s->queues[INDEX_ADMIN];
522 AioContext *aio_context = bdrv_get_aio_context(bs);
523 NVMeRequest *req;
524 int ret = -EINPROGRESS;
525 req = nvme_get_free_req_nowait(q);
526 if (!req) {
527 return -EBUSY;
529 nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
531 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
532 return ret;
535 /* Returns true on success, false on failure. */
536 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
538 BDRVNVMeState *s = bs->opaque;
539 bool ret = false;
540 QEMU_AUTO_VFREE union {
541 NvmeIdCtrl ctrl;
542 NvmeIdNs ns;
543 } *id = NULL;
544 NvmeLBAF *lbaf;
545 uint16_t oncs;
546 int r;
547 uint64_t iova;
548 NvmeCmd cmd = {
549 .opcode = NVME_ADM_CMD_IDENTIFY,
550 .cdw10 = cpu_to_le32(0x1),
552 size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
554 id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
555 if (!id) {
556 error_setg(errp, "Cannot allocate buffer for identify response");
557 goto out;
559 r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
560 if (r) {
561 error_prepend(errp, "Cannot map buffer for DMA: ");
562 goto out;
565 memset(id, 0, id_size);
566 cmd.dptr.prp1 = cpu_to_le64(iova);
567 if (nvme_admin_cmd_sync(bs, &cmd)) {
568 error_setg(errp, "Failed to identify controller");
569 goto out;
572 if (le32_to_cpu(id->ctrl.nn) < namespace) {
573 error_setg(errp, "Invalid namespace");
574 goto out;
576 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
577 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
578 /* For now the page list buffer per command is one page, to hold at most
579 * s->page_size / sizeof(uint64_t) entries. */
580 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
581 s->page_size / sizeof(uint64_t) * s->page_size);
583 oncs = le16_to_cpu(id->ctrl.oncs);
584 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
585 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
587 memset(id, 0, id_size);
588 cmd.cdw10 = 0;
589 cmd.nsid = cpu_to_le32(namespace);
590 if (nvme_admin_cmd_sync(bs, &cmd)) {
591 error_setg(errp, "Failed to identify namespace");
592 goto out;
595 s->nsze = le64_to_cpu(id->ns.nsze);
596 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
598 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
599 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
600 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
601 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
604 if (lbaf->ms) {
605 error_setg(errp, "Namespaces with metadata are not yet supported");
606 goto out;
609 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
610 (1 << lbaf->ds) > s->page_size)
612 error_setg(errp, "Namespace has unsupported block size (2^%d)",
613 lbaf->ds);
614 goto out;
617 ret = true;
618 s->blkshift = lbaf->ds;
619 out:
620 qemu_vfio_dma_unmap(s->vfio, id);
622 return ret;
625 static void nvme_poll_queue(NVMeQueuePair *q)
627 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
628 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
630 trace_nvme_poll_queue(q->s, q->index);
632 * Do an early check for completions. q->lock isn't needed because
633 * nvme_process_completion() only runs in the event loop thread and
634 * cannot race with itself.
636 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
637 return;
640 qemu_mutex_lock(&q->lock);
641 while (nvme_process_completion(q)) {
642 /* Keep polling */
644 qemu_mutex_unlock(&q->lock);
647 static void nvme_poll_queues(BDRVNVMeState *s)
649 int i;
651 for (i = 0; i < s->queue_count; i++) {
652 nvme_poll_queue(s->queues[i]);
656 static void nvme_handle_event(EventNotifier *n)
658 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
659 irq_notifier[MSIX_SHARED_IRQ_IDX]);
661 trace_nvme_handle_event(s);
662 event_notifier_test_and_clear(n);
663 nvme_poll_queues(s);
666 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
668 BDRVNVMeState *s = bs->opaque;
669 unsigned n = s->queue_count;
670 NVMeQueuePair *q;
671 NvmeCmd cmd;
672 unsigned queue_size = NVME_QUEUE_SIZE;
674 assert(n <= UINT16_MAX);
675 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
676 n, queue_size, errp);
677 if (!q) {
678 return false;
680 cmd = (NvmeCmd) {
681 .opcode = NVME_ADM_CMD_CREATE_CQ,
682 .dptr.prp1 = cpu_to_le64(q->cq.iova),
683 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
684 .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
686 if (nvme_admin_cmd_sync(bs, &cmd)) {
687 error_setg(errp, "Failed to create CQ io queue [%u]", n);
688 goto out_error;
690 cmd = (NvmeCmd) {
691 .opcode = NVME_ADM_CMD_CREATE_SQ,
692 .dptr.prp1 = cpu_to_le64(q->sq.iova),
693 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
694 .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
696 if (nvme_admin_cmd_sync(bs, &cmd)) {
697 error_setg(errp, "Failed to create SQ io queue [%u]", n);
698 goto out_error;
700 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
701 s->queues[n] = q;
702 s->queue_count++;
703 return true;
704 out_error:
705 nvme_free_queue_pair(q);
706 return false;
709 static bool nvme_poll_cb(void *opaque)
711 EventNotifier *e = opaque;
712 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
713 irq_notifier[MSIX_SHARED_IRQ_IDX]);
714 int i;
716 for (i = 0; i < s->queue_count; i++) {
717 NVMeQueuePair *q = s->queues[i];
718 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
719 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
722 * q->lock isn't needed because nvme_process_completion() only runs in
723 * the event loop thread and cannot race with itself.
725 if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
726 return true;
729 return false;
732 static void nvme_poll_ready(EventNotifier *e)
734 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
735 irq_notifier[MSIX_SHARED_IRQ_IDX]);
737 nvme_poll_queues(s);
740 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
741 Error **errp)
743 BDRVNVMeState *s = bs->opaque;
744 NVMeQueuePair *q;
745 AioContext *aio_context = bdrv_get_aio_context(bs);
746 int ret;
747 uint64_t cap;
748 uint32_t ver;
749 uint64_t timeout_ms;
750 uint64_t deadline, now;
751 volatile NvmeBar *regs = NULL;
753 qemu_co_mutex_init(&s->dma_map_lock);
754 qemu_co_queue_init(&s->dma_flush_queue);
755 s->device = g_strdup(device);
756 s->nsid = namespace;
757 s->aio_context = bdrv_get_aio_context(bs);
758 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
759 if (ret) {
760 error_setg(errp, "Failed to init event notifier");
761 return ret;
764 s->vfio = qemu_vfio_open_pci(device, errp);
765 if (!s->vfio) {
766 ret = -EINVAL;
767 goto out;
770 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
771 PROT_READ | PROT_WRITE, errp);
772 if (!regs) {
773 ret = -EINVAL;
774 goto out;
776 /* Perform initialize sequence as described in NVMe spec "7.6.1
777 * Initialization". */
779 cap = le64_to_cpu(regs->cap);
780 trace_nvme_controller_capability_raw(cap);
781 trace_nvme_controller_capability("Maximum Queue Entries Supported",
782 1 + NVME_CAP_MQES(cap));
783 trace_nvme_controller_capability("Contiguous Queues Required",
784 NVME_CAP_CQR(cap));
785 trace_nvme_controller_capability("Doorbell Stride",
786 1 << (2 + NVME_CAP_DSTRD(cap)));
787 trace_nvme_controller_capability("Subsystem Reset Supported",
788 NVME_CAP_NSSRS(cap));
789 trace_nvme_controller_capability("Memory Page Size Minimum",
790 1 << (12 + NVME_CAP_MPSMIN(cap)));
791 trace_nvme_controller_capability("Memory Page Size Maximum",
792 1 << (12 + NVME_CAP_MPSMAX(cap)));
793 if (!NVME_CAP_CSS(cap)) {
794 error_setg(errp, "Device doesn't support NVMe command set");
795 ret = -EINVAL;
796 goto out;
799 s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
800 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
801 bs->bl.opt_mem_alignment = s->page_size;
802 bs->bl.request_alignment = s->page_size;
803 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
805 ver = le32_to_cpu(regs->vs);
806 trace_nvme_controller_spec_version(extract32(ver, 16, 16),
807 extract32(ver, 8, 8),
808 extract32(ver, 0, 8));
810 /* Reset device to get a clean state. */
811 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
812 /* Wait for CSTS.RDY = 0. */
813 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
814 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
815 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
816 error_setg(errp, "Timeout while waiting for device to reset (%"
817 PRId64 " ms)",
818 timeout_ms);
819 ret = -ETIMEDOUT;
820 goto out;
824 s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
825 sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
826 PROT_WRITE, errp);
827 s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
828 if (!s->doorbells) {
829 ret = -EINVAL;
830 goto out;
833 /* Set up admin queue. */
834 s->queues = g_new(NVMeQueuePair *, 1);
835 q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
836 if (!q) {
837 ret = -EINVAL;
838 goto out;
840 s->queues[INDEX_ADMIN] = q;
841 s->queue_count = 1;
842 QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
843 regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
844 ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
845 regs->asq = cpu_to_le64(q->sq.iova);
846 regs->acq = cpu_to_le64(q->cq.iova);
848 /* After setting up all control registers we can enable device now. */
849 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
850 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
851 CC_EN_MASK);
852 /* Wait for CSTS.RDY = 1. */
853 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
854 deadline = now + timeout_ms * SCALE_MS;
855 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
856 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
857 error_setg(errp, "Timeout while waiting for device to start (%"
858 PRId64 " ms)",
859 timeout_ms);
860 ret = -ETIMEDOUT;
861 goto out;
865 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
866 VFIO_PCI_MSIX_IRQ_INDEX, errp);
867 if (ret) {
868 goto out;
870 aio_set_event_notifier(bdrv_get_aio_context(bs),
871 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
872 nvme_handle_event, nvme_poll_cb,
873 nvme_poll_ready);
875 if (!nvme_identify(bs, namespace, errp)) {
876 ret = -EIO;
877 goto out;
880 /* Set up command queues. */
881 if (!nvme_add_io_queue(bs, errp)) {
882 ret = -EIO;
884 out:
885 if (regs) {
886 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
889 /* Cleaning up is done in nvme_file_open() upon error. */
890 return ret;
893 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
895 * nvme://0000:44:00.0/1
897 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
898 * is the PCI address, and the last part is the namespace number starting from
899 * 1 according to the NVMe spec. */
900 static void nvme_parse_filename(const char *filename, QDict *options,
901 Error **errp)
903 int pref = strlen("nvme://");
905 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
906 const char *tmp = filename + pref;
907 char *device;
908 const char *namespace;
909 unsigned long ns;
910 const char *slash = strchr(tmp, '/');
911 if (!slash) {
912 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
913 return;
915 device = g_strndup(tmp, slash - tmp);
916 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
917 g_free(device);
918 namespace = slash + 1;
919 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
920 error_setg(errp, "Invalid namespace '%s', positive number expected",
921 namespace);
922 return;
924 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
925 *namespace ? namespace : "1");
929 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
930 Error **errp)
932 int ret;
933 BDRVNVMeState *s = bs->opaque;
934 NvmeCmd cmd = {
935 .opcode = NVME_ADM_CMD_SET_FEATURES,
936 .nsid = cpu_to_le32(s->nsid),
937 .cdw10 = cpu_to_le32(0x06),
938 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
941 ret = nvme_admin_cmd_sync(bs, &cmd);
942 if (ret) {
943 error_setg(errp, "Failed to configure NVMe write cache");
945 return ret;
948 static void nvme_close(BlockDriverState *bs)
950 BDRVNVMeState *s = bs->opaque;
952 for (unsigned i = 0; i < s->queue_count; ++i) {
953 nvme_free_queue_pair(s->queues[i]);
955 g_free(s->queues);
956 aio_set_event_notifier(bdrv_get_aio_context(bs),
957 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
958 NULL, NULL, NULL);
959 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
960 qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
961 0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
962 qemu_vfio_close(s->vfio);
964 g_free(s->device);
967 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
968 Error **errp)
970 const char *device;
971 QemuOpts *opts;
972 int namespace;
973 int ret;
974 BDRVNVMeState *s = bs->opaque;
976 bs->supported_write_flags = BDRV_REQ_FUA;
978 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
979 qemu_opts_absorb_qdict(opts, options, &error_abort);
980 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
981 if (!device) {
982 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
983 qemu_opts_del(opts);
984 return -EINVAL;
987 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
988 ret = nvme_init(bs, device, namespace, errp);
989 qemu_opts_del(opts);
990 if (ret) {
991 goto fail;
993 if (flags & BDRV_O_NOCACHE) {
994 if (!s->write_cache_supported) {
995 error_setg(errp,
996 "NVMe controller doesn't support write cache configuration");
997 ret = -EINVAL;
998 } else {
999 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
1000 errp);
1002 if (ret) {
1003 goto fail;
1006 return 0;
1007 fail:
1008 nvme_close(bs);
1009 return ret;
1012 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1014 BDRVNVMeState *s = bs->opaque;
1015 return s->nsze << s->blkshift;
1018 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1020 BDRVNVMeState *s = bs->opaque;
1021 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1022 return UINT32_C(1) << s->blkshift;
1025 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1027 uint32_t blocksize = nvme_get_blocksize(bs);
1028 bsz->phys = blocksize;
1029 bsz->log = blocksize;
1030 return 0;
1033 /* Called with s->dma_map_lock */
1034 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1035 QEMUIOVector *qiov)
1037 int r = 0;
1038 BDRVNVMeState *s = bs->opaque;
1040 s->dma_map_count -= qiov->size;
1041 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1042 r = qemu_vfio_dma_reset_temporary(s->vfio);
1043 if (!r) {
1044 qemu_co_queue_restart_all(&s->dma_flush_queue);
1047 return r;
1050 /* Called with s->dma_map_lock */
1051 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1052 NVMeRequest *req, QEMUIOVector *qiov)
1054 BDRVNVMeState *s = bs->opaque;
1055 uint64_t *pagelist = req->prp_list_page;
1056 int i, j, r;
1057 int entries = 0;
1058 Error *local_err = NULL, **errp = NULL;
1060 assert(qiov->size);
1061 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1062 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1063 for (i = 0; i < qiov->niov; ++i) {
1064 bool retry = true;
1065 uint64_t iova;
1066 size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1067 qemu_real_host_page_size());
1068 try_map:
1069 r = qemu_vfio_dma_map(s->vfio,
1070 qiov->iov[i].iov_base,
1071 len, true, &iova, errp);
1072 if (r == -ENOSPC) {
1074 * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1075 * ioctl returns -ENOSPC to signal the user exhausted the DMA
1076 * mappings available for a container since Linux kernel commit
1077 * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1078 * April 2019, see CVE-2019-3882).
1080 * This block driver already handles this error path by checking
1081 * for the -ENOMEM error, so we directly replace -ENOSPC by
1082 * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1083 * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1084 * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1085 * to add more storage to the blockdev. Not something we can do
1086 * easily with an IOMMU :)
1088 r = -ENOMEM;
1090 if (r == -ENOMEM && retry) {
1092 * We exhausted the DMA mappings available for our container:
1093 * recycle the volatile IOVA mappings.
1095 retry = false;
1096 trace_nvme_dma_flush_queue_wait(s);
1097 if (s->dma_map_count) {
1098 trace_nvme_dma_map_flush(s);
1099 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1100 } else {
1101 r = qemu_vfio_dma_reset_temporary(s->vfio);
1102 if (r) {
1103 goto fail;
1106 errp = &local_err;
1108 goto try_map;
1110 if (r) {
1111 goto fail;
1114 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1115 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1117 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1118 qiov->iov[i].iov_len / s->page_size);
1121 s->dma_map_count += qiov->size;
1123 assert(entries <= s->page_size / sizeof(uint64_t));
1124 switch (entries) {
1125 case 0:
1126 abort();
1127 case 1:
1128 cmd->dptr.prp1 = pagelist[0];
1129 cmd->dptr.prp2 = 0;
1130 break;
1131 case 2:
1132 cmd->dptr.prp1 = pagelist[0];
1133 cmd->dptr.prp2 = pagelist[1];
1134 break;
1135 default:
1136 cmd->dptr.prp1 = pagelist[0];
1137 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1138 break;
1140 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1141 for (i = 0; i < entries; ++i) {
1142 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1144 return 0;
1145 fail:
1146 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1147 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1148 * because they are already mapped before calling this function; for
1149 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1150 * calling qemu_vfio_dma_reset_temporary when necessary. */
1151 if (local_err) {
1152 error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1154 return r;
1157 typedef struct {
1158 Coroutine *co;
1159 int ret;
1160 AioContext *ctx;
1161 } NVMeCoData;
1163 static void nvme_rw_cb_bh(void *opaque)
1165 NVMeCoData *data = opaque;
1166 qemu_coroutine_enter(data->co);
1169 static void nvme_rw_cb(void *opaque, int ret)
1171 NVMeCoData *data = opaque;
1172 data->ret = ret;
1173 if (!data->co) {
1174 /* The rw coroutine hasn't yielded, don't try to enter. */
1175 return;
1177 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1180 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1181 uint64_t offset, uint64_t bytes,
1182 QEMUIOVector *qiov,
1183 bool is_write,
1184 int flags)
1186 int r;
1187 BDRVNVMeState *s = bs->opaque;
1188 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1189 NVMeRequest *req;
1191 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1192 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1193 NvmeCmd cmd = {
1194 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1195 .nsid = cpu_to_le32(s->nsid),
1196 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1197 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1198 .cdw12 = cpu_to_le32(cdw12),
1200 NVMeCoData data = {
1201 .ctx = bdrv_get_aio_context(bs),
1202 .ret = -EINPROGRESS,
1205 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1206 assert(s->queue_count > 1);
1207 req = nvme_get_free_req(ioq);
1208 assert(req);
1210 qemu_co_mutex_lock(&s->dma_map_lock);
1211 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1212 qemu_co_mutex_unlock(&s->dma_map_lock);
1213 if (r) {
1214 nvme_put_free_req_and_wake(ioq, req);
1215 return r;
1217 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1219 data.co = qemu_coroutine_self();
1220 while (data.ret == -EINPROGRESS) {
1221 qemu_coroutine_yield();
1224 qemu_co_mutex_lock(&s->dma_map_lock);
1225 r = nvme_cmd_unmap_qiov(bs, qiov);
1226 qemu_co_mutex_unlock(&s->dma_map_lock);
1227 if (r) {
1228 return r;
1231 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1232 return data.ret;
1235 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1236 const QEMUIOVector *qiov)
1238 int i;
1239 BDRVNVMeState *s = bs->opaque;
1241 for (i = 0; i < qiov->niov; ++i) {
1242 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1243 qemu_real_host_page_size()) ||
1244 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1245 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1246 qiov->iov[i].iov_len, s->page_size);
1247 return false;
1250 return true;
1253 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1254 uint64_t offset, uint64_t bytes,
1255 QEMUIOVector *qiov, bool is_write,
1256 int flags)
1258 BDRVNVMeState *s = bs->opaque;
1259 int r;
1260 QEMU_AUTO_VFREE uint8_t *buf = NULL;
1261 QEMUIOVector local_qiov;
1262 size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1263 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1264 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1265 assert(bytes <= s->max_transfer);
1266 if (nvme_qiov_aligned(bs, qiov)) {
1267 s->stats.aligned_accesses++;
1268 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1270 s->stats.unaligned_accesses++;
1271 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1272 buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1274 if (!buf) {
1275 return -ENOMEM;
1277 qemu_iovec_init(&local_qiov, 1);
1278 if (is_write) {
1279 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1281 qemu_iovec_add(&local_qiov, buf, bytes);
1282 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1283 qemu_iovec_destroy(&local_qiov);
1284 if (!r && !is_write) {
1285 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1287 return r;
1290 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1291 int64_t offset, int64_t bytes,
1292 QEMUIOVector *qiov,
1293 BdrvRequestFlags flags)
1295 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1298 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1299 int64_t offset, int64_t bytes,
1300 QEMUIOVector *qiov,
1301 BdrvRequestFlags flags)
1303 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1306 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1308 BDRVNVMeState *s = bs->opaque;
1309 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1310 NVMeRequest *req;
1311 NvmeCmd cmd = {
1312 .opcode = NVME_CMD_FLUSH,
1313 .nsid = cpu_to_le32(s->nsid),
1315 NVMeCoData data = {
1316 .ctx = bdrv_get_aio_context(bs),
1317 .ret = -EINPROGRESS,
1320 assert(s->queue_count > 1);
1321 req = nvme_get_free_req(ioq);
1322 assert(req);
1323 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1325 data.co = qemu_coroutine_self();
1326 if (data.ret == -EINPROGRESS) {
1327 qemu_coroutine_yield();
1330 return data.ret;
1334 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1335 int64_t offset,
1336 int64_t bytes,
1337 BdrvRequestFlags flags)
1339 BDRVNVMeState *s = bs->opaque;
1340 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1341 NVMeRequest *req;
1342 uint32_t cdw12;
1344 if (!s->supports_write_zeroes) {
1345 return -ENOTSUP;
1348 if (bytes == 0) {
1349 return 0;
1352 cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1354 * We should not lose information. pwrite_zeroes_alignment and
1355 * max_pwrite_zeroes guarantees it.
1357 assert(((cdw12 + 1) << s->blkshift) == bytes);
1359 NvmeCmd cmd = {
1360 .opcode = NVME_CMD_WRITE_ZEROES,
1361 .nsid = cpu_to_le32(s->nsid),
1362 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1363 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1366 NVMeCoData data = {
1367 .ctx = bdrv_get_aio_context(bs),
1368 .ret = -EINPROGRESS,
1371 if (flags & BDRV_REQ_MAY_UNMAP) {
1372 cdw12 |= (1 << 25);
1375 if (flags & BDRV_REQ_FUA) {
1376 cdw12 |= (1 << 30);
1379 cmd.cdw12 = cpu_to_le32(cdw12);
1381 trace_nvme_write_zeroes(s, offset, bytes, flags);
1382 assert(s->queue_count > 1);
1383 req = nvme_get_free_req(ioq);
1384 assert(req);
1386 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1388 data.co = qemu_coroutine_self();
1389 while (data.ret == -EINPROGRESS) {
1390 qemu_coroutine_yield();
1393 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1394 return data.ret;
1398 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1399 int64_t offset,
1400 int64_t bytes)
1402 BDRVNVMeState *s = bs->opaque;
1403 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1404 NVMeRequest *req;
1405 QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1406 QEMUIOVector local_qiov;
1407 int ret;
1409 NvmeCmd cmd = {
1410 .opcode = NVME_CMD_DSM,
1411 .nsid = cpu_to_le32(s->nsid),
1412 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1413 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1416 NVMeCoData data = {
1417 .ctx = bdrv_get_aio_context(bs),
1418 .ret = -EINPROGRESS,
1421 if (!s->supports_discard) {
1422 return -ENOTSUP;
1425 assert(s->queue_count > 1);
1428 * Filling the @buf requires @offset and @bytes to satisfy restrictions
1429 * defined in nvme_refresh_limits().
1431 assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1432 assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1433 assert((bytes >> s->blkshift) <= UINT32_MAX);
1435 buf = qemu_try_memalign(s->page_size, s->page_size);
1436 if (!buf) {
1437 return -ENOMEM;
1439 memset(buf, 0, s->page_size);
1440 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1441 buf->slba = cpu_to_le64(offset >> s->blkshift);
1442 buf->cattr = 0;
1444 qemu_iovec_init(&local_qiov, 1);
1445 qemu_iovec_add(&local_qiov, buf, 4096);
1447 req = nvme_get_free_req(ioq);
1448 assert(req);
1450 qemu_co_mutex_lock(&s->dma_map_lock);
1451 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1452 qemu_co_mutex_unlock(&s->dma_map_lock);
1454 if (ret) {
1455 nvme_put_free_req_and_wake(ioq, req);
1456 goto out;
1459 trace_nvme_dsm(s, offset, bytes);
1461 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1463 data.co = qemu_coroutine_self();
1464 while (data.ret == -EINPROGRESS) {
1465 qemu_coroutine_yield();
1468 qemu_co_mutex_lock(&s->dma_map_lock);
1469 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1470 qemu_co_mutex_unlock(&s->dma_map_lock);
1472 if (ret) {
1473 goto out;
1476 ret = data.ret;
1477 trace_nvme_dsm_done(s, offset, bytes, ret);
1478 out:
1479 qemu_iovec_destroy(&local_qiov);
1480 return ret;
1484 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1485 bool exact, PreallocMode prealloc,
1486 BdrvRequestFlags flags, Error **errp)
1488 int64_t cur_length;
1490 if (prealloc != PREALLOC_MODE_OFF) {
1491 error_setg(errp, "Unsupported preallocation mode '%s'",
1492 PreallocMode_str(prealloc));
1493 return -ENOTSUP;
1496 cur_length = nvme_co_getlength(bs);
1497 if (offset != cur_length && exact) {
1498 error_setg(errp, "Cannot resize NVMe devices");
1499 return -ENOTSUP;
1500 } else if (offset > cur_length) {
1501 error_setg(errp, "Cannot grow NVMe devices");
1502 return -EINVAL;
1505 return 0;
1508 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1509 BlockReopenQueue *queue, Error **errp)
1511 return 0;
1514 static void nvme_refresh_filename(BlockDriverState *bs)
1516 BDRVNVMeState *s = bs->opaque;
1518 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1519 s->device, s->nsid);
1522 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1524 BDRVNVMeState *s = bs->opaque;
1526 bs->bl.opt_mem_alignment = s->page_size;
1527 bs->bl.request_alignment = s->page_size;
1528 bs->bl.max_transfer = s->max_transfer;
1531 * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1532 * at most 0xFFFF
1534 bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1535 bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1536 1UL << s->blkshift);
1538 bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1539 bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1540 1UL << s->blkshift);
1543 static void nvme_detach_aio_context(BlockDriverState *bs)
1545 BDRVNVMeState *s = bs->opaque;
1547 for (unsigned i = 0; i < s->queue_count; i++) {
1548 NVMeQueuePair *q = s->queues[i];
1550 qemu_bh_delete(q->completion_bh);
1551 q->completion_bh = NULL;
1554 aio_set_event_notifier(bdrv_get_aio_context(bs),
1555 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1556 NULL, NULL, NULL);
1559 static void nvme_attach_aio_context(BlockDriverState *bs,
1560 AioContext *new_context)
1562 BDRVNVMeState *s = bs->opaque;
1564 s->aio_context = new_context;
1565 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1566 nvme_handle_event, nvme_poll_cb,
1567 nvme_poll_ready);
1569 for (unsigned i = 0; i < s->queue_count; i++) {
1570 NVMeQueuePair *q = s->queues[i];
1572 q->completion_bh =
1573 aio_bh_new(new_context, nvme_process_completion_bh, q);
1577 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1578 Error **errp)
1580 int ret;
1581 BDRVNVMeState *s = bs->opaque;
1584 * FIXME: we may run out of IOVA addresses after repeated
1585 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1586 * doesn't reclaim addresses for fixed mappings.
1588 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1589 return ret == 0;
1592 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1594 BDRVNVMeState *s = bs->opaque;
1596 qemu_vfio_dma_unmap(s->vfio, host);
1599 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1601 BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1602 BDRVNVMeState *s = bs->opaque;
1604 stats->driver = BLOCKDEV_DRIVER_NVME;
1605 stats->u.nvme = (BlockStatsSpecificNvme) {
1606 .completion_errors = s->stats.completion_errors,
1607 .aligned_accesses = s->stats.aligned_accesses,
1608 .unaligned_accesses = s->stats.unaligned_accesses,
1611 return stats;
1614 static const char *const nvme_strong_runtime_opts[] = {
1615 NVME_BLOCK_OPT_DEVICE,
1616 NVME_BLOCK_OPT_NAMESPACE,
1618 NULL
1621 static BlockDriver bdrv_nvme = {
1622 .format_name = "nvme",
1623 .protocol_name = "nvme",
1624 .instance_size = sizeof(BDRVNVMeState),
1626 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1627 .create_opts = &bdrv_create_opts_simple,
1629 .bdrv_parse_filename = nvme_parse_filename,
1630 .bdrv_file_open = nvme_file_open,
1631 .bdrv_close = nvme_close,
1632 .bdrv_co_getlength = nvme_co_getlength,
1633 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1634 .bdrv_co_truncate = nvme_co_truncate,
1636 .bdrv_co_preadv = nvme_co_preadv,
1637 .bdrv_co_pwritev = nvme_co_pwritev,
1639 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1640 .bdrv_co_pdiscard = nvme_co_pdiscard,
1642 .bdrv_co_flush_to_disk = nvme_co_flush,
1643 .bdrv_reopen_prepare = nvme_reopen_prepare,
1645 .bdrv_refresh_filename = nvme_refresh_filename,
1646 .bdrv_refresh_limits = nvme_refresh_limits,
1647 .strong_runtime_opts = nvme_strong_runtime_opts,
1648 .bdrv_get_specific_stats = nvme_get_specific_stats,
1650 .bdrv_detach_aio_context = nvme_detach_aio_context,
1651 .bdrv_attach_aio_context = nvme_attach_aio_context,
1653 .bdrv_register_buf = nvme_register_buf,
1654 .bdrv_unregister_buf = nvme_unregister_buf,
1657 static void bdrv_nvme_init(void)
1659 bdrv_register(&bdrv_nvme);
1662 block_init(bdrv_nvme_init);