scsi-disk: Remove duplicate cdb parsing
[qemu/ar7.git] / gdbstub.c
blob0aa081b13b8293d36602fe7e086adf3f706e3679
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "exec-all.h"
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_TRAP = 5,
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
61 TARGET_SIGHUP,
62 TARGET_SIGINT,
63 TARGET_SIGQUIT,
64 TARGET_SIGILL,
65 TARGET_SIGTRAP,
66 TARGET_SIGABRT,
67 -1, /* SIGEMT */
68 TARGET_SIGFPE,
69 TARGET_SIGKILL,
70 TARGET_SIGBUS,
71 TARGET_SIGSEGV,
72 TARGET_SIGSYS,
73 TARGET_SIGPIPE,
74 TARGET_SIGALRM,
75 TARGET_SIGTERM,
76 TARGET_SIGURG,
77 TARGET_SIGSTOP,
78 TARGET_SIGTSTP,
79 TARGET_SIGCONT,
80 TARGET_SIGCHLD,
81 TARGET_SIGTTIN,
82 TARGET_SIGTTOU,
83 TARGET_SIGIO,
84 TARGET_SIGXCPU,
85 TARGET_SIGXFSZ,
86 TARGET_SIGVTALRM,
87 TARGET_SIGPROF,
88 TARGET_SIGWINCH,
89 -1, /* SIGLOST */
90 TARGET_SIGUSR1,
91 TARGET_SIGUSR2,
92 #ifdef TARGET_SIGPWR
93 TARGET_SIGPWR,
94 #else
95 -1,
96 #endif
97 -1, /* SIGPOLL */
98 -1,
99 -1,
109 #ifdef __SIGRTMIN
110 __SIGRTMIN + 1,
111 __SIGRTMIN + 2,
112 __SIGRTMIN + 3,
113 __SIGRTMIN + 4,
114 __SIGRTMIN + 5,
115 __SIGRTMIN + 6,
116 __SIGRTMIN + 7,
117 __SIGRTMIN + 8,
118 __SIGRTMIN + 9,
119 __SIGRTMIN + 10,
120 __SIGRTMIN + 11,
121 __SIGRTMIN + 12,
122 __SIGRTMIN + 13,
123 __SIGRTMIN + 14,
124 __SIGRTMIN + 15,
125 __SIGRTMIN + 16,
126 __SIGRTMIN + 17,
127 __SIGRTMIN + 18,
128 __SIGRTMIN + 19,
129 __SIGRTMIN + 20,
130 __SIGRTMIN + 21,
131 __SIGRTMIN + 22,
132 __SIGRTMIN + 23,
133 __SIGRTMIN + 24,
134 __SIGRTMIN + 25,
135 __SIGRTMIN + 26,
136 __SIGRTMIN + 27,
137 __SIGRTMIN + 28,
138 __SIGRTMIN + 29,
139 __SIGRTMIN + 30,
140 __SIGRTMIN + 31,
141 -1, /* SIGCANCEL */
142 __SIGRTMIN,
143 __SIGRTMIN + 32,
144 __SIGRTMIN + 33,
145 __SIGRTMIN + 34,
146 __SIGRTMIN + 35,
147 __SIGRTMIN + 36,
148 __SIGRTMIN + 37,
149 __SIGRTMIN + 38,
150 __SIGRTMIN + 39,
151 __SIGRTMIN + 40,
152 __SIGRTMIN + 41,
153 __SIGRTMIN + 42,
154 __SIGRTMIN + 43,
155 __SIGRTMIN + 44,
156 __SIGRTMIN + 45,
157 __SIGRTMIN + 46,
158 __SIGRTMIN + 47,
159 __SIGRTMIN + 48,
160 __SIGRTMIN + 49,
161 __SIGRTMIN + 50,
162 __SIGRTMIN + 51,
163 __SIGRTMIN + 52,
164 __SIGRTMIN + 53,
165 __SIGRTMIN + 54,
166 __SIGRTMIN + 55,
167 __SIGRTMIN + 56,
168 __SIGRTMIN + 57,
169 __SIGRTMIN + 58,
170 __SIGRTMIN + 59,
171 __SIGRTMIN + 60,
172 __SIGRTMIN + 61,
173 __SIGRTMIN + 62,
174 __SIGRTMIN + 63,
175 __SIGRTMIN + 64,
176 __SIGRTMIN + 65,
177 __SIGRTMIN + 66,
178 __SIGRTMIN + 67,
179 __SIGRTMIN + 68,
180 __SIGRTMIN + 69,
181 __SIGRTMIN + 70,
182 __SIGRTMIN + 71,
183 __SIGRTMIN + 72,
184 __SIGRTMIN + 73,
185 __SIGRTMIN + 74,
186 __SIGRTMIN + 75,
187 __SIGRTMIN + 76,
188 __SIGRTMIN + 77,
189 __SIGRTMIN + 78,
190 __SIGRTMIN + 79,
191 __SIGRTMIN + 80,
192 __SIGRTMIN + 81,
193 __SIGRTMIN + 82,
194 __SIGRTMIN + 83,
195 __SIGRTMIN + 84,
196 __SIGRTMIN + 85,
197 __SIGRTMIN + 86,
198 __SIGRTMIN + 87,
199 __SIGRTMIN + 88,
200 __SIGRTMIN + 89,
201 __SIGRTMIN + 90,
202 __SIGRTMIN + 91,
203 __SIGRTMIN + 92,
204 __SIGRTMIN + 93,
205 __SIGRTMIN + 94,
206 __SIGRTMIN + 95,
207 -1, /* SIGINFO */
208 -1, /* UNKNOWN */
209 -1, /* DEFAULT */
216 #endif
218 #else
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
222 enum {
223 TARGET_SIGINT = 2,
224 TARGET_SIGTRAP = 5
227 static int gdb_signal_table[] = {
230 TARGET_SIGINT,
233 TARGET_SIGTRAP
235 #endif
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
240 int i;
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
243 return i;
244 return GDB_SIGNAL_UNKNOWN;
246 #endif
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
252 else
253 return -1;
256 //#define DEBUG_GDB
258 typedef struct GDBRegisterState {
259 int base_reg;
260 int num_regs;
261 gdb_reg_cb get_reg;
262 gdb_reg_cb set_reg;
263 const char *xml;
264 struct GDBRegisterState *next;
265 } GDBRegisterState;
267 enum RSState {
268 RS_INACTIVE,
269 RS_IDLE,
270 RS_GETLINE,
271 RS_CHKSUM1,
272 RS_CHKSUM2,
273 RS_SYSCALL,
275 typedef struct GDBState {
276 CPUState *c_cpu; /* current CPU for step/continue ops */
277 CPUState *g_cpu; /* current CPU for other ops */
278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
279 enum RSState state; /* parsing state */
280 char line_buf[MAX_PACKET_LENGTH];
281 int line_buf_index;
282 int line_csum;
283 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284 int last_packet_len;
285 int signal;
286 #ifdef CONFIG_USER_ONLY
287 int fd;
288 int running_state;
289 #else
290 CharDriverState *chr;
291 CharDriverState *mon_chr;
292 #endif
293 } GDBState;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300 static GDBState *gdbserver_state;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd = -1;
311 static int get_char(GDBState *s)
313 uint8_t ch;
314 int ret;
316 for(;;) {
317 ret = recv(s->fd, &ch, 1, 0);
318 if (ret < 0) {
319 if (errno == ECONNRESET)
320 s->fd = -1;
321 if (errno != EINTR && errno != EAGAIN)
322 return -1;
323 } else if (ret == 0) {
324 close(s->fd);
325 s->fd = -1;
326 return -1;
327 } else {
328 break;
331 return ch;
333 #endif
335 static gdb_syscall_complete_cb gdb_current_syscall_cb;
337 static enum {
338 GDB_SYS_UNKNOWN,
339 GDB_SYS_ENABLED,
340 GDB_SYS_DISABLED,
341 } gdb_syscall_mode;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
349 : GDB_SYS_DISABLED);
351 return gdb_syscall_mode == GDB_SYS_ENABLED;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState *s)
357 #ifdef CONFIG_USER_ONLY
358 s->running_state = 1;
359 #else
360 vm_start();
361 #endif
364 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
366 #ifdef CONFIG_USER_ONLY
367 int ret;
369 while (len > 0) {
370 ret = send(s->fd, buf, len, 0);
371 if (ret < 0) {
372 if (errno != EINTR && errno != EAGAIN)
373 return;
374 } else {
375 buf += ret;
376 len -= ret;
379 #else
380 qemu_chr_write(s->chr, buf, len);
381 #endif
384 static inline int fromhex(int v)
386 if (v >= '0' && v <= '9')
387 return v - '0';
388 else if (v >= 'A' && v <= 'F')
389 return v - 'A' + 10;
390 else if (v >= 'a' && v <= 'f')
391 return v - 'a' + 10;
392 else
393 return 0;
396 static inline int tohex(int v)
398 if (v < 10)
399 return v + '0';
400 else
401 return v - 10 + 'a';
404 static void memtohex(char *buf, const uint8_t *mem, int len)
406 int i, c;
407 char *q;
408 q = buf;
409 for(i = 0; i < len; i++) {
410 c = mem[i];
411 *q++ = tohex(c >> 4);
412 *q++ = tohex(c & 0xf);
414 *q = '\0';
417 static void hextomem(uint8_t *mem, const char *buf, int len)
419 int i;
421 for(i = 0; i < len; i++) {
422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
423 buf += 2;
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState *s, const char *buf, int len)
430 int csum, i;
431 uint8_t *p;
433 for(;;) {
434 p = s->last_packet;
435 *(p++) = '$';
436 memcpy(p, buf, len);
437 p += len;
438 csum = 0;
439 for(i = 0; i < len; i++) {
440 csum += buf[i];
442 *(p++) = '#';
443 *(p++) = tohex((csum >> 4) & 0xf);
444 *(p++) = tohex((csum) & 0xf);
446 s->last_packet_len = p - s->last_packet;
447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
449 #ifdef CONFIG_USER_ONLY
450 i = get_char(s);
451 if (i < 0)
452 return -1;
453 if (i == '+')
454 break;
455 #else
456 break;
457 #endif
459 return 0;
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState *s, const char *buf)
465 #ifdef DEBUG_GDB
466 printf("reply='%s'\n", buf);
467 #endif
469 return put_packet_binary(s, buf, strlen(buf));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
478 return 1; \
479 } while(0)
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
482 return 2; \
483 } while(0)
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
486 return 4; \
487 } while(0)
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
490 return 8; \
491 } while(0)
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
496 #else
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
499 #endif
501 #if defined(TARGET_I386)
503 #ifdef TARGET_X86_64
504 static const int gpr_map[16] = {
505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
506 8, 9, 10, 11, 12, 13, 14, 15
508 #else
509 #define gpr_map gpr_map32
510 #endif
511 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
513 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
515 #define IDX_IP_REG CPU_NB_REGS
516 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
517 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
518 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
519 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
520 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
522 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
524 if (n < CPU_NB_REGS) {
525 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
526 GET_REG64(env->regs[gpr_map[n]]);
527 } else if (n < CPU_NB_REGS32) {
528 GET_REG32(env->regs[gpr_map32[n]]);
530 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
531 #ifdef USE_X86LDOUBLE
532 /* FIXME: byteswap float values - after fixing fpregs layout. */
533 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
534 #else
535 memset(mem_buf, 0, 10);
536 #endif
537 return 10;
538 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
539 n -= IDX_XMM_REGS;
540 if (n < CPU_NB_REGS32 ||
541 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
542 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
543 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
544 return 16;
546 } else {
547 switch (n) {
548 case IDX_IP_REG:
549 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
550 GET_REG64(env->eip);
551 } else {
552 GET_REG32(env->eip);
554 case IDX_FLAGS_REG: GET_REG32(env->eflags);
556 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
557 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
558 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
559 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
560 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
561 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
563 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
564 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
565 (env->fpstt & 0x7) << 11);
566 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
567 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
568 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
569 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
570 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
571 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
573 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
576 return 0;
579 static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
581 uint16_t selector = ldl_p(mem_buf);
583 if (selector != env->segs[sreg].selector) {
584 #if defined(CONFIG_USER_ONLY)
585 cpu_x86_load_seg(env, sreg, selector);
586 #else
587 unsigned int limit, flags;
588 target_ulong base;
590 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
591 base = selector << 4;
592 limit = 0xffff;
593 flags = 0;
594 } else {
595 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
596 return 4;
598 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
599 #endif
601 return 4;
604 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
606 uint32_t tmp;
608 if (n < CPU_NB_REGS) {
609 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
610 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
611 return sizeof(target_ulong);
612 } else if (n < CPU_NB_REGS32) {
613 n = gpr_map32[n];
614 env->regs[n] &= ~0xffffffffUL;
615 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
616 return 4;
618 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
619 #ifdef USE_X86LDOUBLE
620 /* FIXME: byteswap float values - after fixing fpregs layout. */
621 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
622 #endif
623 return 10;
624 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
625 n -= IDX_XMM_REGS;
626 if (n < CPU_NB_REGS32 ||
627 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
628 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
629 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
630 return 16;
632 } else {
633 switch (n) {
634 case IDX_IP_REG:
635 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
636 env->eip = ldq_p(mem_buf);
637 return 8;
638 } else {
639 env->eip &= ~0xffffffffUL;
640 env->eip |= (uint32_t)ldl_p(mem_buf);
641 return 4;
643 case IDX_FLAGS_REG:
644 env->eflags = ldl_p(mem_buf);
645 return 4;
647 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
648 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
649 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
650 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
651 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
652 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
654 case IDX_FP_REGS + 8:
655 env->fpuc = ldl_p(mem_buf);
656 return 4;
657 case IDX_FP_REGS + 9:
658 tmp = ldl_p(mem_buf);
659 env->fpstt = (tmp >> 11) & 7;
660 env->fpus = tmp & ~0x3800;
661 return 4;
662 case IDX_FP_REGS + 10: /* ftag */ return 4;
663 case IDX_FP_REGS + 11: /* fiseg */ return 4;
664 case IDX_FP_REGS + 12: /* fioff */ return 4;
665 case IDX_FP_REGS + 13: /* foseg */ return 4;
666 case IDX_FP_REGS + 14: /* fooff */ return 4;
667 case IDX_FP_REGS + 15: /* fop */ return 4;
669 case IDX_MXCSR_REG:
670 env->mxcsr = ldl_p(mem_buf);
671 return 4;
674 /* Unrecognised register. */
675 return 0;
678 #elif defined (TARGET_PPC)
680 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
681 expects whatever the target description contains. Due to a
682 historical mishap the FP registers appear in between core integer
683 regs and PC, MSR, CR, and so forth. We hack round this by giving the
684 FP regs zero size when talking to a newer gdb. */
685 #define NUM_CORE_REGS 71
686 #if defined (TARGET_PPC64)
687 #define GDB_CORE_XML "power64-core.xml"
688 #else
689 #define GDB_CORE_XML "power-core.xml"
690 #endif
692 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
694 if (n < 32) {
695 /* gprs */
696 GET_REGL(env->gpr[n]);
697 } else if (n < 64) {
698 /* fprs */
699 if (gdb_has_xml)
700 return 0;
701 stfq_p(mem_buf, env->fpr[n-32]);
702 return 8;
703 } else {
704 switch (n) {
705 case 64: GET_REGL(env->nip);
706 case 65: GET_REGL(env->msr);
707 case 66:
709 uint32_t cr = 0;
710 int i;
711 for (i = 0; i < 8; i++)
712 cr |= env->crf[i] << (32 - ((i + 1) * 4));
713 GET_REG32(cr);
715 case 67: GET_REGL(env->lr);
716 case 68: GET_REGL(env->ctr);
717 case 69: GET_REGL(env->xer);
718 case 70:
720 if (gdb_has_xml)
721 return 0;
722 GET_REG32(0); /* fpscr */
726 return 0;
729 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
731 if (n < 32) {
732 /* gprs */
733 env->gpr[n] = ldtul_p(mem_buf);
734 return sizeof(target_ulong);
735 } else if (n < 64) {
736 /* fprs */
737 if (gdb_has_xml)
738 return 0;
739 env->fpr[n-32] = ldfq_p(mem_buf);
740 return 8;
741 } else {
742 switch (n) {
743 case 64:
744 env->nip = ldtul_p(mem_buf);
745 return sizeof(target_ulong);
746 case 65:
747 ppc_store_msr(env, ldtul_p(mem_buf));
748 return sizeof(target_ulong);
749 case 66:
751 uint32_t cr = ldl_p(mem_buf);
752 int i;
753 for (i = 0; i < 8; i++)
754 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
755 return 4;
757 case 67:
758 env->lr = ldtul_p(mem_buf);
759 return sizeof(target_ulong);
760 case 68:
761 env->ctr = ldtul_p(mem_buf);
762 return sizeof(target_ulong);
763 case 69:
764 env->xer = ldtul_p(mem_buf);
765 return sizeof(target_ulong);
766 case 70:
767 /* fpscr */
768 if (gdb_has_xml)
769 return 0;
770 return 4;
773 return 0;
776 #elif defined (TARGET_SPARC)
778 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
779 #define NUM_CORE_REGS 86
780 #else
781 #define NUM_CORE_REGS 72
782 #endif
784 #ifdef TARGET_ABI32
785 #define GET_REGA(val) GET_REG32(val)
786 #else
787 #define GET_REGA(val) GET_REGL(val)
788 #endif
790 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
792 if (n < 8) {
793 /* g0..g7 */
794 GET_REGA(env->gregs[n]);
796 if (n < 32) {
797 /* register window */
798 GET_REGA(env->regwptr[n - 8]);
800 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
801 if (n < 64) {
802 /* fprs */
803 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
805 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
806 switch (n) {
807 case 64: GET_REGA(env->y);
808 case 65: GET_REGA(cpu_get_psr(env));
809 case 66: GET_REGA(env->wim);
810 case 67: GET_REGA(env->tbr);
811 case 68: GET_REGA(env->pc);
812 case 69: GET_REGA(env->npc);
813 case 70: GET_REGA(env->fsr);
814 case 71: GET_REGA(0); /* csr */
815 default: GET_REGA(0);
817 #else
818 if (n < 64) {
819 /* f0-f31 */
820 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
822 if (n < 80) {
823 /* f32-f62 (double width, even numbers only) */
824 uint64_t val;
826 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
827 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
828 GET_REG64(val);
830 switch (n) {
831 case 80: GET_REGL(env->pc);
832 case 81: GET_REGL(env->npc);
833 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
834 ((env->asi & 0xff) << 24) |
835 ((env->pstate & 0xfff) << 8) |
836 cpu_get_cwp64(env));
837 case 83: GET_REGL(env->fsr);
838 case 84: GET_REGL(env->fprs);
839 case 85: GET_REGL(env->y);
841 #endif
842 return 0;
845 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
847 #if defined(TARGET_ABI32)
848 abi_ulong tmp;
850 tmp = ldl_p(mem_buf);
851 #else
852 target_ulong tmp;
854 tmp = ldtul_p(mem_buf);
855 #endif
857 if (n < 8) {
858 /* g0..g7 */
859 env->gregs[n] = tmp;
860 } else if (n < 32) {
861 /* register window */
862 env->regwptr[n - 8] = tmp;
864 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
865 else if (n < 64) {
866 /* fprs */
867 *((uint32_t *)&env->fpr[n - 32]) = tmp;
868 } else {
869 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
870 switch (n) {
871 case 64: env->y = tmp; break;
872 case 65: cpu_put_psr(env, tmp); break;
873 case 66: env->wim = tmp; break;
874 case 67: env->tbr = tmp; break;
875 case 68: env->pc = tmp; break;
876 case 69: env->npc = tmp; break;
877 case 70: env->fsr = tmp; break;
878 default: return 0;
881 return 4;
882 #else
883 else if (n < 64) {
884 /* f0-f31 */
885 env->fpr[n] = ldfl_p(mem_buf);
886 return 4;
887 } else if (n < 80) {
888 /* f32-f62 (double width, even numbers only) */
889 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
890 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
891 } else {
892 switch (n) {
893 case 80: env->pc = tmp; break;
894 case 81: env->npc = tmp; break;
895 case 82:
896 cpu_put_ccr(env, tmp >> 32);
897 env->asi = (tmp >> 24) & 0xff;
898 env->pstate = (tmp >> 8) & 0xfff;
899 cpu_put_cwp64(env, tmp & 0xff);
900 break;
901 case 83: env->fsr = tmp; break;
902 case 84: env->fprs = tmp; break;
903 case 85: env->y = tmp; break;
904 default: return 0;
907 return 8;
908 #endif
910 #elif defined (TARGET_ARM)
912 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
913 whatever the target description contains. Due to a historical mishap
914 the FPA registers appear in between core integer regs and the CPSR.
915 We hack round this by giving the FPA regs zero size when talking to a
916 newer gdb. */
917 #define NUM_CORE_REGS 26
918 #define GDB_CORE_XML "arm-core.xml"
920 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
922 if (n < 16) {
923 /* Core integer register. */
924 GET_REG32(env->regs[n]);
926 if (n < 24) {
927 /* FPA registers. */
928 if (gdb_has_xml)
929 return 0;
930 memset(mem_buf, 0, 12);
931 return 12;
933 switch (n) {
934 case 24:
935 /* FPA status register. */
936 if (gdb_has_xml)
937 return 0;
938 GET_REG32(0);
939 case 25:
940 /* CPSR */
941 GET_REG32(cpsr_read(env));
943 /* Unknown register. */
944 return 0;
947 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
949 uint32_t tmp;
951 tmp = ldl_p(mem_buf);
953 /* Mask out low bit of PC to workaround gdb bugs. This will probably
954 cause problems if we ever implement the Jazelle DBX extensions. */
955 if (n == 15)
956 tmp &= ~1;
958 if (n < 16) {
959 /* Core integer register. */
960 env->regs[n] = tmp;
961 return 4;
963 if (n < 24) { /* 16-23 */
964 /* FPA registers (ignored). */
965 if (gdb_has_xml)
966 return 0;
967 return 12;
969 switch (n) {
970 case 24:
971 /* FPA status register (ignored). */
972 if (gdb_has_xml)
973 return 0;
974 return 4;
975 case 25:
976 /* CPSR */
977 cpsr_write (env, tmp, 0xffffffff);
978 return 4;
980 /* Unknown register. */
981 return 0;
984 #elif defined (TARGET_M68K)
986 #define NUM_CORE_REGS 18
988 #define GDB_CORE_XML "cf-core.xml"
990 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
992 if (n < 8) {
993 /* D0-D7 */
994 GET_REG32(env->dregs[n]);
995 } else if (n < 16) {
996 /* A0-A7 */
997 GET_REG32(env->aregs[n - 8]);
998 } else {
999 switch (n) {
1000 case 16: GET_REG32(env->sr);
1001 case 17: GET_REG32(env->pc);
1004 /* FP registers not included here because they vary between
1005 ColdFire and m68k. Use XML bits for these. */
1006 return 0;
1009 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1011 uint32_t tmp;
1013 tmp = ldl_p(mem_buf);
1015 if (n < 8) {
1016 /* D0-D7 */
1017 env->dregs[n] = tmp;
1018 } else if (n < 16) {
1019 /* A0-A7 */
1020 env->aregs[n - 8] = tmp;
1021 } else {
1022 switch (n) {
1023 case 16: env->sr = tmp; break;
1024 case 17: env->pc = tmp; break;
1025 default: return 0;
1028 return 4;
1030 #elif defined (TARGET_MIPS)
1032 #define NUM_CORE_REGS 73
1034 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1036 if (n < 32) {
1037 GET_REGL(env->active_tc.gpr[n]);
1039 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1040 if (n >= 38 && n < 70) {
1041 if (env->CP0_Status & (1 << CP0St_FR))
1042 GET_REGL(env->active_fpu.fpr[n - 38].d);
1043 else
1044 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1046 switch (n) {
1047 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1048 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1051 switch (n) {
1052 case 32: GET_REGL((int32_t)env->CP0_Status);
1053 case 33: GET_REGL(env->active_tc.LO[0]);
1054 case 34: GET_REGL(env->active_tc.HI[0]);
1055 case 35: GET_REGL(env->CP0_BadVAddr);
1056 case 36: GET_REGL((int32_t)env->CP0_Cause);
1057 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1058 case 72: GET_REGL(0); /* fp */
1059 case 89: GET_REGL((int32_t)env->CP0_PRid);
1061 if (n >= 73 && n <= 88) {
1062 /* 16 embedded regs. */
1063 GET_REGL(0);
1066 return 0;
1069 /* convert MIPS rounding mode in FCR31 to IEEE library */
1070 static unsigned int ieee_rm[] =
1072 float_round_nearest_even,
1073 float_round_to_zero,
1074 float_round_up,
1075 float_round_down
1077 #define RESTORE_ROUNDING_MODE \
1078 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1080 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1082 target_ulong tmp;
1084 tmp = ldtul_p(mem_buf);
1086 if (n < 32) {
1087 env->active_tc.gpr[n] = tmp;
1088 return sizeof(target_ulong);
1090 if (env->CP0_Config1 & (1 << CP0C1_FP)
1091 && n >= 38 && n < 73) {
1092 if (n < 70) {
1093 if (env->CP0_Status & (1 << CP0St_FR))
1094 env->active_fpu.fpr[n - 38].d = tmp;
1095 else
1096 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1098 switch (n) {
1099 case 70:
1100 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1101 /* set rounding mode */
1102 RESTORE_ROUNDING_MODE;
1103 #ifndef CONFIG_SOFTFLOAT
1104 /* no floating point exception for native float */
1105 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1106 #endif
1107 break;
1108 case 71: env->active_fpu.fcr0 = tmp; break;
1110 return sizeof(target_ulong);
1112 switch (n) {
1113 case 32: env->CP0_Status = tmp; break;
1114 case 33: env->active_tc.LO[0] = tmp; break;
1115 case 34: env->active_tc.HI[0] = tmp; break;
1116 case 35: env->CP0_BadVAddr = tmp; break;
1117 case 36: env->CP0_Cause = tmp; break;
1118 case 37:
1119 env->active_tc.PC = tmp & ~(target_ulong)1;
1120 if (tmp & 1) {
1121 env->hflags |= MIPS_HFLAG_M16;
1122 } else {
1123 env->hflags &= ~(MIPS_HFLAG_M16);
1125 break;
1126 case 72: /* fp, ignored */ break;
1127 default:
1128 if (n > 89)
1129 return 0;
1130 /* Other registers are readonly. Ignore writes. */
1131 break;
1134 return sizeof(target_ulong);
1136 #elif defined (TARGET_SH4)
1138 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1139 /* FIXME: We should use XML for this. */
1141 #define NUM_CORE_REGS 59
1143 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1145 if (n < 8) {
1146 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1147 GET_REGL(env->gregs[n + 16]);
1148 } else {
1149 GET_REGL(env->gregs[n]);
1151 } else if (n < 16) {
1152 GET_REGL(env->gregs[n]);
1153 } else if (n >= 25 && n < 41) {
1154 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1155 } else if (n >= 43 && n < 51) {
1156 GET_REGL(env->gregs[n - 43]);
1157 } else if (n >= 51 && n < 59) {
1158 GET_REGL(env->gregs[n - (51 - 16)]);
1160 switch (n) {
1161 case 16: GET_REGL(env->pc);
1162 case 17: GET_REGL(env->pr);
1163 case 18: GET_REGL(env->gbr);
1164 case 19: GET_REGL(env->vbr);
1165 case 20: GET_REGL(env->mach);
1166 case 21: GET_REGL(env->macl);
1167 case 22: GET_REGL(env->sr);
1168 case 23: GET_REGL(env->fpul);
1169 case 24: GET_REGL(env->fpscr);
1170 case 41: GET_REGL(env->ssr);
1171 case 42: GET_REGL(env->spc);
1174 return 0;
1177 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1179 uint32_t tmp;
1181 tmp = ldl_p(mem_buf);
1183 if (n < 8) {
1184 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1185 env->gregs[n + 16] = tmp;
1186 } else {
1187 env->gregs[n] = tmp;
1189 return 4;
1190 } else if (n < 16) {
1191 env->gregs[n] = tmp;
1192 return 4;
1193 } else if (n >= 25 && n < 41) {
1194 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1195 return 4;
1196 } else if (n >= 43 && n < 51) {
1197 env->gregs[n - 43] = tmp;
1198 return 4;
1199 } else if (n >= 51 && n < 59) {
1200 env->gregs[n - (51 - 16)] = tmp;
1201 return 4;
1203 switch (n) {
1204 case 16: env->pc = tmp; break;
1205 case 17: env->pr = tmp; break;
1206 case 18: env->gbr = tmp; break;
1207 case 19: env->vbr = tmp; break;
1208 case 20: env->mach = tmp; break;
1209 case 21: env->macl = tmp; break;
1210 case 22: env->sr = tmp; break;
1211 case 23: env->fpul = tmp; break;
1212 case 24: env->fpscr = tmp; break;
1213 case 41: env->ssr = tmp; break;
1214 case 42: env->spc = tmp; break;
1215 default: return 0;
1218 return 4;
1220 #elif defined (TARGET_MICROBLAZE)
1222 #define NUM_CORE_REGS (32 + 5)
1224 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1226 if (n < 32) {
1227 GET_REG32(env->regs[n]);
1228 } else {
1229 GET_REG32(env->sregs[n - 32]);
1231 return 0;
1234 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1236 uint32_t tmp;
1238 if (n > NUM_CORE_REGS)
1239 return 0;
1241 tmp = ldl_p(mem_buf);
1243 if (n < 32) {
1244 env->regs[n] = tmp;
1245 } else {
1246 env->sregs[n - 32] = tmp;
1248 return 4;
1250 #elif defined (TARGET_CRIS)
1252 #define NUM_CORE_REGS 49
1254 static int
1255 read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
1257 if (n < 15) {
1258 GET_REG32(env->regs[n]);
1261 if (n == 15) {
1262 GET_REG32(env->pc);
1265 if (n < 32) {
1266 switch (n) {
1267 case 16:
1268 GET_REG8(env->pregs[n - 16]);
1269 break;
1270 case 17:
1271 GET_REG8(env->pregs[n - 16]);
1272 break;
1273 case 20:
1274 case 21:
1275 GET_REG16(env->pregs[n - 16]);
1276 break;
1277 default:
1278 if (n >= 23) {
1279 GET_REG32(env->pregs[n - 16]);
1281 break;
1284 return 0;
1287 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1289 uint8_t srs;
1291 if (env->pregs[PR_VR] < 32)
1292 return read_register_crisv10(env, mem_buf, n);
1294 srs = env->pregs[PR_SRS];
1295 if (n < 16) {
1296 GET_REG32(env->regs[n]);
1299 if (n >= 21 && n < 32) {
1300 GET_REG32(env->pregs[n - 16]);
1302 if (n >= 33 && n < 49) {
1303 GET_REG32(env->sregs[srs][n - 33]);
1305 switch (n) {
1306 case 16: GET_REG8(env->pregs[0]);
1307 case 17: GET_REG8(env->pregs[1]);
1308 case 18: GET_REG32(env->pregs[2]);
1309 case 19: GET_REG8(srs);
1310 case 20: GET_REG16(env->pregs[4]);
1311 case 32: GET_REG32(env->pc);
1314 return 0;
1317 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1319 uint32_t tmp;
1321 if (n > 49)
1322 return 0;
1324 tmp = ldl_p(mem_buf);
1326 if (n < 16) {
1327 env->regs[n] = tmp;
1330 if (n >= 21 && n < 32) {
1331 env->pregs[n - 16] = tmp;
1334 /* FIXME: Should support function regs be writable? */
1335 switch (n) {
1336 case 16: return 1;
1337 case 17: return 1;
1338 case 18: env->pregs[PR_PID] = tmp; break;
1339 case 19: return 1;
1340 case 20: return 2;
1341 case 32: env->pc = tmp; break;
1344 return 4;
1346 #elif defined (TARGET_ALPHA)
1348 #define NUM_CORE_REGS 67
1350 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1352 uint64_t val;
1353 CPU_DoubleU d;
1355 switch (n) {
1356 case 0 ... 30:
1357 val = env->ir[n];
1358 break;
1359 case 32 ... 62:
1360 d.d = env->fir[n - 32];
1361 val = d.ll;
1362 break;
1363 case 63:
1364 val = cpu_alpha_load_fpcr(env);
1365 break;
1366 case 64:
1367 val = env->pc;
1368 break;
1369 case 66:
1370 val = env->unique;
1371 break;
1372 case 31:
1373 case 65:
1374 /* 31 really is the zero register; 65 is unassigned in the
1375 gdb protocol, but is still required to occupy 8 bytes. */
1376 val = 0;
1377 break;
1378 default:
1379 return 0;
1381 GET_REGL(val);
1384 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1386 target_ulong tmp = ldtul_p(mem_buf);
1387 CPU_DoubleU d;
1389 switch (n) {
1390 case 0 ... 30:
1391 env->ir[n] = tmp;
1392 break;
1393 case 32 ... 62:
1394 d.ll = tmp;
1395 env->fir[n - 32] = d.d;
1396 break;
1397 case 63:
1398 cpu_alpha_store_fpcr(env, tmp);
1399 break;
1400 case 64:
1401 env->pc = tmp;
1402 break;
1403 case 66:
1404 env->unique = tmp;
1405 break;
1406 case 31:
1407 case 65:
1408 /* 31 really is the zero register; 65 is unassigned in the
1409 gdb protocol, but is still required to occupy 8 bytes. */
1410 break;
1411 default:
1412 return 0;
1414 return 8;
1416 #elif defined (TARGET_S390X)
1418 #define NUM_CORE_REGS S390_NUM_TOTAL_REGS
1420 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1422 switch (n) {
1423 case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
1424 case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
1425 case S390_R0_REGNUM ... S390_R15_REGNUM:
1426 GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
1427 case S390_A0_REGNUM ... S390_A15_REGNUM:
1428 GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
1429 case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
1430 case S390_F0_REGNUM ... S390_F15_REGNUM:
1431 /* XXX */
1432 break;
1433 case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
1434 case S390_CC_REGNUM: GET_REG32(env->cc); break;
1437 return 0;
1440 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1442 target_ulong tmpl;
1443 uint32_t tmp32;
1444 int r = 8;
1445 tmpl = ldtul_p(mem_buf);
1446 tmp32 = ldl_p(mem_buf);
1448 switch (n) {
1449 case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
1450 case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
1451 case S390_R0_REGNUM ... S390_R15_REGNUM:
1452 env->regs[n-S390_R0_REGNUM] = tmpl; break;
1453 case S390_A0_REGNUM ... S390_A15_REGNUM:
1454 env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
1455 case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
1456 case S390_F0_REGNUM ... S390_F15_REGNUM:
1457 /* XXX */
1458 break;
1459 case S390_PC_REGNUM: env->psw.addr = tmpl; break;
1460 case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
1463 return r;
1465 #else
1467 #define NUM_CORE_REGS 0
1469 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1471 return 0;
1474 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1476 return 0;
1479 #endif
1481 static int num_g_regs = NUM_CORE_REGS;
1483 #ifdef GDB_CORE_XML
1484 /* Encode data using the encoding for 'x' packets. */
1485 static int memtox(char *buf, const char *mem, int len)
1487 char *p = buf;
1488 char c;
1490 while (len--) {
1491 c = *(mem++);
1492 switch (c) {
1493 case '#': case '$': case '*': case '}':
1494 *(p++) = '}';
1495 *(p++) = c ^ 0x20;
1496 break;
1497 default:
1498 *(p++) = c;
1499 break;
1502 return p - buf;
1505 static const char *get_feature_xml(const char *p, const char **newp)
1507 size_t len;
1508 int i;
1509 const char *name;
1510 static char target_xml[1024];
1512 len = 0;
1513 while (p[len] && p[len] != ':')
1514 len++;
1515 *newp = p + len;
1517 name = NULL;
1518 if (strncmp(p, "target.xml", len) == 0) {
1519 /* Generate the XML description for this CPU. */
1520 if (!target_xml[0]) {
1521 GDBRegisterState *r;
1523 snprintf(target_xml, sizeof(target_xml),
1524 "<?xml version=\"1.0\"?>"
1525 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1526 "<target>"
1527 "<xi:include href=\"%s\"/>",
1528 GDB_CORE_XML);
1530 for (r = first_cpu->gdb_regs; r; r = r->next) {
1531 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1532 pstrcat(target_xml, sizeof(target_xml), r->xml);
1533 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1535 pstrcat(target_xml, sizeof(target_xml), "</target>");
1537 return target_xml;
1539 for (i = 0; ; i++) {
1540 name = xml_builtin[i][0];
1541 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1542 break;
1544 return name ? xml_builtin[i][1] : NULL;
1546 #endif
1548 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1550 GDBRegisterState *r;
1552 if (reg < NUM_CORE_REGS)
1553 return cpu_gdb_read_register(env, mem_buf, reg);
1555 for (r = env->gdb_regs; r; r = r->next) {
1556 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1557 return r->get_reg(env, mem_buf, reg - r->base_reg);
1560 return 0;
1563 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1565 GDBRegisterState *r;
1567 if (reg < NUM_CORE_REGS)
1568 return cpu_gdb_write_register(env, mem_buf, reg);
1570 for (r = env->gdb_regs; r; r = r->next) {
1571 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1572 return r->set_reg(env, mem_buf, reg - r->base_reg);
1575 return 0;
1578 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1579 specifies the first register number and these registers are included in
1580 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1581 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1584 void gdb_register_coprocessor(CPUState * env,
1585 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1586 int num_regs, const char *xml, int g_pos)
1588 GDBRegisterState *s;
1589 GDBRegisterState **p;
1590 static int last_reg = NUM_CORE_REGS;
1592 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1593 s->base_reg = last_reg;
1594 s->num_regs = num_regs;
1595 s->get_reg = get_reg;
1596 s->set_reg = set_reg;
1597 s->xml = xml;
1598 p = &env->gdb_regs;
1599 while (*p) {
1600 /* Check for duplicates. */
1601 if (strcmp((*p)->xml, xml) == 0)
1602 return;
1603 p = &(*p)->next;
1605 /* Add to end of list. */
1606 last_reg += num_regs;
1607 *p = s;
1608 if (g_pos) {
1609 if (g_pos != s->base_reg) {
1610 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1611 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1612 } else {
1613 num_g_regs = last_reg;
1618 #ifndef CONFIG_USER_ONLY
1619 static const int xlat_gdb_type[] = {
1620 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1621 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1622 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1624 #endif
1626 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1628 CPUState *env;
1629 int err = 0;
1631 if (kvm_enabled())
1632 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1634 switch (type) {
1635 case GDB_BREAKPOINT_SW:
1636 case GDB_BREAKPOINT_HW:
1637 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1638 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1639 if (err)
1640 break;
1642 return err;
1643 #ifndef CONFIG_USER_ONLY
1644 case GDB_WATCHPOINT_WRITE:
1645 case GDB_WATCHPOINT_READ:
1646 case GDB_WATCHPOINT_ACCESS:
1647 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1648 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1649 NULL);
1650 if (err)
1651 break;
1653 return err;
1654 #endif
1655 default:
1656 return -ENOSYS;
1660 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1662 CPUState *env;
1663 int err = 0;
1665 if (kvm_enabled())
1666 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1668 switch (type) {
1669 case GDB_BREAKPOINT_SW:
1670 case GDB_BREAKPOINT_HW:
1671 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1672 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1673 if (err)
1674 break;
1676 return err;
1677 #ifndef CONFIG_USER_ONLY
1678 case GDB_WATCHPOINT_WRITE:
1679 case GDB_WATCHPOINT_READ:
1680 case GDB_WATCHPOINT_ACCESS:
1681 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1682 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1683 if (err)
1684 break;
1686 return err;
1687 #endif
1688 default:
1689 return -ENOSYS;
1693 static void gdb_breakpoint_remove_all(void)
1695 CPUState *env;
1697 if (kvm_enabled()) {
1698 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1699 return;
1702 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1703 cpu_breakpoint_remove_all(env, BP_GDB);
1704 #ifndef CONFIG_USER_ONLY
1705 cpu_watchpoint_remove_all(env, BP_GDB);
1706 #endif
1710 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1712 #if defined(TARGET_I386)
1713 cpu_synchronize_state(s->c_cpu);
1714 s->c_cpu->eip = pc;
1715 #elif defined (TARGET_PPC)
1716 s->c_cpu->nip = pc;
1717 #elif defined (TARGET_SPARC)
1718 s->c_cpu->pc = pc;
1719 s->c_cpu->npc = pc + 4;
1720 #elif defined (TARGET_ARM)
1721 s->c_cpu->regs[15] = pc;
1722 #elif defined (TARGET_SH4)
1723 s->c_cpu->pc = pc;
1724 #elif defined (TARGET_MIPS)
1725 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
1726 if (pc & 1) {
1727 s->c_cpu->hflags |= MIPS_HFLAG_M16;
1728 } else {
1729 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
1731 #elif defined (TARGET_MICROBLAZE)
1732 s->c_cpu->sregs[SR_PC] = pc;
1733 #elif defined (TARGET_CRIS)
1734 s->c_cpu->pc = pc;
1735 #elif defined (TARGET_ALPHA)
1736 s->c_cpu->pc = pc;
1737 #elif defined (TARGET_S390X)
1738 cpu_synchronize_state(s->c_cpu);
1739 s->c_cpu->psw.addr = pc;
1740 #endif
1743 static inline int gdb_id(CPUState *env)
1745 #if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
1746 return env->host_tid;
1747 #else
1748 return env->cpu_index + 1;
1749 #endif
1752 static CPUState *find_cpu(uint32_t thread_id)
1754 CPUState *env;
1756 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1757 if (gdb_id(env) == thread_id) {
1758 return env;
1762 return NULL;
1765 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1767 CPUState *env;
1768 const char *p;
1769 uint32_t thread;
1770 int ch, reg_size, type, res;
1771 char buf[MAX_PACKET_LENGTH];
1772 uint8_t mem_buf[MAX_PACKET_LENGTH];
1773 uint8_t *registers;
1774 target_ulong addr, len;
1776 #ifdef DEBUG_GDB
1777 printf("command='%s'\n", line_buf);
1778 #endif
1779 p = line_buf;
1780 ch = *p++;
1781 switch(ch) {
1782 case '?':
1783 /* TODO: Make this return the correct value for user-mode. */
1784 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1785 gdb_id(s->c_cpu));
1786 put_packet(s, buf);
1787 /* Remove all the breakpoints when this query is issued,
1788 * because gdb is doing and initial connect and the state
1789 * should be cleaned up.
1791 gdb_breakpoint_remove_all();
1792 break;
1793 case 'c':
1794 if (*p != '\0') {
1795 addr = strtoull(p, (char **)&p, 16);
1796 gdb_set_cpu_pc(s, addr);
1798 s->signal = 0;
1799 gdb_continue(s);
1800 return RS_IDLE;
1801 case 'C':
1802 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1803 if (s->signal == -1)
1804 s->signal = 0;
1805 gdb_continue(s);
1806 return RS_IDLE;
1807 case 'v':
1808 if (strncmp(p, "Cont", 4) == 0) {
1809 int res_signal, res_thread;
1811 p += 4;
1812 if (*p == '?') {
1813 put_packet(s, "vCont;c;C;s;S");
1814 break;
1816 res = 0;
1817 res_signal = 0;
1818 res_thread = 0;
1819 while (*p) {
1820 int action, signal;
1822 if (*p++ != ';') {
1823 res = 0;
1824 break;
1826 action = *p++;
1827 signal = 0;
1828 if (action == 'C' || action == 'S') {
1829 signal = strtoul(p, (char **)&p, 16);
1830 } else if (action != 'c' && action != 's') {
1831 res = 0;
1832 break;
1834 thread = 0;
1835 if (*p == ':') {
1836 thread = strtoull(p+1, (char **)&p, 16);
1838 action = tolower(action);
1839 if (res == 0 || (res == 'c' && action == 's')) {
1840 res = action;
1841 res_signal = signal;
1842 res_thread = thread;
1845 if (res) {
1846 if (res_thread != -1 && res_thread != 0) {
1847 env = find_cpu(res_thread);
1848 if (env == NULL) {
1849 put_packet(s, "E22");
1850 break;
1852 s->c_cpu = env;
1854 if (res == 's') {
1855 cpu_single_step(s->c_cpu, sstep_flags);
1857 s->signal = res_signal;
1858 gdb_continue(s);
1859 return RS_IDLE;
1861 break;
1862 } else {
1863 goto unknown_command;
1865 case 'k':
1866 /* Kill the target */
1867 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1868 exit(0);
1869 case 'D':
1870 /* Detach packet */
1871 gdb_breakpoint_remove_all();
1872 gdb_syscall_mode = GDB_SYS_DISABLED;
1873 gdb_continue(s);
1874 put_packet(s, "OK");
1875 break;
1876 case 's':
1877 if (*p != '\0') {
1878 addr = strtoull(p, (char **)&p, 16);
1879 gdb_set_cpu_pc(s, addr);
1881 cpu_single_step(s->c_cpu, sstep_flags);
1882 gdb_continue(s);
1883 return RS_IDLE;
1884 case 'F':
1886 target_ulong ret;
1887 target_ulong err;
1889 ret = strtoull(p, (char **)&p, 16);
1890 if (*p == ',') {
1891 p++;
1892 err = strtoull(p, (char **)&p, 16);
1893 } else {
1894 err = 0;
1896 if (*p == ',')
1897 p++;
1898 type = *p;
1899 if (gdb_current_syscall_cb)
1900 gdb_current_syscall_cb(s->c_cpu, ret, err);
1901 if (type == 'C') {
1902 put_packet(s, "T02");
1903 } else {
1904 gdb_continue(s);
1907 break;
1908 case 'g':
1909 cpu_synchronize_state(s->g_cpu);
1910 len = 0;
1911 for (addr = 0; addr < num_g_regs; addr++) {
1912 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1913 len += reg_size;
1915 memtohex(buf, mem_buf, len);
1916 put_packet(s, buf);
1917 break;
1918 case 'G':
1919 cpu_synchronize_state(s->g_cpu);
1920 registers = mem_buf;
1921 len = strlen(p) / 2;
1922 hextomem((uint8_t *)registers, p, len);
1923 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1924 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1925 len -= reg_size;
1926 registers += reg_size;
1928 put_packet(s, "OK");
1929 break;
1930 case 'm':
1931 addr = strtoull(p, (char **)&p, 16);
1932 if (*p == ',')
1933 p++;
1934 len = strtoull(p, NULL, 16);
1935 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1936 put_packet (s, "E14");
1937 } else {
1938 memtohex(buf, mem_buf, len);
1939 put_packet(s, buf);
1941 break;
1942 case 'M':
1943 addr = strtoull(p, (char **)&p, 16);
1944 if (*p == ',')
1945 p++;
1946 len = strtoull(p, (char **)&p, 16);
1947 if (*p == ':')
1948 p++;
1949 hextomem(mem_buf, p, len);
1950 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1951 put_packet(s, "E14");
1952 else
1953 put_packet(s, "OK");
1954 break;
1955 case 'p':
1956 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1957 This works, but can be very slow. Anything new enough to
1958 understand XML also knows how to use this properly. */
1959 if (!gdb_has_xml)
1960 goto unknown_command;
1961 addr = strtoull(p, (char **)&p, 16);
1962 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1963 if (reg_size) {
1964 memtohex(buf, mem_buf, reg_size);
1965 put_packet(s, buf);
1966 } else {
1967 put_packet(s, "E14");
1969 break;
1970 case 'P':
1971 if (!gdb_has_xml)
1972 goto unknown_command;
1973 addr = strtoull(p, (char **)&p, 16);
1974 if (*p == '=')
1975 p++;
1976 reg_size = strlen(p) / 2;
1977 hextomem(mem_buf, p, reg_size);
1978 gdb_write_register(s->g_cpu, mem_buf, addr);
1979 put_packet(s, "OK");
1980 break;
1981 case 'Z':
1982 case 'z':
1983 type = strtoul(p, (char **)&p, 16);
1984 if (*p == ',')
1985 p++;
1986 addr = strtoull(p, (char **)&p, 16);
1987 if (*p == ',')
1988 p++;
1989 len = strtoull(p, (char **)&p, 16);
1990 if (ch == 'Z')
1991 res = gdb_breakpoint_insert(addr, len, type);
1992 else
1993 res = gdb_breakpoint_remove(addr, len, type);
1994 if (res >= 0)
1995 put_packet(s, "OK");
1996 else if (res == -ENOSYS)
1997 put_packet(s, "");
1998 else
1999 put_packet(s, "E22");
2000 break;
2001 case 'H':
2002 type = *p++;
2003 thread = strtoull(p, (char **)&p, 16);
2004 if (thread == -1 || thread == 0) {
2005 put_packet(s, "OK");
2006 break;
2008 env = find_cpu(thread);
2009 if (env == NULL) {
2010 put_packet(s, "E22");
2011 break;
2013 switch (type) {
2014 case 'c':
2015 s->c_cpu = env;
2016 put_packet(s, "OK");
2017 break;
2018 case 'g':
2019 s->g_cpu = env;
2020 put_packet(s, "OK");
2021 break;
2022 default:
2023 put_packet(s, "E22");
2024 break;
2026 break;
2027 case 'T':
2028 thread = strtoull(p, (char **)&p, 16);
2029 env = find_cpu(thread);
2031 if (env != NULL) {
2032 put_packet(s, "OK");
2033 } else {
2034 put_packet(s, "E22");
2036 break;
2037 case 'q':
2038 case 'Q':
2039 /* parse any 'q' packets here */
2040 if (!strcmp(p,"qemu.sstepbits")) {
2041 /* Query Breakpoint bit definitions */
2042 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2043 SSTEP_ENABLE,
2044 SSTEP_NOIRQ,
2045 SSTEP_NOTIMER);
2046 put_packet(s, buf);
2047 break;
2048 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2049 /* Display or change the sstep_flags */
2050 p += 10;
2051 if (*p != '=') {
2052 /* Display current setting */
2053 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2054 put_packet(s, buf);
2055 break;
2057 p++;
2058 type = strtoul(p, (char **)&p, 16);
2059 sstep_flags = type;
2060 put_packet(s, "OK");
2061 break;
2062 } else if (strcmp(p,"C") == 0) {
2063 /* "Current thread" remains vague in the spec, so always return
2064 * the first CPU (gdb returns the first thread). */
2065 put_packet(s, "QC1");
2066 break;
2067 } else if (strcmp(p,"fThreadInfo") == 0) {
2068 s->query_cpu = first_cpu;
2069 goto report_cpuinfo;
2070 } else if (strcmp(p,"sThreadInfo") == 0) {
2071 report_cpuinfo:
2072 if (s->query_cpu) {
2073 snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
2074 put_packet(s, buf);
2075 s->query_cpu = s->query_cpu->next_cpu;
2076 } else
2077 put_packet(s, "l");
2078 break;
2079 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2080 thread = strtoull(p+16, (char **)&p, 16);
2081 env = find_cpu(thread);
2082 if (env != NULL) {
2083 cpu_synchronize_state(env);
2084 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2085 "CPU#%d [%s]", env->cpu_index,
2086 env->halted ? "halted " : "running");
2087 memtohex(buf, mem_buf, len);
2088 put_packet(s, buf);
2090 break;
2092 #ifdef CONFIG_USER_ONLY
2093 else if (strncmp(p, "Offsets", 7) == 0) {
2094 TaskState *ts = s->c_cpu->opaque;
2096 snprintf(buf, sizeof(buf),
2097 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2098 ";Bss=" TARGET_ABI_FMT_lx,
2099 ts->info->code_offset,
2100 ts->info->data_offset,
2101 ts->info->data_offset);
2102 put_packet(s, buf);
2103 break;
2105 #else /* !CONFIG_USER_ONLY */
2106 else if (strncmp(p, "Rcmd,", 5) == 0) {
2107 int len = strlen(p + 5);
2109 if ((len % 2) != 0) {
2110 put_packet(s, "E01");
2111 break;
2113 hextomem(mem_buf, p + 5, len);
2114 len = len / 2;
2115 mem_buf[len++] = 0;
2116 qemu_chr_read(s->mon_chr, mem_buf, len);
2117 put_packet(s, "OK");
2118 break;
2120 #endif /* !CONFIG_USER_ONLY */
2121 if (strncmp(p, "Supported", 9) == 0) {
2122 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2123 #ifdef GDB_CORE_XML
2124 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2125 #endif
2126 put_packet(s, buf);
2127 break;
2129 #ifdef GDB_CORE_XML
2130 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2131 const char *xml;
2132 target_ulong total_len;
2134 gdb_has_xml = 1;
2135 p += 19;
2136 xml = get_feature_xml(p, &p);
2137 if (!xml) {
2138 snprintf(buf, sizeof(buf), "E00");
2139 put_packet(s, buf);
2140 break;
2143 if (*p == ':')
2144 p++;
2145 addr = strtoul(p, (char **)&p, 16);
2146 if (*p == ',')
2147 p++;
2148 len = strtoul(p, (char **)&p, 16);
2150 total_len = strlen(xml);
2151 if (addr > total_len) {
2152 snprintf(buf, sizeof(buf), "E00");
2153 put_packet(s, buf);
2154 break;
2156 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2157 len = (MAX_PACKET_LENGTH - 5) / 2;
2158 if (len < total_len - addr) {
2159 buf[0] = 'm';
2160 len = memtox(buf + 1, xml + addr, len);
2161 } else {
2162 buf[0] = 'l';
2163 len = memtox(buf + 1, xml + addr, total_len - addr);
2165 put_packet_binary(s, buf, len + 1);
2166 break;
2168 #endif
2169 /* Unrecognised 'q' command. */
2170 goto unknown_command;
2172 default:
2173 unknown_command:
2174 /* put empty packet */
2175 buf[0] = '\0';
2176 put_packet(s, buf);
2177 break;
2179 return RS_IDLE;
2182 void gdb_set_stop_cpu(CPUState *env)
2184 gdbserver_state->c_cpu = env;
2185 gdbserver_state->g_cpu = env;
2188 #ifndef CONFIG_USER_ONLY
2189 static void gdb_vm_state_change(void *opaque, int running, int reason)
2191 GDBState *s = gdbserver_state;
2192 CPUState *env = s->c_cpu;
2193 char buf[256];
2194 const char *type;
2195 int ret;
2197 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
2198 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
2199 return;
2201 /* disable single step if it was enable */
2202 cpu_single_step(env, 0);
2204 if (reason == EXCP_DEBUG) {
2205 if (env->watchpoint_hit) {
2206 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2207 case BP_MEM_READ:
2208 type = "r";
2209 break;
2210 case BP_MEM_ACCESS:
2211 type = "a";
2212 break;
2213 default:
2214 type = "";
2215 break;
2217 snprintf(buf, sizeof(buf),
2218 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2219 GDB_SIGNAL_TRAP, gdb_id(env), type,
2220 env->watchpoint_hit->vaddr);
2221 put_packet(s, buf);
2222 env->watchpoint_hit = NULL;
2223 return;
2225 tb_flush(env);
2226 ret = GDB_SIGNAL_TRAP;
2227 } else {
2228 ret = GDB_SIGNAL_INT;
2230 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
2231 put_packet(s, buf);
2233 #endif
2235 /* Send a gdb syscall request.
2236 This accepts limited printf-style format specifiers, specifically:
2237 %x - target_ulong argument printed in hex.
2238 %lx - 64-bit argument printed in hex.
2239 %s - string pointer (target_ulong) and length (int) pair. */
2240 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2242 va_list va;
2243 char buf[256];
2244 char *p;
2245 target_ulong addr;
2246 uint64_t i64;
2247 GDBState *s;
2249 s = gdbserver_state;
2250 if (!s)
2251 return;
2252 gdb_current_syscall_cb = cb;
2253 s->state = RS_SYSCALL;
2254 #ifndef CONFIG_USER_ONLY
2255 vm_stop(EXCP_DEBUG);
2256 #endif
2257 s->state = RS_IDLE;
2258 va_start(va, fmt);
2259 p = buf;
2260 *(p++) = 'F';
2261 while (*fmt) {
2262 if (*fmt == '%') {
2263 fmt++;
2264 switch (*fmt++) {
2265 case 'x':
2266 addr = va_arg(va, target_ulong);
2267 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2268 break;
2269 case 'l':
2270 if (*(fmt++) != 'x')
2271 goto bad_format;
2272 i64 = va_arg(va, uint64_t);
2273 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2274 break;
2275 case 's':
2276 addr = va_arg(va, target_ulong);
2277 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2278 addr, va_arg(va, int));
2279 break;
2280 default:
2281 bad_format:
2282 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2283 fmt - 1);
2284 break;
2286 } else {
2287 *(p++) = *(fmt++);
2290 *p = 0;
2291 va_end(va);
2292 put_packet(s, buf);
2293 #ifdef CONFIG_USER_ONLY
2294 gdb_handlesig(s->c_cpu, 0);
2295 #else
2296 cpu_exit(s->c_cpu);
2297 #endif
2300 static void gdb_read_byte(GDBState *s, int ch)
2302 int i, csum;
2303 uint8_t reply;
2305 #ifndef CONFIG_USER_ONLY
2306 if (s->last_packet_len) {
2307 /* Waiting for a response to the last packet. If we see the start
2308 of a new command then abandon the previous response. */
2309 if (ch == '-') {
2310 #ifdef DEBUG_GDB
2311 printf("Got NACK, retransmitting\n");
2312 #endif
2313 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2315 #ifdef DEBUG_GDB
2316 else if (ch == '+')
2317 printf("Got ACK\n");
2318 else
2319 printf("Got '%c' when expecting ACK/NACK\n", ch);
2320 #endif
2321 if (ch == '+' || ch == '$')
2322 s->last_packet_len = 0;
2323 if (ch != '$')
2324 return;
2326 if (vm_running) {
2327 /* when the CPU is running, we cannot do anything except stop
2328 it when receiving a char */
2329 vm_stop(EXCP_INTERRUPT);
2330 } else
2331 #endif
2333 switch(s->state) {
2334 case RS_IDLE:
2335 if (ch == '$') {
2336 s->line_buf_index = 0;
2337 s->state = RS_GETLINE;
2339 break;
2340 case RS_GETLINE:
2341 if (ch == '#') {
2342 s->state = RS_CHKSUM1;
2343 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2344 s->state = RS_IDLE;
2345 } else {
2346 s->line_buf[s->line_buf_index++] = ch;
2348 break;
2349 case RS_CHKSUM1:
2350 s->line_buf[s->line_buf_index] = '\0';
2351 s->line_csum = fromhex(ch) << 4;
2352 s->state = RS_CHKSUM2;
2353 break;
2354 case RS_CHKSUM2:
2355 s->line_csum |= fromhex(ch);
2356 csum = 0;
2357 for(i = 0; i < s->line_buf_index; i++) {
2358 csum += s->line_buf[i];
2360 if (s->line_csum != (csum & 0xff)) {
2361 reply = '-';
2362 put_buffer(s, &reply, 1);
2363 s->state = RS_IDLE;
2364 } else {
2365 reply = '+';
2366 put_buffer(s, &reply, 1);
2367 s->state = gdb_handle_packet(s, s->line_buf);
2369 break;
2370 default:
2371 abort();
2376 /* Tell the remote gdb that the process has exited. */
2377 void gdb_exit(CPUState *env, int code)
2379 GDBState *s;
2380 char buf[4];
2382 s = gdbserver_state;
2383 if (!s) {
2384 return;
2386 #ifdef CONFIG_USER_ONLY
2387 if (gdbserver_fd < 0 || s->fd < 0) {
2388 return;
2390 #endif
2392 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2393 put_packet(s, buf);
2396 #ifdef CONFIG_USER_ONLY
2398 gdb_queuesig (void)
2400 GDBState *s;
2402 s = gdbserver_state;
2404 if (gdbserver_fd < 0 || s->fd < 0)
2405 return 0;
2406 else
2407 return 1;
2411 gdb_handlesig (CPUState *env, int sig)
2413 GDBState *s;
2414 char buf[256];
2415 int n;
2417 s = gdbserver_state;
2418 if (gdbserver_fd < 0 || s->fd < 0)
2419 return sig;
2421 /* disable single step if it was enabled */
2422 cpu_single_step(env, 0);
2423 tb_flush(env);
2425 if (sig != 0)
2427 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2428 put_packet(s, buf);
2430 /* put_packet() might have detected that the peer terminated the
2431 connection. */
2432 if (s->fd < 0)
2433 return sig;
2435 sig = 0;
2436 s->state = RS_IDLE;
2437 s->running_state = 0;
2438 while (s->running_state == 0) {
2439 n = read (s->fd, buf, 256);
2440 if (n > 0)
2442 int i;
2444 for (i = 0; i < n; i++)
2445 gdb_read_byte (s, buf[i]);
2447 else if (n == 0 || errno != EAGAIN)
2449 /* XXX: Connection closed. Should probably wait for annother
2450 connection before continuing. */
2451 return sig;
2454 sig = s->signal;
2455 s->signal = 0;
2456 return sig;
2459 /* Tell the remote gdb that the process has exited due to SIG. */
2460 void gdb_signalled(CPUState *env, int sig)
2462 GDBState *s;
2463 char buf[4];
2465 s = gdbserver_state;
2466 if (gdbserver_fd < 0 || s->fd < 0)
2467 return;
2469 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2470 put_packet(s, buf);
2473 static void gdb_accept(void)
2475 GDBState *s;
2476 struct sockaddr_in sockaddr;
2477 socklen_t len;
2478 int val, fd;
2480 for(;;) {
2481 len = sizeof(sockaddr);
2482 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2483 if (fd < 0 && errno != EINTR) {
2484 perror("accept");
2485 return;
2486 } else if (fd >= 0) {
2487 #ifndef _WIN32
2488 fcntl(fd, F_SETFD, FD_CLOEXEC);
2489 #endif
2490 break;
2494 /* set short latency */
2495 val = 1;
2496 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2498 s = qemu_mallocz(sizeof(GDBState));
2499 s->c_cpu = first_cpu;
2500 s->g_cpu = first_cpu;
2501 s->fd = fd;
2502 gdb_has_xml = 0;
2504 gdbserver_state = s;
2506 fcntl(fd, F_SETFL, O_NONBLOCK);
2509 static int gdbserver_open(int port)
2511 struct sockaddr_in sockaddr;
2512 int fd, val, ret;
2514 fd = socket(PF_INET, SOCK_STREAM, 0);
2515 if (fd < 0) {
2516 perror("socket");
2517 return -1;
2519 #ifndef _WIN32
2520 fcntl(fd, F_SETFD, FD_CLOEXEC);
2521 #endif
2523 /* allow fast reuse */
2524 val = 1;
2525 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2527 sockaddr.sin_family = AF_INET;
2528 sockaddr.sin_port = htons(port);
2529 sockaddr.sin_addr.s_addr = 0;
2530 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2531 if (ret < 0) {
2532 perror("bind");
2533 return -1;
2535 ret = listen(fd, 0);
2536 if (ret < 0) {
2537 perror("listen");
2538 return -1;
2540 return fd;
2543 int gdbserver_start(int port)
2545 gdbserver_fd = gdbserver_open(port);
2546 if (gdbserver_fd < 0)
2547 return -1;
2548 /* accept connections */
2549 gdb_accept();
2550 return 0;
2553 /* Disable gdb stub for child processes. */
2554 void gdbserver_fork(CPUState *env)
2556 GDBState *s = gdbserver_state;
2557 if (gdbserver_fd < 0 || s->fd < 0)
2558 return;
2559 close(s->fd);
2560 s->fd = -1;
2561 cpu_breakpoint_remove_all(env, BP_GDB);
2562 cpu_watchpoint_remove_all(env, BP_GDB);
2564 #else
2565 static int gdb_chr_can_receive(void *opaque)
2567 /* We can handle an arbitrarily large amount of data.
2568 Pick the maximum packet size, which is as good as anything. */
2569 return MAX_PACKET_LENGTH;
2572 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2574 int i;
2576 for (i = 0; i < size; i++) {
2577 gdb_read_byte(gdbserver_state, buf[i]);
2581 static void gdb_chr_event(void *opaque, int event)
2583 switch (event) {
2584 case CHR_EVENT_OPENED:
2585 vm_stop(EXCP_INTERRUPT);
2586 gdb_has_xml = 0;
2587 break;
2588 default:
2589 break;
2593 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2595 char buf[MAX_PACKET_LENGTH];
2597 buf[0] = 'O';
2598 if (len > (MAX_PACKET_LENGTH/2) - 1)
2599 len = (MAX_PACKET_LENGTH/2) - 1;
2600 memtohex(buf + 1, (uint8_t *)msg, len);
2601 put_packet(s, buf);
2604 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2606 const char *p = (const char *)buf;
2607 int max_sz;
2609 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2610 for (;;) {
2611 if (len <= max_sz) {
2612 gdb_monitor_output(gdbserver_state, p, len);
2613 break;
2615 gdb_monitor_output(gdbserver_state, p, max_sz);
2616 p += max_sz;
2617 len -= max_sz;
2619 return len;
2622 #ifndef _WIN32
2623 static void gdb_sigterm_handler(int signal)
2625 if (vm_running)
2626 vm_stop(EXCP_INTERRUPT);
2628 #endif
2630 int gdbserver_start(const char *device)
2632 GDBState *s;
2633 char gdbstub_device_name[128];
2634 CharDriverState *chr = NULL;
2635 CharDriverState *mon_chr;
2637 if (!device)
2638 return -1;
2639 if (strcmp(device, "none") != 0) {
2640 if (strstart(device, "tcp:", NULL)) {
2641 /* enforce required TCP attributes */
2642 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2643 "%s,nowait,nodelay,server", device);
2644 device = gdbstub_device_name;
2646 #ifndef _WIN32
2647 else if (strcmp(device, "stdio") == 0) {
2648 struct sigaction act;
2650 memset(&act, 0, sizeof(act));
2651 act.sa_handler = gdb_sigterm_handler;
2652 sigaction(SIGINT, &act, NULL);
2654 #endif
2655 chr = qemu_chr_open("gdb", device, NULL);
2656 if (!chr)
2657 return -1;
2659 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2660 gdb_chr_event, NULL);
2663 s = gdbserver_state;
2664 if (!s) {
2665 s = qemu_mallocz(sizeof(GDBState));
2666 gdbserver_state = s;
2668 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2670 /* Initialize a monitor terminal for gdb */
2671 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2672 mon_chr->chr_write = gdb_monitor_write;
2673 monitor_init(mon_chr, 0);
2674 } else {
2675 if (s->chr)
2676 qemu_chr_close(s->chr);
2677 mon_chr = s->mon_chr;
2678 memset(s, 0, sizeof(GDBState));
2680 s->c_cpu = first_cpu;
2681 s->g_cpu = first_cpu;
2682 s->chr = chr;
2683 s->state = chr ? RS_IDLE : RS_INACTIVE;
2684 s->mon_chr = mon_chr;
2686 return 0;
2688 #endif