virtio-net: MAC filter optimization
[qemu/ar7.git] / target-arm / helper.c
blob701629af3a6a049c645df75404dbcc8ba93599c1
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name);
31 static inline void set_feature(CPUARMState *env, int feature)
33 env->features |= 1u << feature;
36 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
38 env->cp15.c0_cpuid = id;
39 switch (id) {
40 case ARM_CPUID_ARM926:
41 set_feature(env, ARM_FEATURE_VFP);
42 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43 env->cp15.c0_cachetype = 0x1dd20d2;
44 env->cp15.c1_sys = 0x00090078;
45 break;
46 case ARM_CPUID_ARM946:
47 set_feature(env, ARM_FEATURE_MPU);
48 env->cp15.c0_cachetype = 0x0f004006;
49 env->cp15.c1_sys = 0x00000078;
50 break;
51 case ARM_CPUID_ARM1026:
52 set_feature(env, ARM_FEATURE_VFP);
53 set_feature(env, ARM_FEATURE_AUXCR);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55 env->cp15.c0_cachetype = 0x1dd20d2;
56 env->cp15.c1_sys = 0x00090078;
57 break;
58 case ARM_CPUID_ARM1136_R2:
59 case ARM_CPUID_ARM1136:
60 set_feature(env, ARM_FEATURE_V6);
61 set_feature(env, ARM_FEATURE_VFP);
62 set_feature(env, ARM_FEATURE_AUXCR);
63 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68 env->cp15.c0_cachetype = 0x1dd20d2;
69 break;
70 case ARM_CPUID_ARM11MPCORE:
71 set_feature(env, ARM_FEATURE_V6);
72 set_feature(env, ARM_FEATURE_V6K);
73 set_feature(env, ARM_FEATURE_VFP);
74 set_feature(env, ARM_FEATURE_AUXCR);
75 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80 env->cp15.c0_cachetype = 0x1dd20d2;
81 break;
82 case ARM_CPUID_CORTEXA8:
83 set_feature(env, ARM_FEATURE_V6);
84 set_feature(env, ARM_FEATURE_V6K);
85 set_feature(env, ARM_FEATURE_V7);
86 set_feature(env, ARM_FEATURE_AUXCR);
87 set_feature(env, ARM_FEATURE_THUMB2);
88 set_feature(env, ARM_FEATURE_VFP);
89 set_feature(env, ARM_FEATURE_VFP3);
90 set_feature(env, ARM_FEATURE_NEON);
91 set_feature(env, ARM_FEATURE_THUMB2EE);
92 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97 env->cp15.c0_cachetype = 0x82048004;
98 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102 break;
103 case ARM_CPUID_CORTEXM3:
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_THUMB2);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_M);
108 set_feature(env, ARM_FEATURE_DIV);
109 break;
110 case ARM_CPUID_ANY: /* For userspace emulation. */
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_THUMB2);
115 set_feature(env, ARM_FEATURE_VFP);
116 set_feature(env, ARM_FEATURE_VFP3);
117 set_feature(env, ARM_FEATURE_NEON);
118 set_feature(env, ARM_FEATURE_THUMB2EE);
119 set_feature(env, ARM_FEATURE_DIV);
120 break;
121 case ARM_CPUID_TI915T:
122 case ARM_CPUID_TI925T:
123 set_feature(env, ARM_FEATURE_OMAPCP);
124 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
125 env->cp15.c0_cachetype = 0x5109149;
126 env->cp15.c1_sys = 0x00000070;
127 env->cp15.c15_i_max = 0x000;
128 env->cp15.c15_i_min = 0xff0;
129 break;
130 case ARM_CPUID_PXA250:
131 case ARM_CPUID_PXA255:
132 case ARM_CPUID_PXA260:
133 case ARM_CPUID_PXA261:
134 case ARM_CPUID_PXA262:
135 set_feature(env, ARM_FEATURE_XSCALE);
136 /* JTAG_ID is ((id << 28) | 0x09265013) */
137 env->cp15.c0_cachetype = 0xd172172;
138 env->cp15.c1_sys = 0x00000078;
139 break;
140 case ARM_CPUID_PXA270_A0:
141 case ARM_CPUID_PXA270_A1:
142 case ARM_CPUID_PXA270_B0:
143 case ARM_CPUID_PXA270_B1:
144 case ARM_CPUID_PXA270_C0:
145 case ARM_CPUID_PXA270_C5:
146 set_feature(env, ARM_FEATURE_XSCALE);
147 /* JTAG_ID is ((id << 28) | 0x09265013) */
148 set_feature(env, ARM_FEATURE_IWMMXT);
149 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150 env->cp15.c0_cachetype = 0xd172172;
151 env->cp15.c1_sys = 0x00000078;
152 break;
153 default:
154 cpu_abort(env, "Bad CPU ID: %x\n", id);
155 break;
159 void cpu_reset(CPUARMState *env)
161 uint32_t id;
163 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
164 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
165 log_cpu_state(env, 0);
168 id = env->cp15.c0_cpuid;
169 memset(env, 0, offsetof(CPUARMState, breakpoints));
170 if (id)
171 cpu_reset_model_id(env, id);
172 #if defined (CONFIG_USER_ONLY)
173 env->uncached_cpsr = ARM_CPU_MODE_USR;
174 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175 #else
176 /* SVC mode with interrupts disabled. */
177 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
178 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
179 clear at reset. */
180 if (IS_M(env))
181 env->uncached_cpsr &= ~CPSR_I;
182 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
183 env->cp15.c2_base_mask = 0xffffc000u;
184 #endif
185 env->regs[15] = 0;
186 tlb_flush(env, 1);
189 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
191 int nregs;
193 /* VFP data registers are always little-endian. */
194 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
195 if (reg < nregs) {
196 stfq_le_p(buf, env->vfp.regs[reg]);
197 return 8;
199 if (arm_feature(env, ARM_FEATURE_NEON)) {
200 /* Aliases for Q regs. */
201 nregs += 16;
202 if (reg < nregs) {
203 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
204 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
205 return 16;
208 switch (reg - nregs) {
209 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
210 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
211 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
213 return 0;
216 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
218 int nregs;
220 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
221 if (reg < nregs) {
222 env->vfp.regs[reg] = ldfq_le_p(buf);
223 return 8;
225 if (arm_feature(env, ARM_FEATURE_NEON)) {
226 nregs += 16;
227 if (reg < nregs) {
228 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
229 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
230 return 16;
233 switch (reg - nregs) {
234 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
235 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
236 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
238 return 0;
241 CPUARMState *cpu_arm_init(const char *cpu_model)
243 CPUARMState *env;
244 uint32_t id;
245 static int inited = 0;
247 id = cpu_arm_find_by_name(cpu_model);
248 if (id == 0)
249 return NULL;
250 env = qemu_mallocz(sizeof(CPUARMState));
251 cpu_exec_init(env);
252 if (!inited) {
253 inited = 1;
254 arm_translate_init();
257 env->cpu_model_str = cpu_model;
258 env->cp15.c0_cpuid = id;
259 cpu_reset(env);
260 if (arm_feature(env, ARM_FEATURE_NEON)) {
261 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
262 51, "arm-neon.xml", 0);
263 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
264 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
265 35, "arm-vfp3.xml", 0);
266 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
267 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
268 19, "arm-vfp.xml", 0);
270 qemu_init_vcpu(env);
271 return env;
274 struct arm_cpu_t {
275 uint32_t id;
276 const char *name;
279 static const struct arm_cpu_t arm_cpu_names[] = {
280 { ARM_CPUID_ARM926, "arm926"},
281 { ARM_CPUID_ARM946, "arm946"},
282 { ARM_CPUID_ARM1026, "arm1026"},
283 { ARM_CPUID_ARM1136, "arm1136"},
284 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
285 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
286 { ARM_CPUID_CORTEXM3, "cortex-m3"},
287 { ARM_CPUID_CORTEXA8, "cortex-a8"},
288 { ARM_CPUID_TI925T, "ti925t" },
289 { ARM_CPUID_PXA250, "pxa250" },
290 { ARM_CPUID_PXA255, "pxa255" },
291 { ARM_CPUID_PXA260, "pxa260" },
292 { ARM_CPUID_PXA261, "pxa261" },
293 { ARM_CPUID_PXA262, "pxa262" },
294 { ARM_CPUID_PXA270, "pxa270" },
295 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
296 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
297 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
298 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
299 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
300 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
301 { ARM_CPUID_ANY, "any"},
302 { 0, NULL}
305 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
307 int i;
309 (*cpu_fprintf)(f, "Available CPUs:\n");
310 for (i = 0; arm_cpu_names[i].name; i++) {
311 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
315 /* return 0 if not found */
316 static uint32_t cpu_arm_find_by_name(const char *name)
318 int i;
319 uint32_t id;
321 id = 0;
322 for (i = 0; arm_cpu_names[i].name; i++) {
323 if (strcmp(name, arm_cpu_names[i].name) == 0) {
324 id = arm_cpu_names[i].id;
325 break;
328 return id;
331 void cpu_arm_close(CPUARMState *env)
333 free(env);
336 uint32_t cpsr_read(CPUARMState *env)
338 int ZF;
339 ZF = (env->ZF == 0);
340 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
341 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
342 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
343 | ((env->condexec_bits & 0xfc) << 8)
344 | (env->GE << 16);
347 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
349 if (mask & CPSR_NZCV) {
350 env->ZF = (~val) & CPSR_Z;
351 env->NF = val;
352 env->CF = (val >> 29) & 1;
353 env->VF = (val << 3) & 0x80000000;
355 if (mask & CPSR_Q)
356 env->QF = ((val & CPSR_Q) != 0);
357 if (mask & CPSR_T)
358 env->thumb = ((val & CPSR_T) != 0);
359 if (mask & CPSR_IT_0_1) {
360 env->condexec_bits &= ~3;
361 env->condexec_bits |= (val >> 25) & 3;
363 if (mask & CPSR_IT_2_7) {
364 env->condexec_bits &= 3;
365 env->condexec_bits |= (val >> 8) & 0xfc;
367 if (mask & CPSR_GE) {
368 env->GE = (val >> 16) & 0xf;
371 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
372 switch_mode(env, val & CPSR_M);
374 mask &= ~CACHED_CPSR_BITS;
375 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
378 /* Sign/zero extend */
379 uint32_t HELPER(sxtb16)(uint32_t x)
381 uint32_t res;
382 res = (uint16_t)(int8_t)x;
383 res |= (uint32_t)(int8_t)(x >> 16) << 16;
384 return res;
387 uint32_t HELPER(uxtb16)(uint32_t x)
389 uint32_t res;
390 res = (uint16_t)(uint8_t)x;
391 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
392 return res;
395 uint32_t HELPER(clz)(uint32_t x)
397 int count;
398 for (count = 32; x; count--)
399 x >>= 1;
400 return count;
403 int32_t HELPER(sdiv)(int32_t num, int32_t den)
405 if (den == 0)
406 return 0;
407 return num / den;
410 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
412 if (den == 0)
413 return 0;
414 return num / den;
417 uint32_t HELPER(rbit)(uint32_t x)
419 x = ((x & 0xff000000) >> 24)
420 | ((x & 0x00ff0000) >> 8)
421 | ((x & 0x0000ff00) << 8)
422 | ((x & 0x000000ff) << 24);
423 x = ((x & 0xf0f0f0f0) >> 4)
424 | ((x & 0x0f0f0f0f) << 4);
425 x = ((x & 0x88888888) >> 3)
426 | ((x & 0x44444444) >> 1)
427 | ((x & 0x22222222) << 1)
428 | ((x & 0x11111111) << 3);
429 return x;
432 uint32_t HELPER(abs)(uint32_t x)
434 return ((int32_t)x < 0) ? -x : x;
437 #if defined(CONFIG_USER_ONLY)
439 void do_interrupt (CPUState *env)
441 env->exception_index = -1;
444 /* Structure used to record exclusive memory locations. */
445 typedef struct mmon_state {
446 struct mmon_state *next;
447 CPUARMState *cpu_env;
448 uint32_t addr;
449 } mmon_state;
451 /* Chain of current locks. */
452 static mmon_state* mmon_head = NULL;
454 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
455 int mmu_idx, int is_softmmu)
457 if (rw == 2) {
458 env->exception_index = EXCP_PREFETCH_ABORT;
459 env->cp15.c6_insn = address;
460 } else {
461 env->exception_index = EXCP_DATA_ABORT;
462 env->cp15.c6_data = address;
464 return 1;
467 static void allocate_mmon_state(CPUState *env)
469 env->mmon_entry = malloc(sizeof (mmon_state));
470 memset (env->mmon_entry, 0, sizeof (mmon_state));
471 env->mmon_entry->cpu_env = env;
472 mmon_head = env->mmon_entry;
475 /* Flush any monitor locks for the specified address. */
476 static void flush_mmon(uint32_t addr)
478 mmon_state *mon;
480 for (mon = mmon_head; mon; mon = mon->next)
482 if (mon->addr != addr)
483 continue;
485 mon->addr = 0;
486 break;
490 /* Mark an address for exclusive access. */
491 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
493 if (!env->mmon_entry)
494 allocate_mmon_state(env);
495 /* Clear any previous locks. */
496 flush_mmon(addr);
497 env->mmon_entry->addr = addr;
500 /* Test if an exclusive address is still exclusive. Returns zero
501 if the address is still exclusive. */
502 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
504 int res;
506 if (!env->mmon_entry)
507 return 1;
508 if (env->mmon_entry->addr == addr)
509 res = 0;
510 else
511 res = 1;
512 flush_mmon(addr);
513 return res;
516 void HELPER(clrex)(CPUState *env)
518 if (!(env->mmon_entry && env->mmon_entry->addr))
519 return;
520 flush_mmon(env->mmon_entry->addr);
523 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
525 return addr;
528 /* These should probably raise undefined insn exceptions. */
529 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
531 int op1 = (insn >> 8) & 0xf;
532 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
533 return;
536 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
538 int op1 = (insn >> 8) & 0xf;
539 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
540 return 0;
543 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
545 cpu_abort(env, "cp15 insn %08x\n", insn);
548 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
550 cpu_abort(env, "cp15 insn %08x\n", insn);
551 return 0;
554 /* These should probably raise undefined insn exceptions. */
555 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
557 cpu_abort(env, "v7m_mrs %d\n", reg);
560 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
562 cpu_abort(env, "v7m_mrs %d\n", reg);
563 return 0;
566 void switch_mode(CPUState *env, int mode)
568 if (mode != ARM_CPU_MODE_USR)
569 cpu_abort(env, "Tried to switch out of user mode\n");
572 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
574 cpu_abort(env, "banked r13 write\n");
577 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
579 cpu_abort(env, "banked r13 read\n");
580 return 0;
583 #else
585 extern int semihosting_enabled;
587 /* Map CPU modes onto saved register banks. */
588 static inline int bank_number (int mode)
590 switch (mode) {
591 case ARM_CPU_MODE_USR:
592 case ARM_CPU_MODE_SYS:
593 return 0;
594 case ARM_CPU_MODE_SVC:
595 return 1;
596 case ARM_CPU_MODE_ABT:
597 return 2;
598 case ARM_CPU_MODE_UND:
599 return 3;
600 case ARM_CPU_MODE_IRQ:
601 return 4;
602 case ARM_CPU_MODE_FIQ:
603 return 5;
605 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
606 return -1;
609 void switch_mode(CPUState *env, int mode)
611 int old_mode;
612 int i;
614 old_mode = env->uncached_cpsr & CPSR_M;
615 if (mode == old_mode)
616 return;
618 if (old_mode == ARM_CPU_MODE_FIQ) {
619 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
620 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
621 } else if (mode == ARM_CPU_MODE_FIQ) {
622 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
623 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
626 i = bank_number(old_mode);
627 env->banked_r13[i] = env->regs[13];
628 env->banked_r14[i] = env->regs[14];
629 env->banked_spsr[i] = env->spsr;
631 i = bank_number(mode);
632 env->regs[13] = env->banked_r13[i];
633 env->regs[14] = env->banked_r14[i];
634 env->spsr = env->banked_spsr[i];
637 static void v7m_push(CPUARMState *env, uint32_t val)
639 env->regs[13] -= 4;
640 stl_phys(env->regs[13], val);
643 static uint32_t v7m_pop(CPUARMState *env)
645 uint32_t val;
646 val = ldl_phys(env->regs[13]);
647 env->regs[13] += 4;
648 return val;
651 /* Switch to V7M main or process stack pointer. */
652 static void switch_v7m_sp(CPUARMState *env, int process)
654 uint32_t tmp;
655 if (env->v7m.current_sp != process) {
656 tmp = env->v7m.other_sp;
657 env->v7m.other_sp = env->regs[13];
658 env->regs[13] = tmp;
659 env->v7m.current_sp = process;
663 static void do_v7m_exception_exit(CPUARMState *env)
665 uint32_t type;
666 uint32_t xpsr;
668 type = env->regs[15];
669 if (env->v7m.exception != 0)
670 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
672 /* Switch to the target stack. */
673 switch_v7m_sp(env, (type & 4) != 0);
674 /* Pop registers. */
675 env->regs[0] = v7m_pop(env);
676 env->regs[1] = v7m_pop(env);
677 env->regs[2] = v7m_pop(env);
678 env->regs[3] = v7m_pop(env);
679 env->regs[12] = v7m_pop(env);
680 env->regs[14] = v7m_pop(env);
681 env->regs[15] = v7m_pop(env);
682 xpsr = v7m_pop(env);
683 xpsr_write(env, xpsr, 0xfffffdff);
684 /* Undo stack alignment. */
685 if (xpsr & 0x200)
686 env->regs[13] |= 4;
687 /* ??? The exception return type specifies Thread/Handler mode. However
688 this is also implied by the xPSR value. Not sure what to do
689 if there is a mismatch. */
690 /* ??? Likewise for mismatches between the CONTROL register and the stack
691 pointer. */
694 static void do_interrupt_v7m(CPUARMState *env)
696 uint32_t xpsr = xpsr_read(env);
697 uint32_t lr;
698 uint32_t addr;
700 lr = 0xfffffff1;
701 if (env->v7m.current_sp)
702 lr |= 4;
703 if (env->v7m.exception == 0)
704 lr |= 8;
706 /* For exceptions we just mark as pending on the NVIC, and let that
707 handle it. */
708 /* TODO: Need to escalate if the current priority is higher than the
709 one we're raising. */
710 switch (env->exception_index) {
711 case EXCP_UDEF:
712 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
713 return;
714 case EXCP_SWI:
715 env->regs[15] += 2;
716 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
717 return;
718 case EXCP_PREFETCH_ABORT:
719 case EXCP_DATA_ABORT:
720 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
721 return;
722 case EXCP_BKPT:
723 if (semihosting_enabled) {
724 int nr;
725 nr = lduw_code(env->regs[15]) & 0xff;
726 if (nr == 0xab) {
727 env->regs[15] += 2;
728 env->regs[0] = do_arm_semihosting(env);
729 return;
732 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
733 return;
734 case EXCP_IRQ:
735 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
736 break;
737 case EXCP_EXCEPTION_EXIT:
738 do_v7m_exception_exit(env);
739 return;
740 default:
741 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
742 return; /* Never happens. Keep compiler happy. */
745 /* Align stack pointer. */
746 /* ??? Should only do this if Configuration Control Register
747 STACKALIGN bit is set. */
748 if (env->regs[13] & 4) {
749 env->regs[13] -= 4;
750 xpsr |= 0x200;
752 /* Switch to the handler mode. */
753 v7m_push(env, xpsr);
754 v7m_push(env, env->regs[15]);
755 v7m_push(env, env->regs[14]);
756 v7m_push(env, env->regs[12]);
757 v7m_push(env, env->regs[3]);
758 v7m_push(env, env->regs[2]);
759 v7m_push(env, env->regs[1]);
760 v7m_push(env, env->regs[0]);
761 switch_v7m_sp(env, 0);
762 env->uncached_cpsr &= ~CPSR_IT;
763 env->regs[14] = lr;
764 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
765 env->regs[15] = addr & 0xfffffffe;
766 env->thumb = addr & 1;
769 /* Handle a CPU exception. */
770 void do_interrupt(CPUARMState *env)
772 uint32_t addr;
773 uint32_t mask;
774 int new_mode;
775 uint32_t offset;
777 if (IS_M(env)) {
778 do_interrupt_v7m(env);
779 return;
781 /* TODO: Vectored interrupt controller. */
782 switch (env->exception_index) {
783 case EXCP_UDEF:
784 new_mode = ARM_CPU_MODE_UND;
785 addr = 0x04;
786 mask = CPSR_I;
787 if (env->thumb)
788 offset = 2;
789 else
790 offset = 4;
791 break;
792 case EXCP_SWI:
793 if (semihosting_enabled) {
794 /* Check for semihosting interrupt. */
795 if (env->thumb) {
796 mask = lduw_code(env->regs[15] - 2) & 0xff;
797 } else {
798 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
800 /* Only intercept calls from privileged modes, to provide some
801 semblance of security. */
802 if (((mask == 0x123456 && !env->thumb)
803 || (mask == 0xab && env->thumb))
804 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
805 env->regs[0] = do_arm_semihosting(env);
806 return;
809 new_mode = ARM_CPU_MODE_SVC;
810 addr = 0x08;
811 mask = CPSR_I;
812 /* The PC already points to the next instruction. */
813 offset = 0;
814 break;
815 case EXCP_BKPT:
816 /* See if this is a semihosting syscall. */
817 if (env->thumb && semihosting_enabled) {
818 mask = lduw_code(env->regs[15]) & 0xff;
819 if (mask == 0xab
820 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
821 env->regs[15] += 2;
822 env->regs[0] = do_arm_semihosting(env);
823 return;
826 /* Fall through to prefetch abort. */
827 case EXCP_PREFETCH_ABORT:
828 new_mode = ARM_CPU_MODE_ABT;
829 addr = 0x0c;
830 mask = CPSR_A | CPSR_I;
831 offset = 4;
832 break;
833 case EXCP_DATA_ABORT:
834 new_mode = ARM_CPU_MODE_ABT;
835 addr = 0x10;
836 mask = CPSR_A | CPSR_I;
837 offset = 8;
838 break;
839 case EXCP_IRQ:
840 new_mode = ARM_CPU_MODE_IRQ;
841 addr = 0x18;
842 /* Disable IRQ and imprecise data aborts. */
843 mask = CPSR_A | CPSR_I;
844 offset = 4;
845 break;
846 case EXCP_FIQ:
847 new_mode = ARM_CPU_MODE_FIQ;
848 addr = 0x1c;
849 /* Disable FIQ, IRQ and imprecise data aborts. */
850 mask = CPSR_A | CPSR_I | CPSR_F;
851 offset = 4;
852 break;
853 default:
854 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
855 return; /* Never happens. Keep compiler happy. */
857 /* High vectors. */
858 if (env->cp15.c1_sys & (1 << 13)) {
859 addr += 0xffff0000;
861 switch_mode (env, new_mode);
862 env->spsr = cpsr_read(env);
863 /* Clear IT bits. */
864 env->condexec_bits = 0;
865 /* Switch to the new mode, and switch to Arm mode. */
866 /* ??? Thumb interrupt handlers not implemented. */
867 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
868 env->uncached_cpsr |= mask;
869 env->thumb = 0;
870 env->regs[14] = env->regs[15] + offset;
871 env->regs[15] = addr;
872 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
875 /* Check section/page access permissions.
876 Returns the page protection flags, or zero if the access is not
877 permitted. */
878 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
879 int is_user)
881 int prot_ro;
883 if (domain == 3)
884 return PAGE_READ | PAGE_WRITE;
886 if (access_type == 1)
887 prot_ro = 0;
888 else
889 prot_ro = PAGE_READ;
891 switch (ap) {
892 case 0:
893 if (access_type == 1)
894 return 0;
895 switch ((env->cp15.c1_sys >> 8) & 3) {
896 case 1:
897 return is_user ? 0 : PAGE_READ;
898 case 2:
899 return PAGE_READ;
900 default:
901 return 0;
903 case 1:
904 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
905 case 2:
906 if (is_user)
907 return prot_ro;
908 else
909 return PAGE_READ | PAGE_WRITE;
910 case 3:
911 return PAGE_READ | PAGE_WRITE;
912 case 4: /* Reserved. */
913 return 0;
914 case 5:
915 return is_user ? 0 : prot_ro;
916 case 6:
917 return prot_ro;
918 case 7:
919 if (!arm_feature (env, ARM_FEATURE_V7))
920 return 0;
921 return prot_ro;
922 default:
923 abort();
927 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
929 uint32_t table;
931 if (address & env->cp15.c2_mask)
932 table = env->cp15.c2_base1 & 0xffffc000;
933 else
934 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
936 table |= (address >> 18) & 0x3ffc;
937 return table;
940 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
941 int is_user, uint32_t *phys_ptr, int *prot)
943 int code;
944 uint32_t table;
945 uint32_t desc;
946 int type;
947 int ap;
948 int domain;
949 uint32_t phys_addr;
951 /* Pagetable walk. */
952 /* Lookup l1 descriptor. */
953 table = get_level1_table_address(env, address);
954 desc = ldl_phys(table);
955 type = (desc & 3);
956 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
957 if (type == 0) {
958 /* Section translation fault. */
959 code = 5;
960 goto do_fault;
962 if (domain == 0 || domain == 2) {
963 if (type == 2)
964 code = 9; /* Section domain fault. */
965 else
966 code = 11; /* Page domain fault. */
967 goto do_fault;
969 if (type == 2) {
970 /* 1Mb section. */
971 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
972 ap = (desc >> 10) & 3;
973 code = 13;
974 } else {
975 /* Lookup l2 entry. */
976 if (type == 1) {
977 /* Coarse pagetable. */
978 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
979 } else {
980 /* Fine pagetable. */
981 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
983 desc = ldl_phys(table);
984 switch (desc & 3) {
985 case 0: /* Page translation fault. */
986 code = 7;
987 goto do_fault;
988 case 1: /* 64k page. */
989 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
990 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
991 break;
992 case 2: /* 4k page. */
993 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
994 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
995 break;
996 case 3: /* 1k page. */
997 if (type == 1) {
998 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
999 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1000 } else {
1001 /* Page translation fault. */
1002 code = 7;
1003 goto do_fault;
1005 } else {
1006 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1008 ap = (desc >> 4) & 3;
1009 break;
1010 default:
1011 /* Never happens, but compiler isn't smart enough to tell. */
1012 abort();
1014 code = 15;
1016 *prot = check_ap(env, ap, domain, access_type, is_user);
1017 if (!*prot) {
1018 /* Access permission fault. */
1019 goto do_fault;
1021 *phys_ptr = phys_addr;
1022 return 0;
1023 do_fault:
1024 return code | (domain << 4);
1027 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1028 int is_user, uint32_t *phys_ptr, int *prot)
1030 int code;
1031 uint32_t table;
1032 uint32_t desc;
1033 uint32_t xn;
1034 int type;
1035 int ap;
1036 int domain;
1037 uint32_t phys_addr;
1039 /* Pagetable walk. */
1040 /* Lookup l1 descriptor. */
1041 table = get_level1_table_address(env, address);
1042 desc = ldl_phys(table);
1043 type = (desc & 3);
1044 if (type == 0) {
1045 /* Section translation fault. */
1046 code = 5;
1047 domain = 0;
1048 goto do_fault;
1049 } else if (type == 2 && (desc & (1 << 18))) {
1050 /* Supersection. */
1051 domain = 0;
1052 } else {
1053 /* Section or page. */
1054 domain = (desc >> 4) & 0x1e;
1056 domain = (env->cp15.c3 >> domain) & 3;
1057 if (domain == 0 || domain == 2) {
1058 if (type == 2)
1059 code = 9; /* Section domain fault. */
1060 else
1061 code = 11; /* Page domain fault. */
1062 goto do_fault;
1064 if (type == 2) {
1065 if (desc & (1 << 18)) {
1066 /* Supersection. */
1067 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1068 } else {
1069 /* Section. */
1070 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1072 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1073 xn = desc & (1 << 4);
1074 code = 13;
1075 } else {
1076 /* Lookup l2 entry. */
1077 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1078 desc = ldl_phys(table);
1079 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1080 switch (desc & 3) {
1081 case 0: /* Page translation fault. */
1082 code = 7;
1083 goto do_fault;
1084 case 1: /* 64k page. */
1085 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1086 xn = desc & (1 << 15);
1087 break;
1088 case 2: case 3: /* 4k page. */
1089 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1090 xn = desc & 1;
1091 break;
1092 default:
1093 /* Never happens, but compiler isn't smart enough to tell. */
1094 abort();
1096 code = 15;
1098 if (xn && access_type == 2)
1099 goto do_fault;
1101 /* The simplified model uses AP[0] as an access control bit. */
1102 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1103 /* Access flag fault. */
1104 code = (code == 15) ? 6 : 3;
1105 goto do_fault;
1107 *prot = check_ap(env, ap, domain, access_type, is_user);
1108 if (!*prot) {
1109 /* Access permission fault. */
1110 goto do_fault;
1112 *phys_ptr = phys_addr;
1113 return 0;
1114 do_fault:
1115 return code | (domain << 4);
1118 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1119 int is_user, uint32_t *phys_ptr, int *prot)
1121 int n;
1122 uint32_t mask;
1123 uint32_t base;
1125 *phys_ptr = address;
1126 for (n = 7; n >= 0; n--) {
1127 base = env->cp15.c6_region[n];
1128 if ((base & 1) == 0)
1129 continue;
1130 mask = 1 << ((base >> 1) & 0x1f);
1131 /* Keep this shift separate from the above to avoid an
1132 (undefined) << 32. */
1133 mask = (mask << 1) - 1;
1134 if (((base ^ address) & ~mask) == 0)
1135 break;
1137 if (n < 0)
1138 return 2;
1140 if (access_type == 2) {
1141 mask = env->cp15.c5_insn;
1142 } else {
1143 mask = env->cp15.c5_data;
1145 mask = (mask >> (n * 4)) & 0xf;
1146 switch (mask) {
1147 case 0:
1148 return 1;
1149 case 1:
1150 if (is_user)
1151 return 1;
1152 *prot = PAGE_READ | PAGE_WRITE;
1153 break;
1154 case 2:
1155 *prot = PAGE_READ;
1156 if (!is_user)
1157 *prot |= PAGE_WRITE;
1158 break;
1159 case 3:
1160 *prot = PAGE_READ | PAGE_WRITE;
1161 break;
1162 case 5:
1163 if (is_user)
1164 return 1;
1165 *prot = PAGE_READ;
1166 break;
1167 case 6:
1168 *prot = PAGE_READ;
1169 break;
1170 default:
1171 /* Bad permission. */
1172 return 1;
1174 return 0;
1177 static inline int get_phys_addr(CPUState *env, uint32_t address,
1178 int access_type, int is_user,
1179 uint32_t *phys_ptr, int *prot)
1181 /* Fast Context Switch Extension. */
1182 if (address < 0x02000000)
1183 address += env->cp15.c13_fcse;
1185 if ((env->cp15.c1_sys & 1) == 0) {
1186 /* MMU/MPU disabled. */
1187 *phys_ptr = address;
1188 *prot = PAGE_READ | PAGE_WRITE;
1189 return 0;
1190 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1191 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1192 prot);
1193 } else if (env->cp15.c1_sys & (1 << 23)) {
1194 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1195 prot);
1196 } else {
1197 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1198 prot);
1202 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1203 int access_type, int mmu_idx, int is_softmmu)
1205 uint32_t phys_addr;
1206 int prot;
1207 int ret, is_user;
1209 is_user = mmu_idx == MMU_USER_IDX;
1210 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1211 if (ret == 0) {
1212 /* Map a single [sub]page. */
1213 phys_addr &= ~(uint32_t)0x3ff;
1214 address &= ~(uint32_t)0x3ff;
1215 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1216 is_softmmu);
1219 if (access_type == 2) {
1220 env->cp15.c5_insn = ret;
1221 env->cp15.c6_insn = address;
1222 env->exception_index = EXCP_PREFETCH_ABORT;
1223 } else {
1224 env->cp15.c5_data = ret;
1225 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1226 env->cp15.c5_data |= (1 << 11);
1227 env->cp15.c6_data = address;
1228 env->exception_index = EXCP_DATA_ABORT;
1230 return 1;
1233 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1235 uint32_t phys_addr;
1236 int prot;
1237 int ret;
1239 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1241 if (ret != 0)
1242 return -1;
1244 return phys_addr;
1247 /* Not really implemented. Need to figure out a sane way of doing this.
1248 Maybe add generic watchpoint support and use that. */
1250 void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1252 env->mmon_addr = addr;
1255 uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1257 return (env->mmon_addr != addr);
1260 void HELPER(clrex)(CPUState *env)
1262 env->mmon_addr = -1;
1265 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1267 int cp_num = (insn >> 8) & 0xf;
1268 int cp_info = (insn >> 5) & 7;
1269 int src = (insn >> 16) & 0xf;
1270 int operand = insn & 0xf;
1272 if (env->cp[cp_num].cp_write)
1273 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1274 cp_info, src, operand, val);
1277 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1279 int cp_num = (insn >> 8) & 0xf;
1280 int cp_info = (insn >> 5) & 7;
1281 int dest = (insn >> 16) & 0xf;
1282 int operand = insn & 0xf;
1284 if (env->cp[cp_num].cp_read)
1285 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1286 cp_info, dest, operand);
1287 return 0;
1290 /* Return basic MPU access permission bits. */
1291 static uint32_t simple_mpu_ap_bits(uint32_t val)
1293 uint32_t ret;
1294 uint32_t mask;
1295 int i;
1296 ret = 0;
1297 mask = 3;
1298 for (i = 0; i < 16; i += 2) {
1299 ret |= (val >> i) & mask;
1300 mask <<= 2;
1302 return ret;
1305 /* Pad basic MPU access permission bits to extended format. */
1306 static uint32_t extended_mpu_ap_bits(uint32_t val)
1308 uint32_t ret;
1309 uint32_t mask;
1310 int i;
1311 ret = 0;
1312 mask = 3;
1313 for (i = 0; i < 16; i += 2) {
1314 ret |= (val & mask) << i;
1315 mask <<= 2;
1317 return ret;
1320 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1322 int op1;
1323 int op2;
1324 int crm;
1326 op1 = (insn >> 21) & 7;
1327 op2 = (insn >> 5) & 7;
1328 crm = insn & 0xf;
1329 switch ((insn >> 16) & 0xf) {
1330 case 0:
1331 /* ID codes. */
1332 if (arm_feature(env, ARM_FEATURE_XSCALE))
1333 break;
1334 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1335 break;
1336 if (arm_feature(env, ARM_FEATURE_V7)
1337 && op1 == 2 && crm == 0 && op2 == 0) {
1338 env->cp15.c0_cssel = val & 0xf;
1339 break;
1341 goto bad_reg;
1342 case 1: /* System configuration. */
1343 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1344 op2 = 0;
1345 switch (op2) {
1346 case 0:
1347 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1348 env->cp15.c1_sys = val;
1349 /* ??? Lots of these bits are not implemented. */
1350 /* This may enable/disable the MMU, so do a TLB flush. */
1351 tlb_flush(env, 1);
1352 break;
1353 case 1: /* Auxiliary cotrol register. */
1354 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1355 env->cp15.c1_xscaleauxcr = val;
1356 break;
1358 /* Not implemented. */
1359 break;
1360 case 2:
1361 if (arm_feature(env, ARM_FEATURE_XSCALE))
1362 goto bad_reg;
1363 if (env->cp15.c1_coproc != val) {
1364 env->cp15.c1_coproc = val;
1365 /* ??? Is this safe when called from within a TB? */
1366 tb_flush(env);
1368 break;
1369 default:
1370 goto bad_reg;
1372 break;
1373 case 2: /* MMU Page table control / MPU cache control. */
1374 if (arm_feature(env, ARM_FEATURE_MPU)) {
1375 switch (op2) {
1376 case 0:
1377 env->cp15.c2_data = val;
1378 break;
1379 case 1:
1380 env->cp15.c2_insn = val;
1381 break;
1382 default:
1383 goto bad_reg;
1385 } else {
1386 switch (op2) {
1387 case 0:
1388 env->cp15.c2_base0 = val;
1389 break;
1390 case 1:
1391 env->cp15.c2_base1 = val;
1392 break;
1393 case 2:
1394 val &= 7;
1395 env->cp15.c2_control = val;
1396 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1397 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1398 break;
1399 default:
1400 goto bad_reg;
1403 break;
1404 case 3: /* MMU Domain access control / MPU write buffer control. */
1405 env->cp15.c3 = val;
1406 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1407 break;
1408 case 4: /* Reserved. */
1409 goto bad_reg;
1410 case 5: /* MMU Fault status / MPU access permission. */
1411 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1412 op2 = 0;
1413 switch (op2) {
1414 case 0:
1415 if (arm_feature(env, ARM_FEATURE_MPU))
1416 val = extended_mpu_ap_bits(val);
1417 env->cp15.c5_data = val;
1418 break;
1419 case 1:
1420 if (arm_feature(env, ARM_FEATURE_MPU))
1421 val = extended_mpu_ap_bits(val);
1422 env->cp15.c5_insn = val;
1423 break;
1424 case 2:
1425 if (!arm_feature(env, ARM_FEATURE_MPU))
1426 goto bad_reg;
1427 env->cp15.c5_data = val;
1428 break;
1429 case 3:
1430 if (!arm_feature(env, ARM_FEATURE_MPU))
1431 goto bad_reg;
1432 env->cp15.c5_insn = val;
1433 break;
1434 default:
1435 goto bad_reg;
1437 break;
1438 case 6: /* MMU Fault address / MPU base/size. */
1439 if (arm_feature(env, ARM_FEATURE_MPU)) {
1440 if (crm >= 8)
1441 goto bad_reg;
1442 env->cp15.c6_region[crm] = val;
1443 } else {
1444 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1445 op2 = 0;
1446 switch (op2) {
1447 case 0:
1448 env->cp15.c6_data = val;
1449 break;
1450 case 1: /* ??? This is WFAR on armv6 */
1451 case 2:
1452 env->cp15.c6_insn = val;
1453 break;
1454 default:
1455 goto bad_reg;
1458 break;
1459 case 7: /* Cache control. */
1460 env->cp15.c15_i_max = 0x000;
1461 env->cp15.c15_i_min = 0xff0;
1462 /* No cache, so nothing to do. */
1463 /* ??? MPCore has VA to PA translation functions. */
1464 break;
1465 case 8: /* MMU TLB control. */
1466 switch (op2) {
1467 case 0: /* Invalidate all. */
1468 tlb_flush(env, 0);
1469 break;
1470 case 1: /* Invalidate single TLB entry. */
1471 #if 0
1472 /* ??? This is wrong for large pages and sections. */
1473 /* As an ugly hack to make linux work we always flush a 4K
1474 pages. */
1475 val &= 0xfffff000;
1476 tlb_flush_page(env, val);
1477 tlb_flush_page(env, val + 0x400);
1478 tlb_flush_page(env, val + 0x800);
1479 tlb_flush_page(env, val + 0xc00);
1480 #else
1481 tlb_flush(env, 1);
1482 #endif
1483 break;
1484 case 2: /* Invalidate on ASID. */
1485 tlb_flush(env, val == 0);
1486 break;
1487 case 3: /* Invalidate single entry on MVA. */
1488 /* ??? This is like case 1, but ignores ASID. */
1489 tlb_flush(env, 1);
1490 break;
1491 default:
1492 goto bad_reg;
1494 break;
1495 case 9:
1496 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1497 break;
1498 switch (crm) {
1499 case 0: /* Cache lockdown. */
1500 switch (op1) {
1501 case 0: /* L1 cache. */
1502 switch (op2) {
1503 case 0:
1504 env->cp15.c9_data = val;
1505 break;
1506 case 1:
1507 env->cp15.c9_insn = val;
1508 break;
1509 default:
1510 goto bad_reg;
1512 break;
1513 case 1: /* L2 cache. */
1514 /* Ignore writes to L2 lockdown/auxiliary registers. */
1515 break;
1516 default:
1517 goto bad_reg;
1519 break;
1520 case 1: /* TCM memory region registers. */
1521 /* Not implemented. */
1522 goto bad_reg;
1523 default:
1524 goto bad_reg;
1526 break;
1527 case 10: /* MMU TLB lockdown. */
1528 /* ??? TLB lockdown not implemented. */
1529 break;
1530 case 12: /* Reserved. */
1531 goto bad_reg;
1532 case 13: /* Process ID. */
1533 switch (op2) {
1534 case 0:
1535 /* Unlike real hardware the qemu TLB uses virtual addresses,
1536 not modified virtual addresses, so this causes a TLB flush.
1538 if (env->cp15.c13_fcse != val)
1539 tlb_flush(env, 1);
1540 env->cp15.c13_fcse = val;
1541 break;
1542 case 1:
1543 /* This changes the ASID, so do a TLB flush. */
1544 if (env->cp15.c13_context != val
1545 && !arm_feature(env, ARM_FEATURE_MPU))
1546 tlb_flush(env, 0);
1547 env->cp15.c13_context = val;
1548 break;
1549 case 2:
1550 env->cp15.c13_tls1 = val;
1551 break;
1552 case 3:
1553 env->cp15.c13_tls2 = val;
1554 break;
1555 case 4:
1556 env->cp15.c13_tls3 = val;
1557 break;
1558 default:
1559 goto bad_reg;
1561 break;
1562 case 14: /* Reserved. */
1563 goto bad_reg;
1564 case 15: /* Implementation specific. */
1565 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1566 if (op2 == 0 && crm == 1) {
1567 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1568 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1569 tb_flush(env);
1570 env->cp15.c15_cpar = val & 0x3fff;
1572 break;
1574 goto bad_reg;
1576 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1577 switch (crm) {
1578 case 0:
1579 break;
1580 case 1: /* Set TI925T configuration. */
1581 env->cp15.c15_ticonfig = val & 0xe7;
1582 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1583 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1584 break;
1585 case 2: /* Set I_max. */
1586 env->cp15.c15_i_max = val;
1587 break;
1588 case 3: /* Set I_min. */
1589 env->cp15.c15_i_min = val;
1590 break;
1591 case 4: /* Set thread-ID. */
1592 env->cp15.c15_threadid = val & 0xffff;
1593 break;
1594 case 8: /* Wait-for-interrupt (deprecated). */
1595 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1596 break;
1597 default:
1598 goto bad_reg;
1601 break;
1603 return;
1604 bad_reg:
1605 /* ??? For debugging only. Should raise illegal instruction exception. */
1606 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1607 (insn >> 16) & 0xf, crm, op1, op2);
1610 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1612 int op1;
1613 int op2;
1614 int crm;
1616 op1 = (insn >> 21) & 7;
1617 op2 = (insn >> 5) & 7;
1618 crm = insn & 0xf;
1619 switch ((insn >> 16) & 0xf) {
1620 case 0: /* ID codes. */
1621 switch (op1) {
1622 case 0:
1623 switch (crm) {
1624 case 0:
1625 switch (op2) {
1626 case 0: /* Device ID. */
1627 return env->cp15.c0_cpuid;
1628 case 1: /* Cache Type. */
1629 return env->cp15.c0_cachetype;
1630 case 2: /* TCM status. */
1631 return 0;
1632 case 3: /* TLB type register. */
1633 return 0; /* No lockable TLB entries. */
1634 case 5: /* CPU ID */
1635 return env->cpu_index;
1636 default:
1637 goto bad_reg;
1639 case 1:
1640 if (!arm_feature(env, ARM_FEATURE_V6))
1641 goto bad_reg;
1642 return env->cp15.c0_c1[op2];
1643 case 2:
1644 if (!arm_feature(env, ARM_FEATURE_V6))
1645 goto bad_reg;
1646 return env->cp15.c0_c2[op2];
1647 case 3: case 4: case 5: case 6: case 7:
1648 return 0;
1649 default:
1650 goto bad_reg;
1652 case 1:
1653 /* These registers aren't documented on arm11 cores. However
1654 Linux looks at them anyway. */
1655 if (!arm_feature(env, ARM_FEATURE_V6))
1656 goto bad_reg;
1657 if (crm != 0)
1658 goto bad_reg;
1659 if (!arm_feature(env, ARM_FEATURE_V7))
1660 return 0;
1662 switch (op2) {
1663 case 0:
1664 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1665 case 1:
1666 return env->cp15.c0_clid;
1667 case 7:
1668 return 0;
1670 goto bad_reg;
1671 case 2:
1672 if (op2 != 0 || crm != 0)
1673 goto bad_reg;
1674 return env->cp15.c0_cssel;
1675 default:
1676 goto bad_reg;
1678 case 1: /* System configuration. */
1679 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1680 op2 = 0;
1681 switch (op2) {
1682 case 0: /* Control register. */
1683 return env->cp15.c1_sys;
1684 case 1: /* Auxiliary control register. */
1685 if (arm_feature(env, ARM_FEATURE_XSCALE))
1686 return env->cp15.c1_xscaleauxcr;
1687 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1688 goto bad_reg;
1689 switch (ARM_CPUID(env)) {
1690 case ARM_CPUID_ARM1026:
1691 return 1;
1692 case ARM_CPUID_ARM1136:
1693 case ARM_CPUID_ARM1136_R2:
1694 return 7;
1695 case ARM_CPUID_ARM11MPCORE:
1696 return 1;
1697 case ARM_CPUID_CORTEXA8:
1698 return 2;
1699 default:
1700 goto bad_reg;
1702 case 2: /* Coprocessor access register. */
1703 if (arm_feature(env, ARM_FEATURE_XSCALE))
1704 goto bad_reg;
1705 return env->cp15.c1_coproc;
1706 default:
1707 goto bad_reg;
1709 case 2: /* MMU Page table control / MPU cache control. */
1710 if (arm_feature(env, ARM_FEATURE_MPU)) {
1711 switch (op2) {
1712 case 0:
1713 return env->cp15.c2_data;
1714 break;
1715 case 1:
1716 return env->cp15.c2_insn;
1717 break;
1718 default:
1719 goto bad_reg;
1721 } else {
1722 switch (op2) {
1723 case 0:
1724 return env->cp15.c2_base0;
1725 case 1:
1726 return env->cp15.c2_base1;
1727 case 2:
1728 return env->cp15.c2_control;
1729 default:
1730 goto bad_reg;
1733 case 3: /* MMU Domain access control / MPU write buffer control. */
1734 return env->cp15.c3;
1735 case 4: /* Reserved. */
1736 goto bad_reg;
1737 case 5: /* MMU Fault status / MPU access permission. */
1738 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1739 op2 = 0;
1740 switch (op2) {
1741 case 0:
1742 if (arm_feature(env, ARM_FEATURE_MPU))
1743 return simple_mpu_ap_bits(env->cp15.c5_data);
1744 return env->cp15.c5_data;
1745 case 1:
1746 if (arm_feature(env, ARM_FEATURE_MPU))
1747 return simple_mpu_ap_bits(env->cp15.c5_data);
1748 return env->cp15.c5_insn;
1749 case 2:
1750 if (!arm_feature(env, ARM_FEATURE_MPU))
1751 goto bad_reg;
1752 return env->cp15.c5_data;
1753 case 3:
1754 if (!arm_feature(env, ARM_FEATURE_MPU))
1755 goto bad_reg;
1756 return env->cp15.c5_insn;
1757 default:
1758 goto bad_reg;
1760 case 6: /* MMU Fault address. */
1761 if (arm_feature(env, ARM_FEATURE_MPU)) {
1762 if (crm >= 8)
1763 goto bad_reg;
1764 return env->cp15.c6_region[crm];
1765 } else {
1766 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1767 op2 = 0;
1768 switch (op2) {
1769 case 0:
1770 return env->cp15.c6_data;
1771 case 1:
1772 if (arm_feature(env, ARM_FEATURE_V6)) {
1773 /* Watchpoint Fault Adrress. */
1774 return 0; /* Not implemented. */
1775 } else {
1776 /* Instruction Fault Adrress. */
1777 /* Arm9 doesn't have an IFAR, but implementing it anyway
1778 shouldn't do any harm. */
1779 return env->cp15.c6_insn;
1781 case 2:
1782 if (arm_feature(env, ARM_FEATURE_V6)) {
1783 /* Instruction Fault Adrress. */
1784 return env->cp15.c6_insn;
1785 } else {
1786 goto bad_reg;
1788 default:
1789 goto bad_reg;
1792 case 7: /* Cache control. */
1793 /* FIXME: Should only clear Z flag if destination is r15. */
1794 env->ZF = 0;
1795 return 0;
1796 case 8: /* MMU TLB control. */
1797 goto bad_reg;
1798 case 9: /* Cache lockdown. */
1799 switch (op1) {
1800 case 0: /* L1 cache. */
1801 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1802 return 0;
1803 switch (op2) {
1804 case 0:
1805 return env->cp15.c9_data;
1806 case 1:
1807 return env->cp15.c9_insn;
1808 default:
1809 goto bad_reg;
1811 case 1: /* L2 cache */
1812 if (crm != 0)
1813 goto bad_reg;
1814 /* L2 Lockdown and Auxiliary control. */
1815 return 0;
1816 default:
1817 goto bad_reg;
1819 case 10: /* MMU TLB lockdown. */
1820 /* ??? TLB lockdown not implemented. */
1821 return 0;
1822 case 11: /* TCM DMA control. */
1823 case 12: /* Reserved. */
1824 goto bad_reg;
1825 case 13: /* Process ID. */
1826 switch (op2) {
1827 case 0:
1828 return env->cp15.c13_fcse;
1829 case 1:
1830 return env->cp15.c13_context;
1831 case 2:
1832 return env->cp15.c13_tls1;
1833 case 3:
1834 return env->cp15.c13_tls2;
1835 case 4:
1836 return env->cp15.c13_tls3;
1837 default:
1838 goto bad_reg;
1840 case 14: /* Reserved. */
1841 goto bad_reg;
1842 case 15: /* Implementation specific. */
1843 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1844 if (op2 == 0 && crm == 1)
1845 return env->cp15.c15_cpar;
1847 goto bad_reg;
1849 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1850 switch (crm) {
1851 case 0:
1852 return 0;
1853 case 1: /* Read TI925T configuration. */
1854 return env->cp15.c15_ticonfig;
1855 case 2: /* Read I_max. */
1856 return env->cp15.c15_i_max;
1857 case 3: /* Read I_min. */
1858 return env->cp15.c15_i_min;
1859 case 4: /* Read thread-ID. */
1860 return env->cp15.c15_threadid;
1861 case 8: /* TI925T_status */
1862 return 0;
1864 /* TODO: Peripheral port remap register:
1865 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1866 * controller base address at $rn & ~0xfff and map size of
1867 * 0x200 << ($rn & 0xfff), when MMU is off. */
1868 goto bad_reg;
1870 return 0;
1872 bad_reg:
1873 /* ??? For debugging only. Should raise illegal instruction exception. */
1874 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1875 (insn >> 16) & 0xf, crm, op1, op2);
1876 return 0;
1879 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1881 env->banked_r13[bank_number(mode)] = val;
1884 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1886 return env->banked_r13[bank_number(mode)];
1889 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1891 switch (reg) {
1892 case 0: /* APSR */
1893 return xpsr_read(env) & 0xf8000000;
1894 case 1: /* IAPSR */
1895 return xpsr_read(env) & 0xf80001ff;
1896 case 2: /* EAPSR */
1897 return xpsr_read(env) & 0xff00fc00;
1898 case 3: /* xPSR */
1899 return xpsr_read(env) & 0xff00fdff;
1900 case 5: /* IPSR */
1901 return xpsr_read(env) & 0x000001ff;
1902 case 6: /* EPSR */
1903 return xpsr_read(env) & 0x0700fc00;
1904 case 7: /* IEPSR */
1905 return xpsr_read(env) & 0x0700edff;
1906 case 8: /* MSP */
1907 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1908 case 9: /* PSP */
1909 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1910 case 16: /* PRIMASK */
1911 return (env->uncached_cpsr & CPSR_I) != 0;
1912 case 17: /* FAULTMASK */
1913 return (env->uncached_cpsr & CPSR_F) != 0;
1914 case 18: /* BASEPRI */
1915 case 19: /* BASEPRI_MAX */
1916 return env->v7m.basepri;
1917 case 20: /* CONTROL */
1918 return env->v7m.control;
1919 default:
1920 /* ??? For debugging only. */
1921 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1922 return 0;
1926 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1928 switch (reg) {
1929 case 0: /* APSR */
1930 xpsr_write(env, val, 0xf8000000);
1931 break;
1932 case 1: /* IAPSR */
1933 xpsr_write(env, val, 0xf8000000);
1934 break;
1935 case 2: /* EAPSR */
1936 xpsr_write(env, val, 0xfe00fc00);
1937 break;
1938 case 3: /* xPSR */
1939 xpsr_write(env, val, 0xfe00fc00);
1940 break;
1941 case 5: /* IPSR */
1942 /* IPSR bits are readonly. */
1943 break;
1944 case 6: /* EPSR */
1945 xpsr_write(env, val, 0x0600fc00);
1946 break;
1947 case 7: /* IEPSR */
1948 xpsr_write(env, val, 0x0600fc00);
1949 break;
1950 case 8: /* MSP */
1951 if (env->v7m.current_sp)
1952 env->v7m.other_sp = val;
1953 else
1954 env->regs[13] = val;
1955 break;
1956 case 9: /* PSP */
1957 if (env->v7m.current_sp)
1958 env->regs[13] = val;
1959 else
1960 env->v7m.other_sp = val;
1961 break;
1962 case 16: /* PRIMASK */
1963 if (val & 1)
1964 env->uncached_cpsr |= CPSR_I;
1965 else
1966 env->uncached_cpsr &= ~CPSR_I;
1967 break;
1968 case 17: /* FAULTMASK */
1969 if (val & 1)
1970 env->uncached_cpsr |= CPSR_F;
1971 else
1972 env->uncached_cpsr &= ~CPSR_F;
1973 break;
1974 case 18: /* BASEPRI */
1975 env->v7m.basepri = val & 0xff;
1976 break;
1977 case 19: /* BASEPRI_MAX */
1978 val &= 0xff;
1979 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1980 env->v7m.basepri = val;
1981 break;
1982 case 20: /* CONTROL */
1983 env->v7m.control = val & 3;
1984 switch_v7m_sp(env, (val & 2) != 0);
1985 break;
1986 default:
1987 /* ??? For debugging only. */
1988 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1989 return;
1993 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1994 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1995 void *opaque)
1997 if (cpnum < 0 || cpnum > 14) {
1998 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1999 return;
2002 env->cp[cpnum].cp_read = cp_read;
2003 env->cp[cpnum].cp_write = cp_write;
2004 env->cp[cpnum].opaque = opaque;
2007 #endif
2009 /* Note that signed overflow is undefined in C. The following routines are
2010 careful to use unsigned types where modulo arithmetic is required.
2011 Failure to do so _will_ break on newer gcc. */
2013 /* Signed saturating arithmetic. */
2015 /* Perform 16-bit signed saturating addition. */
2016 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2018 uint16_t res;
2020 res = a + b;
2021 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2022 if (a & 0x8000)
2023 res = 0x8000;
2024 else
2025 res = 0x7fff;
2027 return res;
2030 /* Perform 8-bit signed saturating addition. */
2031 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2033 uint8_t res;
2035 res = a + b;
2036 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2037 if (a & 0x80)
2038 res = 0x80;
2039 else
2040 res = 0x7f;
2042 return res;
2045 /* Perform 16-bit signed saturating subtraction. */
2046 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2048 uint16_t res;
2050 res = a - b;
2051 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2052 if (a & 0x8000)
2053 res = 0x8000;
2054 else
2055 res = 0x7fff;
2057 return res;
2060 /* Perform 8-bit signed saturating subtraction. */
2061 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2063 uint8_t res;
2065 res = a - b;
2066 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2067 if (a & 0x80)
2068 res = 0x80;
2069 else
2070 res = 0x7f;
2072 return res;
2075 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2076 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2077 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2078 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2079 #define PFX q
2081 #include "op_addsub.h"
2083 /* Unsigned saturating arithmetic. */
2084 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2086 uint16_t res;
2087 res = a + b;
2088 if (res < a)
2089 res = 0xffff;
2090 return res;
2093 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2095 if (a < b)
2096 return a - b;
2097 else
2098 return 0;
2101 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2103 uint8_t res;
2104 res = a + b;
2105 if (res < a)
2106 res = 0xff;
2107 return res;
2110 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2112 if (a < b)
2113 return a - b;
2114 else
2115 return 0;
2118 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2119 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2120 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2121 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2122 #define PFX uq
2124 #include "op_addsub.h"
2126 /* Signed modulo arithmetic. */
2127 #define SARITH16(a, b, n, op) do { \
2128 int32_t sum; \
2129 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2130 RESULT(sum, n, 16); \
2131 if (sum >= 0) \
2132 ge |= 3 << (n * 2); \
2133 } while(0)
2135 #define SARITH8(a, b, n, op) do { \
2136 int32_t sum; \
2137 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2138 RESULT(sum, n, 8); \
2139 if (sum >= 0) \
2140 ge |= 1 << n; \
2141 } while(0)
2144 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2145 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2146 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2147 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2148 #define PFX s
2149 #define ARITH_GE
2151 #include "op_addsub.h"
2153 /* Unsigned modulo arithmetic. */
2154 #define ADD16(a, b, n) do { \
2155 uint32_t sum; \
2156 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2157 RESULT(sum, n, 16); \
2158 if ((sum >> 16) == 1) \
2159 ge |= 3 << (n * 2); \
2160 } while(0)
2162 #define ADD8(a, b, n) do { \
2163 uint32_t sum; \
2164 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2165 RESULT(sum, n, 8); \
2166 if ((sum >> 8) == 1) \
2167 ge |= 1 << n; \
2168 } while(0)
2170 #define SUB16(a, b, n) do { \
2171 uint32_t sum; \
2172 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2173 RESULT(sum, n, 16); \
2174 if ((sum >> 16) == 0) \
2175 ge |= 3 << (n * 2); \
2176 } while(0)
2178 #define SUB8(a, b, n) do { \
2179 uint32_t sum; \
2180 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2181 RESULT(sum, n, 8); \
2182 if ((sum >> 8) == 0) \
2183 ge |= 1 << n; \
2184 } while(0)
2186 #define PFX u
2187 #define ARITH_GE
2189 #include "op_addsub.h"
2191 /* Halved signed arithmetic. */
2192 #define ADD16(a, b, n) \
2193 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2194 #define SUB16(a, b, n) \
2195 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2196 #define ADD8(a, b, n) \
2197 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2198 #define SUB8(a, b, n) \
2199 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2200 #define PFX sh
2202 #include "op_addsub.h"
2204 /* Halved unsigned arithmetic. */
2205 #define ADD16(a, b, n) \
2206 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2207 #define SUB16(a, b, n) \
2208 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2209 #define ADD8(a, b, n) \
2210 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2211 #define SUB8(a, b, n) \
2212 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2213 #define PFX uh
2215 #include "op_addsub.h"
2217 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2219 if (a > b)
2220 return a - b;
2221 else
2222 return b - a;
2225 /* Unsigned sum of absolute byte differences. */
2226 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2228 uint32_t sum;
2229 sum = do_usad(a, b);
2230 sum += do_usad(a >> 8, b >> 8);
2231 sum += do_usad(a >> 16, b >>16);
2232 sum += do_usad(a >> 24, b >> 24);
2233 return sum;
2236 /* For ARMv6 SEL instruction. */
2237 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2239 uint32_t mask;
2241 mask = 0;
2242 if (flags & 1)
2243 mask |= 0xff;
2244 if (flags & 2)
2245 mask |= 0xff00;
2246 if (flags & 4)
2247 mask |= 0xff0000;
2248 if (flags & 8)
2249 mask |= 0xff000000;
2250 return (a & mask) | (b & ~mask);
2253 uint32_t HELPER(logicq_cc)(uint64_t val)
2255 return (val >> 32) | (val != 0);
2258 /* VFP support. We follow the convention used for VFP instrunctions:
2259 Single precition routines have a "s" suffix, double precision a
2260 "d" suffix. */
2262 /* Convert host exception flags to vfp form. */
2263 static inline int vfp_exceptbits_from_host(int host_bits)
2265 int target_bits = 0;
2267 if (host_bits & float_flag_invalid)
2268 target_bits |= 1;
2269 if (host_bits & float_flag_divbyzero)
2270 target_bits |= 2;
2271 if (host_bits & float_flag_overflow)
2272 target_bits |= 4;
2273 if (host_bits & float_flag_underflow)
2274 target_bits |= 8;
2275 if (host_bits & float_flag_inexact)
2276 target_bits |= 0x10;
2277 return target_bits;
2280 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2282 int i;
2283 uint32_t fpscr;
2285 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2286 | (env->vfp.vec_len << 16)
2287 | (env->vfp.vec_stride << 20);
2288 i = get_float_exception_flags(&env->vfp.fp_status);
2289 fpscr |= vfp_exceptbits_from_host(i);
2290 return fpscr;
2293 /* Convert vfp exception flags to target form. */
2294 static inline int vfp_exceptbits_to_host(int target_bits)
2296 int host_bits = 0;
2298 if (target_bits & 1)
2299 host_bits |= float_flag_invalid;
2300 if (target_bits & 2)
2301 host_bits |= float_flag_divbyzero;
2302 if (target_bits & 4)
2303 host_bits |= float_flag_overflow;
2304 if (target_bits & 8)
2305 host_bits |= float_flag_underflow;
2306 if (target_bits & 0x10)
2307 host_bits |= float_flag_inexact;
2308 return host_bits;
2311 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2313 int i;
2314 uint32_t changed;
2316 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2317 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2318 env->vfp.vec_len = (val >> 16) & 7;
2319 env->vfp.vec_stride = (val >> 20) & 3;
2321 changed ^= val;
2322 if (changed & (3 << 22)) {
2323 i = (val >> 22) & 3;
2324 switch (i) {
2325 case 0:
2326 i = float_round_nearest_even;
2327 break;
2328 case 1:
2329 i = float_round_up;
2330 break;
2331 case 2:
2332 i = float_round_down;
2333 break;
2334 case 3:
2335 i = float_round_to_zero;
2336 break;
2338 set_float_rounding_mode(i, &env->vfp.fp_status);
2340 if (changed & (1 << 24))
2341 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2342 if (changed & (1 << 25))
2343 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2345 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2346 set_float_exception_flags(i, &env->vfp.fp_status);
2349 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2351 #define VFP_BINOP(name) \
2352 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2354 return float32_ ## name (a, b, &env->vfp.fp_status); \
2356 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2358 return float64_ ## name (a, b, &env->vfp.fp_status); \
2360 VFP_BINOP(add)
2361 VFP_BINOP(sub)
2362 VFP_BINOP(mul)
2363 VFP_BINOP(div)
2364 #undef VFP_BINOP
2366 float32 VFP_HELPER(neg, s)(float32 a)
2368 return float32_chs(a);
2371 float64 VFP_HELPER(neg, d)(float64 a)
2373 return float64_chs(a);
2376 float32 VFP_HELPER(abs, s)(float32 a)
2378 return float32_abs(a);
2381 float64 VFP_HELPER(abs, d)(float64 a)
2383 return float64_abs(a);
2386 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2388 return float32_sqrt(a, &env->vfp.fp_status);
2391 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2393 return float64_sqrt(a, &env->vfp.fp_status);
2396 /* XXX: check quiet/signaling case */
2397 #define DO_VFP_cmp(p, type) \
2398 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2400 uint32_t flags; \
2401 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2402 case 0: flags = 0x6; break; \
2403 case -1: flags = 0x8; break; \
2404 case 1: flags = 0x2; break; \
2405 default: case 2: flags = 0x3; break; \
2407 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2408 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2410 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2412 uint32_t flags; \
2413 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2414 case 0: flags = 0x6; break; \
2415 case -1: flags = 0x8; break; \
2416 case 1: flags = 0x2; break; \
2417 default: case 2: flags = 0x3; break; \
2419 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2420 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2422 DO_VFP_cmp(s, float32)
2423 DO_VFP_cmp(d, float64)
2424 #undef DO_VFP_cmp
2426 /* Helper routines to perform bitwise copies between float and int. */
2427 static inline float32 vfp_itos(uint32_t i)
2429 union {
2430 uint32_t i;
2431 float32 s;
2432 } v;
2434 v.i = i;
2435 return v.s;
2438 static inline uint32_t vfp_stoi(float32 s)
2440 union {
2441 uint32_t i;
2442 float32 s;
2443 } v;
2445 v.s = s;
2446 return v.i;
2449 static inline float64 vfp_itod(uint64_t i)
2451 union {
2452 uint64_t i;
2453 float64 d;
2454 } v;
2456 v.i = i;
2457 return v.d;
2460 static inline uint64_t vfp_dtoi(float64 d)
2462 union {
2463 uint64_t i;
2464 float64 d;
2465 } v;
2467 v.d = d;
2468 return v.i;
2471 /* Integer to float conversion. */
2472 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2474 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2477 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2479 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2482 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2484 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2487 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2489 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2492 /* Float to integer conversion. */
2493 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2495 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2498 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2500 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2503 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2505 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2508 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2510 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2513 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2515 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2518 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2520 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2523 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2525 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2528 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2530 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2533 /* floating point conversion */
2534 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2536 return float32_to_float64(x, &env->vfp.fp_status);
2539 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2541 return float64_to_float32(x, &env->vfp.fp_status);
2544 /* VFP3 fixed point conversion. */
2545 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2546 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2548 ftype tmp; \
2549 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2550 &env->vfp.fp_status); \
2551 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2553 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2555 ftype tmp; \
2556 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2557 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2558 &env->vfp.fp_status)); \
2561 VFP_CONV_FIX(sh, d, float64, int16, )
2562 VFP_CONV_FIX(sl, d, float64, int32, )
2563 VFP_CONV_FIX(uh, d, float64, uint16, u)
2564 VFP_CONV_FIX(ul, d, float64, uint32, u)
2565 VFP_CONV_FIX(sh, s, float32, int16, )
2566 VFP_CONV_FIX(sl, s, float32, int32, )
2567 VFP_CONV_FIX(uh, s, float32, uint16, u)
2568 VFP_CONV_FIX(ul, s, float32, uint32, u)
2569 #undef VFP_CONV_FIX
2571 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2573 float_status *s = &env->vfp.fp_status;
2574 float32 two = int32_to_float32(2, s);
2575 return float32_sub(two, float32_mul(a, b, s), s);
2578 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2580 float_status *s = &env->vfp.fp_status;
2581 float32 three = int32_to_float32(3, s);
2582 return float32_sub(three, float32_mul(a, b, s), s);
2585 /* NEON helpers. */
2587 /* TODO: The architecture specifies the value that the estimate functions
2588 should return. We return the exact reciprocal/root instead. */
2589 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2591 float_status *s = &env->vfp.fp_status;
2592 float32 one = int32_to_float32(1, s);
2593 return float32_div(one, a, s);
2596 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2598 float_status *s = &env->vfp.fp_status;
2599 float32 one = int32_to_float32(1, s);
2600 return float32_div(one, float32_sqrt(a, s), s);
2603 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2605 float_status *s = &env->vfp.fp_status;
2606 float32 tmp;
2607 tmp = int32_to_float32(a, s);
2608 tmp = float32_scalbn(tmp, -32, s);
2609 tmp = helper_recpe_f32(tmp, env);
2610 tmp = float32_scalbn(tmp, 31, s);
2611 return float32_to_int32(tmp, s);
2614 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2616 float_status *s = &env->vfp.fp_status;
2617 float32 tmp;
2618 tmp = int32_to_float32(a, s);
2619 tmp = float32_scalbn(tmp, -32, s);
2620 tmp = helper_rsqrte_f32(tmp, env);
2621 tmp = float32_scalbn(tmp, 31, s);
2622 return float32_to_int32(tmp, s);
2625 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2627 val &= 1;
2628 if (env->teecr != val) {
2629 env->teecr = val;
2630 tb_flush(env);