2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
33 int qcow2_shrink_l1_table(BlockDriverState
*bs
, uint64_t exact_size
)
35 BDRVQcow2State
*s
= bs
->opaque
;
36 int new_l1_size
, i
, ret
;
38 if (exact_size
>= s
->l1_size
) {
42 new_l1_size
= exact_size
;
45 fprintf(stderr
, "shrink l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
48 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_WRITE_TABLE
);
49 ret
= bdrv_pwrite_zeroes(bs
->file
, s
->l1_table_offset
+
50 new_l1_size
* sizeof(uint64_t),
51 (s
->l1_size
- new_l1_size
) * sizeof(uint64_t), 0);
56 ret
= bdrv_flush(bs
->file
->bs
);
61 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS
);
62 for (i
= s
->l1_size
- 1; i
> new_l1_size
- 1; i
--) {
63 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) == 0) {
66 qcow2_free_clusters(bs
, s
->l1_table
[i
] & L1E_OFFSET_MASK
,
67 s
->cluster_size
, QCOW2_DISCARD_ALWAYS
);
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
78 memset(s
->l1_table
+ new_l1_size
, 0,
79 (s
->l1_size
- new_l1_size
) * sizeof(uint64_t));
83 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
86 BDRVQcow2State
*s
= bs
->opaque
;
87 int new_l1_size2
, ret
, i
;
88 uint64_t *new_l1_table
;
89 int64_t old_l1_table_offset
, old_l1_size
;
90 int64_t new_l1_table_offset
, new_l1_size
;
93 if (min_size
<= s
->l1_size
)
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
99 if (min_size
> INT_MAX
/ sizeof(uint64_t)) {
104 new_l1_size
= min_size
;
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size
= s
->l1_size
;
108 if (new_l1_size
== 0) {
111 while (min_size
> new_l1_size
) {
112 new_l1_size
= DIV_ROUND_UP(new_l1_size
* 3, 2);
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE
> INT_MAX
);
117 if (new_l1_size
> QCOW_MAX_L1_SIZE
/ sizeof(uint64_t)) {
122 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
123 s
->l1_size
, new_l1_size
);
126 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
127 new_l1_table
= qemu_try_blockalign(bs
->file
->bs
,
128 ROUND_UP(new_l1_size2
, 512));
129 if (new_l1_table
== NULL
) {
132 memset(new_l1_table
, 0, ROUND_UP(new_l1_size2
, 512));
135 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
138 /* write new table (align to cluster) */
139 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
140 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
141 if (new_l1_table_offset
< 0) {
142 qemu_vfree(new_l1_table
);
143 return new_l1_table_offset
;
146 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
151 /* the L1 position has not yet been updated, so these clusters must
152 * indeed be completely free */
153 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
154 new_l1_size2
, false);
159 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
160 for(i
= 0; i
< s
->l1_size
; i
++)
161 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
162 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
,
163 new_l1_table
, new_l1_size2
);
166 for(i
= 0; i
< s
->l1_size
; i
++)
167 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
170 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
171 stl_be_p(data
, new_l1_size
);
172 stq_be_p(data
+ 4, new_l1_table_offset
);
173 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
),
178 qemu_vfree(s
->l1_table
);
179 old_l1_table_offset
= s
->l1_table_offset
;
180 s
->l1_table_offset
= new_l1_table_offset
;
181 s
->l1_table
= new_l1_table
;
182 old_l1_size
= s
->l1_size
;
183 s
->l1_size
= new_l1_size
;
184 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
185 QCOW2_DISCARD_OTHER
);
188 qemu_vfree(new_l1_table
);
189 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
190 QCOW2_DISCARD_OTHER
);
197 * @bs: The BlockDriverState
198 * @offset: A guest offset, used to calculate what slice of the L2
200 * @l2_offset: Offset to the L2 table in the image file.
201 * @l2_slice: Location to store the pointer to the L2 slice.
203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
204 * that are loaded by the qcow2 cache). If the slice is in the cache,
205 * the cache is used; otherwise the L2 slice is loaded from the image
208 static int l2_load(BlockDriverState
*bs
, uint64_t offset
,
209 uint64_t l2_offset
, uint64_t **l2_slice
)
211 BDRVQcow2State
*s
= bs
->opaque
;
212 int start_of_slice
= sizeof(uint64_t) *
213 (offset_to_l2_index(s
, offset
) - offset_to_l2_slice_index(s
, offset
));
215 return qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
+ start_of_slice
,
220 * Writes one sector of the L1 table to the disk (can't update single entries
221 * and we really don't want bdrv_pread to perform a read-modify-write)
223 #define L1_ENTRIES_PER_SECTOR (512 / 8)
224 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
226 BDRVQcow2State
*s
= bs
->opaque
;
227 uint64_t buf
[L1_ENTRIES_PER_SECTOR
] = { 0 };
231 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
232 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
&& l1_start_index
+ i
< s
->l1_size
;
235 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
238 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
239 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
), false);
244 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
245 ret
= bdrv_pwrite_sync(bs
->file
,
246 s
->l1_table_offset
+ 8 * l1_start_index
,
258 * Allocate a new l2 entry in the file. If l1_index points to an already
259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
260 * table) copy the contents of the old L2 table into the newly allocated one.
261 * Otherwise the new table is initialized with zeros.
265 static int l2_allocate(BlockDriverState
*bs
, int l1_index
)
267 BDRVQcow2State
*s
= bs
->opaque
;
268 uint64_t old_l2_offset
;
269 uint64_t *l2_slice
= NULL
;
270 unsigned slice
, slice_size2
, n_slices
;
274 old_l2_offset
= s
->l1_table
[l1_index
];
276 trace_qcow2_l2_allocate(bs
, l1_index
);
278 /* allocate a new l2 entry */
280 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
286 /* The offset must fit in the offset field of the L1 table entry */
287 assert((l2_offset
& L1E_OFFSET_MASK
) == l2_offset
);
289 /* If we're allocating the table at offset 0 then something is wrong */
290 if (l2_offset
== 0) {
291 qcow2_signal_corruption(bs
, true, -1, -1, "Preventing invalid "
292 "allocation of L2 table at offset 0");
297 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
302 /* allocate a new entry in the l2 cache */
304 slice_size2
= s
->l2_slice_size
* sizeof(uint64_t);
305 n_slices
= s
->cluster_size
/ slice_size2
;
307 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
308 for (slice
= 0; slice
< n_slices
; slice
++) {
309 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
,
310 l2_offset
+ slice
* slice_size2
,
311 (void **) &l2_slice
);
316 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
317 /* if there was no old l2 table, clear the new slice */
318 memset(l2_slice
, 0, slice_size2
);
321 uint64_t old_l2_slice_offset
=
322 (old_l2_offset
& L1E_OFFSET_MASK
) + slice
* slice_size2
;
324 /* if there was an old l2 table, read a slice from the disk */
325 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
326 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, old_l2_slice_offset
,
327 (void **) &old_slice
);
332 memcpy(l2_slice
, old_slice
, slice_size2
);
334 qcow2_cache_put(s
->l2_table_cache
, (void **) &old_slice
);
337 /* write the l2 slice to the file */
338 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
340 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
341 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
342 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
345 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
350 /* update the L1 entry */
351 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
352 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
353 ret
= qcow2_write_l1_entry(bs
, l1_index
);
358 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
362 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
363 if (l2_slice
!= NULL
) {
364 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
366 s
->l1_table
[l1_index
] = old_l2_offset
;
368 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
369 QCOW2_DISCARD_ALWAYS
);
375 * Checks how many clusters in a given L2 slice are contiguous in the image
376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
377 * to the first cluster, the search is stopped and the cluster is not counted
378 * as contiguous. (This allows it, for example, to stop at the first compressed
379 * cluster which may require a different handling)
381 static int count_contiguous_clusters(BlockDriverState
*bs
, int nb_clusters
,
382 int cluster_size
, uint64_t *l2_slice
, uint64_t stop_flags
)
385 QCow2ClusterType first_cluster_type
;
386 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
387 uint64_t first_entry
= be64_to_cpu(l2_slice
[0]);
388 uint64_t offset
= first_entry
& mask
;
390 first_cluster_type
= qcow2_get_cluster_type(bs
, first_entry
);
391 if (first_cluster_type
== QCOW2_CLUSTER_UNALLOCATED
) {
395 /* must be allocated */
396 assert(first_cluster_type
== QCOW2_CLUSTER_NORMAL
||
397 first_cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
);
399 for (i
= 0; i
< nb_clusters
; i
++) {
400 uint64_t l2_entry
= be64_to_cpu(l2_slice
[i
]) & mask
;
401 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
410 * Checks how many consecutive unallocated clusters in a given L2
411 * slice have the same cluster type.
413 static int count_contiguous_clusters_unallocated(BlockDriverState
*bs
,
416 QCow2ClusterType wanted_type
)
420 assert(wanted_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
421 wanted_type
== QCOW2_CLUSTER_UNALLOCATED
);
422 for (i
= 0; i
< nb_clusters
; i
++) {
423 uint64_t entry
= be64_to_cpu(l2_slice
[i
]);
424 QCow2ClusterType type
= qcow2_get_cluster_type(bs
, entry
);
426 if (type
!= wanted_type
) {
434 static int coroutine_fn
do_perform_cow_read(BlockDriverState
*bs
,
435 uint64_t src_cluster_offset
,
436 unsigned offset_in_cluster
,
441 if (qiov
->size
== 0) {
445 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
451 /* Call .bdrv_co_readv() directly instead of using the public block-layer
452 * interface. This avoids double I/O throttling and request tracking,
453 * which can lead to deadlock when block layer copy-on-read is enabled.
455 ret
= bs
->drv
->bdrv_co_preadv_part(bs
,
456 src_cluster_offset
+ offset_in_cluster
,
457 qiov
->size
, qiov
, 0, 0);
465 static int coroutine_fn
do_perform_cow_write(BlockDriverState
*bs
,
466 uint64_t cluster_offset
,
467 unsigned offset_in_cluster
,
470 BDRVQcow2State
*s
= bs
->opaque
;
473 if (qiov
->size
== 0) {
477 ret
= qcow2_pre_write_overlap_check(bs
, 0,
478 cluster_offset
+ offset_in_cluster
, qiov
->size
, true);
483 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
484 ret
= bdrv_co_pwritev(s
->data_file
, cluster_offset
+ offset_in_cluster
,
485 qiov
->size
, qiov
, 0);
497 * For a given offset of the virtual disk, find the cluster type and offset in
498 * the qcow2 file. The offset is stored in *cluster_offset.
500 * On entry, *bytes is the maximum number of contiguous bytes starting at
501 * offset that we are interested in.
503 * On exit, *bytes is the number of bytes starting at offset that have the same
504 * cluster type and (if applicable) are stored contiguously in the image file.
505 * Compressed clusters are always returned one by one.
507 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
510 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
511 unsigned int *bytes
, uint64_t *cluster_offset
)
513 BDRVQcow2State
*s
= bs
->opaque
;
514 unsigned int l2_index
;
515 uint64_t l1_index
, l2_offset
, *l2_slice
;
517 unsigned int offset_in_cluster
;
518 uint64_t bytes_available
, bytes_needed
, nb_clusters
;
519 QCow2ClusterType type
;
522 offset_in_cluster
= offset_into_cluster(s
, offset
);
523 bytes_needed
= (uint64_t) *bytes
+ offset_in_cluster
;
525 /* compute how many bytes there are between the start of the cluster
526 * containing offset and the end of the l2 slice that contains
527 * the entry pointing to it */
529 ((uint64_t) (s
->l2_slice_size
- offset_to_l2_slice_index(s
, offset
)))
532 if (bytes_needed
> bytes_available
) {
533 bytes_needed
= bytes_available
;
538 /* seek to the l2 offset in the l1 table */
540 l1_index
= offset_to_l1_index(s
, offset
);
541 if (l1_index
>= s
->l1_size
) {
542 type
= QCOW2_CLUSTER_UNALLOCATED
;
546 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
548 type
= QCOW2_CLUSTER_UNALLOCATED
;
552 if (offset_into_cluster(s
, l2_offset
)) {
553 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
554 " unaligned (L1 index: %#" PRIx64
")",
555 l2_offset
, l1_index
);
559 /* load the l2 slice in memory */
561 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
566 /* find the cluster offset for the given disk offset */
568 l2_index
= offset_to_l2_slice_index(s
, offset
);
569 *cluster_offset
= be64_to_cpu(l2_slice
[l2_index
]);
571 nb_clusters
= size_to_clusters(s
, bytes_needed
);
572 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
573 * integers; the minimum cluster size is 512, so this assertion is always
575 assert(nb_clusters
<= INT_MAX
);
577 type
= qcow2_get_cluster_type(bs
, *cluster_offset
);
578 if (s
->qcow_version
< 3 && (type
== QCOW2_CLUSTER_ZERO_PLAIN
||
579 type
== QCOW2_CLUSTER_ZERO_ALLOC
)) {
580 qcow2_signal_corruption(bs
, true, -1, -1, "Zero cluster entry found"
581 " in pre-v3 image (L2 offset: %#" PRIx64
582 ", L2 index: %#x)", l2_offset
, l2_index
);
587 case QCOW2_CLUSTER_COMPRESSED
:
588 if (has_data_file(bs
)) {
589 qcow2_signal_corruption(bs
, true, -1, -1, "Compressed cluster "
590 "entry found in image with external data "
591 "file (L2 offset: %#" PRIx64
", L2 index: "
592 "%#x)", l2_offset
, l2_index
);
596 /* Compressed clusters can only be processed one by one */
598 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
600 case QCOW2_CLUSTER_ZERO_PLAIN
:
601 case QCOW2_CLUSTER_UNALLOCATED
:
602 /* how many empty clusters ? */
603 c
= count_contiguous_clusters_unallocated(bs
, nb_clusters
,
604 &l2_slice
[l2_index
], type
);
607 case QCOW2_CLUSTER_ZERO_ALLOC
:
608 case QCOW2_CLUSTER_NORMAL
:
609 /* how many allocated clusters ? */
610 c
= count_contiguous_clusters(bs
, nb_clusters
, s
->cluster_size
,
611 &l2_slice
[l2_index
], QCOW_OFLAG_ZERO
);
612 *cluster_offset
&= L2E_OFFSET_MASK
;
613 if (offset_into_cluster(s
, *cluster_offset
)) {
614 qcow2_signal_corruption(bs
, true, -1, -1,
615 "Cluster allocation offset %#"
616 PRIx64
" unaligned (L2 offset: %#" PRIx64
617 ", L2 index: %#x)", *cluster_offset
,
618 l2_offset
, l2_index
);
622 if (has_data_file(bs
) && *cluster_offset
!= offset
- offset_in_cluster
)
624 qcow2_signal_corruption(bs
, true, -1, -1,
625 "External data file host cluster offset %#"
626 PRIx64
" does not match guest cluster "
628 ", L2 index: %#x)", *cluster_offset
,
629 offset
- offset_in_cluster
, l2_index
);
638 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
640 bytes_available
= (int64_t)c
* s
->cluster_size
;
643 if (bytes_available
> bytes_needed
) {
644 bytes_available
= bytes_needed
;
647 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
648 * subtracting offset_in_cluster will therefore definitely yield something
649 * not exceeding UINT_MAX */
650 assert(bytes_available
- offset_in_cluster
<= UINT_MAX
);
651 *bytes
= bytes_available
- offset_in_cluster
;
656 qcow2_cache_put(s
->l2_table_cache
, (void **)&l2_slice
);
663 * for a given disk offset, load (and allocate if needed)
664 * the appropriate slice of its l2 table.
666 * the cluster index in the l2 slice is given to the caller.
668 * Returns 0 on success, -errno in failure case
670 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
671 uint64_t **new_l2_slice
,
674 BDRVQcow2State
*s
= bs
->opaque
;
675 unsigned int l2_index
;
676 uint64_t l1_index
, l2_offset
;
677 uint64_t *l2_slice
= NULL
;
680 /* seek to the l2 offset in the l1 table */
682 l1_index
= offset_to_l1_index(s
, offset
);
683 if (l1_index
>= s
->l1_size
) {
684 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
690 assert(l1_index
< s
->l1_size
);
691 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
692 if (offset_into_cluster(s
, l2_offset
)) {
693 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#" PRIx64
694 " unaligned (L1 index: %#" PRIx64
")",
695 l2_offset
, l1_index
);
699 if (!(s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
)) {
700 /* First allocate a new L2 table (and do COW if needed) */
701 ret
= l2_allocate(bs
, l1_index
);
706 /* Then decrease the refcount of the old table */
708 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
709 QCOW2_DISCARD_OTHER
);
712 /* Get the offset of the newly-allocated l2 table */
713 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
714 assert(offset_into_cluster(s
, l2_offset
) == 0);
717 /* load the l2 slice in memory */
718 ret
= l2_load(bs
, offset
, l2_offset
, &l2_slice
);
723 /* find the cluster offset for the given disk offset */
725 l2_index
= offset_to_l2_slice_index(s
, offset
);
727 *new_l2_slice
= l2_slice
;
728 *new_l2_index
= l2_index
;
734 * alloc_compressed_cluster_offset
736 * For a given offset on the virtual disk, allocate a new compressed cluster
737 * and put the host offset of the cluster into *host_offset. If a cluster is
738 * already allocated at the offset, return an error.
740 * Return 0 on success and -errno in error cases
742 int qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
745 uint64_t *host_offset
)
747 BDRVQcow2State
*s
= bs
->opaque
;
750 int64_t cluster_offset
;
753 if (has_data_file(bs
)) {
757 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
762 /* Compression can't overwrite anything. Fail if the cluster was already
764 cluster_offset
= be64_to_cpu(l2_slice
[l2_index
]);
765 if (cluster_offset
& L2E_OFFSET_MASK
) {
766 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
770 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
771 if (cluster_offset
< 0) {
772 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
773 return cluster_offset
;
777 (cluster_offset
+ compressed_size
- 1) / QCOW2_COMPRESSED_SECTOR_SIZE
-
778 (cluster_offset
/ QCOW2_COMPRESSED_SECTOR_SIZE
);
780 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
781 ((uint64_t)nb_csectors
<< s
->csize_shift
);
783 /* update L2 table */
785 /* compressed clusters never have the copied flag */
787 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
788 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
789 l2_slice
[l2_index
] = cpu_to_be64(cluster_offset
);
790 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
792 *host_offset
= cluster_offset
& s
->cluster_offset_mask
;
796 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
)
798 BDRVQcow2State
*s
= bs
->opaque
;
799 Qcow2COWRegion
*start
= &m
->cow_start
;
800 Qcow2COWRegion
*end
= &m
->cow_end
;
801 unsigned buffer_size
;
802 unsigned data_bytes
= end
->offset
- (start
->offset
+ start
->nb_bytes
);
804 uint8_t *start_buffer
, *end_buffer
;
808 assert(start
->nb_bytes
<= UINT_MAX
- end
->nb_bytes
);
809 assert(start
->nb_bytes
+ end
->nb_bytes
<= UINT_MAX
- data_bytes
);
810 assert(start
->offset
+ start
->nb_bytes
<= end
->offset
);
812 if ((start
->nb_bytes
== 0 && end
->nb_bytes
== 0) || m
->skip_cow
) {
816 /* If we have to read both the start and end COW regions and the
817 * middle region is not too large then perform just one read
819 merge_reads
= start
->nb_bytes
&& end
->nb_bytes
&& data_bytes
<= 16384;
821 buffer_size
= start
->nb_bytes
+ data_bytes
+ end
->nb_bytes
;
823 /* If we have to do two reads, add some padding in the middle
824 * if necessary to make sure that the end region is optimally
826 size_t align
= bdrv_opt_mem_align(bs
);
827 assert(align
> 0 && align
<= UINT_MAX
);
828 assert(QEMU_ALIGN_UP(start
->nb_bytes
, align
) <=
829 UINT_MAX
- end
->nb_bytes
);
830 buffer_size
= QEMU_ALIGN_UP(start
->nb_bytes
, align
) + end
->nb_bytes
;
833 /* Reserve a buffer large enough to store all the data that we're
835 start_buffer
= qemu_try_blockalign(bs
, buffer_size
);
836 if (start_buffer
== NULL
) {
839 /* The part of the buffer where the end region is located */
840 end_buffer
= start_buffer
+ buffer_size
- end
->nb_bytes
;
842 qemu_iovec_init(&qiov
, 2 + (m
->data_qiov
?
843 qemu_iovec_subvec_niov(m
->data_qiov
,
848 qemu_co_mutex_unlock(&s
->lock
);
849 /* First we read the existing data from both COW regions. We
850 * either read the whole region in one go, or the start and end
851 * regions separately. */
853 qemu_iovec_add(&qiov
, start_buffer
, buffer_size
);
854 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
856 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
857 ret
= do_perform_cow_read(bs
, m
->offset
, start
->offset
, &qiov
);
862 qemu_iovec_reset(&qiov
);
863 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
864 ret
= do_perform_cow_read(bs
, m
->offset
, end
->offset
, &qiov
);
870 /* Encrypt the data if necessary before writing it */
872 ret
= qcow2_co_encrypt(bs
,
873 m
->alloc_offset
+ start
->offset
,
874 m
->offset
+ start
->offset
,
875 start_buffer
, start
->nb_bytes
);
880 ret
= qcow2_co_encrypt(bs
,
881 m
->alloc_offset
+ end
->offset
,
882 m
->offset
+ end
->offset
,
883 end_buffer
, end
->nb_bytes
);
889 /* And now we can write everything. If we have the guest data we
890 * can write everything in one single operation */
892 qemu_iovec_reset(&qiov
);
893 if (start
->nb_bytes
) {
894 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
896 qemu_iovec_concat(&qiov
, m
->data_qiov
, m
->data_qiov_offset
, data_bytes
);
898 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
900 /* NOTE: we have a write_aio blkdebug event here followed by
901 * a cow_write one in do_perform_cow_write(), but there's only
902 * one single I/O operation */
903 BLKDBG_EVENT(bs
->file
, BLKDBG_WRITE_AIO
);
904 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
906 /* If there's no guest data then write both COW regions separately */
907 qemu_iovec_reset(&qiov
);
908 qemu_iovec_add(&qiov
, start_buffer
, start
->nb_bytes
);
909 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, start
->offset
, &qiov
);
914 qemu_iovec_reset(&qiov
);
915 qemu_iovec_add(&qiov
, end_buffer
, end
->nb_bytes
);
916 ret
= do_perform_cow_write(bs
, m
->alloc_offset
, end
->offset
, &qiov
);
920 qemu_co_mutex_lock(&s
->lock
);
923 * Before we update the L2 table to actually point to the new cluster, we
924 * need to be sure that the refcounts have been increased and COW was
928 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
931 qemu_vfree(start_buffer
);
932 qemu_iovec_destroy(&qiov
);
936 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
938 BDRVQcow2State
*s
= bs
->opaque
;
939 int i
, j
= 0, l2_index
, ret
;
940 uint64_t *old_cluster
, *l2_slice
;
941 uint64_t cluster_offset
= m
->alloc_offset
;
943 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
944 assert(m
->nb_clusters
> 0);
946 old_cluster
= g_try_new(uint64_t, m
->nb_clusters
);
947 if (old_cluster
== NULL
) {
952 /* copy content of unmodified sectors */
953 ret
= perform_cow(bs
, m
);
958 /* Update L2 table. */
959 if (s
->use_lazy_refcounts
) {
960 qcow2_mark_dirty(bs
);
962 if (qcow2_need_accurate_refcounts(s
)) {
963 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
964 s
->refcount_block_cache
);
967 ret
= get_cluster_table(bs
, m
->offset
, &l2_slice
, &l2_index
);
971 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
973 assert(l2_index
+ m
->nb_clusters
<= s
->l2_slice_size
);
974 for (i
= 0; i
< m
->nb_clusters
; i
++) {
975 /* if two concurrent writes happen to the same unallocated cluster
976 * each write allocates separate cluster and writes data concurrently.
977 * The first one to complete updates l2 table with pointer to its
978 * cluster the second one has to do RMW (which is done above by
979 * perform_cow()), update l2 table with its cluster pointer and free
980 * old cluster. This is what this loop does */
981 if (l2_slice
[l2_index
+ i
] != 0) {
982 old_cluster
[j
++] = l2_slice
[l2_index
+ i
];
985 l2_slice
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
986 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
990 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
993 * If this was a COW, we need to decrease the refcount of the old cluster.
995 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
996 * clusters), the next write will reuse them anyway.
998 if (!m
->keep_old_clusters
&& j
!= 0) {
999 for (i
= 0; i
< j
; i
++) {
1000 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
1001 QCOW2_DISCARD_NEVER
);
1007 g_free(old_cluster
);
1012 * Frees the allocated clusters because the request failed and they won't
1013 * actually be linked.
1015 void qcow2_alloc_cluster_abort(BlockDriverState
*bs
, QCowL2Meta
*m
)
1017 BDRVQcow2State
*s
= bs
->opaque
;
1018 qcow2_free_clusters(bs
, m
->alloc_offset
, m
->nb_clusters
<< s
->cluster_bits
,
1019 QCOW2_DISCARD_NEVER
);
1023 * Returns the number of contiguous clusters that can be used for an allocating
1024 * write, but require COW to be performed (this includes yet unallocated space,
1025 * which must copy from the backing file)
1027 static int count_cow_clusters(BlockDriverState
*bs
, int nb_clusters
,
1028 uint64_t *l2_slice
, int l2_index
)
1032 for (i
= 0; i
< nb_clusters
; i
++) {
1033 uint64_t l2_entry
= be64_to_cpu(l2_slice
[l2_index
+ i
]);
1034 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(bs
, l2_entry
);
1036 switch(cluster_type
) {
1037 case QCOW2_CLUSTER_NORMAL
:
1038 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1042 case QCOW2_CLUSTER_UNALLOCATED
:
1043 case QCOW2_CLUSTER_COMPRESSED
:
1044 case QCOW2_CLUSTER_ZERO_PLAIN
:
1045 case QCOW2_CLUSTER_ZERO_ALLOC
:
1053 assert(i
<= nb_clusters
);
1058 * Check if there already is an AIO write request in flight which allocates
1059 * the same cluster. In this case we need to wait until the previous
1060 * request has completed and updated the L2 table accordingly.
1063 * 0 if there was no dependency. *cur_bytes indicates the number of
1064 * bytes from guest_offset that can be read before the next
1065 * dependency must be processed (or the request is complete)
1067 * -EAGAIN if we had to wait for another request, previously gathered
1068 * information on cluster allocation may be invalid now. The caller
1069 * must start over anyway, so consider *cur_bytes undefined.
1071 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
1072 uint64_t *cur_bytes
, QCowL2Meta
**m
)
1074 BDRVQcow2State
*s
= bs
->opaque
;
1075 QCowL2Meta
*old_alloc
;
1076 uint64_t bytes
= *cur_bytes
;
1078 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
1080 uint64_t start
= guest_offset
;
1081 uint64_t end
= start
+ bytes
;
1082 uint64_t old_start
= l2meta_cow_start(old_alloc
);
1083 uint64_t old_end
= l2meta_cow_end(old_alloc
);
1085 if (end
<= old_start
|| start
>= old_end
) {
1086 /* No intersection */
1088 if (start
< old_start
) {
1089 /* Stop at the start of a running allocation */
1090 bytes
= old_start
- start
;
1095 /* Stop if already an l2meta exists. After yielding, it wouldn't
1096 * be valid any more, so we'd have to clean up the old L2Metas
1097 * and deal with requests depending on them before starting to
1098 * gather new ones. Not worth the trouble. */
1099 if (bytes
== 0 && *m
) {
1105 /* Wait for the dependency to complete. We need to recheck
1106 * the free/allocated clusters when we continue. */
1107 qemu_co_queue_wait(&old_alloc
->dependent_requests
, &s
->lock
);
1113 /* Make sure that existing clusters and new allocations are only used up to
1114 * the next dependency if we shortened the request above */
1121 * Checks how many already allocated clusters that don't require a copy on
1122 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1123 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1124 * offset are counted.
1126 * Note that guest_offset may not be cluster aligned. In this case, the
1127 * returned *host_offset points to exact byte referenced by guest_offset and
1128 * therefore isn't cluster aligned as well.
1131 * 0: if no allocated clusters are available at the given offset.
1132 * *bytes is normally unchanged. It is set to 0 if the cluster
1133 * is allocated and doesn't need COW, but doesn't have the right
1136 * 1: if allocated clusters that don't require a COW are available at
1137 * the requested offset. *bytes may have decreased and describes
1138 * the length of the area that can be written to.
1140 * -errno: in error cases
1142 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
1143 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1145 BDRVQcow2State
*s
= bs
->opaque
;
1147 uint64_t cluster_offset
;
1149 uint64_t nb_clusters
;
1150 unsigned int keep_clusters
;
1153 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
1156 assert(*host_offset
== INV_OFFSET
|| offset_into_cluster(s
, guest_offset
)
1157 == offset_into_cluster(s
, *host_offset
));
1160 * Calculate the number of clusters to look for. We stop at L2 slice
1161 * boundaries to keep things simple.
1164 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1166 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1167 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1168 assert(nb_clusters
<= INT_MAX
);
1170 /* Find L2 entry for the first involved cluster */
1171 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1176 cluster_offset
= be64_to_cpu(l2_slice
[l2_index
]);
1178 /* Check how many clusters are already allocated and don't need COW */
1179 if (qcow2_get_cluster_type(bs
, cluster_offset
) == QCOW2_CLUSTER_NORMAL
1180 && (cluster_offset
& QCOW_OFLAG_COPIED
))
1182 /* If a specific host_offset is required, check it */
1183 bool offset_matches
=
1184 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
1186 if (offset_into_cluster(s
, cluster_offset
& L2E_OFFSET_MASK
)) {
1187 qcow2_signal_corruption(bs
, true, -1, -1, "Data cluster offset "
1188 "%#llx unaligned (guest offset: %#" PRIx64
1189 ")", cluster_offset
& L2E_OFFSET_MASK
,
1195 if (*host_offset
!= INV_OFFSET
&& !offset_matches
) {
1201 /* We keep all QCOW_OFLAG_COPIED clusters */
1203 count_contiguous_clusters(bs
, nb_clusters
, s
->cluster_size
,
1204 &l2_slice
[l2_index
],
1205 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
1206 assert(keep_clusters
<= nb_clusters
);
1208 *bytes
= MIN(*bytes
,
1209 keep_clusters
* s
->cluster_size
1210 - offset_into_cluster(s
, guest_offset
));
1219 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1221 /* Only return a host offset if we actually made progress. Otherwise we
1222 * would make requirements for handle_alloc() that it can't fulfill */
1224 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
1225 + offset_into_cluster(s
, guest_offset
);
1232 * Allocates new clusters for the given guest_offset.
1234 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1235 * contain the number of clusters that have been allocated and are contiguous
1236 * in the image file.
1238 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1239 * at which the new clusters must start. *nb_clusters can be 0 on return in
1240 * this case if the cluster at host_offset is already in use. If *host_offset
1241 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1243 * *host_offset is updated to contain the offset into the image file at which
1244 * the first allocated cluster starts.
1246 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1247 * function has been waiting for another request and the allocation must be
1248 * restarted, but the whole request should not be failed.
1250 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
1251 uint64_t *host_offset
, uint64_t *nb_clusters
)
1253 BDRVQcow2State
*s
= bs
->opaque
;
1255 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
1256 *host_offset
, *nb_clusters
);
1258 if (has_data_file(bs
)) {
1259 assert(*host_offset
== INV_OFFSET
||
1260 *host_offset
== start_of_cluster(s
, guest_offset
));
1261 *host_offset
= start_of_cluster(s
, guest_offset
);
1265 /* Allocate new clusters */
1266 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1267 if (*host_offset
== INV_OFFSET
) {
1268 int64_t cluster_offset
=
1269 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1270 if (cluster_offset
< 0) {
1271 return cluster_offset
;
1273 *host_offset
= cluster_offset
;
1276 int64_t ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1286 * Allocates new clusters for an area that either is yet unallocated or needs a
1287 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1288 * allocated if the new allocation can match the specified host offset.
1290 * Note that guest_offset may not be cluster aligned. In this case, the
1291 * returned *host_offset points to exact byte referenced by guest_offset and
1292 * therefore isn't cluster aligned as well.
1295 * 0: if no clusters could be allocated. *bytes is set to 0,
1296 * *host_offset is left unchanged.
1298 * 1: if new clusters were allocated. *bytes may be decreased if the
1299 * new allocation doesn't cover all of the requested area.
1300 * *host_offset is updated to contain the host offset of the first
1301 * newly allocated cluster.
1303 * -errno: in error cases
1305 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1306 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1308 BDRVQcow2State
*s
= bs
->opaque
;
1312 uint64_t nb_clusters
;
1314 bool keep_old_clusters
= false;
1316 uint64_t alloc_cluster_offset
= INV_OFFSET
;
1318 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1323 * Calculate the number of clusters to look for. We stop at L2 slice
1324 * boundaries to keep things simple.
1327 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1329 l2_index
= offset_to_l2_slice_index(s
, guest_offset
);
1330 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1331 assert(nb_clusters
<= INT_MAX
);
1333 /* Find L2 entry for the first involved cluster */
1334 ret
= get_cluster_table(bs
, guest_offset
, &l2_slice
, &l2_index
);
1339 entry
= be64_to_cpu(l2_slice
[l2_index
]);
1340 nb_clusters
= count_cow_clusters(bs
, nb_clusters
, l2_slice
, l2_index
);
1342 /* This function is only called when there were no non-COW clusters, so if
1343 * we can't find any unallocated or COW clusters either, something is
1344 * wrong with our code. */
1345 assert(nb_clusters
> 0);
1347 if (qcow2_get_cluster_type(bs
, entry
) == QCOW2_CLUSTER_ZERO_ALLOC
&&
1348 (entry
& QCOW_OFLAG_COPIED
) &&
1349 (*host_offset
== INV_OFFSET
||
1350 start_of_cluster(s
, *host_offset
) == (entry
& L2E_OFFSET_MASK
)))
1352 int preallocated_nb_clusters
;
1354 if (offset_into_cluster(s
, entry
& L2E_OFFSET_MASK
)) {
1355 qcow2_signal_corruption(bs
, true, -1, -1, "Preallocated zero "
1356 "cluster offset %#llx unaligned (guest "
1357 "offset: %#" PRIx64
")",
1358 entry
& L2E_OFFSET_MASK
, guest_offset
);
1363 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1364 * would be fine, too, but count_cow_clusters() above has limited
1365 * nb_clusters already to a range of COW clusters */
1366 preallocated_nb_clusters
=
1367 count_contiguous_clusters(bs
, nb_clusters
, s
->cluster_size
,
1368 &l2_slice
[l2_index
], QCOW_OFLAG_COPIED
);
1369 assert(preallocated_nb_clusters
> 0);
1371 nb_clusters
= preallocated_nb_clusters
;
1372 alloc_cluster_offset
= entry
& L2E_OFFSET_MASK
;
1374 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1375 * should not free them. */
1376 keep_old_clusters
= true;
1379 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1381 if (alloc_cluster_offset
== INV_OFFSET
) {
1382 /* Allocate, if necessary at a given offset in the image file */
1383 alloc_cluster_offset
= *host_offset
== INV_OFFSET
? INV_OFFSET
:
1384 start_of_cluster(s
, *host_offset
);
1385 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1391 /* Can't extend contiguous allocation */
1392 if (nb_clusters
== 0) {
1397 assert(alloc_cluster_offset
!= INV_OFFSET
);
1401 * Save info needed for meta data update.
1403 * requested_bytes: Number of bytes from the start of the first
1404 * newly allocated cluster to the end of the (possibly shortened
1405 * before) write request.
1407 * avail_bytes: Number of bytes from the start of the first
1408 * newly allocated to the end of the last newly allocated cluster.
1410 * nb_bytes: The number of bytes from the start of the first
1411 * newly allocated cluster to the end of the area that the write
1412 * request actually writes to (excluding COW at the end)
1414 uint64_t requested_bytes
= *bytes
+ offset_into_cluster(s
, guest_offset
);
1415 int avail_bytes
= MIN(INT_MAX
, nb_clusters
<< s
->cluster_bits
);
1416 int nb_bytes
= MIN(requested_bytes
, avail_bytes
);
1417 QCowL2Meta
*old_m
= *m
;
1419 *m
= g_malloc0(sizeof(**m
));
1421 **m
= (QCowL2Meta
) {
1424 .alloc_offset
= alloc_cluster_offset
,
1425 .offset
= start_of_cluster(s
, guest_offset
),
1426 .nb_clusters
= nb_clusters
,
1428 .keep_old_clusters
= keep_old_clusters
,
1432 .nb_bytes
= offset_into_cluster(s
, guest_offset
),
1436 .nb_bytes
= avail_bytes
- nb_bytes
,
1439 qemu_co_queue_init(&(*m
)->dependent_requests
);
1440 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1442 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1443 *bytes
= MIN(*bytes
, nb_bytes
- offset_into_cluster(s
, guest_offset
));
1444 assert(*bytes
!= 0);
1449 if (*m
&& (*m
)->nb_clusters
> 0) {
1450 QLIST_REMOVE(*m
, next_in_flight
);
1456 * alloc_cluster_offset
1458 * For a given offset on the virtual disk, find the cluster offset in qcow2
1459 * file. If the offset is not found, allocate a new cluster.
1461 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1462 * other fields in m are meaningless.
1464 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1465 * contiguous clusters that have been allocated. In this case, the other
1466 * fields of m are valid and contain information about the first allocated
1469 * If the request conflicts with another write request in flight, the coroutine
1470 * is queued and will be reentered when the dependency has completed.
1472 * Return 0 on success and -errno in error cases
1474 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1475 unsigned int *bytes
, uint64_t *host_offset
,
1478 BDRVQcow2State
*s
= bs
->opaque
;
1479 uint64_t start
, remaining
;
1480 uint64_t cluster_offset
;
1484 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
, *bytes
);
1489 cluster_offset
= INV_OFFSET
;
1490 *host_offset
= INV_OFFSET
;
1496 if (*host_offset
== INV_OFFSET
&& cluster_offset
!= INV_OFFSET
) {
1497 *host_offset
= start_of_cluster(s
, cluster_offset
);
1500 assert(remaining
>= cur_bytes
);
1503 remaining
-= cur_bytes
;
1505 if (cluster_offset
!= INV_OFFSET
) {
1506 cluster_offset
+= cur_bytes
;
1509 if (remaining
== 0) {
1513 cur_bytes
= remaining
;
1516 * Now start gathering as many contiguous clusters as possible:
1518 * 1. Check for overlaps with in-flight allocations
1520 * a) Overlap not in the first cluster -> shorten this request and
1521 * let the caller handle the rest in its next loop iteration.
1523 * b) Real overlaps of two requests. Yield and restart the search
1524 * for contiguous clusters (the situation could have changed
1525 * while we were sleeping)
1527 * c) TODO: Request starts in the same cluster as the in-flight
1528 * allocation ends. Shorten the COW of the in-fight allocation,
1529 * set cluster_offset to write to the same cluster and set up
1530 * the right synchronisation between the in-flight request and
1533 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1534 if (ret
== -EAGAIN
) {
1535 /* Currently handle_dependencies() doesn't yield if we already had
1536 * an allocation. If it did, we would have to clean up the L2Meta
1537 * structs before starting over. */
1540 } else if (ret
< 0) {
1542 } else if (cur_bytes
== 0) {
1545 /* handle_dependencies() may have decreased cur_bytes (shortened
1546 * the allocations below) so that the next dependency is processed
1547 * correctly during the next loop iteration. */
1551 * 2. Count contiguous COPIED clusters.
1553 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1558 } else if (cur_bytes
== 0) {
1563 * 3. If the request still hasn't completed, allocate new clusters,
1564 * considering any cluster_offset of steps 1c or 2.
1566 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1572 assert(cur_bytes
== 0);
1577 *bytes
-= remaining
;
1579 assert(*host_offset
!= INV_OFFSET
);
1585 * This discards as many clusters of nb_clusters as possible at once (i.e.
1586 * all clusters in the same L2 slice) and returns the number of discarded
1589 static int discard_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1590 uint64_t nb_clusters
,
1591 enum qcow2_discard_type type
, bool full_discard
)
1593 BDRVQcow2State
*s
= bs
->opaque
;
1599 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1604 /* Limit nb_clusters to one L2 slice */
1605 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1606 assert(nb_clusters
<= INT_MAX
);
1608 for (i
= 0; i
< nb_clusters
; i
++) {
1609 uint64_t old_l2_entry
;
1611 old_l2_entry
= be64_to_cpu(l2_slice
[l2_index
+ i
]);
1614 * If full_discard is false, make sure that a discarded area reads back
1615 * as zeroes for v3 images (we cannot do it for v2 without actually
1616 * writing a zero-filled buffer). We can skip the operation if the
1617 * cluster is already marked as zero, or if it's unallocated and we
1618 * don't have a backing file.
1620 * TODO We might want to use bdrv_block_status(bs) here, but we're
1621 * holding s->lock, so that doesn't work today.
1623 * If full_discard is true, the sector should not read back as zeroes,
1624 * but rather fall through to the backing file.
1626 switch (qcow2_get_cluster_type(bs
, old_l2_entry
)) {
1627 case QCOW2_CLUSTER_UNALLOCATED
:
1628 if (full_discard
|| !bs
->backing
) {
1633 case QCOW2_CLUSTER_ZERO_PLAIN
:
1634 if (!full_discard
) {
1639 case QCOW2_CLUSTER_ZERO_ALLOC
:
1640 case QCOW2_CLUSTER_NORMAL
:
1641 case QCOW2_CLUSTER_COMPRESSED
:
1648 /* First remove L2 entries */
1649 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1650 if (!full_discard
&& s
->qcow_version
>= 3) {
1651 l2_slice
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1653 l2_slice
[l2_index
+ i
] = cpu_to_be64(0);
1656 /* Then decrease the refcount */
1657 qcow2_free_any_clusters(bs
, old_l2_entry
, 1, type
);
1660 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1665 int qcow2_cluster_discard(BlockDriverState
*bs
, uint64_t offset
,
1666 uint64_t bytes
, enum qcow2_discard_type type
,
1669 BDRVQcow2State
*s
= bs
->opaque
;
1670 uint64_t end_offset
= offset
+ bytes
;
1671 uint64_t nb_clusters
;
1675 /* Caller must pass aligned values, except at image end */
1676 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1677 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1678 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1680 nb_clusters
= size_to_clusters(s
, bytes
);
1682 s
->cache_discards
= true;
1684 /* Each L2 slice is handled by its own loop iteration */
1685 while (nb_clusters
> 0) {
1686 cleared
= discard_in_l2_slice(bs
, offset
, nb_clusters
, type
,
1693 nb_clusters
-= cleared
;
1694 offset
+= (cleared
* s
->cluster_size
);
1699 s
->cache_discards
= false;
1700 qcow2_process_discards(bs
, ret
);
1706 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1707 * all clusters in the same L2 slice) and returns the number of zeroed
1710 static int zero_in_l2_slice(BlockDriverState
*bs
, uint64_t offset
,
1711 uint64_t nb_clusters
, int flags
)
1713 BDRVQcow2State
*s
= bs
->opaque
;
1718 bool unmap
= !!(flags
& BDRV_REQ_MAY_UNMAP
);
1720 ret
= get_cluster_table(bs
, offset
, &l2_slice
, &l2_index
);
1725 /* Limit nb_clusters to one L2 slice */
1726 nb_clusters
= MIN(nb_clusters
, s
->l2_slice_size
- l2_index
);
1727 assert(nb_clusters
<= INT_MAX
);
1729 for (i
= 0; i
< nb_clusters
; i
++) {
1730 uint64_t old_offset
;
1731 QCow2ClusterType cluster_type
;
1733 old_offset
= be64_to_cpu(l2_slice
[l2_index
+ i
]);
1736 * Minimize L2 changes if the cluster already reads back as
1737 * zeroes with correct allocation.
1739 cluster_type
= qcow2_get_cluster_type(bs
, old_offset
);
1740 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
||
1741 (cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
&& !unmap
)) {
1745 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1746 if (cluster_type
== QCOW2_CLUSTER_COMPRESSED
|| unmap
) {
1747 l2_slice
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1748 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1750 l2_slice
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1754 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1759 int qcow2_cluster_zeroize(BlockDriverState
*bs
, uint64_t offset
,
1760 uint64_t bytes
, int flags
)
1762 BDRVQcow2State
*s
= bs
->opaque
;
1763 uint64_t end_offset
= offset
+ bytes
;
1764 uint64_t nb_clusters
;
1768 /* If we have to stay in sync with an external data file, zero out
1769 * s->data_file first. */
1770 if (data_file_is_raw(bs
)) {
1771 assert(has_data_file(bs
));
1772 ret
= bdrv_co_pwrite_zeroes(s
->data_file
, offset
, bytes
, flags
);
1778 /* Caller must pass aligned values, except at image end */
1779 assert(QEMU_IS_ALIGNED(offset
, s
->cluster_size
));
1780 assert(QEMU_IS_ALIGNED(end_offset
, s
->cluster_size
) ||
1781 end_offset
== bs
->total_sectors
<< BDRV_SECTOR_BITS
);
1783 /* The zero flag is only supported by version 3 and newer */
1784 if (s
->qcow_version
< 3) {
1788 /* Each L2 slice is handled by its own loop iteration */
1789 nb_clusters
= size_to_clusters(s
, bytes
);
1791 s
->cache_discards
= true;
1793 while (nb_clusters
> 0) {
1794 cleared
= zero_in_l2_slice(bs
, offset
, nb_clusters
, flags
);
1800 nb_clusters
-= cleared
;
1801 offset
+= (cleared
* s
->cluster_size
);
1806 s
->cache_discards
= false;
1807 qcow2_process_discards(bs
, ret
);
1813 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1814 * non-backed non-pre-allocated zero clusters).
1816 * l1_entries and *visited_l1_entries are used to keep track of progress for
1817 * status_cb(). l1_entries contains the total number of L1 entries and
1818 * *visited_l1_entries counts all visited L1 entries.
1820 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1821 int l1_size
, int64_t *visited_l1_entries
,
1823 BlockDriverAmendStatusCB
*status_cb
,
1826 BDRVQcow2State
*s
= bs
->opaque
;
1827 bool is_active_l1
= (l1_table
== s
->l1_table
);
1828 uint64_t *l2_slice
= NULL
;
1829 unsigned slice
, slice_size2
, n_slices
;
1833 slice_size2
= s
->l2_slice_size
* sizeof(uint64_t);
1834 n_slices
= s
->cluster_size
/ slice_size2
;
1836 if (!is_active_l1
) {
1837 /* inactive L2 tables require a buffer to be stored in when loading
1839 l2_slice
= qemu_try_blockalign(bs
->file
->bs
, slice_size2
);
1840 if (l2_slice
== NULL
) {
1845 for (i
= 0; i
< l1_size
; i
++) {
1846 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1847 uint64_t l2_refcount
;
1851 (*visited_l1_entries
)++;
1853 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
1858 if (offset_into_cluster(s
, l2_offset
)) {
1859 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1860 PRIx64
" unaligned (L1 index: %#x)",
1866 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1872 for (slice
= 0; slice
< n_slices
; slice
++) {
1873 uint64_t slice_offset
= l2_offset
+ slice
* slice_size2
;
1874 bool l2_dirty
= false;
1876 /* get active L2 tables from cache */
1877 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, slice_offset
,
1878 (void **)&l2_slice
);
1880 /* load inactive L2 tables from disk */
1881 ret
= bdrv_pread(bs
->file
, slice_offset
, l2_slice
, slice_size2
);
1887 for (j
= 0; j
< s
->l2_slice_size
; j
++) {
1888 uint64_t l2_entry
= be64_to_cpu(l2_slice
[j
]);
1889 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1890 QCow2ClusterType cluster_type
=
1891 qcow2_get_cluster_type(bs
, l2_entry
);
1893 if (cluster_type
!= QCOW2_CLUSTER_ZERO_PLAIN
&&
1894 cluster_type
!= QCOW2_CLUSTER_ZERO_ALLOC
) {
1898 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1900 /* not backed; therefore we can simply deallocate the
1907 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1913 if (l2_refcount
> 1) {
1914 /* For shared L2 tables, set the refcount accordingly
1915 * (it is already 1 and needs to be l2_refcount) */
1916 ret
= qcow2_update_cluster_refcount(
1917 bs
, offset
>> s
->cluster_bits
,
1918 refcount_diff(1, l2_refcount
), false,
1919 QCOW2_DISCARD_OTHER
);
1921 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1922 QCOW2_DISCARD_OTHER
);
1928 if (offset_into_cluster(s
, offset
)) {
1929 int l2_index
= slice
* s
->l2_slice_size
+ j
;
1930 qcow2_signal_corruption(
1932 "Cluster allocation offset "
1933 "%#" PRIx64
" unaligned (L2 offset: %#"
1934 PRIx64
", L2 index: %#x)", offset
,
1935 l2_offset
, l2_index
);
1936 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1937 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1938 QCOW2_DISCARD_ALWAYS
);
1944 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
,
1945 s
->cluster_size
, true);
1947 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1948 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1949 QCOW2_DISCARD_ALWAYS
);
1954 ret
= bdrv_pwrite_zeroes(s
->data_file
, offset
,
1955 s
->cluster_size
, 0);
1957 if (cluster_type
== QCOW2_CLUSTER_ZERO_PLAIN
) {
1958 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1959 QCOW2_DISCARD_ALWAYS
);
1964 if (l2_refcount
== 1) {
1965 l2_slice
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1967 l2_slice
[j
] = cpu_to_be64(offset
);
1974 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_slice
);
1975 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1977 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
1980 ret
= qcow2_pre_write_overlap_check(
1981 bs
, QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
,
1982 slice_offset
, slice_size2
, false);
1987 ret
= bdrv_pwrite(bs
->file
, slice_offset
,
1988 l2_slice
, slice_size2
);
1996 (*visited_l1_entries
)++;
1998 status_cb(bs
, *visited_l1_entries
, l1_entries
, cb_opaque
);
2006 if (!is_active_l1
) {
2007 qemu_vfree(l2_slice
);
2009 qcow2_cache_put(s
->l2_table_cache
, (void **) &l2_slice
);
2016 * For backed images, expands all zero clusters on the image. For non-backed
2017 * images, deallocates all non-pre-allocated zero clusters (and claims the
2018 * allocation for pre-allocated ones). This is important for downgrading to a
2019 * qcow2 version which doesn't yet support metadata zero clusters.
2021 int qcow2_expand_zero_clusters(BlockDriverState
*bs
,
2022 BlockDriverAmendStatusCB
*status_cb
,
2025 BDRVQcow2State
*s
= bs
->opaque
;
2026 uint64_t *l1_table
= NULL
;
2027 int64_t l1_entries
= 0, visited_l1_entries
= 0;
2032 l1_entries
= s
->l1_size
;
2033 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2034 l1_entries
+= s
->snapshots
[i
].l1_size
;
2038 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
2039 &visited_l1_entries
, l1_entries
,
2040 status_cb
, cb_opaque
);
2045 /* Inactive L1 tables may point to active L2 tables - therefore it is
2046 * necessary to flush the L2 table cache before trying to access the L2
2047 * tables pointed to by inactive L1 entries (else we might try to expand
2048 * zero clusters that have already been expanded); furthermore, it is also
2049 * necessary to empty the L2 table cache, since it may contain tables which
2050 * are now going to be modified directly on disk, bypassing the cache.
2051 * qcow2_cache_empty() does both for us. */
2052 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
2057 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2059 uint64_t *new_l1_table
;
2060 Error
*local_err
= NULL
;
2062 ret
= qcow2_validate_table(bs
, s
->snapshots
[i
].l1_table_offset
,
2063 s
->snapshots
[i
].l1_size
, sizeof(uint64_t),
2064 QCOW_MAX_L1_SIZE
, "Snapshot L1 table",
2067 error_report_err(local_err
);
2071 l1_size2
= s
->snapshots
[i
].l1_size
* sizeof(uint64_t);
2072 new_l1_table
= g_try_realloc(l1_table
, l1_size2
);
2074 if (!new_l1_table
) {
2079 l1_table
= new_l1_table
;
2081 ret
= bdrv_pread(bs
->file
, s
->snapshots
[i
].l1_table_offset
,
2082 l1_table
, l1_size2
);
2087 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
2088 be64_to_cpus(&l1_table
[j
]);
2091 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
2092 &visited_l1_entries
, l1_entries
,
2093 status_cb
, cb_opaque
);