sockets: avoid string truncation warnings when copying UNIX path
[qemu/ar7.git] / target / ppc / fpu_helper.c
blob0b7308f539642d15915229901886b6e13b926250
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
26 static inline float128 float128_snan_to_qnan(float128 x)
28 float128 r;
30 r.high = x.high | 0x0000800000000000;
31 r.low = x.low;
32 return r;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
41 #ifdef CONFIG_USER_ONLY
42 return true;
43 #else
44 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
48 /*****************************************************************************/
49 /* Floating point operations helpers */
52 * This is the non-arithmatic conversion that happens e.g. on loads.
53 * In the Power ISA pseudocode, this is called DOUBLE.
55 uint64_t helper_todouble(uint32_t arg)
57 uint32_t abs_arg = arg & 0x7fffffff;
58 uint64_t ret;
60 if (likely(abs_arg >= 0x00800000)) {
61 /* Normalized operand, or Inf, or NaN. */
62 ret = (uint64_t)extract32(arg, 30, 2) << 62;
63 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
64 ret |= (uint64_t)extract32(arg, 0, 30) << 29;
65 } else {
66 /* Zero or Denormalized operand. */
67 ret = (uint64_t)extract32(arg, 31, 1) << 63;
68 if (unlikely(abs_arg != 0)) {
69 /* Denormalized operand. */
70 int shift = clz32(abs_arg) - 9;
71 int exp = -126 - shift + 1023;
72 ret |= (uint64_t)exp << 52;
73 ret |= abs_arg << (shift + 29);
76 return ret;
80 * This is the non-arithmatic conversion that happens e.g. on stores.
81 * In the Power ISA pseudocode, this is called SINGLE.
83 uint32_t helper_tosingle(uint64_t arg)
85 int exp = extract64(arg, 52, 11);
86 uint32_t ret;
88 if (likely(exp > 896)) {
89 /* No denormalization required (includes Inf, NaN). */
90 ret = extract64(arg, 62, 2) << 30;
91 ret |= extract64(arg, 29, 30);
92 } else {
94 * Zero or Denormal result. If the exponent is in bounds for
95 * a single-precision denormal result, extract the proper
96 * bits. If the input is not zero, and the exponent is out of
97 * bounds, then the result is undefined; this underflows to
98 * zero.
100 ret = extract64(arg, 63, 1) << 31;
101 if (unlikely(exp >= 874)) {
102 /* Denormal result. */
103 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
106 return ret;
109 static inline int ppc_float32_get_unbiased_exp(float32 f)
111 return ((f >> 23) & 0xFF) - 127;
114 static inline int ppc_float64_get_unbiased_exp(float64 f)
116 return ((f >> 52) & 0x7FF) - 1023;
119 /* Classify a floating-point number. */
120 enum {
121 is_normal = 1,
122 is_zero = 2,
123 is_denormal = 4,
124 is_inf = 8,
125 is_qnan = 16,
126 is_snan = 32,
127 is_neg = 64,
130 #define COMPUTE_CLASS(tp) \
131 static int tp##_classify(tp arg) \
133 int ret = tp##_is_neg(arg) * is_neg; \
134 if (unlikely(tp##_is_any_nan(arg))) { \
135 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
136 ret |= (tp##_is_signaling_nan(arg, &dummy) \
137 ? is_snan : is_qnan); \
138 } else if (unlikely(tp##_is_infinity(arg))) { \
139 ret |= is_inf; \
140 } else if (tp##_is_zero(arg)) { \
141 ret |= is_zero; \
142 } else if (tp##_is_zero_or_denormal(arg)) { \
143 ret |= is_denormal; \
144 } else { \
145 ret |= is_normal; \
147 return ret; \
150 COMPUTE_CLASS(float16)
151 COMPUTE_CLASS(float32)
152 COMPUTE_CLASS(float64)
153 COMPUTE_CLASS(float128)
155 static void set_fprf_from_class(CPUPPCState *env, int class)
157 static const uint8_t fprf[6][2] = {
158 { 0x04, 0x08 }, /* normalized */
159 { 0x02, 0x12 }, /* zero */
160 { 0x14, 0x18 }, /* denormalized */
161 { 0x05, 0x09 }, /* infinity */
162 { 0x11, 0x11 }, /* qnan */
163 { 0x00, 0x00 }, /* snan -- flags are undefined */
165 bool isneg = class & is_neg;
167 env->fpscr &= ~(0x1F << FPSCR_FPRF);
168 env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
171 #define COMPUTE_FPRF(tp) \
172 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
174 set_fprf_from_class(env, tp##_classify(arg)); \
177 COMPUTE_FPRF(float16)
178 COMPUTE_FPRF(float32)
179 COMPUTE_FPRF(float64)
180 COMPUTE_FPRF(float128)
182 /* Floating-point invalid operations exception */
183 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
185 /* Update the floating-point invalid operation summary */
186 env->fpscr |= 1 << FPSCR_VX;
187 /* Update the floating-point exception summary */
188 env->fpscr |= FP_FX;
189 if (fpscr_ve != 0) {
190 /* Update the floating-point enabled exception summary */
191 env->fpscr |= 1 << FPSCR_FEX;
192 if (fp_exceptions_enabled(env)) {
193 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
194 POWERPC_EXCP_FP | op, retaddr);
199 static void finish_invalid_op_arith(CPUPPCState *env, int op,
200 bool set_fpcc, uintptr_t retaddr)
202 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
203 if (fpscr_ve == 0) {
204 if (set_fpcc) {
205 env->fpscr &= ~(0xF << FPSCR_FPCC);
206 env->fpscr |= 0x11 << FPSCR_FPCC;
209 finish_invalid_op_excp(env, op, retaddr);
212 /* Signalling NaN */
213 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
215 env->fpscr |= 1 << FPSCR_VXSNAN;
216 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
219 /* Magnitude subtraction of infinities */
220 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
221 uintptr_t retaddr)
223 env->fpscr |= 1 << FPSCR_VXISI;
224 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
227 /* Division of infinity by infinity */
228 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
229 uintptr_t retaddr)
231 env->fpscr |= 1 << FPSCR_VXIDI;
232 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
235 /* Division of zero by zero */
236 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
237 uintptr_t retaddr)
239 env->fpscr |= 1 << FPSCR_VXZDZ;
240 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
243 /* Multiplication of zero by infinity */
244 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
245 uintptr_t retaddr)
247 env->fpscr |= 1 << FPSCR_VXIMZ;
248 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
251 /* Square root of a negative number */
252 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
253 uintptr_t retaddr)
255 env->fpscr |= 1 << FPSCR_VXSQRT;
256 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
259 /* Ordered comparison of NaN */
260 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
261 uintptr_t retaddr)
263 env->fpscr |= 1 << FPSCR_VXVC;
264 if (set_fpcc) {
265 env->fpscr &= ~(0xF << FPSCR_FPCC);
266 env->fpscr |= 0x11 << FPSCR_FPCC;
268 /* Update the floating-point invalid operation summary */
269 env->fpscr |= 1 << FPSCR_VX;
270 /* Update the floating-point exception summary */
271 env->fpscr |= FP_FX;
272 /* We must update the target FPR before raising the exception */
273 if (fpscr_ve != 0) {
274 CPUState *cs = CPU(ppc_env_get_cpu(env));
276 cs->exception_index = POWERPC_EXCP_PROGRAM;
277 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
278 /* Update the floating-point enabled exception summary */
279 env->fpscr |= 1 << FPSCR_FEX;
280 /* Exception is differed */
284 /* Invalid conversion */
285 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
286 uintptr_t retaddr)
288 env->fpscr |= 1 << FPSCR_VXCVI;
289 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
290 if (fpscr_ve == 0) {
291 if (set_fpcc) {
292 env->fpscr &= ~(0xF << FPSCR_FPCC);
293 env->fpscr |= 0x11 << FPSCR_FPCC;
296 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
299 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
301 env->fpscr |= 1 << FPSCR_ZX;
302 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
303 /* Update the floating-point exception summary */
304 env->fpscr |= FP_FX;
305 if (fpscr_ze != 0) {
306 /* Update the floating-point enabled exception summary */
307 env->fpscr |= 1 << FPSCR_FEX;
308 if (fp_exceptions_enabled(env)) {
309 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
310 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
311 raddr);
316 static inline void float_overflow_excp(CPUPPCState *env)
318 CPUState *cs = CPU(ppc_env_get_cpu(env));
320 env->fpscr |= 1 << FPSCR_OX;
321 /* Update the floating-point exception summary */
322 env->fpscr |= FP_FX;
323 if (fpscr_oe != 0) {
324 /* XXX: should adjust the result */
325 /* Update the floating-point enabled exception summary */
326 env->fpscr |= 1 << FPSCR_FEX;
327 /* We must update the target FPR before raising the exception */
328 cs->exception_index = POWERPC_EXCP_PROGRAM;
329 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
330 } else {
331 env->fpscr |= 1 << FPSCR_XX;
332 env->fpscr |= 1 << FPSCR_FI;
336 static inline void float_underflow_excp(CPUPPCState *env)
338 CPUState *cs = CPU(ppc_env_get_cpu(env));
340 env->fpscr |= 1 << FPSCR_UX;
341 /* Update the floating-point exception summary */
342 env->fpscr |= FP_FX;
343 if (fpscr_ue != 0) {
344 /* XXX: should adjust the result */
345 /* Update the floating-point enabled exception summary */
346 env->fpscr |= 1 << FPSCR_FEX;
347 /* We must update the target FPR before raising the exception */
348 cs->exception_index = POWERPC_EXCP_PROGRAM;
349 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
353 static inline void float_inexact_excp(CPUPPCState *env)
355 CPUState *cs = CPU(ppc_env_get_cpu(env));
357 env->fpscr |= 1 << FPSCR_FI;
358 env->fpscr |= 1 << FPSCR_XX;
359 /* Update the floating-point exception summary */
360 env->fpscr |= FP_FX;
361 if (fpscr_xe != 0) {
362 /* Update the floating-point enabled exception summary */
363 env->fpscr |= 1 << FPSCR_FEX;
364 /* We must update the target FPR before raising the exception */
365 cs->exception_index = POWERPC_EXCP_PROGRAM;
366 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
370 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
372 int rnd_type;
374 /* Set rounding mode */
375 switch (fpscr_rn) {
376 case 0:
377 /* Best approximation (round to nearest) */
378 rnd_type = float_round_nearest_even;
379 break;
380 case 1:
381 /* Smaller magnitude (round toward zero) */
382 rnd_type = float_round_to_zero;
383 break;
384 case 2:
385 /* Round toward +infinite */
386 rnd_type = float_round_up;
387 break;
388 default:
389 case 3:
390 /* Round toward -infinite */
391 rnd_type = float_round_down;
392 break;
394 set_float_rounding_mode(rnd_type, &env->fp_status);
397 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
399 int prev;
401 prev = (env->fpscr >> bit) & 1;
402 env->fpscr &= ~(1 << bit);
403 if (prev == 1) {
404 switch (bit) {
405 case FPSCR_RN1:
406 case FPSCR_RN:
407 fpscr_set_rounding_mode(env);
408 break;
409 case FPSCR_VXSNAN:
410 case FPSCR_VXISI:
411 case FPSCR_VXIDI:
412 case FPSCR_VXZDZ:
413 case FPSCR_VXIMZ:
414 case FPSCR_VXVC:
415 case FPSCR_VXSOFT:
416 case FPSCR_VXSQRT:
417 case FPSCR_VXCVI:
418 if (!fpscr_ix) {
419 /* Set VX bit to zero */
420 env->fpscr &= ~(1 << FPSCR_VX);
422 break;
423 case FPSCR_OX:
424 case FPSCR_UX:
425 case FPSCR_ZX:
426 case FPSCR_XX:
427 case FPSCR_VE:
428 case FPSCR_OE:
429 case FPSCR_UE:
430 case FPSCR_ZE:
431 case FPSCR_XE:
432 if (!fpscr_eex) {
433 /* Set the FEX bit */
434 env->fpscr &= ~(1 << FPSCR_FEX);
436 break;
437 default:
438 break;
443 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
445 CPUState *cs = CPU(ppc_env_get_cpu(env));
446 int prev;
448 prev = (env->fpscr >> bit) & 1;
449 env->fpscr |= 1 << bit;
450 if (prev == 0) {
451 switch (bit) {
452 case FPSCR_VX:
453 env->fpscr |= FP_FX;
454 if (fpscr_ve) {
455 goto raise_ve;
457 break;
458 case FPSCR_OX:
459 env->fpscr |= FP_FX;
460 if (fpscr_oe) {
461 goto raise_oe;
463 break;
464 case FPSCR_UX:
465 env->fpscr |= FP_FX;
466 if (fpscr_ue) {
467 goto raise_ue;
469 break;
470 case FPSCR_ZX:
471 env->fpscr |= FP_FX;
472 if (fpscr_ze) {
473 goto raise_ze;
475 break;
476 case FPSCR_XX:
477 env->fpscr |= FP_FX;
478 if (fpscr_xe) {
479 goto raise_xe;
481 break;
482 case FPSCR_VXSNAN:
483 case FPSCR_VXISI:
484 case FPSCR_VXIDI:
485 case FPSCR_VXZDZ:
486 case FPSCR_VXIMZ:
487 case FPSCR_VXVC:
488 case FPSCR_VXSOFT:
489 case FPSCR_VXSQRT:
490 case FPSCR_VXCVI:
491 env->fpscr |= 1 << FPSCR_VX;
492 env->fpscr |= FP_FX;
493 if (fpscr_ve != 0) {
494 goto raise_ve;
496 break;
497 case FPSCR_VE:
498 if (fpscr_vx != 0) {
499 raise_ve:
500 env->error_code = POWERPC_EXCP_FP;
501 if (fpscr_vxsnan) {
502 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
504 if (fpscr_vxisi) {
505 env->error_code |= POWERPC_EXCP_FP_VXISI;
507 if (fpscr_vxidi) {
508 env->error_code |= POWERPC_EXCP_FP_VXIDI;
510 if (fpscr_vxzdz) {
511 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
513 if (fpscr_vximz) {
514 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
516 if (fpscr_vxvc) {
517 env->error_code |= POWERPC_EXCP_FP_VXVC;
519 if (fpscr_vxsoft) {
520 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
522 if (fpscr_vxsqrt) {
523 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
525 if (fpscr_vxcvi) {
526 env->error_code |= POWERPC_EXCP_FP_VXCVI;
528 goto raise_excp;
530 break;
531 case FPSCR_OE:
532 if (fpscr_ox != 0) {
533 raise_oe:
534 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
535 goto raise_excp;
537 break;
538 case FPSCR_UE:
539 if (fpscr_ux != 0) {
540 raise_ue:
541 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
542 goto raise_excp;
544 break;
545 case FPSCR_ZE:
546 if (fpscr_zx != 0) {
547 raise_ze:
548 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
549 goto raise_excp;
551 break;
552 case FPSCR_XE:
553 if (fpscr_xx != 0) {
554 raise_xe:
555 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
556 goto raise_excp;
558 break;
559 case FPSCR_RN1:
560 case FPSCR_RN:
561 fpscr_set_rounding_mode(env);
562 break;
563 default:
564 break;
565 raise_excp:
566 /* Update the floating-point enabled exception summary */
567 env->fpscr |= 1 << FPSCR_FEX;
568 /* We have to update Rc1 before raising the exception */
569 cs->exception_index = POWERPC_EXCP_PROGRAM;
570 break;
575 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
577 CPUState *cs = CPU(ppc_env_get_cpu(env));
578 target_ulong prev, new;
579 int i;
581 prev = env->fpscr;
582 new = (target_ulong)arg;
583 new &= ~0x60000000LL;
584 new |= prev & 0x60000000LL;
585 for (i = 0; i < sizeof(target_ulong) * 2; i++) {
586 if (mask & (1 << i)) {
587 env->fpscr &= ~(0xFLL << (4 * i));
588 env->fpscr |= new & (0xFLL << (4 * i));
591 /* Update VX and FEX */
592 if (fpscr_ix != 0) {
593 env->fpscr |= 1 << FPSCR_VX;
594 } else {
595 env->fpscr &= ~(1 << FPSCR_VX);
597 if ((fpscr_ex & fpscr_eex) != 0) {
598 env->fpscr |= 1 << FPSCR_FEX;
599 cs->exception_index = POWERPC_EXCP_PROGRAM;
600 /* XXX: we should compute it properly */
601 env->error_code = POWERPC_EXCP_FP;
602 } else {
603 env->fpscr &= ~(1 << FPSCR_FEX);
605 fpscr_set_rounding_mode(env);
608 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
610 helper_store_fpscr(env, arg, mask);
613 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
615 CPUState *cs = CPU(ppc_env_get_cpu(env));
616 int status = get_float_exception_flags(&env->fp_status);
617 bool inexact_happened = false;
619 if (status & float_flag_overflow) {
620 float_overflow_excp(env);
621 } else if (status & float_flag_underflow) {
622 float_underflow_excp(env);
623 } else if (status & float_flag_inexact) {
624 float_inexact_excp(env);
625 inexact_happened = true;
628 /* if the inexact flag was not set */
629 if (inexact_happened == false) {
630 env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
633 if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
634 (env->error_code & POWERPC_EXCP_FP)) {
635 /* Differred floating-point exception after target FPR update */
636 if (fp_exceptions_enabled(env)) {
637 raise_exception_err_ra(env, cs->exception_index,
638 env->error_code, raddr);
643 void helper_float_check_status(CPUPPCState *env)
645 do_float_check_status(env, GETPC());
648 void helper_reset_fpstatus(CPUPPCState *env)
650 set_float_exception_flags(0, &env->fp_status);
653 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
654 uintptr_t retaddr, int classes)
656 if ((classes & ~is_neg) == is_inf) {
657 /* Magnitude subtraction of infinities */
658 float_invalid_op_vxisi(env, set_fpcc, retaddr);
659 } else if (classes & is_snan) {
660 float_invalid_op_vxsnan(env, retaddr);
664 /* fadd - fadd. */
665 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
667 float64 ret = float64_add(arg1, arg2, &env->fp_status);
668 int status = get_float_exception_flags(&env->fp_status);
670 if (unlikely(status & float_flag_invalid)) {
671 float_invalid_op_addsub(env, 1, GETPC(),
672 float64_classify(arg1) |
673 float64_classify(arg2));
676 return ret;
679 /* fsub - fsub. */
680 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
682 float64 ret = float64_sub(arg1, arg2, &env->fp_status);
683 int status = get_float_exception_flags(&env->fp_status);
685 if (unlikely(status & float_flag_invalid)) {
686 float_invalid_op_addsub(env, 1, GETPC(),
687 float64_classify(arg1) |
688 float64_classify(arg2));
691 return ret;
694 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
695 uintptr_t retaddr, int classes)
697 if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
698 /* Multiplication of zero by infinity */
699 float_invalid_op_vximz(env, set_fprc, retaddr);
700 } else if (classes & is_snan) {
701 float_invalid_op_vxsnan(env, retaddr);
705 /* fmul - fmul. */
706 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
708 float64 ret = float64_mul(arg1, arg2, &env->fp_status);
709 int status = get_float_exception_flags(&env->fp_status);
711 if (unlikely(status & float_flag_invalid)) {
712 float_invalid_op_mul(env, 1, GETPC(),
713 float64_classify(arg1) |
714 float64_classify(arg2));
717 return ret;
720 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
721 uintptr_t retaddr, int classes)
723 classes &= ~is_neg;
724 if (classes == is_inf) {
725 /* Division of infinity by infinity */
726 float_invalid_op_vxidi(env, set_fprc, retaddr);
727 } else if (classes == is_zero) {
728 /* Division of zero by zero */
729 float_invalid_op_vxzdz(env, set_fprc, retaddr);
730 } else if (classes & is_snan) {
731 float_invalid_op_vxsnan(env, retaddr);
735 /* fdiv - fdiv. */
736 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
738 float64 ret = float64_div(arg1, arg2, &env->fp_status);
739 int status = get_float_exception_flags(&env->fp_status);
741 if (unlikely(status)) {
742 if (status & float_flag_invalid) {
743 float_invalid_op_div(env, 1, GETPC(),
744 float64_classify(arg1) |
745 float64_classify(arg2));
747 if (status & float_flag_divbyzero) {
748 float_zero_divide_excp(env, GETPC());
752 return ret;
755 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
756 uintptr_t retaddr, int class1)
758 float_invalid_op_vxcvi(env, set_fprc, retaddr);
759 if (class1 & is_snan) {
760 float_invalid_op_vxsnan(env, retaddr);
764 #define FPU_FCTI(op, cvt, nanval) \
765 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
767 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
768 int status = get_float_exception_flags(&env->fp_status); \
770 if (unlikely(status)) { \
771 if (status & float_flag_invalid) { \
772 float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
773 ret = nanval; \
775 do_float_check_status(env, GETPC()); \
777 return ret; \
780 FPU_FCTI(fctiw, int32, 0x80000000U)
781 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
782 FPU_FCTI(fctiwu, uint32, 0x00000000U)
783 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
784 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
785 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
786 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
787 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
789 #define FPU_FCFI(op, cvtr, is_single) \
790 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
792 CPU_DoubleU farg; \
794 if (is_single) { \
795 float32 tmp = cvtr(arg, &env->fp_status); \
796 farg.d = float32_to_float64(tmp, &env->fp_status); \
797 } else { \
798 farg.d = cvtr(arg, &env->fp_status); \
800 do_float_check_status(env, GETPC()); \
801 return farg.ll; \
804 FPU_FCFI(fcfid, int64_to_float64, 0)
805 FPU_FCFI(fcfids, int64_to_float32, 1)
806 FPU_FCFI(fcfidu, uint64_to_float64, 0)
807 FPU_FCFI(fcfidus, uint64_to_float32, 1)
809 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
810 int rounding_mode)
812 CPU_DoubleU farg;
814 farg.ll = arg;
816 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
817 /* sNaN round */
818 float_invalid_op_vxsnan(env, GETPC());
819 farg.ll = arg | 0x0008000000000000ULL;
820 } else {
821 int inexact = get_float_exception_flags(&env->fp_status) &
822 float_flag_inexact;
823 set_float_rounding_mode(rounding_mode, &env->fp_status);
824 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
825 /* Restore rounding mode from FPSCR */
826 fpscr_set_rounding_mode(env);
828 /* fri* does not set FPSCR[XX] */
829 if (!inexact) {
830 env->fp_status.float_exception_flags &= ~float_flag_inexact;
833 do_float_check_status(env, GETPC());
834 return farg.ll;
837 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
839 return do_fri(env, arg, float_round_ties_away);
842 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
844 return do_fri(env, arg, float_round_to_zero);
847 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
849 return do_fri(env, arg, float_round_up);
852 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
854 return do_fri(env, arg, float_round_down);
857 #define FPU_MADDSUB_UPDATE(NAME, TP) \
858 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3, \
859 unsigned int madd_flags, uintptr_t retaddr) \
861 if (TP##_is_signaling_nan(arg1, &env->fp_status) || \
862 TP##_is_signaling_nan(arg2, &env->fp_status) || \
863 TP##_is_signaling_nan(arg3, &env->fp_status)) { \
864 /* sNaN operation */ \
865 float_invalid_op_vxsnan(env, retaddr); \
867 if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) || \
868 (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) { \
869 /* Multiplication of zero by infinity */ \
870 float_invalid_op_vximz(env, 1, retaddr); \
872 if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) && \
873 TP##_is_infinity(arg3)) { \
874 uint8_t aSign, bSign, cSign; \
876 aSign = TP##_is_neg(arg1); \
877 bSign = TP##_is_neg(arg2); \
878 cSign = TP##_is_neg(arg3); \
879 if (madd_flags & float_muladd_negate_c) { \
880 cSign ^= 1; \
882 if (aSign ^ bSign ^ cSign) { \
883 float_invalid_op_vxisi(env, 1, retaddr); \
887 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
888 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
890 #define FPU_FMADD(op, madd_flags) \
891 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
892 uint64_t arg2, uint64_t arg3) \
894 uint32_t flags; \
895 float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags, \
896 &env->fp_status); \
897 flags = get_float_exception_flags(&env->fp_status); \
898 if (flags) { \
899 if (flags & float_flag_invalid) { \
900 float64_maddsub_update_excp(env, arg1, arg2, arg3, \
901 madd_flags, GETPC()); \
903 do_float_check_status(env, GETPC()); \
905 return ret; \
908 #define MADD_FLGS 0
909 #define MSUB_FLGS float_muladd_negate_c
910 #define NMADD_FLGS float_muladd_negate_result
911 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
913 FPU_FMADD(fmadd, MADD_FLGS)
914 FPU_FMADD(fnmadd, NMADD_FLGS)
915 FPU_FMADD(fmsub, MSUB_FLGS)
916 FPU_FMADD(fnmsub, NMSUB_FLGS)
918 /* frsp - frsp. */
919 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
921 CPU_DoubleU farg;
922 float32 f32;
924 farg.ll = arg;
926 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
927 float_invalid_op_vxsnan(env, GETPC());
929 f32 = float64_to_float32(farg.d, &env->fp_status);
930 farg.d = float32_to_float64(f32, &env->fp_status);
932 return farg.ll;
935 /* fsqrt - fsqrt. */
936 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
938 float64 ret = float64_sqrt(arg, &env->fp_status);
939 int status = get_float_exception_flags(&env->fp_status);
941 if (unlikely(status & float_flag_invalid)) {
942 if (unlikely(float64_is_any_nan(arg))) {
943 if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
944 /* sNaN square root */
945 float_invalid_op_vxsnan(env, GETPC());
947 } else {
948 /* Square root of a negative nonzero number */
949 float_invalid_op_vxsqrt(env, 1, GETPC());
953 return ret;
956 /* fre - fre. */
957 float64 helper_fre(CPUPPCState *env, float64 arg)
959 /* "Estimate" the reciprocal with actual division. */
960 float64 ret = float64_div(float64_one, arg, &env->fp_status);
961 int status = get_float_exception_flags(&env->fp_status);
963 if (unlikely(status)) {
964 if (status & float_flag_invalid) {
965 if (float64_is_signaling_nan(arg, &env->fp_status)) {
966 /* sNaN reciprocal */
967 float_invalid_op_vxsnan(env, GETPC());
970 if (status & float_flag_divbyzero) {
971 float_zero_divide_excp(env, GETPC());
972 /* For FPSCR.ZE == 0, the result is 1/2. */
973 ret = float64_set_sign(float64_half, float64_is_neg(arg));
977 return ret;
980 /* fres - fres. */
981 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
983 CPU_DoubleU farg;
984 float32 f32;
986 farg.ll = arg;
988 if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
989 /* sNaN reciprocal */
990 float_invalid_op_vxsnan(env, GETPC());
992 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
993 f32 = float64_to_float32(farg.d, &env->fp_status);
994 farg.d = float32_to_float64(f32, &env->fp_status);
996 return farg.ll;
999 /* frsqrte - frsqrte. */
1000 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1002 /* "Estimate" the reciprocal with actual division. */
1003 float64 rets = float64_sqrt(arg, &env->fp_status);
1004 float64 retd = float64_div(float64_one, rets, &env->fp_status);
1005 int status = get_float_exception_flags(&env->fp_status);
1007 if (unlikely(status)) {
1008 if (status & float_flag_invalid) {
1009 if (float64_is_signaling_nan(arg, &env->fp_status)) {
1010 /* sNaN reciprocal */
1011 float_invalid_op_vxsnan(env, GETPC());
1012 } else {
1013 /* Square root of a negative nonzero number */
1014 float_invalid_op_vxsqrt(env, 1, GETPC());
1017 if (status & float_flag_divbyzero) {
1018 /* Reciprocal of (square root of) zero. */
1019 float_zero_divide_excp(env, GETPC());
1023 return retd;
1026 /* fsel - fsel. */
1027 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1028 uint64_t arg3)
1030 CPU_DoubleU farg1;
1032 farg1.ll = arg1;
1034 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1035 !float64_is_any_nan(farg1.d)) {
1036 return arg2;
1037 } else {
1038 return arg3;
1042 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1044 int fe_flag = 0;
1045 int fg_flag = 0;
1047 if (unlikely(float64_is_infinity(fra) ||
1048 float64_is_infinity(frb) ||
1049 float64_is_zero(frb))) {
1050 fe_flag = 1;
1051 fg_flag = 1;
1052 } else {
1053 int e_a = ppc_float64_get_unbiased_exp(fra);
1054 int e_b = ppc_float64_get_unbiased_exp(frb);
1056 if (unlikely(float64_is_any_nan(fra) ||
1057 float64_is_any_nan(frb))) {
1058 fe_flag = 1;
1059 } else if ((e_b <= -1022) || (e_b >= 1021)) {
1060 fe_flag = 1;
1061 } else if (!float64_is_zero(fra) &&
1062 (((e_a - e_b) >= 1023) ||
1063 ((e_a - e_b) <= -1021) ||
1064 (e_a <= -970))) {
1065 fe_flag = 1;
1068 if (unlikely(float64_is_zero_or_denormal(frb))) {
1069 /* XB is not zero because of the above check and */
1070 /* so must be denormalized. */
1071 fg_flag = 1;
1075 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1078 uint32_t helper_ftsqrt(uint64_t frb)
1080 int fe_flag = 0;
1081 int fg_flag = 0;
1083 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1084 fe_flag = 1;
1085 fg_flag = 1;
1086 } else {
1087 int e_b = ppc_float64_get_unbiased_exp(frb);
1089 if (unlikely(float64_is_any_nan(frb))) {
1090 fe_flag = 1;
1091 } else if (unlikely(float64_is_zero(frb))) {
1092 fe_flag = 1;
1093 } else if (unlikely(float64_is_neg(frb))) {
1094 fe_flag = 1;
1095 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1096 fe_flag = 1;
1099 if (unlikely(float64_is_zero_or_denormal(frb))) {
1100 /* XB is not zero because of the above check and */
1101 /* therefore must be denormalized. */
1102 fg_flag = 1;
1106 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1109 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110 uint32_t crfD)
1112 CPU_DoubleU farg1, farg2;
1113 uint32_t ret = 0;
1115 farg1.ll = arg1;
1116 farg2.ll = arg2;
1118 if (unlikely(float64_is_any_nan(farg1.d) ||
1119 float64_is_any_nan(farg2.d))) {
1120 ret = 0x01UL;
1121 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122 ret = 0x08UL;
1123 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124 ret = 0x04UL;
1125 } else {
1126 ret = 0x02UL;
1129 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130 env->fpscr |= ret << FPSCR_FPRF;
1131 env->crf[crfD] = ret;
1132 if (unlikely(ret == 0x01UL
1133 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1134 float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1135 /* sNaN comparison */
1136 float_invalid_op_vxsnan(env, GETPC());
1140 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1141 uint32_t crfD)
1143 CPU_DoubleU farg1, farg2;
1144 uint32_t ret = 0;
1146 farg1.ll = arg1;
1147 farg2.ll = arg2;
1149 if (unlikely(float64_is_any_nan(farg1.d) ||
1150 float64_is_any_nan(farg2.d))) {
1151 ret = 0x01UL;
1152 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1153 ret = 0x08UL;
1154 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1155 ret = 0x04UL;
1156 } else {
1157 ret = 0x02UL;
1160 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1161 env->fpscr |= ret << FPSCR_FPRF;
1162 env->crf[crfD] = ret;
1163 if (unlikely(ret == 0x01UL)) {
1164 float_invalid_op_vxvc(env, 1, GETPC());
1165 if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1166 float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1167 /* sNaN comparison */
1168 float_invalid_op_vxsnan(env, GETPC());
1173 /* Single-precision floating-point conversions */
1174 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1176 CPU_FloatU u;
1178 u.f = int32_to_float32(val, &env->vec_status);
1180 return u.l;
1183 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1185 CPU_FloatU u;
1187 u.f = uint32_to_float32(val, &env->vec_status);
1189 return u.l;
1192 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1194 CPU_FloatU u;
1196 u.l = val;
1197 /* NaN are not treated the same way IEEE 754 does */
1198 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1199 return 0;
1202 return float32_to_int32(u.f, &env->vec_status);
1205 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1207 CPU_FloatU u;
1209 u.l = val;
1210 /* NaN are not treated the same way IEEE 754 does */
1211 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1212 return 0;
1215 return float32_to_uint32(u.f, &env->vec_status);
1218 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1220 CPU_FloatU u;
1222 u.l = val;
1223 /* NaN are not treated the same way IEEE 754 does */
1224 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1225 return 0;
1228 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1231 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1233 CPU_FloatU u;
1235 u.l = val;
1236 /* NaN are not treated the same way IEEE 754 does */
1237 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1238 return 0;
1241 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1244 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1246 CPU_FloatU u;
1247 float32 tmp;
1249 u.f = int32_to_float32(val, &env->vec_status);
1250 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1251 u.f = float32_div(u.f, tmp, &env->vec_status);
1253 return u.l;
1256 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1258 CPU_FloatU u;
1259 float32 tmp;
1261 u.f = uint32_to_float32(val, &env->vec_status);
1262 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1263 u.f = float32_div(u.f, tmp, &env->vec_status);
1265 return u.l;
1268 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1270 CPU_FloatU u;
1271 float32 tmp;
1273 u.l = val;
1274 /* NaN are not treated the same way IEEE 754 does */
1275 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1276 return 0;
1278 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1279 u.f = float32_mul(u.f, tmp, &env->vec_status);
1281 return float32_to_int32(u.f, &env->vec_status);
1284 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1286 CPU_FloatU u;
1287 float32 tmp;
1289 u.l = val;
1290 /* NaN are not treated the same way IEEE 754 does */
1291 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1292 return 0;
1294 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1295 u.f = float32_mul(u.f, tmp, &env->vec_status);
1297 return float32_to_uint32(u.f, &env->vec_status);
1300 #define HELPER_SPE_SINGLE_CONV(name) \
1301 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1303 return e##name(env, val); \
1305 /* efscfsi */
1306 HELPER_SPE_SINGLE_CONV(fscfsi);
1307 /* efscfui */
1308 HELPER_SPE_SINGLE_CONV(fscfui);
1309 /* efscfuf */
1310 HELPER_SPE_SINGLE_CONV(fscfuf);
1311 /* efscfsf */
1312 HELPER_SPE_SINGLE_CONV(fscfsf);
1313 /* efsctsi */
1314 HELPER_SPE_SINGLE_CONV(fsctsi);
1315 /* efsctui */
1316 HELPER_SPE_SINGLE_CONV(fsctui);
1317 /* efsctsiz */
1318 HELPER_SPE_SINGLE_CONV(fsctsiz);
1319 /* efsctuiz */
1320 HELPER_SPE_SINGLE_CONV(fsctuiz);
1321 /* efsctsf */
1322 HELPER_SPE_SINGLE_CONV(fsctsf);
1323 /* efsctuf */
1324 HELPER_SPE_SINGLE_CONV(fsctuf);
1326 #define HELPER_SPE_VECTOR_CONV(name) \
1327 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1329 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1330 (uint64_t)e##name(env, val); \
1332 /* evfscfsi */
1333 HELPER_SPE_VECTOR_CONV(fscfsi);
1334 /* evfscfui */
1335 HELPER_SPE_VECTOR_CONV(fscfui);
1336 /* evfscfuf */
1337 HELPER_SPE_VECTOR_CONV(fscfuf);
1338 /* evfscfsf */
1339 HELPER_SPE_VECTOR_CONV(fscfsf);
1340 /* evfsctsi */
1341 HELPER_SPE_VECTOR_CONV(fsctsi);
1342 /* evfsctui */
1343 HELPER_SPE_VECTOR_CONV(fsctui);
1344 /* evfsctsiz */
1345 HELPER_SPE_VECTOR_CONV(fsctsiz);
1346 /* evfsctuiz */
1347 HELPER_SPE_VECTOR_CONV(fsctuiz);
1348 /* evfsctsf */
1349 HELPER_SPE_VECTOR_CONV(fsctsf);
1350 /* evfsctuf */
1351 HELPER_SPE_VECTOR_CONV(fsctuf);
1353 /* Single-precision floating-point arithmetic */
1354 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1356 CPU_FloatU u1, u2;
1358 u1.l = op1;
1359 u2.l = op2;
1360 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1361 return u1.l;
1364 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1366 CPU_FloatU u1, u2;
1368 u1.l = op1;
1369 u2.l = op2;
1370 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1371 return u1.l;
1374 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1376 CPU_FloatU u1, u2;
1378 u1.l = op1;
1379 u2.l = op2;
1380 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1381 return u1.l;
1384 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1386 CPU_FloatU u1, u2;
1388 u1.l = op1;
1389 u2.l = op2;
1390 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1391 return u1.l;
1394 #define HELPER_SPE_SINGLE_ARITH(name) \
1395 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1397 return e##name(env, op1, op2); \
1399 /* efsadd */
1400 HELPER_SPE_SINGLE_ARITH(fsadd);
1401 /* efssub */
1402 HELPER_SPE_SINGLE_ARITH(fssub);
1403 /* efsmul */
1404 HELPER_SPE_SINGLE_ARITH(fsmul);
1405 /* efsdiv */
1406 HELPER_SPE_SINGLE_ARITH(fsdiv);
1408 #define HELPER_SPE_VECTOR_ARITH(name) \
1409 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1411 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1412 (uint64_t)e##name(env, op1, op2); \
1414 /* evfsadd */
1415 HELPER_SPE_VECTOR_ARITH(fsadd);
1416 /* evfssub */
1417 HELPER_SPE_VECTOR_ARITH(fssub);
1418 /* evfsmul */
1419 HELPER_SPE_VECTOR_ARITH(fsmul);
1420 /* evfsdiv */
1421 HELPER_SPE_VECTOR_ARITH(fsdiv);
1423 /* Single-precision floating-point comparisons */
1424 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1426 CPU_FloatU u1, u2;
1428 u1.l = op1;
1429 u2.l = op2;
1430 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1433 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1435 CPU_FloatU u1, u2;
1437 u1.l = op1;
1438 u2.l = op2;
1439 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1442 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1444 CPU_FloatU u1, u2;
1446 u1.l = op1;
1447 u2.l = op2;
1448 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1451 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1453 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454 return efscmplt(env, op1, op2);
1457 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1459 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1460 return efscmpgt(env, op1, op2);
1463 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1465 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466 return efscmpeq(env, op1, op2);
1469 #define HELPER_SINGLE_SPE_CMP(name) \
1470 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1472 return e##name(env, op1, op2); \
1474 /* efststlt */
1475 HELPER_SINGLE_SPE_CMP(fststlt);
1476 /* efststgt */
1477 HELPER_SINGLE_SPE_CMP(fststgt);
1478 /* efststeq */
1479 HELPER_SINGLE_SPE_CMP(fststeq);
1480 /* efscmplt */
1481 HELPER_SINGLE_SPE_CMP(fscmplt);
1482 /* efscmpgt */
1483 HELPER_SINGLE_SPE_CMP(fscmpgt);
1484 /* efscmpeq */
1485 HELPER_SINGLE_SPE_CMP(fscmpeq);
1487 static inline uint32_t evcmp_merge(int t0, int t1)
1489 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1492 #define HELPER_VECTOR_SPE_CMP(name) \
1493 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1495 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1496 e##name(env, op1, op2)); \
1498 /* evfststlt */
1499 HELPER_VECTOR_SPE_CMP(fststlt);
1500 /* evfststgt */
1501 HELPER_VECTOR_SPE_CMP(fststgt);
1502 /* evfststeq */
1503 HELPER_VECTOR_SPE_CMP(fststeq);
1504 /* evfscmplt */
1505 HELPER_VECTOR_SPE_CMP(fscmplt);
1506 /* evfscmpgt */
1507 HELPER_VECTOR_SPE_CMP(fscmpgt);
1508 /* evfscmpeq */
1509 HELPER_VECTOR_SPE_CMP(fscmpeq);
1511 /* Double-precision floating-point conversion */
1512 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1514 CPU_DoubleU u;
1516 u.d = int32_to_float64(val, &env->vec_status);
1518 return u.ll;
1521 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1523 CPU_DoubleU u;
1525 u.d = int64_to_float64(val, &env->vec_status);
1527 return u.ll;
1530 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1532 CPU_DoubleU u;
1534 u.d = uint32_to_float64(val, &env->vec_status);
1536 return u.ll;
1539 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1541 CPU_DoubleU u;
1543 u.d = uint64_to_float64(val, &env->vec_status);
1545 return u.ll;
1548 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1550 CPU_DoubleU u;
1552 u.ll = val;
1553 /* NaN are not treated the same way IEEE 754 does */
1554 if (unlikely(float64_is_any_nan(u.d))) {
1555 return 0;
1558 return float64_to_int32(u.d, &env->vec_status);
1561 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1563 CPU_DoubleU u;
1565 u.ll = val;
1566 /* NaN are not treated the same way IEEE 754 does */
1567 if (unlikely(float64_is_any_nan(u.d))) {
1568 return 0;
1571 return float64_to_uint32(u.d, &env->vec_status);
1574 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1576 CPU_DoubleU u;
1578 u.ll = val;
1579 /* NaN are not treated the same way IEEE 754 does */
1580 if (unlikely(float64_is_any_nan(u.d))) {
1581 return 0;
1584 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1587 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1589 CPU_DoubleU u;
1591 u.ll = val;
1592 /* NaN are not treated the same way IEEE 754 does */
1593 if (unlikely(float64_is_any_nan(u.d))) {
1594 return 0;
1597 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1600 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1602 CPU_DoubleU u;
1604 u.ll = val;
1605 /* NaN are not treated the same way IEEE 754 does */
1606 if (unlikely(float64_is_any_nan(u.d))) {
1607 return 0;
1610 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1613 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1615 CPU_DoubleU u;
1617 u.ll = val;
1618 /* NaN are not treated the same way IEEE 754 does */
1619 if (unlikely(float64_is_any_nan(u.d))) {
1620 return 0;
1623 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1626 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1628 CPU_DoubleU u;
1629 float64 tmp;
1631 u.d = int32_to_float64(val, &env->vec_status);
1632 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1633 u.d = float64_div(u.d, tmp, &env->vec_status);
1635 return u.ll;
1638 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1640 CPU_DoubleU u;
1641 float64 tmp;
1643 u.d = uint32_to_float64(val, &env->vec_status);
1644 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645 u.d = float64_div(u.d, tmp, &env->vec_status);
1647 return u.ll;
1650 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1652 CPU_DoubleU u;
1653 float64 tmp;
1655 u.ll = val;
1656 /* NaN are not treated the same way IEEE 754 does */
1657 if (unlikely(float64_is_any_nan(u.d))) {
1658 return 0;
1660 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1661 u.d = float64_mul(u.d, tmp, &env->vec_status);
1663 return float64_to_int32(u.d, &env->vec_status);
1666 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1668 CPU_DoubleU u;
1669 float64 tmp;
1671 u.ll = val;
1672 /* NaN are not treated the same way IEEE 754 does */
1673 if (unlikely(float64_is_any_nan(u.d))) {
1674 return 0;
1676 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1677 u.d = float64_mul(u.d, tmp, &env->vec_status);
1679 return float64_to_uint32(u.d, &env->vec_status);
1682 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1684 CPU_DoubleU u1;
1685 CPU_FloatU u2;
1687 u1.ll = val;
1688 u2.f = float64_to_float32(u1.d, &env->vec_status);
1690 return u2.l;
1693 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1695 CPU_DoubleU u2;
1696 CPU_FloatU u1;
1698 u1.l = val;
1699 u2.d = float32_to_float64(u1.f, &env->vec_status);
1701 return u2.ll;
1704 /* Double precision fixed-point arithmetic */
1705 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1707 CPU_DoubleU u1, u2;
1709 u1.ll = op1;
1710 u2.ll = op2;
1711 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1712 return u1.ll;
1715 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1717 CPU_DoubleU u1, u2;
1719 u1.ll = op1;
1720 u2.ll = op2;
1721 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1722 return u1.ll;
1725 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1727 CPU_DoubleU u1, u2;
1729 u1.ll = op1;
1730 u2.ll = op2;
1731 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1732 return u1.ll;
1735 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1737 CPU_DoubleU u1, u2;
1739 u1.ll = op1;
1740 u2.ll = op2;
1741 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1742 return u1.ll;
1745 /* Double precision floating point helpers */
1746 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1748 CPU_DoubleU u1, u2;
1750 u1.ll = op1;
1751 u2.ll = op2;
1752 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1755 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1757 CPU_DoubleU u1, u2;
1759 u1.ll = op1;
1760 u2.ll = op2;
1761 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1764 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1766 CPU_DoubleU u1, u2;
1768 u1.ll = op1;
1769 u2.ll = op2;
1770 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1773 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1775 /* XXX: TODO: test special values (NaN, infinites, ...) */
1776 return helper_efdtstlt(env, op1, op2);
1779 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1781 /* XXX: TODO: test special values (NaN, infinites, ...) */
1782 return helper_efdtstgt(env, op1, op2);
1785 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1787 /* XXX: TODO: test special values (NaN, infinites, ...) */
1788 return helper_efdtsteq(env, op1, op2);
1791 #define float64_to_float64(x, env) x
1795 * VSX_ADD_SUB - VSX floating point add/subract
1796 * name - instruction mnemonic
1797 * op - operation (add or sub)
1798 * nels - number of elements (1, 2 or 4)
1799 * tp - type (float32 or float64)
1800 * fld - vsr_t field (VsrD(*) or VsrW(*))
1801 * sfprf - set FPRF
1803 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \
1804 void helper_##name(CPUPPCState *env, uint32_t opcode) \
1806 ppc_vsr_t xt, xa, xb; \
1807 int i; \
1809 getVSR(xA(opcode), &xa, env); \
1810 getVSR(xB(opcode), &xb, env); \
1811 getVSR(xT(opcode), &xt, env); \
1812 helper_reset_fpstatus(env); \
1814 for (i = 0; i < nels; i++) { \
1815 float_status tstat = env->fp_status; \
1816 set_float_exception_flags(0, &tstat); \
1817 xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \
1818 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1820 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1821 float_invalid_op_addsub(env, sfprf, GETPC(), \
1822 tp##_classify(xa.fld) | \
1823 tp##_classify(xb.fld)); \
1826 if (r2sp) { \
1827 xt.fld = helper_frsp(env, xt.fld); \
1830 if (sfprf) { \
1831 helper_compute_fprf_float64(env, xt.fld); \
1834 putVSR(xT(opcode), &xt, env); \
1835 do_float_check_status(env, GETPC()); \
1838 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1839 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1840 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1841 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1842 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1843 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1844 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1845 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1847 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1849 ppc_vsr_t xt, xa, xb;
1850 float_status tstat;
1852 getVSR(rA(opcode) + 32, &xa, env);
1853 getVSR(rB(opcode) + 32, &xb, env);
1854 getVSR(rD(opcode) + 32, &xt, env);
1855 helper_reset_fpstatus(env);
1857 tstat = env->fp_status;
1858 if (unlikely(Rc(opcode) != 0)) {
1859 tstat.float_rounding_mode = float_round_to_odd;
1862 set_float_exception_flags(0, &tstat);
1863 xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1864 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1866 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1867 float_invalid_op_addsub(env, 1, GETPC(),
1868 float128_classify(xa.f128) |
1869 float128_classify(xb.f128));
1872 helper_compute_fprf_float128(env, xt.f128);
1874 putVSR(rD(opcode) + 32, &xt, env);
1875 do_float_check_status(env, GETPC());
1879 * VSX_MUL - VSX floating point multiply
1880 * op - instruction mnemonic
1881 * nels - number of elements (1, 2 or 4)
1882 * tp - type (float32 or float64)
1883 * fld - vsr_t field (VsrD(*) or VsrW(*))
1884 * sfprf - set FPRF
1886 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \
1887 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1889 ppc_vsr_t xt, xa, xb; \
1890 int i; \
1892 getVSR(xA(opcode), &xa, env); \
1893 getVSR(xB(opcode), &xb, env); \
1894 getVSR(xT(opcode), &xt, env); \
1895 helper_reset_fpstatus(env); \
1897 for (i = 0; i < nels; i++) { \
1898 float_status tstat = env->fp_status; \
1899 set_float_exception_flags(0, &tstat); \
1900 xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \
1901 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1903 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1904 float_invalid_op_mul(env, sfprf, GETPC(), \
1905 tp##_classify(xa.fld) | \
1906 tp##_classify(xb.fld)); \
1909 if (r2sp) { \
1910 xt.fld = helper_frsp(env, xt.fld); \
1913 if (sfprf) { \
1914 helper_compute_fprf_float64(env, xt.fld); \
1918 putVSR(xT(opcode), &xt, env); \
1919 do_float_check_status(env, GETPC()); \
1922 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1923 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1924 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1925 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1927 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1929 ppc_vsr_t xt, xa, xb;
1930 float_status tstat;
1932 getVSR(rA(opcode) + 32, &xa, env);
1933 getVSR(rB(opcode) + 32, &xb, env);
1934 getVSR(rD(opcode) + 32, &xt, env);
1936 helper_reset_fpstatus(env);
1937 tstat = env->fp_status;
1938 if (unlikely(Rc(opcode) != 0)) {
1939 tstat.float_rounding_mode = float_round_to_odd;
1942 set_float_exception_flags(0, &tstat);
1943 xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1944 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1946 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1947 float_invalid_op_mul(env, 1, GETPC(),
1948 float128_classify(xa.f128) |
1949 float128_classify(xb.f128));
1951 helper_compute_fprf_float128(env, xt.f128);
1953 putVSR(rD(opcode) + 32, &xt, env);
1954 do_float_check_status(env, GETPC());
1958 * VSX_DIV - VSX floating point divide
1959 * op - instruction mnemonic
1960 * nels - number of elements (1, 2 or 4)
1961 * tp - type (float32 or float64)
1962 * fld - vsr_t field (VsrD(*) or VsrW(*))
1963 * sfprf - set FPRF
1965 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \
1966 void helper_##op(CPUPPCState *env, uint32_t opcode) \
1968 ppc_vsr_t xt, xa, xb; \
1969 int i; \
1971 getVSR(xA(opcode), &xa, env); \
1972 getVSR(xB(opcode), &xb, env); \
1973 getVSR(xT(opcode), &xt, env); \
1974 helper_reset_fpstatus(env); \
1976 for (i = 0; i < nels; i++) { \
1977 float_status tstat = env->fp_status; \
1978 set_float_exception_flags(0, &tstat); \
1979 xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \
1980 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1982 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1983 float_invalid_op_div(env, sfprf, GETPC(), \
1984 tp##_classify(xa.fld) | \
1985 tp##_classify(xb.fld)); \
1987 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1988 float_zero_divide_excp(env, GETPC()); \
1991 if (r2sp) { \
1992 xt.fld = helper_frsp(env, xt.fld); \
1995 if (sfprf) { \
1996 helper_compute_fprf_float64(env, xt.fld); \
2000 putVSR(xT(opcode), &xt, env); \
2001 do_float_check_status(env, GETPC()); \
2004 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2005 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2006 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2007 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2009 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
2011 ppc_vsr_t xt, xa, xb;
2012 float_status tstat;
2014 getVSR(rA(opcode) + 32, &xa, env);
2015 getVSR(rB(opcode) + 32, &xb, env);
2016 getVSR(rD(opcode) + 32, &xt, env);
2018 helper_reset_fpstatus(env);
2019 tstat = env->fp_status;
2020 if (unlikely(Rc(opcode) != 0)) {
2021 tstat.float_rounding_mode = float_round_to_odd;
2024 set_float_exception_flags(0, &tstat);
2025 xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
2026 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2028 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2029 float_invalid_op_div(env, 1, GETPC(),
2030 float128_classify(xa.f128) |
2031 float128_classify(xb.f128));
2033 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2034 float_zero_divide_excp(env, GETPC());
2037 helper_compute_fprf_float128(env, xt.f128);
2038 putVSR(rD(opcode) + 32, &xt, env);
2039 do_float_check_status(env, GETPC());
2043 * VSX_RE - VSX floating point reciprocal estimate
2044 * op - instruction mnemonic
2045 * nels - number of elements (1, 2 or 4)
2046 * tp - type (float32 or float64)
2047 * fld - vsr_t field (VsrD(*) or VsrW(*))
2048 * sfprf - set FPRF
2050 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \
2051 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2053 ppc_vsr_t xt, xb; \
2054 int i; \
2056 getVSR(xB(opcode), &xb, env); \
2057 getVSR(xT(opcode), &xt, env); \
2058 helper_reset_fpstatus(env); \
2060 for (i = 0; i < nels; i++) { \
2061 if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2062 float_invalid_op_vxsnan(env, GETPC()); \
2064 xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \
2066 if (r2sp) { \
2067 xt.fld = helper_frsp(env, xt.fld); \
2070 if (sfprf) { \
2071 helper_compute_fprf_float64(env, xt.fld); \
2075 putVSR(xT(opcode), &xt, env); \
2076 do_float_check_status(env, GETPC()); \
2079 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2080 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2081 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2082 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2085 * VSX_SQRT - VSX floating point square root
2086 * op - instruction mnemonic
2087 * nels - number of elements (1, 2 or 4)
2088 * tp - type (float32 or float64)
2089 * fld - vsr_t field (VsrD(*) or VsrW(*))
2090 * sfprf - set FPRF
2092 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \
2093 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2095 ppc_vsr_t xt, xb; \
2096 int i; \
2098 getVSR(xB(opcode), &xb, env); \
2099 getVSR(xT(opcode), &xt, env); \
2100 helper_reset_fpstatus(env); \
2102 for (i = 0; i < nels; i++) { \
2103 float_status tstat = env->fp_status; \
2104 set_float_exception_flags(0, &tstat); \
2105 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2106 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2108 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2109 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2110 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2111 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2112 float_invalid_op_vxsnan(env, GETPC()); \
2116 if (r2sp) { \
2117 xt.fld = helper_frsp(env, xt.fld); \
2120 if (sfprf) { \
2121 helper_compute_fprf_float64(env, xt.fld); \
2125 putVSR(xT(opcode), &xt, env); \
2126 do_float_check_status(env, GETPC()); \
2129 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2130 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2131 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2132 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2135 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2136 * op - instruction mnemonic
2137 * nels - number of elements (1, 2 or 4)
2138 * tp - type (float32 or float64)
2139 * fld - vsr_t field (VsrD(*) or VsrW(*))
2140 * sfprf - set FPRF
2142 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \
2143 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2145 ppc_vsr_t xt, xb; \
2146 int i; \
2148 getVSR(xB(opcode), &xb, env); \
2149 getVSR(xT(opcode), &xt, env); \
2150 helper_reset_fpstatus(env); \
2152 for (i = 0; i < nels; i++) { \
2153 float_status tstat = env->fp_status; \
2154 set_float_exception_flags(0, &tstat); \
2155 xt.fld = tp##_sqrt(xb.fld, &tstat); \
2156 xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \
2157 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2159 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2160 if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \
2161 float_invalid_op_vxsqrt(env, sfprf, GETPC()); \
2162 } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \
2163 float_invalid_op_vxsnan(env, GETPC()); \
2167 if (r2sp) { \
2168 xt.fld = helper_frsp(env, xt.fld); \
2171 if (sfprf) { \
2172 helper_compute_fprf_float64(env, xt.fld); \
2176 putVSR(xT(opcode), &xt, env); \
2177 do_float_check_status(env, GETPC()); \
2180 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2181 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2182 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2183 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2186 * VSX_TDIV - VSX floating point test for divide
2187 * op - instruction mnemonic
2188 * nels - number of elements (1, 2 or 4)
2189 * tp - type (float32 or float64)
2190 * fld - vsr_t field (VsrD(*) or VsrW(*))
2191 * emin - minimum unbiased exponent
2192 * emax - maximum unbiased exponent
2193 * nbits - number of fraction bits
2195 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
2196 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2198 ppc_vsr_t xa, xb; \
2199 int i; \
2200 int fe_flag = 0; \
2201 int fg_flag = 0; \
2203 getVSR(xA(opcode), &xa, env); \
2204 getVSR(xB(opcode), &xb, env); \
2206 for (i = 0; i < nels; i++) { \
2207 if (unlikely(tp##_is_infinity(xa.fld) || \
2208 tp##_is_infinity(xb.fld) || \
2209 tp##_is_zero(xb.fld))) { \
2210 fe_flag = 1; \
2211 fg_flag = 1; \
2212 } else { \
2213 int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \
2214 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2216 if (unlikely(tp##_is_any_nan(xa.fld) || \
2217 tp##_is_any_nan(xb.fld))) { \
2218 fe_flag = 1; \
2219 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
2220 fe_flag = 1; \
2221 } else if (!tp##_is_zero(xa.fld) && \
2222 (((e_a - e_b) >= emax) || \
2223 ((e_a - e_b) <= (emin + 1)) || \
2224 (e_a <= (emin + nbits)))) { \
2225 fe_flag = 1; \
2228 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2229 /* \
2230 * XB is not zero because of the above check and so \
2231 * must be denormalized. \
2232 */ \
2233 fg_flag = 1; \
2238 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2241 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2242 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2243 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2246 * VSX_TSQRT - VSX floating point test for square root
2247 * op - instruction mnemonic
2248 * nels - number of elements (1, 2 or 4)
2249 * tp - type (float32 or float64)
2250 * fld - vsr_t field (VsrD(*) or VsrW(*))
2251 * emin - minimum unbiased exponent
2252 * emax - maximum unbiased exponent
2253 * nbits - number of fraction bits
2255 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
2256 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2258 ppc_vsr_t xa, xb; \
2259 int i; \
2260 int fe_flag = 0; \
2261 int fg_flag = 0; \
2263 getVSR(xA(opcode), &xa, env); \
2264 getVSR(xB(opcode), &xb, env); \
2266 for (i = 0; i < nels; i++) { \
2267 if (unlikely(tp##_is_infinity(xb.fld) || \
2268 tp##_is_zero(xb.fld))) { \
2269 fe_flag = 1; \
2270 fg_flag = 1; \
2271 } else { \
2272 int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \
2274 if (unlikely(tp##_is_any_nan(xb.fld))) { \
2275 fe_flag = 1; \
2276 } else if (unlikely(tp##_is_zero(xb.fld))) { \
2277 fe_flag = 1; \
2278 } else if (unlikely(tp##_is_neg(xb.fld))) { \
2279 fe_flag = 1; \
2280 } else if (!tp##_is_zero(xb.fld) && \
2281 (e_b <= (emin + nbits))) { \
2282 fe_flag = 1; \
2285 if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \
2286 /* \
2287 * XB is not zero because of the above check and \
2288 * therefore must be denormalized. \
2289 */ \
2290 fg_flag = 1; \
2295 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2298 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2299 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2300 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2303 * VSX_MADD - VSX floating point muliply/add variations
2304 * op - instruction mnemonic
2305 * nels - number of elements (1, 2 or 4)
2306 * tp - type (float32 or float64)
2307 * fld - vsr_t field (VsrD(*) or VsrW(*))
2308 * maddflgs - flags for the float*muladd routine that control the
2309 * various forms (madd, msub, nmadd, nmsub)
2310 * afrm - A form (1=A, 0=M)
2311 * sfprf - set FPRF
2313 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \
2314 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2316 ppc_vsr_t xt_in, xa, xb, xt_out; \
2317 ppc_vsr_t *b, *c; \
2318 int i; \
2320 if (afrm) { /* AxB + T */ \
2321 b = &xb; \
2322 c = &xt_in; \
2323 } else { /* AxT + B */ \
2324 b = &xt_in; \
2325 c = &xb; \
2328 getVSR(xA(opcode), &xa, env); \
2329 getVSR(xB(opcode), &xb, env); \
2330 getVSR(xT(opcode), &xt_in, env); \
2332 xt_out = xt_in; \
2334 helper_reset_fpstatus(env); \
2336 for (i = 0; i < nels; i++) { \
2337 float_status tstat = env->fp_status; \
2338 set_float_exception_flags(0, &tstat); \
2339 if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2340 /* \
2341 * Avoid double rounding errors by rounding the intermediate \
2342 * result to odd. \
2343 */ \
2344 set_float_rounding_mode(float_round_to_zero, &tstat); \
2345 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2346 maddflgs, &tstat); \
2347 xt_out.fld |= (get_float_exception_flags(&tstat) & \
2348 float_flag_inexact) != 0; \
2349 } else { \
2350 xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \
2351 maddflgs, &tstat); \
2353 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2355 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2356 tp##_maddsub_update_excp(env, xa.fld, b->fld, \
2357 c->fld, maddflgs, GETPC()); \
2360 if (r2sp) { \
2361 xt_out.fld = helper_frsp(env, xt_out.fld); \
2364 if (sfprf) { \
2365 helper_compute_fprf_float64(env, xt_out.fld); \
2368 putVSR(xT(opcode), &xt_out, env); \
2369 do_float_check_status(env, GETPC()); \
2372 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2373 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2374 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2375 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2376 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2377 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2378 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2379 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2381 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2382 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2383 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2384 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2385 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2386 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2387 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2388 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2390 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2391 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2392 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2393 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2394 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2395 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2396 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2397 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2399 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2400 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2401 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2402 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2403 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2404 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2405 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2406 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2409 * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2410 * op - instruction mnemonic
2411 * cmp - comparison operation
2412 * exp - expected result of comparison
2413 * svxvc - set VXVC bit
2415 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \
2416 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2418 ppc_vsr_t xt, xa, xb; \
2419 bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \
2421 getVSR(xA(opcode), &xa, env); \
2422 getVSR(xB(opcode), &xb, env); \
2423 getVSR(xT(opcode), &xt, env); \
2425 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2426 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2427 vxsnan_flag = true; \
2428 if (fpscr_ve == 0 && svxvc) { \
2429 vxvc_flag = true; \
2431 } else if (svxvc) { \
2432 vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2433 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \
2435 if (vxsnan_flag) { \
2436 float_invalid_op_vxsnan(env, GETPC()); \
2438 if (vxvc_flag) { \
2439 float_invalid_op_vxvc(env, 0, GETPC()); \
2441 vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \
2443 if (!vex_flag) { \
2444 if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \
2445 xt.VsrD(0) = -1; \
2446 xt.VsrD(1) = 0; \
2447 } else { \
2448 xt.VsrD(0) = 0; \
2449 xt.VsrD(1) = 0; \
2452 putVSR(xT(opcode), &xt, env); \
2453 do_float_check_status(env, GETPC()); \
2456 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2457 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2458 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2459 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2461 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2463 ppc_vsr_t xa, xb;
2464 int64_t exp_a, exp_b;
2465 uint32_t cc;
2467 getVSR(xA(opcode), &xa, env);
2468 getVSR(xB(opcode), &xb, env);
2470 exp_a = extract64(xa.VsrD(0), 52, 11);
2471 exp_b = extract64(xb.VsrD(0), 52, 11);
2473 if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2474 float64_is_any_nan(xb.VsrD(0)))) {
2475 cc = CRF_SO;
2476 } else {
2477 if (exp_a < exp_b) {
2478 cc = CRF_LT;
2479 } else if (exp_a > exp_b) {
2480 cc = CRF_GT;
2481 } else {
2482 cc = CRF_EQ;
2486 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2487 env->fpscr |= cc << FPSCR_FPRF;
2488 env->crf[BF(opcode)] = cc;
2490 do_float_check_status(env, GETPC());
2493 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2495 ppc_vsr_t xa, xb;
2496 int64_t exp_a, exp_b;
2497 uint32_t cc;
2499 getVSR(rA(opcode) + 32, &xa, env);
2500 getVSR(rB(opcode) + 32, &xb, env);
2502 exp_a = extract64(xa.VsrD(0), 48, 15);
2503 exp_b = extract64(xb.VsrD(0), 48, 15);
2505 if (unlikely(float128_is_any_nan(xa.f128) ||
2506 float128_is_any_nan(xb.f128))) {
2507 cc = CRF_SO;
2508 } else {
2509 if (exp_a < exp_b) {
2510 cc = CRF_LT;
2511 } else if (exp_a > exp_b) {
2512 cc = CRF_GT;
2513 } else {
2514 cc = CRF_EQ;
2518 env->fpscr &= ~(0x0F << FPSCR_FPRF);
2519 env->fpscr |= cc << FPSCR_FPRF;
2520 env->crf[BF(opcode)] = cc;
2522 do_float_check_status(env, GETPC());
2525 #define VSX_SCALAR_CMP(op, ordered) \
2526 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2528 ppc_vsr_t xa, xb; \
2529 uint32_t cc = 0; \
2530 bool vxsnan_flag = false, vxvc_flag = false; \
2532 helper_reset_fpstatus(env); \
2533 getVSR(xA(opcode), &xa, env); \
2534 getVSR(xB(opcode), &xb, env); \
2536 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2537 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2538 vxsnan_flag = true; \
2539 cc = CRF_SO; \
2540 if (fpscr_ve == 0 && ordered) { \
2541 vxvc_flag = true; \
2543 } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \
2544 float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) { \
2545 cc = CRF_SO; \
2546 if (ordered) { \
2547 vxvc_flag = true; \
2550 if (vxsnan_flag) { \
2551 float_invalid_op_vxsnan(env, GETPC()); \
2553 if (vxvc_flag) { \
2554 float_invalid_op_vxvc(env, 0, GETPC()); \
2557 if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2558 cc |= CRF_LT; \
2559 } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \
2560 cc |= CRF_GT; \
2561 } else { \
2562 cc |= CRF_EQ; \
2565 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2566 env->fpscr |= cc << FPSCR_FPRF; \
2567 env->crf[BF(opcode)] = cc; \
2569 do_float_check_status(env, GETPC()); \
2572 VSX_SCALAR_CMP(xscmpodp, 1)
2573 VSX_SCALAR_CMP(xscmpudp, 0)
2575 #define VSX_SCALAR_CMPQ(op, ordered) \
2576 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2578 ppc_vsr_t xa, xb; \
2579 uint32_t cc = 0; \
2580 bool vxsnan_flag = false, vxvc_flag = false; \
2582 helper_reset_fpstatus(env); \
2583 getVSR(rA(opcode) + 32, &xa, env); \
2584 getVSR(rB(opcode) + 32, &xb, env); \
2586 if (float128_is_signaling_nan(xa.f128, &env->fp_status) || \
2587 float128_is_signaling_nan(xb.f128, &env->fp_status)) { \
2588 vxsnan_flag = true; \
2589 cc = CRF_SO; \
2590 if (fpscr_ve == 0 && ordered) { \
2591 vxvc_flag = true; \
2593 } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) || \
2594 float128_is_quiet_nan(xb.f128, &env->fp_status)) { \
2595 cc = CRF_SO; \
2596 if (ordered) { \
2597 vxvc_flag = true; \
2600 if (vxsnan_flag) { \
2601 float_invalid_op_vxsnan(env, GETPC()); \
2603 if (vxvc_flag) { \
2604 float_invalid_op_vxvc(env, 0, GETPC()); \
2607 if (float128_lt(xa.f128, xb.f128, &env->fp_status)) { \
2608 cc |= CRF_LT; \
2609 } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) { \
2610 cc |= CRF_GT; \
2611 } else { \
2612 cc |= CRF_EQ; \
2615 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
2616 env->fpscr |= cc << FPSCR_FPRF; \
2617 env->crf[BF(opcode)] = cc; \
2619 do_float_check_status(env, GETPC()); \
2622 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2623 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2626 * VSX_MAX_MIN - VSX floating point maximum/minimum
2627 * name - instruction mnemonic
2628 * op - operation (max or min)
2629 * nels - number of elements (1, 2 or 4)
2630 * tp - type (float32 or float64)
2631 * fld - vsr_t field (VsrD(*) or VsrW(*))
2633 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2634 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2636 ppc_vsr_t xt, xa, xb; \
2637 int i; \
2639 getVSR(xA(opcode), &xa, env); \
2640 getVSR(xB(opcode), &xb, env); \
2641 getVSR(xT(opcode), &xt, env); \
2643 for (i = 0; i < nels; i++) { \
2644 xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \
2645 if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2646 tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \
2647 float_invalid_op_vxsnan(env, GETPC()); \
2651 putVSR(xT(opcode), &xt, env); \
2652 do_float_check_status(env, GETPC()); \
2655 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2656 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2657 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2658 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2659 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2660 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2662 #define VSX_MAX_MINC(name, max) \
2663 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2665 ppc_vsr_t xt, xa, xb; \
2666 bool vxsnan_flag = false, vex_flag = false; \
2668 getVSR(rA(opcode) + 32, &xa, env); \
2669 getVSR(rB(opcode) + 32, &xb, env); \
2670 getVSR(rD(opcode) + 32, &xt, env); \
2672 if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \
2673 float64_is_any_nan(xb.VsrD(0)))) { \
2674 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \
2675 float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2676 vxsnan_flag = true; \
2678 xt.VsrD(0) = xb.VsrD(0); \
2679 } else if ((max && \
2680 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2681 (!max && \
2682 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2683 xt.VsrD(0) = xa.VsrD(0); \
2684 } else { \
2685 xt.VsrD(0) = xb.VsrD(0); \
2688 vex_flag = fpscr_ve & vxsnan_flag; \
2689 if (vxsnan_flag) { \
2690 float_invalid_op_vxsnan(env, GETPC()); \
2692 if (!vex_flag) { \
2693 putVSR(rD(opcode) + 32, &xt, env); \
2697 VSX_MAX_MINC(xsmaxcdp, 1);
2698 VSX_MAX_MINC(xsmincdp, 0);
2700 #define VSX_MAX_MINJ(name, max) \
2701 void helper_##name(CPUPPCState *env, uint32_t opcode) \
2703 ppc_vsr_t xt, xa, xb; \
2704 bool vxsnan_flag = false, vex_flag = false; \
2706 getVSR(rA(opcode) + 32, &xa, env); \
2707 getVSR(rB(opcode) + 32, &xb, env); \
2708 getVSR(rD(opcode) + 32, &xt, env); \
2710 if (unlikely(float64_is_any_nan(xa.VsrD(0)))) { \
2711 if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) { \
2712 vxsnan_flag = true; \
2714 xt.VsrD(0) = xa.VsrD(0); \
2715 } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) { \
2716 if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \
2717 vxsnan_flag = true; \
2719 xt.VsrD(0) = xb.VsrD(0); \
2720 } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) { \
2721 if (max) { \
2722 if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2723 xt.VsrD(0) = 0ULL; \
2724 } else { \
2725 xt.VsrD(0) = 0x8000000000000000ULL; \
2727 } else { \
2728 if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) { \
2729 xt.VsrD(0) = 0x8000000000000000ULL; \
2730 } else { \
2731 xt.VsrD(0) = 0ULL; \
2734 } else if ((max && \
2735 !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \
2736 (!max && \
2737 float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \
2738 xt.VsrD(0) = xa.VsrD(0); \
2739 } else { \
2740 xt.VsrD(0) = xb.VsrD(0); \
2743 vex_flag = fpscr_ve & vxsnan_flag; \
2744 if (vxsnan_flag) { \
2745 float_invalid_op_vxsnan(env, GETPC()); \
2747 if (!vex_flag) { \
2748 putVSR(rD(opcode) + 32, &xt, env); \
2752 VSX_MAX_MINJ(xsmaxjdp, 1);
2753 VSX_MAX_MINJ(xsminjdp, 0);
2756 * VSX_CMP - VSX floating point compare
2757 * op - instruction mnemonic
2758 * nels - number of elements (1, 2 or 4)
2759 * tp - type (float32 or float64)
2760 * fld - vsr_t field (VsrD(*) or VsrW(*))
2761 * cmp - comparison operation
2762 * svxvc - set VXVC bit
2763 * exp - expected result of comparison
2765 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2766 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2768 ppc_vsr_t xt, xa, xb; \
2769 int i; \
2770 int all_true = 1; \
2771 int all_false = 1; \
2773 getVSR(xA(opcode), &xa, env); \
2774 getVSR(xB(opcode), &xb, env); \
2775 getVSR(xT(opcode), &xt, env); \
2777 for (i = 0; i < nels; i++) { \
2778 if (unlikely(tp##_is_any_nan(xa.fld) || \
2779 tp##_is_any_nan(xb.fld))) { \
2780 if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \
2781 tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \
2782 float_invalid_op_vxsnan(env, GETPC()); \
2784 if (svxvc) { \
2785 float_invalid_op_vxvc(env, 0, GETPC()); \
2787 xt.fld = 0; \
2788 all_true = 0; \
2789 } else { \
2790 if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \
2791 xt.fld = -1; \
2792 all_false = 0; \
2793 } else { \
2794 xt.fld = 0; \
2795 all_true = 0; \
2800 putVSR(xT(opcode), &xt, env); \
2801 if ((opcode >> (31 - 21)) & 1) { \
2802 env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2804 do_float_check_status(env, GETPC()); \
2807 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2808 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2809 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2810 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2811 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2812 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2813 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2814 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2817 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2818 * op - instruction mnemonic
2819 * nels - number of elements (1, 2 or 4)
2820 * stp - source type (float32 or float64)
2821 * ttp - target type (float32 or float64)
2822 * sfld - source vsr_t field
2823 * tfld - target vsr_t field (f32 or f64)
2824 * sfprf - set FPRF
2826 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2827 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2829 ppc_vsr_t xt, xb; \
2830 int i; \
2832 getVSR(xB(opcode), &xb, env); \
2833 getVSR(xT(opcode), &xt, env); \
2835 for (i = 0; i < nels; i++) { \
2836 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2837 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2838 &env->fp_status))) { \
2839 float_invalid_op_vxsnan(env, GETPC()); \
2840 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2842 if (sfprf) { \
2843 helper_compute_fprf_##ttp(env, xt.tfld); \
2847 putVSR(xT(opcode), &xt, env); \
2848 do_float_check_status(env, GETPC()); \
2851 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2852 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2853 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2854 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2857 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2858 * op - instruction mnemonic
2859 * nels - number of elements (1, 2 or 4)
2860 * stp - source type (float32 or float64)
2861 * ttp - target type (float32 or float64)
2862 * sfld - source vsr_t field
2863 * tfld - target vsr_t field (f32 or f64)
2864 * sfprf - set FPRF
2866 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2867 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2869 ppc_vsr_t xt, xb; \
2870 int i; \
2872 getVSR(rB(opcode) + 32, &xb, env); \
2873 getVSR(rD(opcode) + 32, &xt, env); \
2875 for (i = 0; i < nels; i++) { \
2876 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
2877 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2878 &env->fp_status))) { \
2879 float_invalid_op_vxsnan(env, GETPC()); \
2880 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2882 if (sfprf) { \
2883 helper_compute_fprf_##ttp(env, xt.tfld); \
2887 putVSR(rD(opcode) + 32, &xt, env); \
2888 do_float_check_status(env, GETPC()); \
2891 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2894 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2895 * involving one half precision value
2896 * op - instruction mnemonic
2897 * nels - number of elements (1, 2 or 4)
2898 * stp - source type
2899 * ttp - target type
2900 * sfld - source vsr_t field
2901 * tfld - target vsr_t field
2902 * sfprf - set FPRF
2904 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2905 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2907 ppc_vsr_t xt, xb; \
2908 int i; \
2910 getVSR(xB(opcode), &xb, env); \
2911 memset(&xt, 0, sizeof(xt)); \
2913 for (i = 0; i < nels; i++) { \
2914 xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status); \
2915 if (unlikely(stp##_is_signaling_nan(xb.sfld, \
2916 &env->fp_status))) { \
2917 float_invalid_op_vxsnan(env, GETPC()); \
2918 xt.tfld = ttp##_snan_to_qnan(xt.tfld); \
2920 if (sfprf) { \
2921 helper_compute_fprf_##ttp(env, xt.tfld); \
2925 putVSR(xT(opcode), &xt, env); \
2926 do_float_check_status(env, GETPC()); \
2929 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2930 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2931 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0)
2932 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2935 * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2936 * added to this later.
2938 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2940 ppc_vsr_t xt, xb;
2941 float_status tstat;
2943 getVSR(rB(opcode) + 32, &xb, env);
2944 memset(&xt, 0, sizeof(xt));
2946 tstat = env->fp_status;
2947 if (unlikely(Rc(opcode) != 0)) {
2948 tstat.float_rounding_mode = float_round_to_odd;
2951 xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2952 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2953 if (unlikely(float128_is_signaling_nan(xb.f128, &tstat))) {
2954 float_invalid_op_vxsnan(env, GETPC());
2955 xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2957 helper_compute_fprf_float64(env, xt.VsrD(0));
2959 putVSR(rD(opcode) + 32, &xt, env);
2960 do_float_check_status(env, GETPC());
2963 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2965 float_status tstat = env->fp_status;
2966 set_float_exception_flags(0, &tstat);
2968 return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2971 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2973 float_status tstat = env->fp_status;
2974 set_float_exception_flags(0, &tstat);
2976 return float32_to_float64(xb >> 32, &tstat);
2980 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2981 * op - instruction mnemonic
2982 * nels - number of elements (1, 2 or 4)
2983 * stp - source type (float32 or float64)
2984 * ttp - target type (int32, uint32, int64 or uint64)
2985 * sfld - source vsr_t field
2986 * tfld - target vsr_t field
2987 * rnan - resulting NaN
2989 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \
2990 void helper_##op(CPUPPCState *env, uint32_t opcode) \
2992 int all_flags = env->fp_status.float_exception_flags, flags; \
2993 ppc_vsr_t xt, xb; \
2994 int i; \
2996 getVSR(xB(opcode), &xb, env); \
2997 getVSR(xT(opcode), &xt, env); \
2999 for (i = 0; i < nels; i++) { \
3000 env->fp_status.float_exception_flags = 0; \
3001 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status); \
3002 flags = env->fp_status.float_exception_flags; \
3003 if (unlikely(flags & float_flag_invalid)) { \
3004 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld)); \
3005 xt.tfld = rnan; \
3007 all_flags |= flags; \
3010 putVSR(xT(opcode), &xt, env); \
3011 env->fp_status.float_exception_flags = all_flags; \
3012 do_float_check_status(env, GETPC()); \
3015 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
3016 0x8000000000000000ULL)
3017 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
3018 0x80000000U)
3019 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
3020 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
3021 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
3022 0x8000000000000000ULL)
3023 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
3024 0x80000000U)
3025 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
3026 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
3027 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
3028 0x8000000000000000ULL)
3029 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
3030 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
3031 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
3034 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3035 * op - instruction mnemonic
3036 * stp - source type (float32 or float64)
3037 * ttp - target type (int32, uint32, int64 or uint64)
3038 * sfld - source vsr_t field
3039 * tfld - target vsr_t field
3040 * rnan - resulting NaN
3042 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
3043 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3045 ppc_vsr_t xt, xb; \
3047 getVSR(rB(opcode) + 32, &xb, env); \
3048 memset(&xt, 0, sizeof(xt)); \
3050 xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status); \
3051 if (env->fp_status.float_exception_flags & float_flag_invalid) { \
3052 float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld)); \
3053 xt.tfld = rnan; \
3056 putVSR(rD(opcode) + 32, &xt, env); \
3057 do_float_check_status(env, GETPC()); \
3060 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \
3061 0x8000000000000000ULL)
3063 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \
3064 0xffffffff80000000ULL)
3065 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3066 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3069 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3070 * op - instruction mnemonic
3071 * nels - number of elements (1, 2 or 4)
3072 * stp - source type (int32, uint32, int64 or uint64)
3073 * ttp - target type (float32 or float64)
3074 * sfld - source vsr_t field
3075 * tfld - target vsr_t field
3076 * jdef - definition of the j index (i or 2*i)
3077 * sfprf - set FPRF
3079 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \
3080 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3082 ppc_vsr_t xt, xb; \
3083 int i; \
3085 getVSR(xB(opcode), &xb, env); \
3086 getVSR(xT(opcode), &xt, env); \
3088 for (i = 0; i < nels; i++) { \
3089 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3090 if (r2sp) { \
3091 xt.tfld = helper_frsp(env, xt.tfld); \
3093 if (sfprf) { \
3094 helper_compute_fprf_float64(env, xt.tfld); \
3098 putVSR(xT(opcode), &xt, env); \
3099 do_float_check_status(env, GETPC()); \
3102 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3103 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3104 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3105 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3106 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3107 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3108 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3109 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3110 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3111 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3112 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3113 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3116 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3117 * op - instruction mnemonic
3118 * stp - source type (int32, uint32, int64 or uint64)
3119 * ttp - target type (float32 or float64)
3120 * sfld - source vsr_t field
3121 * tfld - target vsr_t field
3123 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
3124 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3126 ppc_vsr_t xt, xb; \
3128 getVSR(rB(opcode) + 32, &xb, env); \
3129 getVSR(rD(opcode) + 32, &xt, env); \
3131 xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \
3132 helper_compute_fprf_##ttp(env, xt.tfld); \
3134 putVSR(xT(opcode) + 32, &xt, env); \
3135 do_float_check_status(env, GETPC()); \
3138 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3139 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3142 * For "use current rounding mode", define a value that will not be
3143 * one of the existing rounding model enums.
3145 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3146 float_round_up + float_round_to_zero)
3149 * VSX_ROUND - VSX floating point round
3150 * op - instruction mnemonic
3151 * nels - number of elements (1, 2 or 4)
3152 * tp - type (float32 or float64)
3153 * fld - vsr_t field (VsrD(*) or VsrW(*))
3154 * rmode - rounding mode
3155 * sfprf - set FPRF
3157 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \
3158 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3160 ppc_vsr_t xt, xb; \
3161 int i; \
3162 getVSR(xB(opcode), &xb, env); \
3163 getVSR(xT(opcode), &xt, env); \
3165 if (rmode != FLOAT_ROUND_CURRENT) { \
3166 set_float_rounding_mode(rmode, &env->fp_status); \
3169 for (i = 0; i < nels; i++) { \
3170 if (unlikely(tp##_is_signaling_nan(xb.fld, \
3171 &env->fp_status))) { \
3172 float_invalid_op_vxsnan(env, GETPC()); \
3173 xt.fld = tp##_snan_to_qnan(xb.fld); \
3174 } else { \
3175 xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \
3177 if (sfprf) { \
3178 helper_compute_fprf_float64(env, xt.fld); \
3182 /* \
3183 * If this is not a "use current rounding mode" instruction, \
3184 * then inhibit setting of the XX bit and restore rounding \
3185 * mode from FPSCR \
3186 */ \
3187 if (rmode != FLOAT_ROUND_CURRENT) { \
3188 fpscr_set_rounding_mode(env); \
3189 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3192 putVSR(xT(opcode), &xt, env); \
3193 do_float_check_status(env, GETPC()); \
3196 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3197 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3198 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3199 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3200 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3202 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3203 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3204 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3205 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3206 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3208 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3209 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3210 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3211 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3212 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3214 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3216 helper_reset_fpstatus(env);
3218 uint64_t xt = helper_frsp(env, xb);
3220 helper_compute_fprf_float64(env, xt);
3221 do_float_check_status(env, GETPC());
3222 return xt;
3225 #define VSX_XXPERM(op, indexed) \
3226 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3228 ppc_vsr_t xt, xa, pcv, xto; \
3229 int i, idx; \
3231 getVSR(xA(opcode), &xa, env); \
3232 getVSR(xT(opcode), &xt, env); \
3233 getVSR(xB(opcode), &pcv, env); \
3235 for (i = 0; i < 16; i++) { \
3236 idx = pcv.VsrB(i) & 0x1F; \
3237 if (indexed) { \
3238 idx = 31 - idx; \
3240 xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3242 putVSR(xT(opcode), &xto, env); \
3245 VSX_XXPERM(xxperm, 0)
3246 VSX_XXPERM(xxpermr, 1)
3248 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3250 ppc_vsr_t xt, xb;
3251 uint32_t exp, i, fraction;
3253 getVSR(xB(opcode), &xb, env);
3254 memset(&xt, 0, sizeof(xt));
3256 for (i = 0; i < 4; i++) {
3257 exp = (xb.VsrW(i) >> 23) & 0xFF;
3258 fraction = xb.VsrW(i) & 0x7FFFFF;
3259 if (exp != 0 && exp != 255) {
3260 xt.VsrW(i) = fraction | 0x00800000;
3261 } else {
3262 xt.VsrW(i) = fraction;
3265 putVSR(xT(opcode), &xt, env);
3269 * VSX_TEST_DC - VSX floating point test data class
3270 * op - instruction mnemonic
3271 * nels - number of elements (1, 2 or 4)
3272 * xbn - VSR register number
3273 * tp - type (float32 or float64)
3274 * fld - vsr_t field (VsrD(*) or VsrW(*))
3275 * tfld - target vsr_t field (VsrD(*) or VsrW(*))
3276 * fld_max - target field max
3277 * scrf - set result in CR and FPCC
3279 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \
3280 void helper_##op(CPUPPCState *env, uint32_t opcode) \
3282 ppc_vsr_t xt, xb; \
3283 uint32_t i, sign, dcmx; \
3284 uint32_t cc, match = 0; \
3286 getVSR(xbn, &xb, env); \
3287 if (!scrf) { \
3288 memset(&xt, 0, sizeof(xt)); \
3289 dcmx = DCMX_XV(opcode); \
3290 } else { \
3291 dcmx = DCMX(opcode); \
3294 for (i = 0; i < nels; i++) { \
3295 sign = tp##_is_neg(xb.fld); \
3296 if (tp##_is_any_nan(xb.fld)) { \
3297 match = extract32(dcmx, 6, 1); \
3298 } else if (tp##_is_infinity(xb.fld)) { \
3299 match = extract32(dcmx, 4 + !sign, 1); \
3300 } else if (tp##_is_zero(xb.fld)) { \
3301 match = extract32(dcmx, 2 + !sign, 1); \
3302 } else if (tp##_is_zero_or_denormal(xb.fld)) { \
3303 match = extract32(dcmx, 0 + !sign, 1); \
3306 if (scrf) { \
3307 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3308 env->fpscr &= ~(0x0F << FPSCR_FPRF); \
3309 env->fpscr |= cc << FPSCR_FPRF; \
3310 env->crf[BF(opcode)] = cc; \
3311 } else { \
3312 xt.tfld = match ? fld_max : 0; \
3314 match = 0; \
3316 if (!scrf) { \
3317 putVSR(xT(opcode), &xt, env); \
3321 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3322 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3323 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3324 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3326 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3328 ppc_vsr_t xb;
3329 uint32_t dcmx, sign, exp;
3330 uint32_t cc, match = 0, not_sp = 0;
3332 getVSR(xB(opcode), &xb, env);
3333 dcmx = DCMX(opcode);
3334 exp = (xb.VsrD(0) >> 52) & 0x7FF;
3336 sign = float64_is_neg(xb.VsrD(0));
3337 if (float64_is_any_nan(xb.VsrD(0))) {
3338 match = extract32(dcmx, 6, 1);
3339 } else if (float64_is_infinity(xb.VsrD(0))) {
3340 match = extract32(dcmx, 4 + !sign, 1);
3341 } else if (float64_is_zero(xb.VsrD(0))) {
3342 match = extract32(dcmx, 2 + !sign, 1);
3343 } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3344 (exp > 0 && exp < 0x381)) {
3345 match = extract32(dcmx, 0 + !sign, 1);
3348 not_sp = !float64_eq(xb.VsrD(0),
3349 float32_to_float64(
3350 float64_to_float32(xb.VsrD(0), &env->fp_status),
3351 &env->fp_status), &env->fp_status);
3353 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3354 env->fpscr &= ~(0x0F << FPSCR_FPRF);
3355 env->fpscr |= cc << FPSCR_FPRF;
3356 env->crf[BF(opcode)] = cc;
3359 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3361 ppc_vsr_t xb;
3362 ppc_vsr_t xt;
3363 uint8_t r = Rrm(opcode);
3364 uint8_t ex = Rc(opcode);
3365 uint8_t rmc = RMC(opcode);
3366 uint8_t rmode = 0;
3367 float_status tstat;
3369 getVSR(rB(opcode) + 32, &xb, env);
3370 memset(&xt, 0, sizeof(xt));
3371 helper_reset_fpstatus(env);
3373 if (r == 0 && rmc == 0) {
3374 rmode = float_round_ties_away;
3375 } else if (r == 0 && rmc == 0x3) {
3376 rmode = fpscr_rn;
3377 } else if (r == 1) {
3378 switch (rmc) {
3379 case 0:
3380 rmode = float_round_nearest_even;
3381 break;
3382 case 1:
3383 rmode = float_round_to_zero;
3384 break;
3385 case 2:
3386 rmode = float_round_up;
3387 break;
3388 case 3:
3389 rmode = float_round_down;
3390 break;
3391 default:
3392 abort();
3396 tstat = env->fp_status;
3397 set_float_exception_flags(0, &tstat);
3398 set_float_rounding_mode(rmode, &tstat);
3399 xt.f128 = float128_round_to_int(xb.f128, &tstat);
3400 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3402 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3403 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3404 float_invalid_op_vxsnan(env, GETPC());
3405 xt.f128 = float128_snan_to_qnan(xt.f128);
3409 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3410 env->fp_status.float_exception_flags &= ~float_flag_inexact;
3413 helper_compute_fprf_float128(env, xt.f128);
3414 do_float_check_status(env, GETPC());
3415 putVSR(rD(opcode) + 32, &xt, env);
3418 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3420 ppc_vsr_t xb;
3421 ppc_vsr_t xt;
3422 uint8_t r = Rrm(opcode);
3423 uint8_t rmc = RMC(opcode);
3424 uint8_t rmode = 0;
3425 floatx80 round_res;
3426 float_status tstat;
3428 getVSR(rB(opcode) + 32, &xb, env);
3429 memset(&xt, 0, sizeof(xt));
3430 helper_reset_fpstatus(env);
3432 if (r == 0 && rmc == 0) {
3433 rmode = float_round_ties_away;
3434 } else if (r == 0 && rmc == 0x3) {
3435 rmode = fpscr_rn;
3436 } else if (r == 1) {
3437 switch (rmc) {
3438 case 0:
3439 rmode = float_round_nearest_even;
3440 break;
3441 case 1:
3442 rmode = float_round_to_zero;
3443 break;
3444 case 2:
3445 rmode = float_round_up;
3446 break;
3447 case 3:
3448 rmode = float_round_down;
3449 break;
3450 default:
3451 abort();
3455 tstat = env->fp_status;
3456 set_float_exception_flags(0, &tstat);
3457 set_float_rounding_mode(rmode, &tstat);
3458 round_res = float128_to_floatx80(xb.f128, &tstat);
3459 xt.f128 = floatx80_to_float128(round_res, &tstat);
3460 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3462 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3463 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3464 float_invalid_op_vxsnan(env, GETPC());
3465 xt.f128 = float128_snan_to_qnan(xt.f128);
3469 helper_compute_fprf_float128(env, xt.f128);
3470 putVSR(rD(opcode) + 32, &xt, env);
3471 do_float_check_status(env, GETPC());
3474 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3476 ppc_vsr_t xb;
3477 ppc_vsr_t xt;
3478 float_status tstat;
3480 getVSR(rB(opcode) + 32, &xb, env);
3481 memset(&xt, 0, sizeof(xt));
3482 helper_reset_fpstatus(env);
3484 tstat = env->fp_status;
3485 if (unlikely(Rc(opcode) != 0)) {
3486 tstat.float_rounding_mode = float_round_to_odd;
3489 set_float_exception_flags(0, &tstat);
3490 xt.f128 = float128_sqrt(xb.f128, &tstat);
3491 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3493 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3494 if (float128_is_signaling_nan(xb.f128, &tstat)) {
3495 float_invalid_op_vxsnan(env, GETPC());
3496 xt.f128 = float128_snan_to_qnan(xb.f128);
3497 } else if (float128_is_quiet_nan(xb.f128, &tstat)) {
3498 xt.f128 = xb.f128;
3499 } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3500 float_invalid_op_vxsqrt(env, 1, GETPC());
3501 xt.f128 = float128_default_nan(&env->fp_status);
3505 helper_compute_fprf_float128(env, xt.f128);
3506 putVSR(rD(opcode) + 32, &xt, env);
3507 do_float_check_status(env, GETPC());
3510 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3512 ppc_vsr_t xt, xa, xb;
3513 float_status tstat;
3515 getVSR(rA(opcode) + 32, &xa, env);
3516 getVSR(rB(opcode) + 32, &xb, env);
3517 getVSR(rD(opcode) + 32, &xt, env);
3518 helper_reset_fpstatus(env);
3520 tstat = env->fp_status;
3521 if (unlikely(Rc(opcode) != 0)) {
3522 tstat.float_rounding_mode = float_round_to_odd;
3525 set_float_exception_flags(0, &tstat);
3526 xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3527 env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3529 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3530 float_invalid_op_addsub(env, 1, GETPC(),
3531 float128_classify(xa.f128) |
3532 float128_classify(xb.f128));
3535 helper_compute_fprf_float128(env, xt.f128);
3536 putVSR(rD(opcode) + 32, &xt, env);
3537 do_float_check_status(env, GETPC());